A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials

In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of ze...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 38; no. 30; pp. 5565 - 5586
Main Authors Wu, Jing, Chen, Ming‐Hui, Schifano, Elizabeth D., Ibrahim, Joseph G., Fisher, Jeffrey D.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.12.2019
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.8379

Cover

Loading…
Abstract In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero‐inflated Poisson mixed‐effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero‐inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g‐prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial.
AbstractList In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero-inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial.
In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood (LPML) and a concordance based area under the curve (AUC) criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods, and further illustrate the methods using real data from an HIV prevention clinical trial.
In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero-inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial.In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero-inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial.
Author Wu, Jing
Schifano, Elizabeth D.
Ibrahim, Joseph G.
Fisher, Jeffrey D.
Chen, Ming‐Hui
AuthorAffiliation 2 Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
1 Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA
4 Department of Psychology and Institute for Collaboration on Health, Intervention, and Policy (InCHIP), University of Connecticut, Storrs, CT 06269, USA
3 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
AuthorAffiliation_xml – name: 2 Department of Statistics, University of Connecticut, Storrs, CT 06269, USA
– name: 1 Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA
– name: 4 Department of Psychology and Institute for Collaboration on Health, Intervention, and Policy (InCHIP), University of Connecticut, Storrs, CT 06269, USA
– name: 3 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0001-7808-6981
  surname: Wu
  fullname: Wu, Jing
  organization: University of Rhode Island
– sequence: 2
  givenname: Ming‐Hui
  orcidid: 0000-0003-1935-2447
  surname: Chen
  fullname: Chen, Ming‐Hui
  email: ming-hui.chen@uconn.edu
  organization: University of Connecticut
– sequence: 3
  givenname: Elizabeth D.
  orcidid: 0000-0002-9793-332X
  surname: Schifano
  fullname: Schifano, Elizabeth D.
  organization: University of Connecticut
– sequence: 4
  givenname: Joseph G.
  orcidid: 0000-0003-2428-6552
  surname: Ibrahim
  fullname: Ibrahim, Joseph G.
  organization: University of North Carolina at Chapel Hill
– sequence: 5
  givenname: Jeffrey D.
  surname: Fisher
  fullname: Fisher, Jeffrey D.
  organization: University of Connecticut
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31691322$$D View this record in MEDLINE/PubMed
BookMark eNp1kstuFDEQRS0URCYBiS9AltiwoAc_-uUNUoiAjBTEgsfW8rirJx657cZ2ZzR8CZ-LO5OEh2BVkuvcq1vlOkFHzjtA6CklS0oIexXNsGx5Ix6gBSWiKQir2iO0IKxpirqh1TE6iXFLCKUVax6hY05rQTljC_TjDDvY4TdqD9Eoh7feuIQH34HFvQ_YercxaeqMUxZrP-Vmp5LCO5Ou8KDcHn-H4ONLnGUQBpMSzHoTo3EbBzF3lOtwF_zop3SQqXG0RqtkvIs4eXyx-orHANdZmZ9wCkbZ-Bg97HOBJ7f1FH159_bz-UVx-fH96vzsstAlb0XR1UyVJalFK8oahCb1mmtgpRCVILqtiVACatWXfQ1r1lS6YowL4G1JdatoxU_R64PvOK0H6HQOEZSVYzCDCnvplZF_dpy5kht_LetWUMpJNnhxaxD8twliknl6DdYqB36KknHKqjnPjD7_C936KeTNzhSjjNGS80w9-z3RfZS7T8vA8gDovPkYoJfapJt15oDGSkrkfBUyX4Wcr-JXxHvBnec_0OKA7oyF_X85-Wn14Yb_CS-myJ0
CitedBy_id crossref_primary_10_29220_CSAM_2023_30_3_291
crossref_primary_10_1080_02664763_2021_1897971
crossref_primary_10_1177_09622802231154325
Cites_doi 10.1090/S0002-9939-00-05513-1
10.1007/s10985-010-9162-0
10.1007/978-1-4612-1276-8
10.1198/016214508000000779
10.1111/1467-9868.00170
10.1002/sim.7692
10.1080/10618600.2013.826583
10.1093/biomet/83.2.251
10.2307/2986113
10.1007/s10985-013-9254-8
10.1111/j.0006-341X.2004.00173.x
10.1080/15598608.2017.1299058
10.1148/radiology.143.1.7063747
10.1080/03610918.2014.889154
10.1002/sim.6269
10.1080/10618600.2015.1117472
10.1007/s11336-016-9544-7
10.1002/sim.5812
10.1097/QAI.0000000000000348
10.1093/oso/9780198503682.001.0001
10.1007/s11749-009-0138-x
10.1080/01621459.2014.969424
10.1111/j.1541-0420.2005.00377.x
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.8379
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef

ProQuest Health & Medical Complete (Alumni)

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 5586
ExternalDocumentID PMC6891130
31691322
10_1002_sim_8379
SIM8379
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIH
  funderid: 5R01MH077524; GM70335; P01CA142538
– fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R01 GM070335
– fundername: NIMH NIH HHS
  grantid: R01 MH077524
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
5PM
EJD
ID FETCH-LOGICAL-c4389-d62a440698946e9c06b3ce2499590c8609a9e6af4f6eb275c52239e3841c8a153
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 13:48:34 EDT 2025
Thu Jul 10 18:00:48 EDT 2025
Sat Jul 19 04:42:31 EDT 2025
Wed Feb 19 02:29:55 EST 2025
Tue Jul 01 03:28:15 EDT 2025
Thu Apr 24 22:53:13 EDT 2025
Wed Jan 22 16:36:34 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 30
Keywords G-prior
LPML
maximally dispersed normal prior
zero-inflated Poisson
Jeffreys prior
AUC
Language English
License 2019 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4389-d62a440698946e9c06b3ce2499590c8609a9e6af4f6eb275c52239e3841c8a153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7808-6981
0000-0003-1935-2447
0000-0003-2428-6552
0000-0002-9793-332X
OpenAccessLink https://digitalcommons.uri.edu/cs_facpubs/117
PMID 31691322
PQID 2321221433
PQPubID 48361
PageCount 23
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6891130
proquest_miscellaneous_2312549950
proquest_journals_2321221433
pubmed_primary_31691322
crossref_citationtrail_10_1002_sim_8379
crossref_primary_10_1002_sim_8379
wiley_primary_10_1002_sim_8379_SIM8379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 December 2019
PublicationDateYYYYMMDD 2019-12-30
PublicationDate_xml – month: 12
  year: 2019
  text: 30 December 2019
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 82
2004; 60
2017; 26
1998
1982; 143
2008; 103
2005; 61
1999; 61
2011; 17
2001; 129
2014; 67
2014; 23
1994; 43
2014; 20
2013; 32
2000
2015; 110
1986; 6
2017; 12
1996; 83
2018
2017
2014; 33
2009; 18
2016; 45
e_1_2_10_23_1
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
Zellner A (e_1_2_10_16_1) 1986; 6
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
Wu J (e_1_2_10_12_1) 2017
Jeffreys H (e_1_2_10_17_1) 1998
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 67
  start-page: 499
  issue: 5
  year: 2014
  end-page: 507
  article-title: HIV prevention counseling intervention delivered during routine clinical care reduces HIV risk behavior in HIV‐infected South Africans receiving antiretroviral therapy: the Izindlela Zokuphila/options for health randomized trial
  publication-title: JAIDS J Acquir Immune Defic Syndr
– volume: 12
  start-page: 23
  issue: 1
  year: 2017
  end-page: 41
  article-title: Assessing covariate effects using Jeffreys‐type prior in the Cox model in the presence of a monotone partial likelihood
  publication-title: J Stat Theory Pract
– volume: 103
  start-page: 1659
  issue: 484
  year: 2008
  end-page: 1664
  article-title: Properties and implementation of Jeffreys's prior in binomial regression models
  publication-title: J Am Stat Assoc
– volume: 32
  start-page: 4180
  issue: 24
  year: 2013
  end-page: 4195
  article-title: Bayesian modeling and inference for clinical trials with partial retrieved data following dropout
  publication-title: Statist Med
– volume: 129
  start-page: 293
  issue: 1
  year: 2001
  end-page: 302
  article-title: Propriety of posterior distribution for dichotomous quantal response models
  publication-title: Proc Am Math Soc
– volume: 143
  start-page: 29
  issue: 1
  year: 1982
  end-page: 36
  article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve
  publication-title: Radiology
– year: 2017
  article-title: Bayesian modeling and inference for nonignorably missing longitudinal binary response data with applications to HIV prevention trials
  publication-title: Statistica Sinica
– year: 2000
– volume: 110
  start-page: 45
  issue: 509
  year: 2015
  end-page: 55
  article-title: A flexible Bayesian approach to monotone missing data in longitudinal studies with nonignorable missingness with application to an acute schizophrenia clinical trial
  publication-title: J Am Stat Assoc
– volume: 20
  start-page: 76
  issue: 1
  year: 2014
  end-page: 105
  article-title: Bayesian gamma frailty models for survival data with semi‐competing risks and treatment switching
  publication-title: Lifetime Data Anal
– volume: 45
  start-page: 2018
  issue: 6
  year: 2016
  end-page: 2031
  article-title: Modeling longitudinal obesity data with intermittent missingness using a new latent variable model
  publication-title: Commun Stat Simul Comput
– volume: 23
  start-page: 877
  issue: 3
  year: 2014
  end-page: 892
  article-title: Multiple imputation by ordered monotone blocks with application to the anthrax vaccine research program
  publication-title: J Comput Graph Stat
– volume: 6
  start-page: 233
  year: 1986
  end-page: 243
  article-title: On assessing prior distributions and Bayesian regression analysis with g‐prior distributions
  publication-title: Bayesian Inference Decis Tech
– volume: 17
  start-page: 3
  issue: 1
  year: 2011
  end-page: 28
  article-title: Predictive comparison of joint longitudinal‐survival modeling: a case study illustrating competing approaches
  publication-title: Lifetime Data Anal
– volume: 61
  start-page: 962
  issue: 4
  year: 2005
  end-page: 973
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
– volume: 26
  start-page: 121
  issue: 1
  year: 2017
  end-page: 133
  article-title: Bayesian model assessment in joint modeling of longitudinal and survival data with applications to cancer clinical trials
  publication-title: J Comput Graph Stat
– year: 1998
– volume: 33
  start-page: 4715
  issue: 27
  year: 2014
  end-page: 4733
  article-title: Assessing model fit in joint models of longitudinal and survival data with applications to cancer clinical trials
  publication-title: Statist Med
– volume: 43
  start-page: 49
  issue: 1
  year: 1994
  end-page: 73
  article-title: Informative drop‐out in longitudinal data analysis
  publication-title: J Royal Stat Soc C (Appl Stat)
– volume: 83
  start-page: 251
  issue: 2
  year: 1996
  end-page: 266
  article-title: Approximate Bayes factors and accounting for model uncertainty in generalised linear models
  publication-title: Biometrika
– year: 2018
  article-title: Multivariate longitudinal data analysis with censored and intermittent missing responses
  publication-title: Statist Med
– volume: 82
  start-page: 795
  issue: 3
  year: 2017
  end-page: 819
  article-title: Modeling omitted and not‐reached items in IRT models
  publication-title: Psychometrika
– volume: 18
  start-page: 1
  issue: 1
  year: 2009
  end-page: 43
  article-title: Missing data methods in longitudinal studies: a review
  publication-title: Test
– volume: 60
  start-page: 295
  issue: 2
  year: 2004
  end-page: 305
  article-title: Latent pattern mixture models for informative intermittent missing data in longitudinal studies
  publication-title: Biometrics
– volume: 61
  start-page: 173
  issue: 1
  year: 1999
  end-page: 190
  article-title: Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable
  publication-title: J Royal Stat Soc B (Stat Methodol)
– ident: e_1_2_10_15_1
  doi: 10.1090/S0002-9939-00-05513-1
– ident: e_1_2_10_22_1
  doi: 10.1007/s10985-010-9162-0
– ident: e_1_2_10_23_1
  doi: 10.1007/978-1-4612-1276-8
– ident: e_1_2_10_19_1
  doi: 10.1198/016214508000000779
– ident: e_1_2_10_24_1
  doi: 10.1111/1467-9868.00170
– ident: e_1_2_10_4_1
  doi: 10.1002/sim.7692
– ident: e_1_2_10_7_1
  doi: 10.1080/10618600.2013.826583
– ident: e_1_2_10_18_1
  doi: 10.1093/biomet/83.2.251
– ident: e_1_2_10_13_1
  doi: 10.2307/2986113
– year: 2017
  ident: e_1_2_10_12_1
  article-title: Bayesian modeling and inference for nonignorably missing longitudinal binary response data with applications to HIV prevention trials
  publication-title: Statistica Sinica
– ident: e_1_2_10_14_1
  doi: 10.1007/s10985-013-9254-8
– ident: e_1_2_10_9_1
  doi: 10.1111/j.0006-341X.2004.00173.x
– ident: e_1_2_10_20_1
  doi: 10.1080/15598608.2017.1299058
– ident: e_1_2_10_25_1
  doi: 10.1148/radiology.143.1.7063747
– ident: e_1_2_10_11_1
  doi: 10.1080/03610918.2014.889154
– ident: e_1_2_10_21_1
  doi: 10.1002/sim.6269
– ident: e_1_2_10_26_1
  doi: 10.1080/10618600.2015.1117472
– ident: e_1_2_10_3_1
  doi: 10.1007/s11336-016-9544-7
– ident: e_1_2_10_10_1
  doi: 10.1002/sim.5812
– volume: 6
  start-page: 233
  year: 1986
  ident: e_1_2_10_16_1
  article-title: On assessing prior distributions and Bayesian regression analysis with g‐prior distributions
  publication-title: Bayesian Inference Decis Tech
– ident: e_1_2_10_5_1
  doi: 10.1097/QAI.0000000000000348
– volume-title: The Theory of Probability
  year: 1998
  ident: e_1_2_10_17_1
  doi: 10.1093/oso/9780198503682.001.0001
– ident: e_1_2_10_2_1
  doi: 10.1007/s11749-009-0138-x
– ident: e_1_2_10_8_1
  doi: 10.1080/01621459.2014.969424
– ident: e_1_2_10_6_1
  doi: 10.1111/j.1541-0420.2005.00377.x
SSID ssj0011527
Score 2.315999
Snippet In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5565
SubjectTerms AUC
Bayes Theorem
Bayesian analysis
Biostatistics
Clinical trials
Computer Simulation
Data Interpretation, Statistical
Disease prevention
Female
G‐prior
HIV
HIV Infections - prevention & control
HIV Infections - psychology
HIV Infections - transmission
Human immunodeficiency virus
Humans
Jeffreys prior
Likelihood Functions
Longitudinal Studies
LPML
Male
maximally dispersed normal prior
Medical statistics
Models, Statistical
Patient Dropouts - statistics & numerical data
Poisson Distribution
Randomized Controlled Trials as Topic - statistics & numerical data
Regression Analysis
Sexual Behavior
zero‐inflated Poisson
Title A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8379
https://www.ncbi.nlm.nih.gov/pubmed/31691322
https://www.proquest.com/docview/2321221433
https://www.proquest.com/docview/2312549950
https://pubmed.ncbi.nlm.nih.gov/PMC6891130
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQD6gS4mP5WihokBBcmm1iJ45zLIhqi7QcgKJKHCLb8aoLbVKxyYH-En4uM3YSuhQkxGkPGWeTeDx-tmfeY-x5qjKpHK8ipTMVpYVzkbE6i6zIsb-5MzKhauTFOzk_St8eZ8d9ViXVwgR-iHHDjUaGj9c0wLVZ7_0iDV2vzma4uqLaPUrVIjz0fmSOSga1VjqhlHmSDbyzMd8bGm7ORFfg5dUsycvo1U8_B7fY5-HBQ9bJ11nXmpm9-I3T8f_e7Da72aNS2A9udIddc_WEXV_05-4TdiPs7kEoWpqwbcKogeL5LvuxD4jN4ZX-7qgiE740q7oFL7EDCInhtCFNpK4i_S3w2hRAealAW8BwhsEILhx-oV0g6griF0AYj-3RI3BapUi8C7quoCI9h64NzS6fu0PbwPzwE5z3bFRNDV6LZH2PHR28-fh6HvWCD5ElEfaoklynVIqrilS6wsbSCOtwgVhkRWyVjAtdOKmX6VI6w_PMIngUhRMqTazSGLvvs626qd1DBkWsRe5yxy1iFJfEJjfKyKW2RlbaLPmUvRw6v7Q9GzqJcpyWgceZl9gLJfXClD0bLc8DA8gfbHYG_yn7GLAuEasmnCMeFXiL8TJ-PTqS0bVrOrJJ_Ao9i6fsQXC38U8E8RhhvJ2yfMMRRwNiBt-8Uq9OPEO4VDiHCbznC-9nf33u8sPhgn4f_avhY7aNiNELaIh4h2213zr3BFFZa5768fcTToM4dA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkElxGOBslBgkBBcmm3iJE4iTuVR7UK3B2irHpAi2_GKLW1SscmB_hJ-LjN50aUgIU45ZJyHPR5_fsz3ATwP4lDGVmROrMLYCRJrHW1U6Bg_ovYWVkuPs5Gne3J8ELw_Co9W4FWXC9PwQ_QLbtwz6njNHZwXpLd-sYYu5qcjml4lV-AqC3qzfMHbjz13lNfptfIepYy8sGOedcVWV3J5LLoEMC-fk7yIX-sBaOcWfO4-vTl38nVUlXpkzn9jdfzPf7sNN1tgituNJ92BFZsP4Nq03XofwI1mgQ-bvKUBrDFMbVie78KPbSR4jq_Vd8tJmXhczPMSa5UdJFSMJwXLIlUZS3BhLU-BfDQVeRUYTyke4bmlKtpEZq9gigFC8lSenIJGVg7Gm6jyDDOWdKjKptjFrXcsCxxPDvGsJaQqcqzlSBb34GDn3f6bsdNqPjiGddidTAoVcDZunATSJsaV2jeW5ohJmLgmlm6iEivVLJhJq0UUGsKPfmL9OPBMrCh834fVvMjtA8DEVX5kIysMwRTruTrSsZYzZbTMlJ6JIbzsWj81LSE663KcpA2Vs0ipFVJuhSE86y3PGhKQP9hsdA6UtmFgkRJc9YQgSOrTI_rbVHu8K6NyW1Rs49WT9NAdwnrjb_1LfKYyopA7hGjJE3sDJgdfvpPPv9Qk4TKmYcynZ76oHe2v351-mkz5-vBfDZ_C9fH-dDfdnex9eARrBCBrPQ3f3YDV8ltlHxNIK_WTujP-BJlaPI4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSFUlxLFcCwUGCcFLs83pxI_lWO0CWyGgqBIPke046pY2WbHZB_pL-LnM2EnoUpAQT3nIOIc9Hn8-5vsYexpnCc9MWHiZTDIvFsZ4SsvE01GK7R0axQPKRp7t88lB_OYwOWxPVVIujOOH6BfcqGfYeE0dfFGUu79IQ5fz0xHOrsRldiXm2FcIEH3oqaOCTq6Vtih5GiQd8awf7nYl14eiC_jy4jHJ8_DVjj_j6-xL9-Xu2MnX0apRI332G6nj__3aDXathaWw5_zoJrtkqgHbnLUb7wN21S3vgctaGrAtAqmO4_kW-7EHCM7hhfxuKCUTjut51YDV2AHExHBSkyjSqiABLrDiFEAHU4HWgOEUoxGcGayhHSDuCiIYQByP5dElcFylULwDsiqgIEGHVeOKnd94h6aGyfQzLFo6qroCK0ayvM0Oxq8_vZx4reKDp0mF3St4KGPKxc1EzI3QPleRNjhDFInwdcZ9IYXhsoxLblSYJhrRYyRMlMWBziQG7ztso6orc4-B8GWUmtSEGkGKCXyVqkzxUmrFC6nKcMied42f65YOnVQ5TnJH5Bzm2Ao5tcKQPektF44C5A82253_5G0QWOYIVoMwREAa4SP621h7tCcjK1OvyCawU_TEH7K7zt36l0REZIQBd8jSNUfsDYgafP1ONT-yFOE8w0Eswmc-s3721-_OP05ndL3_r4aP2eb7V-P83XT_7QO2hejRimlE_jbbaL6tzENEaI16ZLviT-ZGO0Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+Bayesian+joint+model+for+longitudinal+count+data+with+many+zeros%2C+intermittent+missingness%2C+and+dropout+with+applications+to+HIV+prevention+trials&rft.jtitle=Statistics+in+medicine&rft.au=Wu%2C+Jing&rft.au=Chen%2C+Ming-Hui&rft.au=Schifano%2C+Elizabeth+D&rft.au=Ibrahim%2C+Joseph+G&rft.date=2019-12-30&rft.eissn=1097-0258&rft.volume=38&rft.issue=30&rft.spage=5565&rft_id=info:doi/10.1002%2Fsim.8379&rft_id=info%3Apmid%2F31691322&rft.externalDocID=31691322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon