Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling
Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated...
Saved in:
Published in | The FASEB journal Vol. 29; no. 11; p. 4485 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.11.2015
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated the relationship between long-term muscle protein synthesis (MPS) and hypertrophic responses to RET. A total of 10 men (23 ± 1 yr) undertook 6 wk of unilateral (1-legged) RET [6 × 8 repetitions, 75% 1 repetition maximum (1-RM) 3/wk], rendering 1 leg untrained (UT) and the contralateral, trained (T). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom percentage; thereafter 50 ml/wk) with regular body water monitoring in saliva via high-temperature conversion elemental analyzer:isotope ratio mass spectrometer. Further bilateral VL muscle biopsies were taken at 3 and 6 wk to temporally quantify MPS via gas chromatography:pyrolysis:isotope ratio mass spectrometer. Expectedly, only the T leg exhibited marked increases in function [i.e., 1-RM/maximal voluntary contraction (60°)] and VL thickness (peaking at 3 wk). Critically, whereas MPS remained unchanged in the UT leg (e.g., ∼1.35 ± 0.08%/d), the T leg exhibited increased MPS at 0-3 wk (1.6 ± 0.01%/d), but not at 3-6 wk (1.29 ± 0.11%/d); this was reflected by dampened acute mechanistic target of rapamycin complex 1 signaling responses to RET, beyond 3 wk. Therefore, hypertrophic remodeling is most active during the early stages of RET, reflecting longer-term MPS. Moreover, D2O heralds promise for coupling MPS and muscle mass and providing insight into the control of hypertrophy and efficacy of anabolic interventions. |
---|---|
AbstractList | Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated the relationship between long-term muscle protein synthesis (MPS) and hypertrophic responses to RET. A total of 10 men (23 ± 1 yr) undertook 6 wk of unilateral (1-legged) RET [6 × 8 repetitions, 75% 1 repetition maximum (1-RM) 3/wk], rendering 1 leg untrained (UT) and the contralateral, trained (T). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom percentage; thereafter 50 ml/wk) with regular body water monitoring in saliva via high-temperature conversion elemental analyzer:isotope ratio mass spectrometer. Further bilateral VL muscle biopsies were taken at 3 and 6 wk to temporally quantify MPS via gas chromatography:pyrolysis:isotope ratio mass spectrometer. Expectedly, only the T leg exhibited marked increases in function [i.e., 1-RM/maximal voluntary contraction (60°)] and VL thickness (peaking at 3 wk). Critically, whereas MPS remained unchanged in the UT leg (e.g., ∼1.35 ± 0.08%/d), the T leg exhibited increased MPS at 0-3 wk (1.6 ± 0.01%/d), but not at 3-6 wk (1.29 ± 0.11%/d); this was reflected by dampened acute mechanistic target of rapamycin complex 1 signaling responses to RET, beyond 3 wk. Therefore, hypertrophic remodeling is most active during the early stages of RET, reflecting longer-term MPS. Moreover, D2O heralds promise for coupling MPS and muscle mass and providing insight into the control of hypertrophy and efficacy of anabolic interventions. |
Author | Greenhaff, Paul L Atherton, Philip J Brook, Matthew S Lund, Jonathan N Smith, Ken Mitchell, William K Szewczyk, Nathaniel J Wilkinson, Daniel J |
Author_xml | – sequence: 1 givenname: Matthew S surname: Brook fullname: Brook, Matthew S organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom – sequence: 2 givenname: Daniel J surname: Wilkinson fullname: Wilkinson, Daniel J organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom – sequence: 3 givenname: William K surname: Mitchell fullname: Mitchell, William K organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom – sequence: 4 givenname: Jonathan N surname: Lund fullname: Lund, Jonathan N organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom – sequence: 5 givenname: Nathaniel J surname: Szewczyk fullname: Szewczyk, Nathaniel J organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom – sequence: 6 givenname: Paul L surname: Greenhaff fullname: Greenhaff, Paul L organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom – sequence: 7 givenname: Ken surname: Smith fullname: Smith, Ken organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom – sequence: 8 givenname: Philip J surname: Atherton fullname: Atherton, Philip J email: philip.atherton@nottingham.ac.uk organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom philip.atherton@nottingham.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26169934$$D View this record in MEDLINE/PubMed |
BookMark | eNo1kEtv1TAQhS0Eos8dazQ_gBQ7D-d6iSooSJW6ANbV3MnkxiV2LNtBN3-Y34H7Ws0czdH5RudMvPWLZyE-KHmlpNGfx4cr1VV13_Rd90acqq6Rld5peSLOUnqQUiqp9HtxUmuljWnaU_Hv5x-eOeMMbk00M0xb4JjjEqYNcMCQMdvFJwiRh8VZj5nBesgTA2OcN0gZD5xgGSFyskV5KqcjR7KJIUe03vrDJ3CYaSobDLxmjnZ1sBztwNVQxF8ewDGmNT5HvTwT4pK50NLmC7CkA_pHI03oC8oSZIwHzk90DOg2Km5aXJj5CAqSPXicC_RCvBtxTnz5Ms_F729ff11_r27vbn5cf7mtqG12phoN7frxsaZO743cNzX1qiU1aDKy1obazqi9IpYtUdvrZuxaHo1pscYelanPxcfn3LDuHQ_3IVqHcbt_Lbz-Dyp8ibc |
CitedBy_id | crossref_primary_10_1123_jsr_2019_0491 crossref_primary_10_3389_fphys_2018_01265 crossref_primary_10_1016_j_clnesp_2021_09_729 crossref_primary_10_1016_j_exger_2019_05_002 crossref_primary_10_14814_phy2_15991 crossref_primary_10_1016_j_joca_2022_03_007 crossref_primary_10_1038_s41391_023_00774_z crossref_primary_10_1111_1753_0407_12857 crossref_primary_10_1113_EP092353 crossref_primary_10_1016_j_cmet_2023_12_007 crossref_primary_10_1136_bjsports_2018_099889 crossref_primary_10_1007_s40279_021_01470_5 crossref_primary_10_1016_j_clnu_2018_06_963 crossref_primary_10_1113_JP281907 crossref_primary_10_1016_j_exger_2022_111760 crossref_primary_10_1096_fj_201701422R crossref_primary_10_1152_japplphysiol_00855_2019 crossref_primary_10_1155_2024_3184356 crossref_primary_10_1152_japplphysiol_00613_2016 crossref_primary_10_1113_JP278996 crossref_primary_10_1097_MD_0000000000030244 crossref_primary_10_1136_bjsports_2017_097608 crossref_primary_10_14814_phy2_14770 crossref_primary_10_1249_MSS_0000000000003061 crossref_primary_10_3390_nu15112438 crossref_primary_10_1007_s00421_017_3792_9 crossref_primary_10_1111_ggi_13010 crossref_primary_10_1021_acs_analchem_9b02757 crossref_primary_10_1007_s40279_021_01620_9 crossref_primary_10_1038_s12276_022_00814_z crossref_primary_10_14814_phy2_13799 crossref_primary_10_1519_JSC_0000000000001788 crossref_primary_10_1002_mus_25696 crossref_primary_10_1113_EP086361 crossref_primary_10_1113_JP273343 crossref_primary_10_1152_physiol_00034_2018 crossref_primary_10_1111_sms_13791 crossref_primary_10_1152_ajpendo_00164_2021 crossref_primary_10_1007_s00424_020_02353_w crossref_primary_10_4081_ejtm_2020_9311 crossref_primary_10_1371_journal_pone_0215267 crossref_primary_10_1152_japplphysiol_01009_2016 crossref_primary_10_3945_jn_114_203208 crossref_primary_10_1101_cshperspect_a029769 crossref_primary_10_1519_JSC_0000000000004300 crossref_primary_10_3390_physiologia2040014 crossref_primary_10_1113_EP085647 crossref_primary_10_3389_fphys_2020_00259 crossref_primary_10_14814_phy2_14797 crossref_primary_10_3390_ijerph18030880 crossref_primary_10_1007_s00421_016_3521_9 crossref_primary_10_3390_ijerph17113871 crossref_primary_10_1002_ajhb_23978 crossref_primary_10_1113_JP273235 crossref_primary_10_1002_jcsm_12472 crossref_primary_10_1093_jn_nxz099 crossref_primary_10_1111_apha_13806 crossref_primary_10_1007_s40200_022_01091_3 crossref_primary_10_3389_fphys_2020_00816 crossref_primary_10_1016_j_arr_2018_07_005 crossref_primary_10_1186_s40814_022_01129_6 crossref_primary_10_1016_j_archger_2021_104566 crossref_primary_10_1007_s00421_017_3566_4 crossref_primary_10_1007_s40279_020_01397_3 crossref_primary_10_1055_a_2053_8426 crossref_primary_10_2196_32315 crossref_primary_10_1007_s40279_019_01053_5 crossref_primary_10_1152_japplphysiol_00480_2017 crossref_primary_10_1080_10408398_2021_1956877 crossref_primary_10_1097_MCO_0000000000000392 crossref_primary_10_1113_EP087435 crossref_primary_10_1007_s40279_016_0640_8 crossref_primary_10_3390_cells13030255 crossref_primary_10_1016_j_clnu_2023_04_004 crossref_primary_10_1152_japplphysiol_00605_2022 crossref_primary_10_1113_JP272277 crossref_primary_10_1152_ajpregu_00068_2024 crossref_primary_10_1096_fj_201903223RR crossref_primary_10_1111_sms_12961 crossref_primary_10_1113_EP089699 crossref_primary_10_1152_ajpendo_00328_2021 crossref_primary_10_1113_JP275430 crossref_primary_10_1152_physrev_00054_2021 crossref_primary_10_1016_j_maturitas_2016_05_016 crossref_primary_10_1152_ajpendo_00157_2017 crossref_primary_10_3389_fphys_2019_01271 crossref_primary_10_1152_ajpendo_00360_2019 crossref_primary_10_1007_s00421_024_05655_4 crossref_primary_10_1111_apha_13540 crossref_primary_10_1096_fj_201700531R crossref_primary_10_1152_ajpendo_00230_2016 crossref_primary_10_1093_jn_nxaa101 crossref_primary_10_1113_JP278828 crossref_primary_10_1152_physrev_00039_2022 crossref_primary_10_1093_jas_skab060 crossref_primary_10_1016_j_nutos_2021_02_005 crossref_primary_10_1113_EP087492 crossref_primary_10_1249_JES_0000000000000189 crossref_primary_10_3390_diagnostics11030529 crossref_primary_10_1016_j_freeradbiomed_2016_03_025 crossref_primary_10_1152_japplphysiol_00070_2019 crossref_primary_10_21876_rcshci_v11i3_1135 crossref_primary_10_1113_JP272857 crossref_primary_10_1016_j_exger_2019_110723 crossref_primary_10_1249_MSS_0000000000002213 crossref_primary_10_1111_sms_12702 crossref_primary_10_1111_apha_13557 crossref_primary_10_1016_j_smhs_2024_01_006 crossref_primary_10_1021_acs_jproteome_4c01004 crossref_primary_10_1519_JSC_0000000000002559 crossref_primary_10_1113_JP271365 crossref_primary_10_3390_jfmk1030328 crossref_primary_10_1007_s00421_021_04862_7 crossref_primary_10_1152_ajpregu_00162_2019 crossref_primary_10_1249_JES_0000000000000179 crossref_primary_10_3389_fspor_2022_834386 crossref_primary_10_1007_s11357_021_00386_2 crossref_primary_10_3389_fphys_2019_00406 crossref_primary_10_1016_j_bbrc_2019_09_050 crossref_primary_10_1002_mas_21507 crossref_primary_10_3389_fphys_2019_00247 crossref_primary_10_1093_advances_nmaa123 crossref_primary_10_3389_fphys_2018_00834 crossref_primary_10_1016_j_clnu_2023_08_010 crossref_primary_10_1038_srep31142 crossref_primary_10_18632_aging_102653 crossref_primary_10_14814_phy2_13269 crossref_primary_10_1096_fj_202302024R crossref_primary_10_1038_s41598_022_11621_x crossref_primary_10_1016_j_biocel_2017_07_012 crossref_primary_10_1002_jcsm_13005 crossref_primary_10_3389_fphys_2019_00649 crossref_primary_10_1152_japplphysiol_00610_2017 crossref_primary_10_1096_fj_202100654RR crossref_primary_10_1519_SSC_0000000000000700 crossref_primary_10_1002_jcsm_12706 crossref_primary_10_1113_JP272472 crossref_primary_10_3390_nu11071657 crossref_primary_10_1111_apha_13056 crossref_primary_10_1016_j_ultrasmedbio_2017_02_017 crossref_primary_10_1249_MSS_0000000000001300 crossref_primary_10_1111_apha_13336 crossref_primary_10_1007_s40279_023_01932_y crossref_primary_10_1152_japplphysiol_01011_2018 crossref_primary_10_1123_ijspp_2018_0427 crossref_primary_10_1186_s12970_020_00397_y crossref_primary_10_1002_jcsm_12661 crossref_primary_10_1016_j_burns_2020_03_015 crossref_primary_10_1016_j_clnu_2018_09_025 crossref_primary_10_1249_MSS_0000000000002878 crossref_primary_10_1016_j_exger_2018_06_007 |
ContentType | Journal Article |
Copyright | FASEB. |
Copyright_xml | – notice: FASEB. |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1096/fj.15-273755 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1530-6860 |
ExternalDocumentID | 26169934 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: CIC12019 – fundername: The Dunhill Medical Trust grantid: R264/1112 – fundername: Medical Research Council grantid: MR/K00414X/1 – fundername: Medical Research Council grantid: MC_PC_12019 – fundername: Arthritis Research UK |
GroupedDBID | --- -DZ -~X .55 0R~ 0VX 123 18M 1OB 1OC 29H 2WC 33P 34G 39C 3O- 4.4 53G 5GY 5RE 85S AAHQN AAMMB AAMNL AANLZ AAYCA ABCUV ABDNZ ABEFU ABJNI ABOCM ACCZN ACGFS ACIWK ACNCT ACPOU ACPRK ACXQS ACYGS ADKYN ADXHL ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFFNX AFFPM AFRAH AFWVQ AGCDD AGHNM AGXDD AGYGG AHBTC AI. AIDQK AIDYY AITYG AIURR AIZAD ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK BIYOS C1A CGR CS3 CUY CVF DCZOG DU5 D~5 E3Z EBS ECM EIF EJD F5P F9R H13 HGLYW HZ~ H~9 J5H L7B LATKE LEEKS MEWTI MVM NEJ NPM O9- OHT OVD Q-A RHI RJQFR ROL SAMSI SJN SUPJJ TEORI TFA TR2 TWZ U18 VH1 W8F WH7 WHG WOQ WXSBR X7M XJT XOL XSW Y6R YBU YHG YKV YNH YSK Z0Y ZCA ZE2 ZGI ZXP ~KM |
ID | FETCH-LOGICAL-c4389-f9c87f001056b90b32c714c1d6c90269c4591b1ce04cc4763f54ef994a2a7a192 |
IngestDate | Mon Jul 21 05:58:43 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | anabolic signaling stable isotopes D20 |
Language | English |
License | FASEB. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4389-f9c87f001056b90b32c714c1d6c90269c4591b1ce04cc4763f54ef994a2a7a192 |
PMID | 26169934 |
ParticipantIDs | pubmed_primary_26169934 |
PublicationCentury | 2000 |
PublicationDate | November 2015 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: November 2015 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The FASEB journal |
PublicationTitleAlternate | FASEB J |
PublicationYear | 2015 |
SSID | ssj0001016 |
Score | 2.5462248 |
Snippet | Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 4485 |
SubjectTerms | Adaptation, Physiological - physiology Adult Deuterium Oxide - administration & dosage Deuterium Oxide - pharmacokinetics Exercise - physiology Humans Hypertrophy - metabolism Male Muscle Proteins - biosynthesis Muscle, Skeletal - metabolism |
Title | Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26169934 |
Volume | 29 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb5tAEMdXcatKvVRN3-lDc-iN0hqzgDmmVaKoanpJIuUWLcvSOg7GSnAV5wP3c_S_LyBRqj4uyAabRcyP3ZlhHoy9VSkWpQoPYC7Sach5HIdQjtKwzHksoI7EmSk8v_813Tvin4-T443R5iBqadUW7-XVrXkl_yNV7INcdZbsP0i2Oyl24DPkiy0kjO1fyfhgjkVDZzPWqwscCr7DqDxvzxvcukCUYtm6OLelrgqqY15a5eMalSlsDNXwm606C6tba5L6MfddmLr2EVoMUGxt1GWpdBOI2aoOmstZqcISX35Aa62ts9GczF2OqQGB8S7WCwypK59oL32tdLKxqQ8d2Dh0Mz4W7XotXVT8mboMokDHlogzv7ae9lzvbh_sfAyGt8g6FJq5TT8yLcx7py5mvnmX5GZz6vu3Yfuz1gTDmmBD63zqXb9fVtbv7t8xuBdXzksSJS5d0CxyfmaHnTy1zQv81O-cLQ7xaDCRw2pNbl1hYPJpLLDE6Fy-OEuu_Qx8LGtDGyzTFLof__PRG_W-_aERG8Hy0a1ctf_J6Rba1-LSN3AhH4aXoctau7_eMJGMqnT4kD1wNg5tW2A32YZaPGL3bNfT9WP202NLlhMaYEsDbGmALc0WBKGSwZYsttRU1GNLHlvy2L4jDy110NI1aMlDq0_lLsZBSx20BGhpAC1ZaM3oHlpy0FJEHbRP2NHuzuGnvdC1Gwklh9oeVrmcZpVpGZsW-biIJzKLuIzKVObjSZpLnuRREUk15lJyrMtVwlWV51xMRCZgKT1ldxbNQj1nFMdTITA3qmoSQwUuprBSCpXJMlKlKMfJC_bMCuhkaWvKnHjRbf32yEt2vwf7FbtbYRJTr6ERt8UbA8kv0sTE-w |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+hypertrophy+adaptations+predominate+in+the+early+stages+of+resistance+exercise+training%2C+matching+deuterium+oxide-derived+measures+of+muscle+protein+synthesis+and+mechanistic+target+of+rapamycin+complex+1+signaling&rft.jtitle=The+FASEB+journal&rft.au=Brook%2C+Matthew+S&rft.au=Wilkinson%2C+Daniel+J&rft.au=Mitchell%2C+William+K&rft.au=Lund%2C+Jonathan+N&rft.date=2015-11-01&rft.eissn=1530-6860&rft.volume=29&rft.issue=11&rft.spage=4485&rft_id=info:doi/10.1096%2Ffj.15-273755&rft_id=info%3Apmid%2F26169934&rft_id=info%3Apmid%2F26169934&rft.externalDocID=26169934 |