Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass

Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental research Vol. 200; p. 111730
Main Authors Xie, Yan, Bu, Heshen, Feng, Qijia, Wassie, Misganaw, Amee, Maurice, Jiang, Ying, Bi, Yufang, Hu, Longxing, Chen, Liang
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.09.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils. •Soil microbes as indicators of soil pollution with heavy metals.•Heavy metal contamination inhibited the microbial activity.•A new Cd-resistant strain was isolated and identified as Penicillium janthinellum.•Penicillium janthinellum ZZ-2 promoted the plant growth and Cd uptake•ZZ-2 might be used to improve the efficiency of metal extraction from soil.
AbstractList Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd²⁺ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.
Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils. •Soil microbes as indicators of soil pollution with heavy metals.•Heavy metal contamination inhibited the microbial activity.•A new Cd-resistant strain was isolated and identified as Penicillium janthinellum.•Penicillium janthinellum ZZ-2 promoted the plant growth and Cd uptake•ZZ-2 might be used to improve the efficiency of metal extraction from soil.
Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance phytoremediation efficiency by solubilizing heavy metal and improve plant growth by producing phytohormones in the heavy metal contaminated soils. In this study, we investigated the abundance and composition of soil microbial communities in heavy metal contaminated soils. Furthermore, we identified a Cd-resistant fungal strain Penicillium janthinellum ZZ-2 and assessed its potential in improving plant growth, Cd accumulation and Cd tolerance in bermudagrass. The results indicated that long-term heavy metal pollution decreased microbial biomass and activity by inhibiting microbial community diversity, but did not significantly affect community composition. Mainly, the relative abundance of some specific bacterial and fungal taxa, such as Actinobacteria, Chloroflexi, Bacteroidetes, Ascomycota and Basidiomycota, changes under metal pollution. Furthermore, at genus level, certain microbial taxa, such as Pseudonocardiaceae, AD3, Latescibacteria, Apiotrichum and Paraboeremia, only exist in polluted soil. One Cd-resistant fungus ZZ-2 was isolated and identified as Penicillium janthinellum. Further characterization revealed that ZZ-2 had a greater capacity for Cd2+ absorption, produced indole-3-acid (IAA), and facilitated plant growth in the presence of Cd. Interestingly, ZZ-2 inoculation significantly increased Cd uptake in the stem and root of bermudagrass. Thus, ZZ-2 could improve plant growth under Cd stress by reducing Cd-toxicity, increasing Cd uptake and producing IAA. This study suggests a novel fungus-assisted phytoremediation approach to alleviate Cd toxicity in heavy metals contaminated soils.
ArticleNumber 111730
Author Bi, Yufang
Bu, Heshen
Chen, Liang
Xie, Yan
Jiang, Ying
Hu, Longxing
Feng, Qijia
Wassie, Misganaw
Amee, Maurice
Author_xml – sequence: 1
  givenname: Yan
  orcidid: 0000-0002-8914-235X
  surname: Xie
  fullname: Xie, Yan
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
– sequence: 2
  givenname: Heshen
  surname: Bu
  fullname: Bu, Heshen
  organization: Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
– sequence: 3
  givenname: Qijia
  orcidid: 0000-0003-2774-8572
  surname: Feng
  fullname: Feng, Qijia
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
– sequence: 4
  givenname: Misganaw
  surname: Wassie
  fullname: Wassie, Misganaw
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
– sequence: 5
  givenname: Maurice
  orcidid: 0000-0002-0380-1634
  surname: Amee
  fullname: Amee, Maurice
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
– sequence: 6
  givenname: Ying
  surname: Jiang
  fullname: Jiang, Ying
  organization: Public Laboratory Platform, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
– sequence: 7
  givenname: Yufang
  surname: Bi
  fullname: Bi, Yufang
  organization: China National Bamboo Research Center, Hangzhou, 310058, China
– sequence: 8
  givenname: Longxing
  surname: Hu
  fullname: Hu, Longxing
  email: grass@hunau.edu.cn
  organization: Department of Pratacultural Sciences, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
– sequence: 9
  givenname: Liang
  surname: Chen
  fullname: Chen, Liang
  email: chenliang888@wbgcas.cn
  organization: CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, 430074, China
BookMark eNqFkUFv1DAQhS1UJLal_6AHH7lk64njrMMBCa2gVKrEBc6WY092vUrsxXYW9c_wW-ttUA8c6Mka6X1vPO9dkgsfPBJyA2wNDNrbwxr9KWJa16yGNQBsOHtDVsC6tmKd4BdkxRjwquMC3pHLlA5lBMHZivy5t-izG5zR2QVPw0C3tipeLmXtM52ciSHEnfYuTYkOMUx0j_r0SCfMeqxM8FlPzuuMlqbgRqq9pS4negz57KxH6jw9Fi5k53c075HuYvid98_KraXamHmax5f9PcZptnoXdUrvydtBjwmv_75X5OfXLz-236qH73f3288PlWm4zBWIZlOulaJvN7oTvQRmORcoambsYGXPmJaSD73ppKz7EpCsNzX0pja9gQb4Ffmw-JaP_poxZTW5ZHActccwJ1W3vG060dbidakQAoA1nSzSZpGWDFOKOKhjdJOOjwqYOjenDmppTp2bU0tzBfv4D2Zcfo4nR-3G1-BPC4wlrpPDqJJx6A1aF9FkZYP7v8ET8MK78A
CitedBy_id crossref_primary_10_3390_ijms23095031
crossref_primary_10_1016_j_scitotenv_2023_168994
crossref_primary_10_1016_j_bioelechem_2023_108622
crossref_primary_10_1016_j_ecoenv_2023_115509
crossref_primary_10_3390_microorganisms11040864
crossref_primary_10_3390_agronomy14102348
crossref_primary_10_1007_s00128_022_03628_x
crossref_primary_10_1016_j_jhazmat_2024_135953
crossref_primary_10_1007_s11356_022_20187_0
crossref_primary_10_1016_j_jhazmat_2023_131153
crossref_primary_10_1111_ppl_13710
crossref_primary_10_1007_s10534_023_00524_7
crossref_primary_10_1007_s00343_024_4028_6
crossref_primary_10_1016_j_eti_2025_104077
crossref_primary_10_1007_s42729_025_02247_9
crossref_primary_10_1111_sum_12989
crossref_primary_10_1016_j_ecoenv_2024_116883
crossref_primary_10_1016_j_scitotenv_2024_173478
crossref_primary_10_3390_ijerph192316309
crossref_primary_10_3390_su152416598
crossref_primary_10_3389_fmicb_2023_1252127
crossref_primary_10_3390_plants13101303
crossref_primary_10_1007_s11356_022_19180_4
crossref_primary_10_1007_s11368_022_03297_7
crossref_primary_10_1016_j_jhazmat_2024_135980
crossref_primary_10_3390_jox14010004
crossref_primary_10_1007_s11356_024_34657_0
crossref_primary_10_1080_15226514_2022_2161995
crossref_primary_10_3389_fmicb_2023_1160960
crossref_primary_10_1016_j_envres_2024_119153
crossref_primary_10_1016_j_jclepro_2023_138706
crossref_primary_10_1016_j_envpol_2024_124979
crossref_primary_10_1016_j_scitotenv_2024_170879
crossref_primary_10_1016_j_chemosphere_2023_139770
crossref_primary_10_1515_pac_2024_0261
crossref_primary_10_1016_j_scitotenv_2024_172990
crossref_primary_10_1080_10643389_2023_2183700
crossref_primary_10_3389_fmicb_2023_1087202
crossref_primary_10_1007_s11274_024_04194_6
crossref_primary_10_3389_fmicb_2025_1562341
crossref_primary_10_1007_s11356_022_21818_2
crossref_primary_10_1007_s11783_025_1958_y
crossref_primary_10_1016_j_eti_2024_103956
crossref_primary_10_1016_j_jenvman_2025_124746
crossref_primary_10_3390_ijms222112065
crossref_primary_10_1016_j_ecoenv_2022_113739
crossref_primary_10_1016_j_chemosphere_2023_140507
crossref_primary_10_1007_s11368_023_03711_8
crossref_primary_10_1016_j_jenvman_2025_124994
crossref_primary_10_1016_j_scitotenv_2022_161344
crossref_primary_10_48130_grares_0024_0015
crossref_primary_10_1016_j_envpol_2023_121559
crossref_primary_10_1007_s10123_022_00276_3
crossref_primary_10_1016_j_jenvman_2023_117723
crossref_primary_10_1007_s11270_024_06948_2
crossref_primary_10_1016_j_scitotenv_2023_162153
crossref_primary_10_1039_D4RA07920E
crossref_primary_10_1186_s12866_022_02488_z
crossref_primary_10_1007_s44307_024_00052_6
crossref_primary_10_3389_fmicb_2023_1131770
crossref_primary_10_1016_j_indcrop_2024_119698
crossref_primary_10_12944_CWE_18_3_30
crossref_primary_10_1016_j_envexpbot_2022_105128
crossref_primary_10_1038_s41598_023_31330_3
crossref_primary_10_1021_envhealth_3c00009
crossref_primary_10_1016_j_biortech_2023_130194
crossref_primary_10_1111_pbi_14301
crossref_primary_10_1016_j_envpol_2023_121599
crossref_primary_10_1016_j_envpol_2024_124201
crossref_primary_10_1016_j_rhisph_2025_101037
crossref_primary_10_3389_fsufs_2025_1506609
crossref_primary_10_1016_j_jhazmat_2025_138018
Cites_doi 10.1017/S0953756202006330
10.1016/j.chemosphere.2013.01.075
10.1016/j.apsoil.2004.08.001
10.1111/1574-6941.12212
10.1093/femsec/fiu003
10.1016/S0016-7061(03)00083-1
10.1016/j.chemosphere.2019.07.028
10.1016/S0960-8524(98)00192-8
10.1016/j.chemosphere.2016.12.116
10.1016/j.chemosphere.2019.125154
10.1016/j.soilbio.2007.06.024
10.1016/S0168-6496(03)00232-0
10.1371/journal.pone.0040059
10.1016/j.chemosphere.2014.10.037
10.1016/j.apsoil.2012.11.004
10.1016/j.ecoenv.2011.07.013
10.1046/j.1469-8137.2003.00721.x
10.1111/jam.14165
10.1016/j.nbt.2013.07.002
10.1016/j.ecoenv.2018.11.123
10.1093/bioinformatics/btr507
10.1021/acs.est.9b01093
10.1080/09593330.2012.673015
10.1111/j.1399-3054.2007.00983.x
10.1016/j.ejsobi.2016.02.004
10.1021/es001938v
10.1023/B:WATE.0000038900.66771.bf
10.1016/j.jhazmat.2020.122858
10.1016/j.ecoenv.2018.11.136
10.1016/j.envpol.2008.04.007
10.1016/j.biortech.2006.09.051
10.1038/s41598-020-58259-1
10.1128/AEM.69.6.3223-3230.2003
10.1080/00103627309366451
10.1111/mec.12481
10.1007/s11356-018-1492-6
10.1016/S1161-0301(03)00076-5
10.2135/cropsci2003.1131
10.1016/j.soilbio.2006.04.045
10.3389/fpls.2016.00755
10.1007/s11104-017-3465-9
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.envres.2021.111730
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Environmental Sciences
EISSN 1096-0953
ExternalDocumentID 10_1016_j_envres_2021_111730
S0013935121010240
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYJJ
AAYWO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABXDB
ACDAQ
ACGFS
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFGL
ADMUD
ADNMO
ADXHL
AEBSH
AEGFY
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLECG
BLXMC
C45
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
L7B
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OHT
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPCBC
SSJ
SSZ
T5K
TAE
TEORI
TN5
TWZ
UPT
VOH
WH7
WUQ
XOL
XPP
ZCA
ZGI
ZKB
ZMT
ZU3
ZXP
~02
~G-
~KM
AAYXX
AGRNS
BNPGV
CITATION
RIG
7X8
SSH
7S9
L.6
ID FETCH-LOGICAL-c438t-154710985b67a95b810d335e520cdfd8b00a883fbc9882b11782721bc2cbc1413
IEDL.DBID .~1
ISSN 0013-9351
1096-0953
IngestDate Fri Jul 11 08:04:56 EDT 2025
Mon Jul 21 11:44:09 EDT 2025
Thu Aug 07 07:12:01 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Sat Aug 30 17:17:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Soil microbial communities
Penicillium janthinellum ZZ-2
Heavy metal pollution
Plant growth promotion
Bermudagrass
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c438t-154710985b67a95b810d335e520cdfd8b00a883fbc9882b11782721bc2cbc1413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0380-1634
0000-0003-2774-8572
0000-0002-8914-235X
PQID 2555110498
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2636495625
proquest_miscellaneous_2555110498
crossref_primary_10_1016_j_envres_2021_111730
crossref_citationtrail_10_1016_j_envres_2021_111730
elsevier_sciencedirect_doi_10_1016_j_envres_2021_111730
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Environmental research
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Xie, Li, Huang, Han, Amombo, Wassie, Chen, Fu (bib43) 2019; 171
Lasat (bib23) 2001; 31
Xie, Fan, Zhu, Amombo, Lou, Chen, Fu (bib42) 2016; 7
Taliaferro, Martin, Anderson, Anderson, Bell, Guenzi (bib36) 2003; 43
Magoč, Salzberg (bib28) 2011; 27
Xie, Luo, Du, Hu, Fu (bib44) 2014; 117
Yang, Qiu, Chen, Chen, Li, Zhu, Rahman, Han, Jiang, Yang, Tian, Ma, Zhang (bib48) 2020; 242
Yang, Liang, Yang, Shi, Tong, Chai, Gao, Liao (bib49) 2018; 25
Huang, Liu (bib19) 2009; 11
Zhao, Huang, Lu, Sun (bib52) 2019; 170
Hu, Li, Zhang, Luo, Fu (bib18) 2011; 74
Piotrowska-Seget, Cycoń, Kozdrój (bib30) 2005; 28
Wu, Chen, Wu, Wang, Wu, Lin, Lin (bib41) 2016; 6
Xie, Li, Liu, Amombo, Chen, Fu (bib45) 2018; 422
Wei, Chen (bib39) 2001; 21
(bib37) 1981
Azarbad, Niklińska, Laskowski, Straalen, Gestel, Zhou, He, Wen, Roling (bib5) 2015; 91
Sepehri, Khodaverdiloo, Zarei (bib32) 2013
Hedlund, Witter, Xuan An (bib17) 2003; 20
Bao (bib6) 2000
Luo, Tao, Jupa, Liu, Wu, Song, Li, Huang, Zou, Liang, Li (bib27) 2019; 53
Dell'Amico, Cavalca, Andreoni (bib14) 2008; 40
Whiting, de Souza, Terry (bib40) 2001; 35
Li, Han, Wang, Liu, Amombo, Xie, Fu (bib24) 2017; 8
Caesar-Tonthat (bib7) 2002; 106
Sheik, Mitchell, Rizvi, Rehman, Faisal, Hasnain, Mcinerney, Krumholz (bib33) 2012; 7
Archer, Caldwell (bib4) 2004; 157
Turpeinen, Kairesalo, Häggblom (bib38) 2004; 47
Sarwar, Imran, Shaheen, Ishaque, Kamran, Matloob, Rehim, Hussain (bib31) 2017; 171
Sheng, Xia, Jiang, He, Qian (bib34) 2008; 156
Yao, Xu, Huang (bib47) 2003; 115
Ellis, Morgan, Weightman, Fry (bib15) 2003; 69
Sirrenberg, Göbel, Grond, Czempinski, Ratzinger, Karlovsky, Santos, Feussner, Pawlowski (bib35) 2007; 131
Chen, Fan, Liu, Zeng, Chen, Zou (bib10) 2012; 33
Kõljalg, Nilsson, Abarenkov, Tedersoo, Taylor, Bahram (bib22) 2013; 22
Chen, He, Zhang, Sun, Zheng, Zheng (bib11) 2014; 87
Chodak, Gołębiewski, Morawska-Płoskonka, Kuduk, Niklińska (bib13) 2013; 64
Hassan, Hijri, St-Arnaud (bib16) 2013; 30
Kapoor, Viraraghavan, Cullimore (bib21) 1999; 70
Abou-Shanab, Angle, Chaney (bib2) 2006; 38
Chen, Zhao, Zhao, Wu, Zhu, Zhang, Wei, Liu, He (bib12) 2020; 398
Licht, Nuss, Volk, Konzer, Beckstette, Berghoff, Klug (bib26) 2020
Olsen, Cole, Watandbe, Dean (bib29) 1954; 53
Zafar, Aqil, Ahmad (bib50) 2007; 98
Ali, Khan, Sajad (bib3) 2013; 91
Abou-Shanab, Angle, Delorme, Chaney, Van Berkum, Moawad, Ghanem, Ghozlan (bib1) 2003; 158
Carlile, Watkinson, Gooday (bib8) 2001
Li, Yu, Cui, Tu, Shen, Yan, Wei, Chen, Wang, Chen, Gu, Zhao, Xiang, Zou, Ma (bib25) 2019; 126
Jones (bib20) 1973; 4
Chen, Wang, Wang (bib9) 2019; 235
Xu, Tan, Wang, Gai (bib46) 2016; 74
Zeng, Xu, Lu, Chen, Li, Wu, Tang, Ma (bib51) 2020; 10
Magoč (10.1016/j.envres.2021.111730_bib28) 2011; 27
Huang (10.1016/j.envres.2021.111730_bib19) 2009; 11
Ali (10.1016/j.envres.2021.111730_bib3) 2013; 91
Kapoor (10.1016/j.envres.2021.111730_bib21) 1999; 70
Sepehri (10.1016/j.envres.2021.111730_bib32) 2013
Zeng (10.1016/j.envres.2021.111730_bib51) 2020; 10
Abou-Shanab (10.1016/j.envres.2021.111730_bib2) 2006; 38
Caesar-Tonthat (10.1016/j.envres.2021.111730_bib7) 2002; 106
Sheik (10.1016/j.envres.2021.111730_bib33) 2012; 7
(10.1016/j.envres.2021.111730_bib37) 1981
Xie (10.1016/j.envres.2021.111730_bib42) 2016; 7
Wu (10.1016/j.envres.2021.111730_bib41) 2016; 6
Li (10.1016/j.envres.2021.111730_bib24) 2017; 8
Abou-Shanab (10.1016/j.envres.2021.111730_bib1) 2003; 158
Chen (10.1016/j.envres.2021.111730_bib12) 2020; 398
Whiting (10.1016/j.envres.2021.111730_bib40) 2001; 35
Hu (10.1016/j.envres.2021.111730_bib18) 2011; 74
Xie (10.1016/j.envres.2021.111730_bib44) 2014; 117
Azarbad (10.1016/j.envres.2021.111730_bib5) 2015; 91
Sheng (10.1016/j.envres.2021.111730_bib34) 2008; 156
Xie (10.1016/j.envres.2021.111730_bib45) 2018; 422
Sirrenberg (10.1016/j.envres.2021.111730_bib35) 2007; 131
Carlile (10.1016/j.envres.2021.111730_bib8) 2001
Chen (10.1016/j.envres.2021.111730_bib9) 2019; 235
Olsen (10.1016/j.envres.2021.111730_bib29) 1954; 53
Zhao (10.1016/j.envres.2021.111730_bib52) 2019; 170
Chen (10.1016/j.envres.2021.111730_bib10) 2012; 33
Sarwar (10.1016/j.envres.2021.111730_bib31) 2017; 171
Wei (10.1016/j.envres.2021.111730_bib39) 2001; 21
Chodak (10.1016/j.envres.2021.111730_bib13) 2013; 64
Yang (10.1016/j.envres.2021.111730_bib49) 2018; 25
Xu (10.1016/j.envres.2021.111730_bib46) 2016; 74
Li (10.1016/j.envres.2021.111730_bib25) 2019; 126
Yang (10.1016/j.envres.2021.111730_bib48) 2020; 242
Dell'Amico (10.1016/j.envres.2021.111730_bib14) 2008; 40
Hassan (10.1016/j.envres.2021.111730_bib16) 2013; 30
Licht (10.1016/j.envres.2021.111730_bib26) 2020
Xie (10.1016/j.envres.2021.111730_bib43) 2019; 171
Yao (10.1016/j.envres.2021.111730_bib47) 2003; 115
Ellis (10.1016/j.envres.2021.111730_bib15) 2003; 69
Zafar (10.1016/j.envres.2021.111730_bib50) 2007; 98
Chen (10.1016/j.envres.2021.111730_bib11) 2014; 87
Turpeinen (10.1016/j.envres.2021.111730_bib38) 2004; 47
Bao (10.1016/j.envres.2021.111730_bib6) 2000
Jones (10.1016/j.envres.2021.111730_bib20) 1973; 4
Taliaferro (10.1016/j.envres.2021.111730_bib36) 2003; 43
Kõljalg (10.1016/j.envres.2021.111730_bib22) 2013; 22
Luo (10.1016/j.envres.2021.111730_bib27) 2019; 53
Archer (10.1016/j.envres.2021.111730_bib4) 2004; 157
Hedlund (10.1016/j.envres.2021.111730_bib17) 2003; 20
Lasat (10.1016/j.envres.2021.111730_bib23) 2001; 31
Piotrowska-Seget (10.1016/j.envres.2021.111730_bib30) 2005; 28
References_xml – volume: 38
  start-page: 2882
  year: 2006
  end-page: 2889
  ident: bib2
  article-title: Bacterial inoculants affecting nickel uptake by
  publication-title: Soil Biol. Biochem.
– volume: 170
  start-page: 218
  year: 2019
  end-page: 226
  ident: bib52
  article-title: Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 70
  start-page: 95
  year: 1999
  end-page: 104
  ident: bib21
  article-title: Removal of heavy metals using the fungus
  publication-title: Bioresour. Technol.
– volume: 158
  start-page: 219
  year: 2003
  end-page: 224
  ident: bib1
  article-title: Rhizobacterial effects on nickel extraction from soil and uptake by
  publication-title: New Phytol.
– volume: 53
  start-page: 1689
  year: 1954
  end-page: 1699
  ident: bib29
  article-title: Estimation of available phosphorus in soil by extraction with sodium bicarbonate
  publication-title: J. Chem. Inf. Model.
– volume: 69
  start-page: 3223
  year: 2003
  end-page: 3230
  ident: bib15
  article-title: Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil
  publication-title: Appl. Environ. Microbiol.
– volume: 91
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib5
  article-title: Microbial community composition and functions are resilient to metal pollution along two forest soil gradients
  publication-title: FEMS Microbiol. Ecol.
– volume: 6
  start-page: 1693
  year: 2016
  end-page: 1699
  ident: bib41
  article-title: Effects of consecutive monoculture of
  publication-title: Sci. Rep.
– volume: 20
  start-page: 71
  year: 2003
  end-page: 87
  ident: bib17
  article-title: Assessment of N, P and K management by nutrient balances and flows on peri-urban smallholder farms in southern Vietnam
  publication-title: Eur. J. Agron.
– volume: 171
  start-page: 373
  year: 2019
  end-page: 381
  ident: bib43
  article-title: Characterization of the Cd-resistant fungus
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 422
  start-page: 409
  year: 2018
  end-page: 422
  ident: bib45
  article-title: Application of
  publication-title: Plant Soil
– volume: 53
  start-page: 6954
  year: 2019
  end-page: 6963
  ident: bib27
  article-title: Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in
  publication-title: Environ. Sci. Technol.
– volume: 25
  start-page: 11970
  year: 2018
  end-page: 11980
  ident: bib49
  article-title: Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites
  publication-title: Environ. Sci. Pollut. Res.
– start-page: 25
  year: 2000
  end-page: 109
  ident: bib6
  article-title: Soil and Agricultural Chemistry Analysis
– volume: 131
  start-page: 581
  year: 2007
  end-page: 589
  ident: bib35
  article-title: affects plant growth by auxin production
  publication-title: Physiol. Plantarum
– volume: 157
  start-page: 257
  year: 2004
  end-page: 267
  ident: bib4
  article-title: Response of six Australian plant species to heavy metal contamination at an abandoned mine site
  publication-title: Water Air Soil Pollut.
– volume: 30
  start-page: 780
  year: 2013
  end-page: 787
  ident: bib16
  article-title: Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil
  publication-title: N. Biotech.
– volume: 106
  start-page: 930
  year: 2002
  end-page: 937
  ident: bib7
  article-title: Soil binding properties of mucilage produced by a basidiomycete fungus in a model system
  publication-title: Mycol. Res.
– volume: 117
  start-page: 786
  year: 2014
  end-page: 792
  ident: bib44
  article-title: Identification of cadmium-resistant fungi related to Cd transportation in bermudagrass [
  publication-title: Chemosphere
– start-page: 1
  year: 2001
  end-page: 9
  ident: bib8
  article-title: The Fungi as a Major Group of organisms
  publication-title: The Fungi
– volume: 91
  start-page: 869
  year: 2013
  end-page: 881
  ident: bib3
  article-title: Phytoremediation of heavy metals-concepts and applications
  publication-title: Chemosphere
– volume: 64
  start-page: 7
  year: 2013
  end-page: 14
  ident: bib13
  article-title: Diversity of microorganisms from forest soils differently polluted with heavy metals
  publication-title: Appl. Soil Ecol.
– volume: 74
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib46
  article-title: Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure
  publication-title: Eur. J. Soil Biol.
– start-page: 258
  year: 1981
  end-page: 266
  ident: bib37
  publication-title: Effect of Heavy Metal Pollution on Plants
– volume: 35
  start-page: 3144
  year: 2001
  end-page: 3150
  ident: bib40
  article-title: Rhizosphere bacteria mobilize zn for hyperaccumulation by
  publication-title: Environ. Sci. Technol.
– volume: 33
  start-page: 2653
  year: 2012
  end-page: 2659
  ident: bib10
  article-title: Removal of Cd (II), Cu (II) and Zn (II) from aqueous solutions by live
  publication-title: Environ. Technol.
– volume: 4
  start-page: 307
  year: 1973
  end-page: 322
  ident: bib20
  article-title: Soil testing in the United States
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 156
  start-page: 1164
  year: 2008
  end-page: 1170
  ident: bib34
  article-title: Characterization of heavy metal-resistant endophytic bacteria from rape (
  publication-title: Environ. Pollut.
– volume: 98
  start-page: 2557
  year: 2007
  end-page: 2561
  ident: bib50
  article-title: Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil
  publication-title: Bioresour. Technol.
– year: 2020
  ident: bib26
  article-title: Adaptation to Photooxidative Stress: Common and Special Strategies of the
– volume: 11
  start-page: 799
  year: 2009
  end-page: 806
  ident: bib19
  article-title: Physiological responses of creeping bentgrass to heat stress affected by phosphonate fungicide application
  publication-title: Intl. Turfgrass Soc. Res. J.
– volume: 7
  start-page: 755
  year: 2016
  ident: bib42
  article-title: Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation
  publication-title: Front. Plant Sci.
– start-page: 313
  year: 2013
  end-page: 345
  ident: bib32
  article-title: Fungi and their role in phytoremediation of heavy metal-contaminated soils
  publication-title: Fungi as Bioremediators
– volume: 10
  start-page: 2189
  year: 2020
  ident: bib51
  article-title: The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite
  publication-title: Sci. Rep.
– volume: 43
  start-page: 1131
  year: 2003
  end-page: 1132
  ident: bib36
  article-title: Registration of ‘yukon’ bermudagrass
  publication-title: Crop Sci.
– volume: 235
  start-page: 985
  year: 2019
  end-page: 994
  ident: bib9
  article-title: Phytoremediation of cadmium-contaminated soil by
  publication-title: Chemosphere
– volume: 126
  start-page: 919
  year: 2019
  end-page: 930
  ident: bib25
  article-title: The potential of cadmium ion-immobilized
  publication-title: J. Appl. Microbiol.
– volume: 115
  start-page: 139
  year: 2003
  end-page: 148
  ident: bib47
  article-title: Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils
  publication-title: Geoderma
– volume: 27
  start-page: 2957
  year: 2011
  end-page: 2963
  ident: bib28
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
– volume: 171
  start-page: 710
  year: 2017
  end-page: 721
  ident: bib31
  article-title: Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives
  publication-title: Chemosphere
– volume: 8
  start-page: 1
  year: 2017
  end-page: 13
  ident: bib24
  article-title: The fungus
  publication-title: Front. Microbiol.
– volume: 40
  start-page: 74
  year: 2008
  end-page: 84
  ident: bib14
  article-title: Improvement of
  publication-title: Soil Biol. Biochem.
– volume: 398
  start-page: 122858
  year: 2020
  ident: bib12
  article-title: Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: sensitive, resistant and actor
  publication-title: J. Hazard Mater.
– volume: 87
  start-page: 164
  year: 2014
  end-page: 181
  ident: bib11
  article-title: Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil
  publication-title: FEMS Microbiol. Ecol.
– volume: 47
  start-page: 39
  year: 2004
  end-page: 50
  ident: bib38
  article-title: Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils
  publication-title: FEMS Microbiol. Ecol.
– volume: 21
  start-page: 1196
  year: 2001
  end-page: 1203
  ident: bib39
  article-title: Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad
  publication-title: Acta Ecol. Sin.
– volume: 7
  year: 2012
  ident: bib33
  article-title: Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure
  publication-title: PloS One
– volume: 28
  start-page: 237
  year: 2005
  end-page: 246
  ident: bib30
  article-title: Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil
  publication-title: Appl. Soil Ecol.
– volume: 22
  start-page: 5271
  year: 2013
  end-page: 5277
  ident: bib22
  article-title: Towards a unified paradigm for sequence-based identification of fungi
  publication-title: Mol. Ecol.
– volume: 242
  start-page: 125154
  year: 2020
  ident: bib48
  article-title: Phosphorus influence Cd phytoextraction in
  publication-title: Chemosphere
– volume: 74
  start-page: 2050
  year: 2011
  end-page: 2056
  ident: bib18
  article-title: Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass
  publication-title: Ecotoxicol. Environ. Saf.
– volume: 31
  start-page: 109
  year: 2001
  end-page: 120
  ident: bib23
  article-title: Phytoextraction of toxic metals: a review of biological mechanisms
  publication-title: J. Environ. Qual.
– volume: 106
  start-page: 930
  issue: 8
  year: 2002
  ident: 10.1016/j.envres.2021.111730_bib7
  article-title: Soil binding properties of mucilage produced by a basidiomycete fungus in a model system
  publication-title: Mycol. Res.
  doi: 10.1017/S0953756202006330
– volume: 91
  start-page: 869
  year: 2013
  ident: 10.1016/j.envres.2021.111730_bib3
  article-title: Phytoremediation of heavy metals-concepts and applications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.01.075
– volume: 28
  start-page: 237
  year: 2005
  ident: 10.1016/j.envres.2021.111730_bib30
  article-title: Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2004.08.001
– volume: 87
  start-page: 164
  year: 2014
  ident: 10.1016/j.envres.2021.111730_bib11
  article-title: Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1111/1574-6941.12212
– volume: 91
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.envres.2021.111730_bib5
  article-title: Microbial community composition and functions are resilient to metal pollution along two forest soil gradients
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1093/femsec/fiu003
– volume: 115
  start-page: 139
  year: 2003
  ident: 10.1016/j.envres.2021.111730_bib47
  article-title: Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils
  publication-title: Geoderma
  doi: 10.1016/S0016-7061(03)00083-1
– volume: 235
  start-page: 985
  year: 2019
  ident: 10.1016/j.envres.2021.111730_bib9
  article-title: Phytoremediation of cadmium-contaminated soil by Sorghum bicolor and the variation of microbial community
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.07.028
– volume: 70
  start-page: 95
  year: 1999
  ident: 10.1016/j.envres.2021.111730_bib21
  article-title: Removal of heavy metals using the fungus Aspergillus niger
  publication-title: Bioresour. Technol.
  doi: 10.1016/S0960-8524(98)00192-8
– volume: 171
  start-page: 710
  year: 2017
  ident: 10.1016/j.envres.2021.111730_bib31
  article-title: Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.12.116
– volume: 242
  start-page: 125154
  year: 2020
  ident: 10.1016/j.envres.2021.111730_bib48
  article-title: Phosphorus influence Cd phytoextraction in Populus stems via modulating xylem development, cell wall Cd storage and antioxidant defense
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125154
– volume: 8
  start-page: 1
  year: 2017
  ident: 10.1016/j.envres.2021.111730_bib24
  article-title: The fungus Aspergillus aculeatus enhances salt-stress tolerance, metabolite accumulation, and improves forage quality in perennial ryegrass
  publication-title: Front. Microbiol.
– volume: 40
  start-page: 74
  year: 2008
  ident: 10.1016/j.envres.2021.111730_bib14
  article-title: Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2007.06.024
– volume: 47
  start-page: 39
  year: 2004
  ident: 10.1016/j.envres.2021.111730_bib38
  article-title: Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils
  publication-title: FEMS Microbiol. Ecol.
  doi: 10.1016/S0168-6496(03)00232-0
– volume: 7
  year: 2012
  ident: 10.1016/j.envres.2021.111730_bib33
  article-title: Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure
  publication-title: PloS One
  doi: 10.1371/journal.pone.0040059
– volume: 117
  start-page: 786
  year: 2014
  ident: 10.1016/j.envres.2021.111730_bib44
  article-title: Identification of cadmium-resistant fungi related to Cd transportation in bermudagrass [Cynodon dactylon (L.) Pers]
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.10.037
– volume: 64
  start-page: 7
  year: 2013
  ident: 10.1016/j.envres.2021.111730_bib13
  article-title: Diversity of microorganisms from forest soils differently polluted with heavy metals
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2012.11.004
– volume: 74
  start-page: 2050
  year: 2011
  ident: 10.1016/j.envres.2021.111730_bib18
  article-title: Toxic effect of NaCl on ion metabolism, antioxidative enzymes and gene expression of perennial ryegrass
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2011.07.013
– volume: 11
  start-page: 799
  year: 2009
  ident: 10.1016/j.envres.2021.111730_bib19
  article-title: Physiological responses of creeping bentgrass to heat stress affected by phosphonate fungicide application
  publication-title: Intl. Turfgrass Soc. Res. J.
– volume: 158
  start-page: 219
  year: 2003
  ident: 10.1016/j.envres.2021.111730_bib1
  article-title: Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale
  publication-title: New Phytol.
  doi: 10.1046/j.1469-8137.2003.00721.x
– volume: 126
  start-page: 919
  year: 2019
  ident: 10.1016/j.envres.2021.111730_bib25
  article-title: The potential of cadmium ion-immobilized Rhizobium pusense KG2 to prevent soybean root from absorbing cadmium in cadmium-contaminated soil
  publication-title: J. Appl. Microbiol.
  doi: 10.1111/jam.14165
– volume: 53
  start-page: 1689
  year: 1954
  ident: 10.1016/j.envres.2021.111730_bib29
  article-title: Estimation of available phosphorus in soil by extraction with sodium bicarbonate
  publication-title: J. Chem. Inf. Model.
– start-page: 313
  year: 2013
  ident: 10.1016/j.envres.2021.111730_bib32
  article-title: Fungi and their role in phytoremediation of heavy metal-contaminated soils
– volume: 6
  start-page: 1693
  year: 2016
  ident: 10.1016/j.envres.2021.111730_bib41
  article-title: Effects of consecutive monoculture of Pseudostellaria heterophyllaon soil fungal community as determined by pyrosequencing
  publication-title: Sci. Rep.
– volume: 30
  start-page: 780
  year: 2013
  ident: 10.1016/j.envres.2021.111730_bib16
  article-title: Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil
  publication-title: N. Biotech.
  doi: 10.1016/j.nbt.2013.07.002
– volume: 171
  start-page: 373
  year: 2019
  ident: 10.1016/j.envres.2021.111730_bib43
  article-title: Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.11.123
– volume: 27
  start-page: 2957
  year: 2011
  ident: 10.1016/j.envres.2021.111730_bib28
  article-title: FLASH: fast length adjustment of short reads to improve genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr507
– volume: 53
  start-page: 6954
  year: 2019
  ident: 10.1016/j.envres.2021.111730_bib27
  article-title: Role of vertical transmission of shoot endophytes in root-associated microbiome assembly and heavy metal hyperaccumulation in Sedum alfredii
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b01093
– volume: 33
  start-page: 2653
  year: 2012
  ident: 10.1016/j.envres.2021.111730_bib10
  article-title: Removal of Cd (II), Cu (II) and Zn (II) from aqueous solutions by live Phanerochaete chrysosporium
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2012.673015
– volume: 131
  start-page: 581
  year: 2007
  ident: 10.1016/j.envres.2021.111730_bib35
  article-title: Piriformospora indica affects plant growth by auxin production
  publication-title: Physiol. Plantarum
  doi: 10.1111/j.1399-3054.2007.00983.x
– volume: 74
  start-page: 1
  year: 2016
  ident: 10.1016/j.envres.2021.111730_bib46
  article-title: Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure
  publication-title: Eur. J. Soil Biol.
  doi: 10.1016/j.ejsobi.2016.02.004
– volume: 35
  start-page: 3144
  year: 2001
  ident: 10.1016/j.envres.2021.111730_bib40
  article-title: Rhizosphere bacteria mobilize zn for hyperaccumulation by Thlaspi caerulescens
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es001938v
– volume: 157
  start-page: 257
  year: 2004
  ident: 10.1016/j.envres.2021.111730_bib4
  article-title: Response of six Australian plant species to heavy metal contamination at an abandoned mine site
  publication-title: Water Air Soil Pollut.
  doi: 10.1023/B:WATE.0000038900.66771.bf
– volume: 398
  start-page: 122858
  year: 2020
  ident: 10.1016/j.envres.2021.111730_bib12
  article-title: Selective pressures of heavy metals on microbial community determine microbial functional roles during composting: sensitive, resistant and actor
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2020.122858
– volume: 170
  start-page: 218
  year: 2019
  ident: 10.1016/j.envres.2021.111730_bib52
  article-title: Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2018.11.136
– volume: 31
  start-page: 109
  year: 2001
  ident: 10.1016/j.envres.2021.111730_bib23
  article-title: Phytoextraction of toxic metals: a review of biological mechanisms
  publication-title: J. Environ. Qual.
– volume: 156
  start-page: 1164
  year: 2008
  ident: 10.1016/j.envres.2021.111730_bib34
  article-title: Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2008.04.007
– volume: 98
  start-page: 2557
  year: 2007
  ident: 10.1016/j.envres.2021.111730_bib50
  article-title: Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2006.09.051
– volume: 10
  start-page: 2189
  year: 2020
  ident: 10.1016/j.envres.2021.111730_bib51
  article-title: The immobilization of soil cadmium by the combined amendment of bacteria and hydroxyapatite
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-58259-1
– start-page: 25
  year: 2000
  ident: 10.1016/j.envres.2021.111730_bib6
– start-page: 1
  year: 2001
  ident: 10.1016/j.envres.2021.111730_bib8
  article-title: The Fungi as a Major Group of organisms
– volume: 69
  start-page: 3223
  year: 2003
  ident: 10.1016/j.envres.2021.111730_bib15
  article-title: Cultivation-dependent and -independent approaches for determining bacterial diversity in heavy-metal-contaminated soil
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.69.6.3223-3230.2003
– volume: 4
  start-page: 307
  year: 1973
  ident: 10.1016/j.envres.2021.111730_bib20
  article-title: Soil testing in the United States
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103627309366451
– volume: 22
  start-page: 5271
  year: 2013
  ident: 10.1016/j.envres.2021.111730_bib22
  article-title: Towards a unified paradigm for sequence-based identification of fungi
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.12481
– volume: 25
  start-page: 11970
  year: 2018
  ident: 10.1016/j.envres.2021.111730_bib49
  article-title: Simultaneous immobilization of cadmium and lead in contaminated soils by hybrid bio-nanocomposites of fungal hyphae and nano-hydroxyapatites
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-1492-6
– volume: 21
  start-page: 1196
  year: 2001
  ident: 10.1016/j.envres.2021.111730_bib39
  article-title: Hyperaccumulators and phytoremediation of heavy metal contaminated soil: a review of studies in China and abroad
  publication-title: Acta Ecol. Sin.
– volume: 20
  start-page: 71
  year: 2003
  ident: 10.1016/j.envres.2021.111730_bib17
  article-title: Assessment of N, P and K management by nutrient balances and flows on peri-urban smallholder farms in southern Vietnam
  publication-title: Eur. J. Agron.
  doi: 10.1016/S1161-0301(03)00076-5
– start-page: 258
  year: 1981
  ident: 10.1016/j.envres.2021.111730_bib37
– volume: 43
  start-page: 1131
  year: 2003
  ident: 10.1016/j.envres.2021.111730_bib36
  article-title: Registration of ‘yukon’ bermudagrass
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2003.1131
– volume: 38
  start-page: 2882
  year: 2006
  ident: 10.1016/j.envres.2021.111730_bib2
  article-title: Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2006.04.045
– volume: 7
  start-page: 755
  year: 2016
  ident: 10.1016/j.envres.2021.111730_bib42
  article-title: Effect of heavy metals pollution on soil microbial diversity and bermudagrass genetic variation
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.00755
– year: 2020
  ident: 10.1016/j.envres.2021.111730_bib26
– volume: 422
  start-page: 409
  year: 2018
  ident: 10.1016/j.envres.2021.111730_bib45
  article-title: Application of Aspergillus aculeatus to rice roots reduces Cd concentration in grain
  publication-title: Plant Soil
  doi: 10.1007/s11104-017-3465-9
SSID ssj0011530
Score 2.595349
Snippet Phytoremediation has been increasingly used as a green technology for the remediation of heavy metal contaminated soils. Microorganisms could enhance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111730
SubjectTerms absorption
Bacteroidetes
Basidiomycota
Bermudagrass
Chloroflexi
community structure
fungi
genus
Heavy metal pollution
heavy metals
microbial biomass
microbial communities
Penicillium janthinellum
Penicillium janthinellum ZZ-2
phytoremediation
plant growth
Plant growth promotion
plant hormones
polluted soils
pollution
Pseudonocardiaceae
Soil microbial communities
solubilization
sustainable technology
toxicity
Title Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass
URI https://dx.doi.org/10.1016/j.envres.2021.111730
https://www.proquest.com/docview/2555110498
https://www.proquest.com/docview/2636495625
Volume 200
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BatwwEBUhvRRKadOGJk2CCr2qWVuWLR3DkrBtaU4N5GYkWdq6ZOUl9gZ66afkWzNjyQkppYEed3dsCY80euN9b4aQj7mHrKKRiimnS1aY3DOpTMGqXOqmsNwKh0Lhb-fl4qL4cikut8h80sIgrTLF_hjTx2idvjlOT_N43bao8c1QV4oVsDKs1IUK9qLCVf7p9z3NAwAPn01dDNB6ks-NHC8XbiCphSwxzzB2VMiF_vvx9EegHk-fs1fkZYKN9CTO7DXZcmGH7J4-qNTgx7RN-x3yIr6Mo1Fj9IbcRjmuT-_naOfpvGEwJwSPYaArZOXF_k79qqcoOaEQpG9-0ZWDOzPks2vkzAA8pX3XXlEdGtoOPV13A94ZRm8DXUdqX1hSQJV0CQn-8GO0nDdUW7tZpVZhOL6BE2HT6OU1gPe35OLs9Pt8wVJjBmYLLgcGsAspnFKYstJKGJnNGs6FE_nMNr6RsJW1lNwbqwDAG3iwModM09jcGpvBsblLtkMX3DsCo2XKQ86jtVCFc5n0itsCq-RJPvNS7xE--aO2qWo5Ns-4qid62s86erFGL9bRi3uE3V-1jlU7nrCvJlfXj1ZfDQfLE1d-mFZGDRsT_23RwXUbMBIARiHZVfIfNiUvMUPNxf5_z-A9eY6fIu_tgGwP1xt3CEBpMEfjTjgiz04-f12c3wGyNhZJ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SzaGFUtK0oelThV5F1g955WNYEjavPSWQm9DLW5esvcTeQP9Mf2tnVnJKS0kgV1uyhMcz8438zQzAt7TCqMLJkpdeFzw3acVlaXI-SaV2uc2s8JQofDEvZlf56bW43oLpkAtDtMpo-4NN31jreOUgvs2DVV1Tjm9CeaVUASuhSl3PYJuqU4kRbB-enM3m9z8TUKnHQyMDmjBk0G1oXr65w7gWA8U0IfMxITr0_z3UP7Z644COd-BVRI7sMGzuNWz5Zhf2jv4kquHNqKndLrwM53EspBm9gV8hI7eKR3SsrdjUcdwT4cemZ0si5oUWT92yY5R1wtBO3_1kS49P5kRp10SbQYTKura-YbpxrO47tmp7ejKuXjdsFdh9zYIhsGQLjPH775uRU8e0tetl7BZG6xt0CmunF7eI39_C1fHR5XTGY28GbvNM9hyRF7E4pTDFRJfCyGTsskx4kY6tq5xEbdZSZpWxJWJ4gy9WphhsGptaYxP0nHswatrGvwNcLSkrDHu0FmXufSKrMrM5FcqT2biSeh-yQR7KxsLl1D_jRg0MtR8qSFGRFFWQ4j7w-1mrULjjkfGTQdTqrw9QoW95ZObX4ctQqJv0w0U3vl3jIIF4FOPdUj4wpsgKClJT8f7JO_gCz2eXF-fq_GR-9gFe0J1Ag_sIo_527T8hburN56gXvwEjUBj6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Cd-resistant+microorganisms+from+heavy+metal-contaminated+soil+and+its+potential+in+promoting+the+growth+and+Cd+accumulation+of+bermudagrass&rft.jtitle=Environmental+research&rft.au=Xie%2C+Yan&rft.au=Bu%2C+Heshen&rft.au=Feng%2C+Qijia&rft.au=Wassie%2C+Misganaw&rft.date=2021-09-01&rft.issn=0013-9351&rft.volume=200+p.111730-&rft_id=info:doi/10.1016%2Fj.envres.2021.111730&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9351&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9351&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9351&client=summon