Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass
Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In...
Saved in:
Published in | Environmental research Vol. 200; p. 111730 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.09.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.
•Soil microbes as indicators of soil pollution with heavy metals.•Heavy metal contamination inhibited the microbial activity.•A new Cd-resistant strain was isolated and identified as Penicillium janthinellum.•Penicillium janthinellum ZZ-2 promoted the plant growth and Cd uptake•ZZ-2 might be used to improve the efficiency of metal extraction from soil. |
---|---|
AbstractList | Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd²⁺ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils. Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils. •Soil microbes as indicators of soil pollution with heavy metals.•Heavy metal contamination inhibited the microbial activity.•A new Cd-resistant strain was isolated and identified as Penicillium janthinellum.•Penicillium janthinellum ZZ-2 promoted the plant growth and Cd uptake•ZZ-2 might be used to improve the efficiency of metal extraction from soil. Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils. |
ArticleNumber | 111730 |
Author | Bi, Yufang Bu, Heshen Chen, Liang Xie, Yan Jiang, Ying Hu, Longxing Feng, Qijia Wassie, Misganaw Amee, Maurice |
Author_xml | – sequence: 1 givenname: Yan orcidid: 0000-0002-8914-235X surname: Xie fullname: Xie, Yan organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China – sequence: 2 givenname: Heshen surname: Bu fullname: Bu, Heshen organization: Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China – sequence: 3 givenname: Qijia orcidid: 0000-0003-2774-8572 surname: Feng fullname: Feng, Qijia organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China – sequence: 4 givenname: Misganaw surname: Wassie fullname: Wassie, Misganaw organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China – sequence: 5 givenname: Maurice orcidid: 0000-0002-0380-1634 surname: Amee fullname: Amee, Maurice organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China – sequence: 6 givenname: Ying surname: Jiang fullname: Jiang, Ying organization: Public Laboratory Platform, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China – sequence: 7 givenname: Yufang surname: Bi fullname: Bi, Yufang organization: China National Bamboo Research Center, Hangzhou, 310058, China – sequence: 8 givenname: Longxing surname: Hu fullname: Hu, Longxing email: grass@hunau.edu.cn organization: Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China – sequence: 9 givenname: Liang surname: Chen fullname: Chen, Liang email: chenliang888@wbgcas.cn organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China |
BookMark | eNqFkUFv1DAQhS1UJLal_6AHH7lk64njrMMBCa2gVKrEBc6WY092vUrsxXYW9c_wW-ttUA8c6Mka6X1vPO9dkgsfPBJyA2wNDNrbwxr9KWJa16yGNQBsOHtDVsC6tmKd4BdkxRjwquMC3pHLlA5lBMHZivy5t-izG5zR2QVPw0C3tipeLmXtM52ciSHEnfYuTYkOMUx0j_r0SCfMeqxM8FlPzuuMlqbgRqq9pS4negz57KxH6jw9Fi5k53c075HuYvid98_KraXamHmax5f9PcZptnoXdUrvydtBjwmv_75X5OfXLz-236qH73f3288PlWm4zBWIZlOulaJvN7oTvQRmORcoambsYGXPmJaSD73ppKz7EpCsNzX0pja9gQb4Ffmw-JaP_poxZTW5ZHActccwJ1W3vG060dbidakQAoA1nSzSZpGWDFOKOKhjdJOOjwqYOjenDmppTp2bU0tzBfv4D2Zcfo4nR-3G1-BPC4wlrpPDqJJx6A1aF9FkZYP7v8ET8MK78A |
CitedBy_id | crossref_primary_10_3390_ijms23095031 crossref_primary_10_1016_j_scitotenv_2023_168994 crossref_primary_10_1016_j_bioelechem_2023_108622 crossref_primary_10_1016_j_ecoenv_2023_115509 crossref_primary_10_3390_microorganisms11040864 crossref_primary_10_3390_agronomy14102348 crossref_primary_10_1007_s00128_022_03628_x crossref_primary_10_1016_j_jhazmat_2024_135953 crossref_primary_10_1007_s11356_022_20187_0 crossref_primary_10_1016_j_jhazmat_2023_131153 crossref_primary_10_1111_ppl_13710 crossref_primary_10_1007_s10534_023_00524_7 crossref_primary_10_1007_s00343_024_4028_6 crossref_primary_10_1016_j_eti_2025_104077 crossref_primary_10_1007_s42729_025_02247_9 crossref_primary_10_1111_sum_12989 crossref_primary_10_1016_j_ecoenv_2024_116883 crossref_primary_10_1016_j_scitotenv_2024_173478 crossref_primary_10_3390_ijerph192316309 crossref_primary_10_3390_su152416598 crossref_primary_10_3389_fmicb_2023_1252127 crossref_primary_10_3390_plants13101303 crossref_primary_10_1007_s11356_022_19180_4 crossref_primary_10_1007_s11368_022_03297_7 crossref_primary_10_1016_j_jhazmat_2024_135980 crossref_primary_10_3390_jox14010004 crossref_primary_10_1007_s11356_024_34657_0 crossref_primary_10_1080_15226514_2022_2161995 crossref_primary_10_3389_fmicb_2023_1160960 crossref_primary_10_1016_j_envres_2024_119153 crossref_primary_10_1016_j_jclepro_2023_138706 crossref_primary_10_1016_j_envpol_2024_124979 crossref_primary_10_1016_j_scitotenv_2024_170879 crossref_primary_10_1016_j_chemosphere_2023_139770 crossref_primary_10_1515_pac_2024_0261 crossref_primary_10_1016_j_scitotenv_2024_172990 crossref_primary_10_1080_10643389_2023_2183700 crossref_primary_10_3389_fmicb_2023_1087202 crossref_primary_10_1007_s11274_024_04194_6 crossref_primary_10_3389_fmicb_2025_1562341 crossref_primary_10_1007_s11356_022_21818_2 crossref_primary_10_1007_s11783_025_1958_y crossref_primary_10_1016_j_eti_2024_103956 crossref_primary_10_1016_j_jenvman_2025_124746 crossref_primary_10_3390_ijms222112065 crossref_primary_10_1016_j_ecoenv_2022_113739 crossref_primary_10_1016_j_chemosphere_2023_140507 crossref_primary_10_1007_s11368_023_03711_8 crossref_primary_10_1016_j_jenvman_2025_124994 crossref_primary_10_1016_j_scitotenv_2022_161344 crossref_primary_10_48130_grares_0024_0015 crossref_primary_10_1016_j_envpol_2023_121559 crossref_primary_10_1007_s10123_022_00276_3 crossref_primary_10_1016_j_jenvman_2023_117723 crossref_primary_10_1007_s11270_024_06948_2 crossref_primary_10_1016_j_scitotenv_2023_162153 crossref_primary_10_1039_D4RA07920E crossref_primary_10_1186_s12866_022_02488_z crossref_primary_10_1007_s44307_024_00052_6 crossref_primary_10_3389_fmicb_2023_1131770 crossref_primary_10_1016_j_indcrop_2024_119698 crossref_primary_10_12944_CWE_18_3_30 crossref_primary_10_1016_j_envexpbot_2022_105128 crossref_primary_10_1038_s41598_023_31330_3 crossref_primary_10_1021_envhealth_3c00009 crossref_primary_10_1016_j_biortech_2023_130194 crossref_primary_10_1111_pbi_14301 crossref_primary_10_1016_j_envpol_2023_121599 crossref_primary_10_1016_j_envpol_2024_124201 crossref_primary_10_1016_j_rhisph_2025_101037 crossref_primary_10_3389_fsufs_2025_1506609 crossref_primary_10_1016_j_jhazmat_2025_138018 |
Cites_doi | 10.1017/S0953756202006330 10.1016/j.chemosphere.2013.01.075 10.1016/j.apsoil.2004.08.001 10.1111/1574-6941.12212 10.1093/femsec/fiu003 10.1016/S0016-7061(03)00083-1 10.1016/j.chemosphere.2019.07.028 10.1016/S0960-8524(98)00192-8 10.1016/j.chemosphere.2016.12.116 10.1016/j.chemosphere.2019.125154 10.1016/j.soilbio.2007.06.024 10.1016/S0168-6496(03)00232-0 10.1371/journal.pone.0040059 10.1016/j.chemosphere.2014.10.037 10.1016/j.apsoil.2012.11.004 10.1016/j.ecoenv.2011.07.013 10.1046/j.1469-8137.2003.00721.x 10.1111/jam.14165 10.1016/j.nbt.2013.07.002 10.1016/j.ecoenv.2018.11.123 10.1093/bioinformatics/btr507 10.1021/acs.est.9b01093 10.1080/09593330.2012.673015 10.1111/j.1399-3054.2007.00983.x 10.1016/j.ejsobi.2016.02.004 10.1021/es001938v 10.1023/B:WATE.0000038900.66771.bf 10.1016/j.jhazmat.2020.122858 10.1016/j.ecoenv.2018.11.136 10.1016/j.envpol.2008.04.007 10.1016/j.biortech.2006.09.051 10.1038/s41598-020-58259-1 10.1128/AEM.69.6.3223-3230.2003 10.1080/00103627309366451 10.1111/mec.12481 10.1007/s11356-018-1492-6 10.1016/S1161-0301(03)00076-5 10.2135/cropsci2003.1131 10.1016/j.soilbio.2006.04.045 10.3389/fpls.2016.00755 10.1007/s11104-017-3465-9 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.envres.2021.111730 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Environmental Sciences |
EISSN | 1096-0953 |
ExternalDocumentID | 10_1016_j_envres_2021_111730 S0013935121010240 |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYJJ AAYWO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ACDAQ ACGFS ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADXHL AEBSH AEGFY AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC C45 CAG COF CS3 DM4 DU5 EBS EFBJH EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W KCYFY KOM L7B LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OHT OVD OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K TAE TEORI TN5 TWZ UPT VOH WH7 WUQ XOL XPP ZCA ZGI ZKB ZMT ZU3 ZXP ~02 ~G- ~KM AAYXX AGRNS BNPGV CITATION RIG 7X8 SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c438t-154710985b67a95b810d335e520cdfd8b00a883fbc9882b11782721bc2cbc1413 |
IEDL.DBID | .~1 |
ISSN | 0013-9351 1096-0953 |
IngestDate | Fri Jul 11 08:04:56 EDT 2025 Mon Jul 21 11:44:09 EDT 2025 Thu Aug 07 07:12:01 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Sat Aug 30 17:17:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Soil microbial communities Penicillium janthinellum ZZ-2 Heavy metal pollution Plant growth promotion Bermudagrass |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c438t-154710985b67a95b810d335e520cdfd8b00a883fbc9882b11782721bc2cbc1413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0380-1634 0000-0003-2774-8572 0000-0002-8914-235X |
PQID | 2555110498 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2636495625 proquest_miscellaneous_2555110498 crossref_primary_10_1016_j_envres_2021_111730 crossref_citationtrail_10_1016_j_envres_2021_111730 elsevier_sciencedirect_doi_10_1016_j_envres_2021_111730 |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-09-00 20210901 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationTitle | Environmental research |
PublicationYear | 2021 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Xie, Li, Huang, Han, Amombo, Wassie, Chen, Fu (bib43) 2019; 171 Lasat (bib23) 2001; 31 Xie, Fan, Zhu, Amombo, Lou, Chen, Fu (bib42) 2016; 7 Taliaferro, Martin, Anderson, Anderson, Bell, Guenzi (bib36) 2003; 43 Magoč, Salzberg (bib28) 2011; 27 Xie, Luo, Du, Hu, Fu (bib44) 2014; 117 Yang, Qiu, Chen, Chen, Li, Zhu, Rahman, Han, Jiang, Yang, Tian, Ma, Zhang (bib48) 2020; 242 Yang, Liang, Yang, Shi, Tong, Chai, Gao, Liao (bib49) 2018; 25 Huang, Liu (bib19) 2009; 11 Zhao, Huang, Lu, Sun (bib52) 2019; 170 Hu, Li, Zhang, Luo, Fu (bib18) 2011; 74 Piotrowska-Seget, Cycoń, Kozdrój (bib30) 2005; 28 Wu, Chen, Wu, Wang, Wu, Lin, Lin (bib41) 2016; 6 Xie, Li, Liu, Amombo, Chen, Fu (bib45) 2018; 422 Wei, Chen (bib39) 2001; 21 (bib37) 1981 Azarbad, Niklińska, Laskowski, Straalen, Gestel, Zhou, He, Wen, Roling (bib5) 2015; 91 Sepehri, Khodaverdiloo, Zarei (bib32) 2013 Hedlund, Witter, Xuan An (bib17) 2003; 20 Bao (bib6) 2000 Luo, Tao, Jupa, Liu, Wu, Song, Li, Huang, Zou, Liang, Li (bib27) 2019; 53 Dell'Amico, Cavalca, Andreoni (bib14) 2008; 40 Whiting, de Souza, Terry (bib40) 2001; 35 Li, Han, Wang, Liu, Amombo, Xie, Fu (bib24) 2017; 8 Caesar-Tonthat (bib7) 2002; 106 Sheik, Mitchell, Rizvi, Rehman, Faisal, Hasnain, Mcinerney, Krumholz (bib33) 2012; 7 Archer, Caldwell (bib4) 2004; 157 Turpeinen, Kairesalo, Häggblom (bib38) 2004; 47 Sarwar, Imran, Shaheen, Ishaque, Kamran, Matloob, Rehim, Hussain (bib31) 2017; 171 Sheng, Xia, Jiang, He, Qian (bib34) 2008; 156 Yao, Xu, Huang (bib47) 2003; 115 Ellis, Morgan, Weightman, Fry (bib15) 2003; 69 Sirrenberg, Göbel, Grond, Czempinski, Ratzinger, Karlovsky, Santos, Feussner, Pawlowski (bib35) 2007; 131 Chen, Fan, Liu, Zeng, Chen, Zou (bib10) 2012; 33 Kõljalg, Nilsson, Abarenkov, Tedersoo, Taylor, Bahram (bib22) 2013; 22 Chen, He, Zhang, Sun, Zheng, Zheng (bib11) 2014; 87 Chodak, Gołębiewski, Morawska-Płoskonka, Kuduk, Niklińska (bib13) 2013; 64 Hassan, Hijri, St-Arnaud (bib16) 2013; 30 Kapoor, Viraraghavan, Cullimore (bib21) 1999; 70 Abou-Shanab, Angle, Chaney (bib2) 2006; 38 Chen, Zhao, Zhao, Wu, Zhu, Zhang, Wei, Liu, He (bib12) 2020; 398 Licht, Nuss, Volk, Konzer, Beckstette, Berghoff, Klug (bib26) 2020 Olsen, Cole, Watandbe, Dean (bib29) 1954; 53 Zafar, Aqil, Ahmad (bib50) 2007; 98 Ali, Khan, Sajad (bib3) 2013; 91 Abou-Shanab, Angle, Delorme, Chaney, Van Berkum, Moawad, Ghanem, Ghozlan (bib1) 2003; 158 Carlile, Watkinson, Gooday (bib8) 2001 Li, Yu, Cui, Tu, Shen, Yan, Wei, Chen, Wang, Chen, Gu, Zhao, Xiang, Zou, Ma (bib25) 2019; 126 Jones (bib20) 1973; 4 Chen, Wang, Wang (bib9) 2019; 235 Xu, Tan, Wang, Gai (bib46) 2016; 74 Zeng, Xu, Lu, Chen, Li, Wu, Tang, Ma (bib51) 2020; 10 Magoč (10.1016/j.envres.2021.111730_bib28) 2011; 27 Huang (10.1016/j.envres.2021.111730_bib19) 2009; 11 Ali (10.1016/j.envres.2021.111730_bib3) 2013; 91 Kapoor (10.1016/j.envres.2021.111730_bib21) 1999; 70 Sepehri (10.1016/j.envres.2021.111730_bib32) 2013 Zeng (10.1016/j.envres.2021.111730_bib51) 2020; 10 Abou-Shanab (10.1016/j.envres.2021.111730_bib2) 2006; 38 Caesar-Tonthat (10.1016/j.envres.2021.111730_bib7) 2002; 106 Sheik (10.1016/j.envres.2021.111730_bib33) 2012; 7 (10.1016/j.envres.2021.111730_bib37) 1981 Xie (10.1016/j.envres.2021.111730_bib42) 2016; 7 Wu (10.1016/j.envres.2021.111730_bib41) 2016; 6 Li (10.1016/j.envres.2021.111730_bib24) 2017; 8 Abou-Shanab (10.1016/j.envres.2021.111730_bib1) 2003; 158 Chen (10.1016/j.envres.2021.111730_bib12) 2020; 398 Whiting (10.1016/j.envres.2021.111730_bib40) 2001; 35 Hu (10.1016/j.envres.2021.111730_bib18) 2011; 74 Xie (10.1016/j.envres.2021.111730_bib44) 2014; 117 Azarbad (10.1016/j.envres.2021.111730_bib5) 2015; 91 Sheng (10.1016/j.envres.2021.111730_bib34) 2008; 156 Xie (10.1016/j.envres.2021.111730_bib45) 2018; 422 Sirrenberg (10.1016/j.envres.2021.111730_bib35) 2007; 131 Carlile (10.1016/j.envres.2021.111730_bib8) 2001 Chen (10.1016/j.envres.2021.111730_bib9) 2019; 235 Olsen (10.1016/j.envres.2021.111730_bib29) 1954; 53 Zhao (10.1016/j.envres.2021.111730_bib52) 2019; 170 Chen (10.1016/j.envres.2021.111730_bib10) 2012; 33 Sarwar (10.1016/j.envres.2021.111730_bib31) 2017; 171 Wei (10.1016/j.envres.2021.111730_bib39) 2001; 21 Chodak (10.1016/j.envres.2021.111730_bib13) 2013; 64 Yang (10.1016/j.envres.2021.111730_bib49) 2018; 25 Xu (10.1016/j.envres.2021.111730_bib46) 2016; 74 Li (10.1016/j.envres.2021.111730_bib25) 2019; 126 Yang (10.1016/j.envres.2021.111730_bib48) 2020; 242 Dell'Amico (10.1016/j.envres.2021.111730_bib14) 2008; 40 Hassan (10.1016/j.envres.2021.111730_bib16) 2013; 30 Licht (10.1016/j.envres.2021.111730_bib26) 2020 Xie (10.1016/j.envres.2021.111730_bib43) 2019; 171 Yao (10.1016/j.envres.2021.111730_bib47) 2003; 115 Ellis (10.1016/j.envres.2021.111730_bib15) 2003; 69 Zafar (10.1016/j.envres.2021.111730_bib50) 2007; 98 Chen (10.1016/j.envres.2021.111730_bib11) 2014; 87 Turpeinen (10.1016/j.envres.2021.111730_bib38) 2004; 47 Bao (10.1016/j.envres.2021.111730_bib6) 2000 Jones (10.1016/j.envres.2021.111730_bib20) 1973; 4 Taliaferro (10.1016/j.envres.2021.111730_bib36) 2003; 43 Kõljalg (10.1016/j.envres.2021.111730_bib22) 2013; 22 Luo (10.1016/j.envres.2021.111730_bib27) 2019; 53 Archer (10.1016/j.envres.2021.111730_bib4) 2004; 157 Hedlund (10.1016/j.envres.2021.111730_bib17) 2003; 20 Lasat (10.1016/j.envres.2021.111730_bib23) 2001; 31 Piotrowska-Seget (10.1016/j.envres.2021.111730_bib30) 2005; 28 |
References_xml | – volume: 38 start-page: 2882 year: 2006 end-page: 2889 ident: bib2 article-title: Bacterial inoculants affecting nickel uptake by publication-title: Soil Biol. Biochem. – volume: 170 start-page: 218 year: 2019 end-page: 226 ident: bib52 article-title: Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine publication-title: Ecotoxicol. Environ. Saf. – volume: 70 start-page: 95 year: 1999 end-page: 104 ident: bib21 article-title: Removal of heavy metals using the fungus publication-title: Bioresour. Technol. – volume: 158 start-page: 219 year: 2003 end-page: 224 ident: bib1 article-title: Rhizobacterial effects on nickel extraction from soil and uptake by publication-title: New Phytol. – volume: 53 start-page: 1689 year: 1954 end-page: 1699 ident: bib29 article-title: Estimation of available phosphorus in soil by extraction with sodium bicarbonate publication-title: J. Chem. Inf. Model. – volume: 69 start-page: 3223 year: 2003 end-page: 3230 ident: bib15 article-title: Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil publication-title: Appl. Environ. Microbiol. – volume: 91 start-page: 1 year: 2015 end-page: 11 ident: bib5 article-title: Microbial community composition and functions are resilient to metal pollution along two forest soil gradients publication-title: FEMS Microbiol. Ecol. – volume: 6 start-page: 1693 year: 2016 end-page: 1699 ident: bib41 article-title: Effects of consecutive monoculture of publication-title: Sci. Rep. – volume: 20 start-page: 71 year: 2003 end-page: 87 ident: bib17 article-title: Assessment of N, P and K management by nutrient balances and flows on peri-urban smallholder farms in southern Vietnam publication-title: Eur. J. Agron. – volume: 171 start-page: 373 year: 2019 end-page: 381 ident: bib43 article-title: Characterization of the Cd-resistant fungus publication-title: Ecotoxicol. Environ. Saf. – volume: 422 start-page: 409 year: 2018 end-page: 422 ident: bib45 article-title: Application of publication-title: Plant Soil – volume: 53 start-page: 6954 year: 2019 end-page: 6963 ident: bib27 article-title: Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in publication-title: Environ. Sci. Technol. – volume: 25 start-page: 11970 year: 2018 end-page: 11980 ident: bib49 article-title: Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites publication-title: Environ. Sci. Pollut. Res. – start-page: 25 year: 2000 end-page: 109 ident: bib6 article-title: Soil and Agricultural Chemistry Analysis – volume: 131 start-page: 581 year: 2007 end-page: 589 ident: bib35 article-title: affects plant growth by auxin production publication-title: Physiol. Plantarum – volume: 157 start-page: 257 year: 2004 end-page: 267 ident: bib4 article-title: Response of six Australian plant species to heavy metal contamination at an abandoned mine site publication-title: Water Air Soil Pollut. – volume: 30 start-page: 780 year: 2013 end-page: 787 ident: bib16 article-title: Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil publication-title: N. Biotech. – volume: 106 start-page: 930 year: 2002 end-page: 937 ident: bib7 article-title: Soil binding properties of mucilage produced by a basidiomycete fungus in a model system publication-title: Mycol. Res. – volume: 117 start-page: 786 year: 2014 end-page: 792 ident: bib44 article-title: Identification of cadmium-resistant fungi related to Cd transportation in bermudagrass [ publication-title: Chemosphere – start-page: 1 year: 2001 end-page: 9 ident: bib8 article-title: The Fungi as a Major Group of organisms publication-title: The Fungi – volume: 91 start-page: 869 year: 2013 end-page: 881 ident: bib3 article-title: Phytoremediation of heavy metals-concepts and applications publication-title: Chemosphere – volume: 64 start-page: 7 year: 2013 end-page: 14 ident: bib13 article-title: Diversity of microorganisms from forest soils differently polluted with heavy metals publication-title: Appl. Soil Ecol. – volume: 74 start-page: 1 year: 2016 end-page: 8 ident: bib46 article-title: Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure publication-title: Eur. J. Soil Biol. – start-page: 258 year: 1981 end-page: 266 ident: bib37 publication-title: Effect of Heavy Metal Pollution on Plants – volume: 35 start-page: 3144 year: 2001 end-page: 3150 ident: bib40 article-title: Rhizosphere bacteria mobilize zn for hyperaccumulation by publication-title: Environ. Sci. Technol. – volume: 33 start-page: 2653 year: 2012 end-page: 2659 ident: bib10 article-title: Removal of Cd (II), Cu (II) and Zn (II) from aqueous solutions by live publication-title: Environ. Technol. – volume: 4 start-page: 307 year: 1973 end-page: 322 ident: bib20 article-title: Soil testing in the United States publication-title: Commun. Soil Sci. Plant Anal. – volume: 156 start-page: 1164 year: 2008 end-page: 1170 ident: bib34 article-title: Characterization of heavy metal-resistant endophytic bacteria from rape ( publication-title: Environ. Pollut. – volume: 98 start-page: 2557 year: 2007 end-page: 2561 ident: bib50 article-title: Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil publication-title: Bioresour. Technol. – year: 2020 ident: bib26 article-title: Adaptation to Photooxidative Stress: Common and Special Strategies of the – volume: 11 start-page: 799 year: 2009 end-page: 806 ident: bib19 article-title: Physiological responses of creeping bentgrass to heat stress affected by phosphonate fungicide application publication-title: Intl. Turfgrass Soc. Res. J. – volume: 7 start-page: 755 year: 2016 ident: bib42 article-title: Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation publication-title: Front. Plant Sci. – start-page: 313 year: 2013 end-page: 345 ident: bib32 article-title: Fungi and their role in phytoremediation of heavy metal-contaminated soils publication-title: Fungi as Bioremediators – volume: 10 start-page: 2189 year: 2020 ident: bib51 article-title: The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite publication-title: Sci. Rep. – volume: 43 start-page: 1131 year: 2003 end-page: 1132 ident: bib36 article-title: Registration of ‘yukon’ bermudagrass publication-title: Crop Sci. – volume: 235 start-page: 985 year: 2019 end-page: 994 ident: bib9 article-title: Phytoremediation of cadmium-contaminated soil by publication-title: Chemosphere – volume: 126 start-page: 919 year: 2019 end-page: 930 ident: bib25 article-title: The potential of cadmium ion-immobilized publication-title: J. Appl. Microbiol. – volume: 115 start-page: 139 year: 2003 end-page: 148 ident: bib47 article-title: Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils publication-title: Geoderma – volume: 27 start-page: 2957 year: 2011 end-page: 2963 ident: bib28 article-title: FLASH: fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics – volume: 171 start-page: 710 year: 2017 end-page: 721 ident: bib31 article-title: Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives publication-title: Chemosphere – volume: 8 start-page: 1 year: 2017 end-page: 13 ident: bib24 article-title: The fungus publication-title: Front. Microbiol. – volume: 40 start-page: 74 year: 2008 end-page: 84 ident: bib14 article-title: Improvement of publication-title: Soil Biol. Biochem. – volume: 398 start-page: 122858 year: 2020 ident: bib12 article-title: Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: sensitive, resistant and actor publication-title: J. Hazard Mater. – volume: 87 start-page: 164 year: 2014 end-page: 181 ident: bib11 article-title: Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil publication-title: FEMS Microbiol. Ecol. – volume: 47 start-page: 39 year: 2004 end-page: 50 ident: bib38 article-title: Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils publication-title: FEMS Microbiol. Ecol. – volume: 21 start-page: 1196 year: 2001 end-page: 1203 ident: bib39 article-title: Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad publication-title: Acta Ecol. Sin. – volume: 7 year: 2012 ident: bib33 article-title: Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure publication-title: PloS One – volume: 28 start-page: 237 year: 2005 end-page: 246 ident: bib30 article-title: Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil publication-title: Appl. Soil Ecol. – volume: 22 start-page: 5271 year: 2013 end-page: 5277 ident: bib22 article-title: Towards a unified paradigm for sequence-based identification of fungi publication-title: Mol. Ecol. – volume: 242 start-page: 125154 year: 2020 ident: bib48 article-title: Phosphorus influence Cd phytoextraction in publication-title: Chemosphere – volume: 74 start-page: 2050 year: 2011 end-page: 2056 ident: bib18 article-title: Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass publication-title: Ecotoxicol. Environ. Saf. – volume: 31 start-page: 109 year: 2001 end-page: 120 ident: bib23 article-title: Phytoextraction of toxic metals: a review of biological mechanisms publication-title: J. Environ. Qual. – volume: 106 start-page: 930 issue: 8 year: 2002 ident: 10.1016/j.envres.2021.111730_bib7 article-title: Soil binding properties of mucilage produced by a basidiomycete fungus in a model system publication-title: Mycol. Res. doi: 10.1017/S0953756202006330 – volume: 91 start-page: 869 year: 2013 ident: 10.1016/j.envres.2021.111730_bib3 article-title: Phytoremediation of heavy metals-concepts and applications publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.01.075 – volume: 28 start-page: 237 year: 2005 ident: 10.1016/j.envres.2021.111730_bib30 article-title: Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2004.08.001 – volume: 87 start-page: 164 year: 2014 ident: 10.1016/j.envres.2021.111730_bib11 article-title: Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil publication-title: FEMS Microbiol. Ecol. doi: 10.1111/1574-6941.12212 – volume: 91 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.envres.2021.111730_bib5 article-title: Microbial community composition and functions are resilient to metal pollution along two forest soil gradients publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiu003 – volume: 115 start-page: 139 year: 2003 ident: 10.1016/j.envres.2021.111730_bib47 article-title: Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils publication-title: Geoderma doi: 10.1016/S0016-7061(03)00083-1 – volume: 235 start-page: 985 year: 2019 ident: 10.1016/j.envres.2021.111730_bib9 article-title: Phytoremediation of cadmium-contaminated soil by Sorghum bicolor and the variation of microbial community publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.07.028 – volume: 70 start-page: 95 year: 1999 ident: 10.1016/j.envres.2021.111730_bib21 article-title: Removal of heavy metals using the fungus Aspergillus niger publication-title: Bioresour. Technol. doi: 10.1016/S0960-8524(98)00192-8 – volume: 171 start-page: 710 year: 2017 ident: 10.1016/j.envres.2021.111730_bib31 article-title: Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.12.116 – volume: 242 start-page: 125154 year: 2020 ident: 10.1016/j.envres.2021.111730_bib48 article-title: Phosphorus influence Cd phytoextraction in Populus stems via modulating xylem development, cell wall Cd storage and antioxidant defense publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125154 – volume: 8 start-page: 1 year: 2017 ident: 10.1016/j.envres.2021.111730_bib24 article-title: The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass publication-title: Front. Microbiol. – volume: 40 start-page: 74 year: 2008 ident: 10.1016/j.envres.2021.111730_bib14 article-title: Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2007.06.024 – volume: 47 start-page: 39 year: 2004 ident: 10.1016/j.envres.2021.111730_bib38 article-title: Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils publication-title: FEMS Microbiol. Ecol. doi: 10.1016/S0168-6496(03)00232-0 – volume: 7 year: 2012 ident: 10.1016/j.envres.2021.111730_bib33 article-title: Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure publication-title: PloS One doi: 10.1371/journal.pone.0040059 – volume: 117 start-page: 786 year: 2014 ident: 10.1016/j.envres.2021.111730_bib44 article-title: Identification of cadmium-resistant fungi related to Cd transportation in bermudagrass [Cynodon dactylon (L.) Pers] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.10.037 – volume: 64 start-page: 7 year: 2013 ident: 10.1016/j.envres.2021.111730_bib13 article-title: Diversity of microorganisms from forest soils differently polluted with heavy metals publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.11.004 – volume: 74 start-page: 2050 year: 2011 ident: 10.1016/j.envres.2021.111730_bib18 article-title: Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2011.07.013 – volume: 11 start-page: 799 year: 2009 ident: 10.1016/j.envres.2021.111730_bib19 article-title: Physiological responses of creeping bentgrass to heat stress affected by phosphonate fungicide application publication-title: Intl. Turfgrass Soc. Res. J. – volume: 158 start-page: 219 year: 2003 ident: 10.1016/j.envres.2021.111730_bib1 article-title: Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale publication-title: New Phytol. doi: 10.1046/j.1469-8137.2003.00721.x – volume: 126 start-page: 919 year: 2019 ident: 10.1016/j.envres.2021.111730_bib25 article-title: The potential of cadmium ion-immobilized Rhizobium pusense KG2 to prevent soybean root from absorbing cadmium in cadmium-contaminated soil publication-title: J. Appl. Microbiol. doi: 10.1111/jam.14165 – volume: 53 start-page: 1689 year: 1954 ident: 10.1016/j.envres.2021.111730_bib29 article-title: Estimation of available phosphorus in soil by extraction with sodium bicarbonate publication-title: J. Chem. Inf. Model. – start-page: 313 year: 2013 ident: 10.1016/j.envres.2021.111730_bib32 article-title: Fungi and their role in phytoremediation of heavy metal-contaminated soils – volume: 6 start-page: 1693 year: 2016 ident: 10.1016/j.envres.2021.111730_bib41 article-title: Effects of consecutive monoculture of Pseudostellaria heterophyllaon soil fungal community as determined by pyrosequencing publication-title: Sci. Rep. – volume: 30 start-page: 780 year: 2013 ident: 10.1016/j.envres.2021.111730_bib16 article-title: Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil publication-title: N. Biotech. doi: 10.1016/j.nbt.2013.07.002 – volume: 171 start-page: 373 year: 2019 ident: 10.1016/j.envres.2021.111730_bib43 article-title: Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.11.123 – volume: 27 start-page: 2957 year: 2011 ident: 10.1016/j.envres.2021.111730_bib28 article-title: FLASH: fast length adjustment of short reads to improve genome assemblies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr507 – volume: 53 start-page: 6954 year: 2019 ident: 10.1016/j.envres.2021.111730_bib27 article-title: Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b01093 – volume: 33 start-page: 2653 year: 2012 ident: 10.1016/j.envres.2021.111730_bib10 article-title: Removal of Cd (II), Cu (II) and Zn (II) from aqueous solutions by live Phanerochaete chrysosporium publication-title: Environ. Technol. doi: 10.1080/09593330.2012.673015 – volume: 131 start-page: 581 year: 2007 ident: 10.1016/j.envres.2021.111730_bib35 article-title: Piriformospora indica affects plant growth by auxin production publication-title: Physiol. Plantarum doi: 10.1111/j.1399-3054.2007.00983.x – volume: 74 start-page: 1 year: 2016 ident: 10.1016/j.envres.2021.111730_bib46 article-title: Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure publication-title: Eur. J. Soil Biol. doi: 10.1016/j.ejsobi.2016.02.004 – volume: 35 start-page: 3144 year: 2001 ident: 10.1016/j.envres.2021.111730_bib40 article-title: Rhizosphere bacteria mobilize zn for hyperaccumulation by Thlaspi caerulescens publication-title: Environ. Sci. Technol. doi: 10.1021/es001938v – volume: 157 start-page: 257 year: 2004 ident: 10.1016/j.envres.2021.111730_bib4 article-title: Response of six Australian plant species to heavy metal contamination at an abandoned mine site publication-title: Water Air Soil Pollut. doi: 10.1023/B:WATE.0000038900.66771.bf – volume: 398 start-page: 122858 year: 2020 ident: 10.1016/j.envres.2021.111730_bib12 article-title: Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: sensitive, resistant and actor publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2020.122858 – volume: 170 start-page: 218 year: 2019 ident: 10.1016/j.envres.2021.111730_bib52 article-title: Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2018.11.136 – volume: 31 start-page: 109 year: 2001 ident: 10.1016/j.envres.2021.111730_bib23 article-title: Phytoextraction of toxic metals: a review of biological mechanisms publication-title: J. Environ. Qual. – volume: 156 start-page: 1164 year: 2008 ident: 10.1016/j.envres.2021.111730_bib34 article-title: Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2008.04.007 – volume: 98 start-page: 2557 year: 2007 ident: 10.1016/j.envres.2021.111730_bib50 article-title: Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2006.09.051 – volume: 10 start-page: 2189 year: 2020 ident: 10.1016/j.envres.2021.111730_bib51 article-title: The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite publication-title: Sci. Rep. doi: 10.1038/s41598-020-58259-1 – start-page: 25 year: 2000 ident: 10.1016/j.envres.2021.111730_bib6 – start-page: 1 year: 2001 ident: 10.1016/j.envres.2021.111730_bib8 article-title: The Fungi as a Major Group of organisms – volume: 69 start-page: 3223 year: 2003 ident: 10.1016/j.envres.2021.111730_bib15 article-title: Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.69.6.3223-3230.2003 – volume: 4 start-page: 307 year: 1973 ident: 10.1016/j.envres.2021.111730_bib20 article-title: Soil testing in the United States publication-title: Commun. Soil Sci. Plant Anal. doi: 10.1080/00103627309366451 – volume: 22 start-page: 5271 year: 2013 ident: 10.1016/j.envres.2021.111730_bib22 article-title: Towards a unified paradigm for sequence-based identification of fungi publication-title: Mol. Ecol. doi: 10.1111/mec.12481 – volume: 25 start-page: 11970 year: 2018 ident: 10.1016/j.envres.2021.111730_bib49 article-title: Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-018-1492-6 – volume: 21 start-page: 1196 year: 2001 ident: 10.1016/j.envres.2021.111730_bib39 article-title: Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad publication-title: Acta Ecol. Sin. – volume: 20 start-page: 71 year: 2003 ident: 10.1016/j.envres.2021.111730_bib17 article-title: Assessment of N, P and K management by nutrient balances and flows on peri-urban smallholder farms in southern Vietnam publication-title: Eur. J. Agron. doi: 10.1016/S1161-0301(03)00076-5 – start-page: 258 year: 1981 ident: 10.1016/j.envres.2021.111730_bib37 – volume: 43 start-page: 1131 year: 2003 ident: 10.1016/j.envres.2021.111730_bib36 article-title: Registration of ‘yukon’ bermudagrass publication-title: Crop Sci. doi: 10.2135/cropsci2003.1131 – volume: 38 start-page: 2882 year: 2006 ident: 10.1016/j.envres.2021.111730_bib2 article-title: Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.04.045 – volume: 7 start-page: 755 year: 2016 ident: 10.1016/j.envres.2021.111730_bib42 article-title: Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.00755 – year: 2020 ident: 10.1016/j.envres.2021.111730_bib26 – volume: 422 start-page: 409 year: 2018 ident: 10.1016/j.envres.2021.111730_bib45 article-title: Application of Aspergillus aculeatus to rice roots reduces Cd concentration in grain publication-title: Plant Soil doi: 10.1007/s11104-017-3465-9 |
SSID | ssj0011530 |
Score | 2.595349 |
Snippet | Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 111730 |
SubjectTerms | absorption Bacteroidetes Basidiomycota Bermudagrass Chloroflexi community structure fungi genus Heavy metal pollution heavy metals microbial biomass microbial communities Penicillium janthinellum Penicillium janthinellum ZZ-2 phytoremediation plant growth Plant growth promotion plant hormones polluted soils pollution Pseudonocardiaceae Soil microbial communities solubilization sustainable technology toxicity |
Title | Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass |
URI | https://dx.doi.org/10.1016/j.envres.2021.111730 https://www.proquest.com/docview/2555110498 https://www.proquest.com/docview/2636495625 |
Volume | 200 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BatwwEBUhvRRKadOGJk2CCr2qWVuWLR3DkrBtaU4N5GYkWdq6ZOUl9gZ66afkWzNjyQkppYEed3dsCY80euN9b4aQj7mHrKKRiimnS1aY3DOpTMGqXOqmsNwKh0Lhb-fl4qL4cikut8h80sIgrTLF_hjTx2idvjlOT_N43bao8c1QV4oVsDKs1IUK9qLCVf7p9z3NAwAPn01dDNB6ks-NHC8XbiCphSwxzzB2VMiF_vvx9EegHk-fs1fkZYKN9CTO7DXZcmGH7J4-qNTgx7RN-x3yIr6Mo1Fj9IbcRjmuT-_naOfpvGEwJwSPYaArZOXF_k79qqcoOaEQpG9-0ZWDOzPks2vkzAA8pX3XXlEdGtoOPV13A94ZRm8DXUdqX1hSQJV0CQn-8GO0nDdUW7tZpVZhOL6BE2HT6OU1gPe35OLs9Pt8wVJjBmYLLgcGsAspnFKYstJKGJnNGs6FE_nMNr6RsJW1lNwbqwDAG3iwModM09jcGpvBsblLtkMX3DsCo2XKQ86jtVCFc5n0itsCq-RJPvNS7xE--aO2qWo5Ns-4qid62s86erFGL9bRi3uE3V-1jlU7nrCvJlfXj1ZfDQfLE1d-mFZGDRsT_23RwXUbMBIARiHZVfIfNiUvMUPNxf5_z-A9eY6fIu_tgGwP1xt3CEBpMEfjTjgiz04-f12c3wGyNhZJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaGFUtK0oelThV5F1g955WNYEjavPSWQm9DLW5esvcTeQP9Mf2tnVnJKS0kgV1uyhMcz8438zQzAt7TCqMLJkpdeFzw3acVlaXI-SaV2uc2s8JQofDEvZlf56bW43oLpkAtDtMpo-4NN31jreOUgvs2DVV1Tjm9CeaVUASuhSl3PYJuqU4kRbB-enM3m9z8TUKnHQyMDmjBk0G1oXr65w7gWA8U0IfMxITr0_z3UP7Z644COd-BVRI7sMGzuNWz5Zhf2jv4kquHNqKndLrwM53EspBm9gV8hI7eKR3SsrdjUcdwT4cemZ0si5oUWT92yY5R1wtBO3_1kS49P5kRp10SbQYTKura-YbpxrO47tmp7ejKuXjdsFdh9zYIhsGQLjPH775uRU8e0tetl7BZG6xt0CmunF7eI39_C1fHR5XTGY28GbvNM9hyRF7E4pTDFRJfCyGTsskx4kY6tq5xEbdZSZpWxJWJ4gy9WphhsGptaYxP0nHswatrGvwNcLSkrDHu0FmXufSKrMrM5FcqT2biSeh-yQR7KxsLl1D_jRg0MtR8qSFGRFFWQ4j7w-1mrULjjkfGTQdTqrw9QoW95ZObX4ctQqJv0w0U3vl3jIIF4FOPdUj4wpsgKClJT8f7JO_gCz2eXF-fq_GR-9gFe0J1Ag_sIo_527T8hburN56gXvwEjUBj6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Cd-resistant+microorganisms+from+heavy+metal-contaminated+soil+and+its+potential+in+promoting+the+growth+and+Cd+accumulation+of+bermudagrass&rft.jtitle=Environmental+research&rft.au=Xie%2C+Yan&rft.au=Bu%2C+Heshen&rft.au=Feng%2C+Qijia&rft.au=Wassie%2C+Misganaw&rft.date=2021-09-01&rft.issn=0013-9351&rft.volume=200+p.111730-&rft_id=info:doi/10.1016%2Fj.envres.2021.111730&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon |