Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling

Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated...

Full description

Saved in:
Bibliographic Details
Published inThe FASEB journal Vol. 29; no. 11; p. 4485
Main Authors Brook, Matthew S, Wilkinson, Daniel J, Mitchell, William K, Lund, Jonathan N, Szewczyk, Nathaniel J, Greenhaff, Paul L, Smith, Ken, Atherton, Philip J
Format Journal Article
LanguageEnglish
Published United States 01.11.2015
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated the relationship between long-term muscle protein synthesis (MPS) and hypertrophic responses to RET. A total of 10 men (23 ± 1 yr) undertook 6 wk of unilateral (1-legged) RET [6 × 8 repetitions, 75% 1 repetition maximum (1-RM) 3/wk], rendering 1 leg untrained (UT) and the contralateral, trained (T). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom percentage; thereafter 50 ml/wk) with regular body water monitoring in saliva via high-temperature conversion elemental analyzer:isotope ratio mass spectrometer. Further bilateral VL muscle biopsies were taken at 3 and 6 wk to temporally quantify MPS via gas chromatography:pyrolysis:isotope ratio mass spectrometer. Expectedly, only the T leg exhibited marked increases in function [i.e., 1-RM/maximal voluntary contraction (60°)] and VL thickness (peaking at 3 wk). Critically, whereas MPS remained unchanged in the UT leg (e.g., ∼1.35 ± 0.08%/d), the T leg exhibited increased MPS at 0-3 wk (1.6 ± 0.01%/d), but not at 3-6 wk (1.29 ± 0.11%/d); this was reflected by dampened acute mechanistic target of rapamycin complex 1 signaling responses to RET, beyond 3 wk. Therefore, hypertrophic remodeling is most active during the early stages of RET, reflecting longer-term MPS. Moreover, D2O heralds promise for coupling MPS and muscle mass and providing insight into the control of hypertrophy and efficacy of anabolic interventions.
AbstractList Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and metabolic and molecular control of hypertrophy remain poorly defined. Using newly developed deuterium oxide (D2O)-tracer techniques, we investigated the relationship between long-term muscle protein synthesis (MPS) and hypertrophic responses to RET. A total of 10 men (23 ± 1 yr) undertook 6 wk of unilateral (1-legged) RET [6 × 8 repetitions, 75% 1 repetition maximum (1-RM) 3/wk], rendering 1 leg untrained (UT) and the contralateral, trained (T). After baseline bilateral vastus lateralis (VL) muscle biopsies, subjects consumed 150 ml D2O (70 atom percentage; thereafter 50 ml/wk) with regular body water monitoring in saliva via high-temperature conversion elemental analyzer:isotope ratio mass spectrometer. Further bilateral VL muscle biopsies were taken at 3 and 6 wk to temporally quantify MPS via gas chromatography:pyrolysis:isotope ratio mass spectrometer. Expectedly, only the T leg exhibited marked increases in function [i.e., 1-RM/maximal voluntary contraction (60°)] and VL thickness (peaking at 3 wk). Critically, whereas MPS remained unchanged in the UT leg (e.g., ∼1.35 ± 0.08%/d), the T leg exhibited increased MPS at 0-3 wk (1.6 ± 0.01%/d), but not at 3-6 wk (1.29 ± 0.11%/d); this was reflected by dampened acute mechanistic target of rapamycin complex 1 signaling responses to RET, beyond 3 wk. Therefore, hypertrophic remodeling is most active during the early stages of RET, reflecting longer-term MPS. Moreover, D2O heralds promise for coupling MPS and muscle mass and providing insight into the control of hypertrophy and efficacy of anabolic interventions.
Author Greenhaff, Paul L
Atherton, Philip J
Brook, Matthew S
Lund, Jonathan N
Smith, Ken
Mitchell, William K
Szewczyk, Nathaniel J
Wilkinson, Daniel J
Author_xml – sequence: 1
  givenname: Matthew S
  surname: Brook
  fullname: Brook, Matthew S
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom
– sequence: 2
  givenname: Daniel J
  surname: Wilkinson
  fullname: Wilkinson, Daniel J
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom
– sequence: 3
  givenname: William K
  surname: Mitchell
  fullname: Mitchell, William K
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom
– sequence: 4
  givenname: Jonathan N
  surname: Lund
  fullname: Lund, Jonathan N
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom
– sequence: 5
  givenname: Nathaniel J
  surname: Szewczyk
  fullname: Szewczyk, Nathaniel J
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom
– sequence: 6
  givenname: Paul L
  surname: Greenhaff
  fullname: Greenhaff, Paul L
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom
– sequence: 7
  givenname: Ken
  surname: Smith
  fullname: Smith, Ken
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom
– sequence: 8
  givenname: Philip J
  surname: Atherton
  fullname: Atherton, Philip J
  email: philip.atherton@nottingham.ac.uk
  organization: Medical Research Council-Arthritis Research UK Centre of Excellence for Musculoskeletal Ageing Research, Division of Clinical, Metabolic, and Molecular Physiology, University of Nottingham, Derby, United Kingdom; and Department of Surgery, Royal Derby Hospital, Derby, United Kingdom philip.atherton@nottingham.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26169934$$D View this record in MEDLINE/PubMed
BookMark eNo1kEtv1TAQhS0Eos8dazQ_gBQ7D-d6iSooSJW6ANbV3MnkxiV2LNtBN3-Y34H7Ws0czdH5RudMvPWLZyE-KHmlpNGfx4cr1VV13_Rd90acqq6Rld5peSLOUnqQUiqp9HtxUmuljWnaU_Hv5x-eOeMMbk00M0xb4JjjEqYNcMCQMdvFJwiRh8VZj5nBesgTA2OcN0gZD5xgGSFyskV5KqcjR7KJIUe03vrDJ3CYaSobDLxmjnZ1sBztwNVQxF8ewDGmNT5HvTwT4pK50NLmC7CkA_pHI03oC8oSZIwHzk90DOg2Km5aXJj5CAqSPXicC_RCvBtxTnz5Ms_F729ff11_r27vbn5cf7mtqG12phoN7frxsaZO743cNzX1qiU1aDKy1obazqi9IpYtUdvrZuxaHo1pscYelanPxcfn3LDuHQ_3IVqHcbt_Lbz-Dyp8ibc
CitedBy_id crossref_primary_10_1123_jsr_2019_0491
crossref_primary_10_3389_fphys_2018_01265
crossref_primary_10_1016_j_clnesp_2021_09_729
crossref_primary_10_1016_j_exger_2019_05_002
crossref_primary_10_14814_phy2_15991
crossref_primary_10_1016_j_joca_2022_03_007
crossref_primary_10_1038_s41391_023_00774_z
crossref_primary_10_1111_1753_0407_12857
crossref_primary_10_1113_EP092353
crossref_primary_10_1016_j_cmet_2023_12_007
crossref_primary_10_1136_bjsports_2018_099889
crossref_primary_10_1007_s40279_021_01470_5
crossref_primary_10_1016_j_clnu_2018_06_963
crossref_primary_10_1113_JP281907
crossref_primary_10_1016_j_exger_2022_111760
crossref_primary_10_1096_fj_201701422R
crossref_primary_10_1152_japplphysiol_00855_2019
crossref_primary_10_1155_2024_3184356
crossref_primary_10_1152_japplphysiol_00613_2016
crossref_primary_10_1113_JP278996
crossref_primary_10_1097_MD_0000000000030244
crossref_primary_10_1136_bjsports_2017_097608
crossref_primary_10_14814_phy2_14770
crossref_primary_10_1249_MSS_0000000000003061
crossref_primary_10_3390_nu15112438
crossref_primary_10_1007_s00421_017_3792_9
crossref_primary_10_1111_ggi_13010
crossref_primary_10_1021_acs_analchem_9b02757
crossref_primary_10_1007_s40279_021_01620_9
crossref_primary_10_1038_s12276_022_00814_z
crossref_primary_10_14814_phy2_13799
crossref_primary_10_1519_JSC_0000000000001788
crossref_primary_10_1002_mus_25696
crossref_primary_10_1113_EP086361
crossref_primary_10_1113_JP273343
crossref_primary_10_1152_physiol_00034_2018
crossref_primary_10_1111_sms_13791
crossref_primary_10_1152_ajpendo_00164_2021
crossref_primary_10_1007_s00424_020_02353_w
crossref_primary_10_4081_ejtm_2020_9311
crossref_primary_10_1371_journal_pone_0215267
crossref_primary_10_1152_japplphysiol_01009_2016
crossref_primary_10_3945_jn_114_203208
crossref_primary_10_1101_cshperspect_a029769
crossref_primary_10_1519_JSC_0000000000004300
crossref_primary_10_3390_physiologia2040014
crossref_primary_10_1113_EP085647
crossref_primary_10_3389_fphys_2020_00259
crossref_primary_10_14814_phy2_14797
crossref_primary_10_3390_ijerph18030880
crossref_primary_10_1007_s00421_016_3521_9
crossref_primary_10_3390_ijerph17113871
crossref_primary_10_1002_ajhb_23978
crossref_primary_10_1113_JP273235
crossref_primary_10_1002_jcsm_12472
crossref_primary_10_1093_jn_nxz099
crossref_primary_10_1111_apha_13806
crossref_primary_10_1007_s40200_022_01091_3
crossref_primary_10_3389_fphys_2020_00816
crossref_primary_10_1016_j_arr_2018_07_005
crossref_primary_10_1186_s40814_022_01129_6
crossref_primary_10_1016_j_archger_2021_104566
crossref_primary_10_1007_s00421_017_3566_4
crossref_primary_10_1007_s40279_020_01397_3
crossref_primary_10_1055_a_2053_8426
crossref_primary_10_2196_32315
crossref_primary_10_1007_s40279_019_01053_5
crossref_primary_10_1152_japplphysiol_00480_2017
crossref_primary_10_1080_10408398_2021_1956877
crossref_primary_10_1097_MCO_0000000000000392
crossref_primary_10_1113_EP087435
crossref_primary_10_1007_s40279_016_0640_8
crossref_primary_10_3390_cells13030255
crossref_primary_10_1016_j_clnu_2023_04_004
crossref_primary_10_1152_japplphysiol_00605_2022
crossref_primary_10_1113_JP272277
crossref_primary_10_1152_ajpregu_00068_2024
crossref_primary_10_1096_fj_201903223RR
crossref_primary_10_1111_sms_12961
crossref_primary_10_1113_EP089699
crossref_primary_10_1152_ajpendo_00328_2021
crossref_primary_10_1113_JP275430
crossref_primary_10_1152_physrev_00054_2021
crossref_primary_10_1016_j_maturitas_2016_05_016
crossref_primary_10_1152_ajpendo_00157_2017
crossref_primary_10_3389_fphys_2019_01271
crossref_primary_10_1152_ajpendo_00360_2019
crossref_primary_10_1007_s00421_024_05655_4
crossref_primary_10_1111_apha_13540
crossref_primary_10_1096_fj_201700531R
crossref_primary_10_1152_ajpendo_00230_2016
crossref_primary_10_1093_jn_nxaa101
crossref_primary_10_1113_JP278828
crossref_primary_10_1152_physrev_00039_2022
crossref_primary_10_1093_jas_skab060
crossref_primary_10_1016_j_nutos_2021_02_005
crossref_primary_10_1113_EP087492
crossref_primary_10_1249_JES_0000000000000189
crossref_primary_10_3390_diagnostics11030529
crossref_primary_10_1016_j_freeradbiomed_2016_03_025
crossref_primary_10_1152_japplphysiol_00070_2019
crossref_primary_10_21876_rcshci_v11i3_1135
crossref_primary_10_1113_JP272857
crossref_primary_10_1016_j_exger_2019_110723
crossref_primary_10_1249_MSS_0000000000002213
crossref_primary_10_1111_sms_12702
crossref_primary_10_1111_apha_13557
crossref_primary_10_1016_j_smhs_2024_01_006
crossref_primary_10_1021_acs_jproteome_4c01004
crossref_primary_10_1519_JSC_0000000000002559
crossref_primary_10_1113_JP271365
crossref_primary_10_3390_jfmk1030328
crossref_primary_10_1007_s00421_021_04862_7
crossref_primary_10_1152_ajpregu_00162_2019
crossref_primary_10_1249_JES_0000000000000179
crossref_primary_10_3389_fspor_2022_834386
crossref_primary_10_1007_s11357_021_00386_2
crossref_primary_10_3389_fphys_2019_00406
crossref_primary_10_1016_j_bbrc_2019_09_050
crossref_primary_10_1002_mas_21507
crossref_primary_10_3389_fphys_2019_00247
crossref_primary_10_1093_advances_nmaa123
crossref_primary_10_3389_fphys_2018_00834
crossref_primary_10_1016_j_clnu_2023_08_010
crossref_primary_10_1038_srep31142
crossref_primary_10_18632_aging_102653
crossref_primary_10_14814_phy2_13269
crossref_primary_10_1096_fj_202302024R
crossref_primary_10_1038_s41598_022_11621_x
crossref_primary_10_1016_j_biocel_2017_07_012
crossref_primary_10_1002_jcsm_13005
crossref_primary_10_3389_fphys_2019_00649
crossref_primary_10_1152_japplphysiol_00610_2017
crossref_primary_10_1096_fj_202100654RR
crossref_primary_10_1519_SSC_0000000000000700
crossref_primary_10_1002_jcsm_12706
crossref_primary_10_1113_JP272472
crossref_primary_10_3390_nu11071657
crossref_primary_10_1111_apha_13056
crossref_primary_10_1016_j_ultrasmedbio_2017_02_017
crossref_primary_10_1249_MSS_0000000000001300
crossref_primary_10_1111_apha_13336
crossref_primary_10_1007_s40279_023_01932_y
crossref_primary_10_1152_japplphysiol_01011_2018
crossref_primary_10_1123_ijspp_2018_0427
crossref_primary_10_1186_s12970_020_00397_y
crossref_primary_10_1002_jcsm_12661
crossref_primary_10_1016_j_burns_2020_03_015
crossref_primary_10_1016_j_clnu_2018_09_025
crossref_primary_10_1249_MSS_0000000000002878
crossref_primary_10_1016_j_exger_2018_06_007
ContentType Journal Article
Copyright FASEB.
Copyright_xml – notice: FASEB.
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1096/fj.15-273755
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1530-6860
ExternalDocumentID 26169934
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: CIC12019
– fundername: The Dunhill Medical Trust
  grantid: R264/1112
– fundername: Medical Research Council
  grantid: MR/K00414X/1
– fundername: Medical Research Council
  grantid: MC_PC_12019
– fundername: Arthritis Research UK
GroupedDBID ---
-DZ
-~X
.55
0R~
0VX
123
18M
1OB
1OC
29H
2WC
33P
34G
39C
3O-
4.4
53G
5GY
5RE
85S
AAHQN
AAMMB
AAMNL
AANLZ
AAYCA
ABCUV
ABDNZ
ABEFU
ABJNI
ABOCM
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACXQS
ACYGS
ADKYN
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFFNX
AFFPM
AFRAH
AFWVQ
AGCDD
AGHNM
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AITYG
AIURR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
BIYOS
C1A
CGR
CS3
CUY
CVF
DCZOG
DU5
D~5
E3Z
EBS
ECM
EIF
EJD
F5P
F9R
H13
HGLYW
HZ~
H~9
J5H
L7B
LATKE
LEEKS
MEWTI
MVM
NEJ
NPM
O9-
OHT
OVD
Q-A
RHI
RJQFR
ROL
SAMSI
SJN
SUPJJ
TEORI
TFA
TR2
TWZ
U18
VH1
W8F
WH7
WHG
WOQ
WXSBR
X7M
XJT
XOL
XSW
Y6R
YBU
YHG
YKV
YNH
YSK
Z0Y
ZCA
ZE2
ZGI
ZXP
~KM
ID FETCH-LOGICAL-c4389-f9c87f001056b90b32c714c1d6c90269c4591b1ce04cc4763f54ef994a2a7a192
IngestDate Mon Jul 21 05:58:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords anabolic signaling
stable isotopes
D20
Language English
License FASEB.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4389-f9c87f001056b90b32c714c1d6c90269c4591b1ce04cc4763f54ef994a2a7a192
PMID 26169934
ParticipantIDs pubmed_primary_26169934
PublicationCentury 2000
PublicationDate November 2015
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: November 2015
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The FASEB journal
PublicationTitleAlternate FASEB J
PublicationYear 2015
SSID ssj0001016
Score 2.5462248
Snippet Resistance exercise training (RET) is widely used to increase muscle mass in athletes and also aged/cachectic populations. However, the time course and...
SourceID pubmed
SourceType Index Database
StartPage 4485
SubjectTerms Adaptation, Physiological - physiology
Adult
Deuterium Oxide - administration & dosage
Deuterium Oxide - pharmacokinetics
Exercise - physiology
Humans
Hypertrophy - metabolism
Male
Muscle Proteins - biosynthesis
Muscle, Skeletal - metabolism
Title Skeletal muscle hypertrophy adaptations predominate in the early stages of resistance exercise training, matching deuterium oxide-derived measures of muscle protein synthesis and mechanistic target of rapamycin complex 1 signaling
URI https://www.ncbi.nlm.nih.gov/pubmed/26169934
Volume 29
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb5tAEMdXcatKvVRN3-lDc-iN0hqzgDmmVaKoanpJIuUWLcvSOg7GSnAV5wP3c_S_LyBRqj4uyAabRcyP3ZlhHoy9VSkWpQoPYC7Sach5HIdQjtKwzHksoI7EmSk8v_813Tvin4-T443R5iBqadUW7-XVrXkl_yNV7INcdZbsP0i2Oyl24DPkiy0kjO1fyfhgjkVDZzPWqwscCr7DqDxvzxvcukCUYtm6OLelrgqqY15a5eMalSlsDNXwm606C6tba5L6MfddmLr2EVoMUGxt1GWpdBOI2aoOmstZqcISX35Aa62ts9GczF2OqQGB8S7WCwypK59oL32tdLKxqQ8d2Dh0Mz4W7XotXVT8mboMokDHlogzv7ae9lzvbh_sfAyGt8g6FJq5TT8yLcx7py5mvnmX5GZz6vu3Yfuz1gTDmmBD63zqXb9fVtbv7t8xuBdXzksSJS5d0CxyfmaHnTy1zQv81O-cLQ7xaDCRw2pNbl1hYPJpLLDE6Fy-OEuu_Qx8LGtDGyzTFLof__PRG_W-_aERG8Hy0a1ctf_J6Rba1-LSN3AhH4aXoctau7_eMJGMqnT4kD1wNg5tW2A32YZaPGL3bNfT9WP202NLlhMaYEsDbGmALc0WBKGSwZYsttRU1GNLHlvy2L4jDy110NI1aMlDq0_lLsZBSx20BGhpAC1ZaM3oHlpy0FJEHbRP2NHuzuGnvdC1Gwklh9oeVrmcZpVpGZsW-biIJzKLuIzKVObjSZpLnuRREUk15lJyrMtVwlWV51xMRCZgKT1ldxbNQj1nFMdTITA3qmoSQwUuprBSCpXJMlKlKMfJC_bMCuhkaWvKnHjRbf32yEt2vwf7FbtbYRJTr6ERt8UbA8kv0sTE-w
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skeletal+muscle+hypertrophy+adaptations+predominate+in+the+early+stages+of+resistance+exercise+training%2C+matching+deuterium+oxide-derived+measures+of+muscle+protein+synthesis+and+mechanistic+target+of+rapamycin+complex+1+signaling&rft.jtitle=The+FASEB+journal&rft.au=Brook%2C+Matthew+S&rft.au=Wilkinson%2C+Daniel+J&rft.au=Mitchell%2C+William+K&rft.au=Lund%2C+Jonathan+N&rft.date=2015-11-01&rft.eissn=1530-6860&rft.volume=29&rft.issue=11&rft.spage=4485&rft_id=info:doi/10.1096%2Ffj.15-273755&rft_id=info%3Apmid%2F26169934&rft_id=info%3Apmid%2F26169934&rft.externalDocID=26169934