A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials
In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of ze...
Saved in:
Published in | Statistics in medicine Vol. 38; no. 30; pp. 5565 - 5586 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
30.12.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.8379 |
Cover
Loading…
Abstract | In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero‐inflated Poisson mixed‐effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero‐inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g‐prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial. |
---|---|
AbstractList | In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero-inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial. In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood (LPML) and a concordance based area under the curve (AUC) criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods, and further illustrate the methods using real data from an HIV prevention clinical trial. In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero-inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial.In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more visits (intermittent missingness). It is also routinely encountered in HIV prevention clinical trials that there is a large proportion of zeros in count response data. In this paper, a sequential multinomial model is adopted for dropout and subsequently a conditional model is constructed for intermittent missingness. The new model captures the complex structure of missingness and incorporates dropout and intermittent missingness simultaneously. The model also allows us to easily compute the predictive probabilities of different missing data patterns. A zero-inflated Poisson mixed-effects regression model is assumed for the longitudinal count response data. We also propose an approach to assess the overall treatment effects under the zero-inflated Poisson model. We further show that the joint posterior distribution is improper if uniform priors are specified for the regression coefficients under the proposed model. Variations of the g-prior, Jeffreys prior, and maximally dispersed normal prior are thus established as remedies for the improper posterior distribution. An efficient Gibbs sampling algorithm is developed using a hierarchical centering technique. A modified logarithm of the pseudomarginal likelihood and a concordance based area under the curve criterion are used to compare the models under different missing data mechanisms. We then conduct an extensive simulation study to investigate the empirical performance of the proposed methods and further illustrate the methods using real data from an HIV prevention clinical trial. |
Author | Wu, Jing Schifano, Elizabeth D. Ibrahim, Joseph G. Fisher, Jeffrey D. Chen, Ming‐Hui |
AuthorAffiliation | 2 Department of Statistics, University of Connecticut, Storrs, CT 06269, USA 1 Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA 4 Department of Psychology and Institute for Collaboration on Health, Intervention, and Policy (InCHIP), University of Connecticut, Storrs, CT 06269, USA 3 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
AuthorAffiliation_xml | – name: 2 Department of Statistics, University of Connecticut, Storrs, CT 06269, USA – name: 1 Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI 02881, USA – name: 4 Department of Psychology and Institute for Collaboration on Health, Intervention, and Policy (InCHIP), University of Connecticut, Storrs, CT 06269, USA – name: 3 Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0001-7808-6981 surname: Wu fullname: Wu, Jing organization: University of Rhode Island – sequence: 2 givenname: Ming‐Hui orcidid: 0000-0003-1935-2447 surname: Chen fullname: Chen, Ming‐Hui email: ming-hui.chen@uconn.edu organization: University of Connecticut – sequence: 3 givenname: Elizabeth D. orcidid: 0000-0002-9793-332X surname: Schifano fullname: Schifano, Elizabeth D. organization: University of Connecticut – sequence: 4 givenname: Joseph G. orcidid: 0000-0003-2428-6552 surname: Ibrahim fullname: Ibrahim, Joseph G. organization: University of North Carolina at Chapel Hill – sequence: 5 givenname: Jeffrey D. surname: Fisher fullname: Fisher, Jeffrey D. organization: University of Connecticut |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31691322$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kstuFDEQRS0URCYBiS9AltiwoAc_-uUNUoiAjBTEgsfW8rirJx657cZ2ZzR8CZ-LO5OEh2BVkuvcq1vlOkFHzjtA6CklS0oIexXNsGx5Ix6gBSWiKQir2iO0IKxpirqh1TE6iXFLCKUVax6hY05rQTljC_TjDDvY4TdqD9Eoh7feuIQH34HFvQ_YercxaeqMUxZrP-Vmp5LCO5Ou8KDcHn-H4ONLnGUQBpMSzHoTo3EbBzF3lOtwF_zop3SQqXG0RqtkvIs4eXyx-orHANdZmZ9wCkbZ-Bg97HOBJ7f1FH159_bz-UVx-fH96vzsstAlb0XR1UyVJalFK8oahCb1mmtgpRCVILqtiVACatWXfQ1r1lS6YowL4G1JdatoxU_R64PvOK0H6HQOEZSVYzCDCnvplZF_dpy5kht_LetWUMpJNnhxaxD8twliknl6DdYqB36KknHKqjnPjD7_C936KeTNzhSjjNGS80w9-z3RfZS7T8vA8gDovPkYoJfapJt15oDGSkrkfBUyX4Wcr-JXxHvBnec_0OKA7oyF_X85-Wn14Yb_CS-myJ0 |
CitedBy_id | crossref_primary_10_29220_CSAM_2023_30_3_291 crossref_primary_10_1080_02664763_2021_1897971 crossref_primary_10_1177_09622802231154325 |
Cites_doi | 10.1090/S0002-9939-00-05513-1 10.1007/s10985-010-9162-0 10.1007/978-1-4612-1276-8 10.1198/016214508000000779 10.1111/1467-9868.00170 10.1002/sim.7692 10.1080/10618600.2013.826583 10.1093/biomet/83.2.251 10.2307/2986113 10.1007/s10985-013-9254-8 10.1111/j.0006-341X.2004.00173.x 10.1080/15598608.2017.1299058 10.1148/radiology.143.1.7063747 10.1080/03610918.2014.889154 10.1002/sim.6269 10.1080/10618600.2015.1117472 10.1007/s11336-016-9544-7 10.1002/sim.5812 10.1097/QAI.0000000000000348 10.1093/oso/9780198503682.001.0001 10.1007/s11749-009-0138-x 10.1080/01621459.2014.969424 10.1111/j.1541-0420.2005.00377.x |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.8379 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 5586 |
ExternalDocumentID | PMC6891130 31691322 10_1002_sim_8379 SIM8379 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIH funderid: 5R01MH077524; GM70335; P01CA142538 – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NIGMS NIH HHS grantid: R01 GM070335 – fundername: NIMH NIH HHS grantid: R01 MH077524 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 5PM EJD |
ID | FETCH-LOGICAL-c4389-d62a440698946e9c06b3ce2499590c8609a9e6af4f6eb275c52239e3841c8a153 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 13:48:34 EDT 2025 Thu Jul 10 18:00:48 EDT 2025 Sat Jul 19 04:42:31 EDT 2025 Wed Feb 19 02:29:55 EST 2025 Tue Jul 01 03:28:15 EDT 2025 Thu Apr 24 22:53:13 EDT 2025 Wed Jan 22 16:36:34 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 30 |
Keywords | G-prior LPML maximally dispersed normal prior zero-inflated Poisson Jeffreys prior AUC |
Language | English |
License | 2019 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4389-d62a440698946e9c06b3ce2499590c8609a9e6af4f6eb275c52239e3841c8a153 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7808-6981 0000-0003-1935-2447 0000-0003-2428-6552 0000-0002-9793-332X |
OpenAccessLink | https://digitalcommons.uri.edu/cs_facpubs/117 |
PMID | 31691322 |
PQID | 2321221433 |
PQPubID | 48361 |
PageCount | 23 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6891130 proquest_miscellaneous_2312549950 proquest_journals_2321221433 pubmed_primary_31691322 crossref_citationtrail_10_1002_sim_8379 crossref_primary_10_1002_sim_8379 wiley_primary_10_1002_sim_8379_SIM8379 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 December 2019 |
PublicationDateYYYYMMDD | 2019-12-30 |
PublicationDate_xml | – month: 12 year: 2019 text: 30 December 2019 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 82 2004; 60 2017; 26 1998 1982; 143 2008; 103 2005; 61 1999; 61 2011; 17 2001; 129 2014; 67 2014; 23 1994; 43 2014; 20 2013; 32 2000 2015; 110 1986; 6 2017; 12 1996; 83 2018 2017 2014; 33 2009; 18 2016; 45 e_1_2_10_23_1 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 Zellner A (e_1_2_10_16_1) 1986; 6 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 Wu J (e_1_2_10_12_1) 2017 Jeffreys H (e_1_2_10_17_1) 1998 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 67 start-page: 499 issue: 5 year: 2014 end-page: 507 article-title: HIV prevention counseling intervention delivered during routine clinical care reduces HIV risk behavior in HIV‐infected South Africans receiving antiretroviral therapy: the Izindlela Zokuphila/options for health randomized trial publication-title: JAIDS J Acquir Immune Defic Syndr – volume: 12 start-page: 23 issue: 1 year: 2017 end-page: 41 article-title: Assessing covariate effects using Jeffreys‐type prior in the Cox model in the presence of a monotone partial likelihood publication-title: J Stat Theory Pract – volume: 103 start-page: 1659 issue: 484 year: 2008 end-page: 1664 article-title: Properties and implementation of Jeffreys's prior in binomial regression models publication-title: J Am Stat Assoc – volume: 32 start-page: 4180 issue: 24 year: 2013 end-page: 4195 article-title: Bayesian modeling and inference for clinical trials with partial retrieved data following dropout publication-title: Statist Med – volume: 129 start-page: 293 issue: 1 year: 2001 end-page: 302 article-title: Propriety of posterior distribution for dichotomous quantal response models publication-title: Proc Am Math Soc – volume: 143 start-page: 29 issue: 1 year: 1982 end-page: 36 article-title: The meaning and use of the area under a receiver operating characteristic (ROC) curve publication-title: Radiology – year: 2017 article-title: Bayesian modeling and inference for nonignorably missing longitudinal binary response data with applications to HIV prevention trials publication-title: Statistica Sinica – year: 2000 – volume: 110 start-page: 45 issue: 509 year: 2015 end-page: 55 article-title: A flexible Bayesian approach to monotone missing data in longitudinal studies with nonignorable missingness with application to an acute schizophrenia clinical trial publication-title: J Am Stat Assoc – volume: 20 start-page: 76 issue: 1 year: 2014 end-page: 105 article-title: Bayesian gamma frailty models for survival data with semi‐competing risks and treatment switching publication-title: Lifetime Data Anal – volume: 45 start-page: 2018 issue: 6 year: 2016 end-page: 2031 article-title: Modeling longitudinal obesity data with intermittent missingness using a new latent variable model publication-title: Commun Stat Simul Comput – volume: 23 start-page: 877 issue: 3 year: 2014 end-page: 892 article-title: Multiple imputation by ordered monotone blocks with application to the anthrax vaccine research program publication-title: J Comput Graph Stat – volume: 6 start-page: 233 year: 1986 end-page: 243 article-title: On assessing prior distributions and Bayesian regression analysis with g‐prior distributions publication-title: Bayesian Inference Decis Tech – volume: 17 start-page: 3 issue: 1 year: 2011 end-page: 28 article-title: Predictive comparison of joint longitudinal‐survival modeling: a case study illustrating competing approaches publication-title: Lifetime Data Anal – volume: 61 start-page: 962 issue: 4 year: 2005 end-page: 973 article-title: Doubly robust estimation in missing data and causal inference models publication-title: Biometrics – volume: 26 start-page: 121 issue: 1 year: 2017 end-page: 133 article-title: Bayesian model assessment in joint modeling of longitudinal and survival data with applications to cancer clinical trials publication-title: J Comput Graph Stat – year: 1998 – volume: 33 start-page: 4715 issue: 27 year: 2014 end-page: 4733 article-title: Assessing model fit in joint models of longitudinal and survival data with applications to cancer clinical trials publication-title: Statist Med – volume: 43 start-page: 49 issue: 1 year: 1994 end-page: 73 article-title: Informative drop‐out in longitudinal data analysis publication-title: J Royal Stat Soc C (Appl Stat) – volume: 83 start-page: 251 issue: 2 year: 1996 end-page: 266 article-title: Approximate Bayes factors and accounting for model uncertainty in generalised linear models publication-title: Biometrika – year: 2018 article-title: Multivariate longitudinal data analysis with censored and intermittent missing responses publication-title: Statist Med – volume: 82 start-page: 795 issue: 3 year: 2017 end-page: 819 article-title: Modeling omitted and not‐reached items in IRT models publication-title: Psychometrika – volume: 18 start-page: 1 issue: 1 year: 2009 end-page: 43 article-title: Missing data methods in longitudinal studies: a review publication-title: Test – volume: 60 start-page: 295 issue: 2 year: 2004 end-page: 305 article-title: Latent pattern mixture models for informative intermittent missing data in longitudinal studies publication-title: Biometrics – volume: 61 start-page: 173 issue: 1 year: 1999 end-page: 190 article-title: Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable publication-title: J Royal Stat Soc B (Stat Methodol) – ident: e_1_2_10_15_1 doi: 10.1090/S0002-9939-00-05513-1 – ident: e_1_2_10_22_1 doi: 10.1007/s10985-010-9162-0 – ident: e_1_2_10_23_1 doi: 10.1007/978-1-4612-1276-8 – ident: e_1_2_10_19_1 doi: 10.1198/016214508000000779 – ident: e_1_2_10_24_1 doi: 10.1111/1467-9868.00170 – ident: e_1_2_10_4_1 doi: 10.1002/sim.7692 – ident: e_1_2_10_7_1 doi: 10.1080/10618600.2013.826583 – ident: e_1_2_10_18_1 doi: 10.1093/biomet/83.2.251 – ident: e_1_2_10_13_1 doi: 10.2307/2986113 – year: 2017 ident: e_1_2_10_12_1 article-title: Bayesian modeling and inference for nonignorably missing longitudinal binary response data with applications to HIV prevention trials publication-title: Statistica Sinica – ident: e_1_2_10_14_1 doi: 10.1007/s10985-013-9254-8 – ident: e_1_2_10_9_1 doi: 10.1111/j.0006-341X.2004.00173.x – ident: e_1_2_10_20_1 doi: 10.1080/15598608.2017.1299058 – ident: e_1_2_10_25_1 doi: 10.1148/radiology.143.1.7063747 – ident: e_1_2_10_11_1 doi: 10.1080/03610918.2014.889154 – ident: e_1_2_10_21_1 doi: 10.1002/sim.6269 – ident: e_1_2_10_26_1 doi: 10.1080/10618600.2015.1117472 – ident: e_1_2_10_3_1 doi: 10.1007/s11336-016-9544-7 – ident: e_1_2_10_10_1 doi: 10.1002/sim.5812 – volume: 6 start-page: 233 year: 1986 ident: e_1_2_10_16_1 article-title: On assessing prior distributions and Bayesian regression analysis with g‐prior distributions publication-title: Bayesian Inference Decis Tech – ident: e_1_2_10_5_1 doi: 10.1097/QAI.0000000000000348 – volume-title: The Theory of Probability year: 1998 ident: e_1_2_10_17_1 doi: 10.1093/oso/9780198503682.001.0001 – ident: e_1_2_10_2_1 doi: 10.1007/s11749-009-0138-x – ident: e_1_2_10_8_1 doi: 10.1080/01621459.2014.969424 – ident: e_1_2_10_6_1 doi: 10.1111/j.1541-0420.2005.00377.x |
SSID | ssj0011527 |
Score | 2.315999 |
Snippet | In longitudinal clinical trials, it is common that subjects may permanently withdraw from the study (dropout), or return to the study after missing one or more... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5565 |
SubjectTerms | AUC Bayes Theorem Bayesian analysis Biostatistics Clinical trials Computer Simulation Data Interpretation, Statistical Disease prevention Female G‐prior HIV HIV Infections - prevention & control HIV Infections - psychology HIV Infections - transmission Human immunodeficiency virus Humans Jeffreys prior Likelihood Functions Longitudinal Studies LPML Male maximally dispersed normal prior Medical statistics Models, Statistical Patient Dropouts - statistics & numerical data Poisson Distribution Randomized Controlled Trials as Topic - statistics & numerical data Regression Analysis Sexual Behavior zero‐inflated Poisson |
Title | A new Bayesian joint model for longitudinal count data with many zeros, intermittent missingness, and dropout with applications to HIV prevention trials |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8379 https://www.ncbi.nlm.nih.gov/pubmed/31691322 https://www.proquest.com/docview/2321221433 https://www.proquest.com/docview/2312549950 https://pubmed.ncbi.nlm.nih.gov/PMC6891130 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELVQD6gS4mP5WihokBBcmm1iJ45zLIhqi7QcgKJKHCLb8aoLbVKxyYH-En4uM3YSuhQkxGkPGWeTeDx-tmfeY-x5qjKpHK8ipTMVpYVzkbE6i6zIsb-5MzKhauTFOzk_St8eZ8d9ViXVwgR-iHHDjUaGj9c0wLVZ7_0iDV2vzma4uqLaPUrVIjz0fmSOSga1VjqhlHmSDbyzMd8bGm7ORFfg5dUsycvo1U8_B7fY5-HBQ9bJ11nXmpm9-I3T8f_e7Da72aNS2A9udIddc_WEXV_05-4TdiPs7kEoWpqwbcKogeL5LvuxD4jN4ZX-7qgiE740q7oFL7EDCInhtCFNpK4i_S3w2hRAealAW8BwhsEILhx-oV0g6griF0AYj-3RI3BapUi8C7quoCI9h64NzS6fu0PbwPzwE5z3bFRNDV6LZH2PHR28-fh6HvWCD5ElEfaoklynVIqrilS6wsbSCOtwgVhkRWyVjAtdOKmX6VI6w_PMIngUhRMqTazSGLvvs626qd1DBkWsRe5yxy1iFJfEJjfKyKW2RlbaLPmUvRw6v7Q9GzqJcpyWgceZl9gLJfXClD0bLc8DA8gfbHYG_yn7GLAuEasmnCMeFXiL8TJ-PTqS0bVrOrJJ_Ao9i6fsQXC38U8E8RhhvJ2yfMMRRwNiBt-8Uq9OPEO4VDiHCbznC-9nf33u8sPhgn4f_avhY7aNiNELaIh4h2213zr3BFFZa5768fcTToM4dA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkElxGOBslBgkBBcmm3iJE4iTuVR7UK3B2irHpAi2_GKLW1SscmB_hJ-LjN50aUgIU45ZJyHPR5_fsz3ATwP4lDGVmROrMLYCRJrHW1U6Bg_ovYWVkuPs5Gne3J8ELw_Co9W4FWXC9PwQ_QLbtwz6njNHZwXpLd-sYYu5qcjml4lV-AqC3qzfMHbjz13lNfptfIepYy8sGOedcVWV3J5LLoEMC-fk7yIX-sBaOcWfO4-vTl38nVUlXpkzn9jdfzPf7sNN1tgituNJ92BFZsP4Nq03XofwI1mgQ-bvKUBrDFMbVie78KPbSR4jq_Vd8tJmXhczPMSa5UdJFSMJwXLIlUZS3BhLU-BfDQVeRUYTyke4bmlKtpEZq9gigFC8lSenIJGVg7Gm6jyDDOWdKjKptjFrXcsCxxPDvGsJaQqcqzlSBb34GDn3f6bsdNqPjiGddidTAoVcDZunATSJsaV2jeW5ohJmLgmlm6iEivVLJhJq0UUGsKPfmL9OPBMrCh834fVvMjtA8DEVX5kIysMwRTruTrSsZYzZbTMlJ6JIbzsWj81LSE663KcpA2Vs0ipFVJuhSE86y3PGhKQP9hsdA6UtmFgkRJc9YQgSOrTI_rbVHu8K6NyW1Rs49WT9NAdwnrjb_1LfKYyopA7hGjJE3sDJgdfvpPPv9Qk4TKmYcynZ76oHe2v351-mkz5-vBfDZ_C9fH-dDfdnex9eARrBCBrPQ3f3YDV8ltlHxNIK_WTujP-BJlaPI4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwELagSFUlxLFcCwUGCcFLs83pxI_lWO0CWyGgqBIPke046pY2WbHZB_pL-LnM2EnoUpAQT3nIOIc9Hn8-5vsYexpnCc9MWHiZTDIvFsZ4SsvE01GK7R0axQPKRp7t88lB_OYwOWxPVVIujOOH6BfcqGfYeE0dfFGUu79IQ5fz0xHOrsRldiXm2FcIEH3oqaOCTq6Vtih5GiQd8awf7nYl14eiC_jy4jHJ8_DVjj_j6-xL9-Xu2MnX0apRI332G6nj__3aDXathaWw5_zoJrtkqgHbnLUb7wN21S3vgctaGrAtAqmO4_kW-7EHCM7hhfxuKCUTjut51YDV2AHExHBSkyjSqiABLrDiFEAHU4HWgOEUoxGcGayhHSDuCiIYQByP5dElcFylULwDsiqgIEGHVeOKnd94h6aGyfQzLFo6qroCK0ayvM0Oxq8_vZx4reKDp0mF3St4KGPKxc1EzI3QPleRNjhDFInwdcZ9IYXhsoxLblSYJhrRYyRMlMWBziQG7ztso6orc4-B8GWUmtSEGkGKCXyVqkzxUmrFC6nKcMied42f65YOnVQ5TnJH5Bzm2Ao5tcKQPektF44C5A82253_5G0QWOYIVoMwREAa4SP621h7tCcjK1OvyCawU_TEH7K7zt36l0REZIQBd8jSNUfsDYgafP1ONT-yFOE8w0Eswmc-s3721-_OP05ndL3_r4aP2eb7V-P83XT_7QO2hejRimlE_jbbaL6tzENEaI16ZLviT-ZGO0Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+Bayesian+joint+model+for+longitudinal+count+data+with+many+zeros%2C+intermittent+missingness%2C+and+dropout+with+applications+to+HIV+prevention+trials&rft.jtitle=Statistics+in+medicine&rft.au=Wu%2C+Jing&rft.au=Chen%2C+Ming-Hui&rft.au=Schifano%2C+Elizabeth+D&rft.au=Ibrahim%2C+Joseph+G&rft.date=2019-12-30&rft.eissn=1097-0258&rft.volume=38&rft.issue=30&rft.spage=5565&rft_id=info:doi/10.1002%2Fsim.8379&rft_id=info%3Apmid%2F31691322&rft.externalDocID=31691322 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |