Functional Fluids on Surfaces
Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triang...
Saved in:
Published in | Computer graphics forum Vol. 33; no. 5; pp. 237 - 246 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Blackwell Publishing Ltd
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used Eulerian description of the fluid using its time‐varying velocity field, we propose to model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space continuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface using linear operators, which can be discretized efficiently using the recently introduced functional approach to vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically simple approach, which is efficient, time‐reversible and conserves vorticity by construction. We further demonstrate that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex shedding from boundaries. |
---|---|
AbstractList | Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used Eulerian description of the fluid using its time‐varying velocity field, we propose to model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space continuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface using linear operators, which can be discretized efficiently using the recently introduced functional approach to vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically simple approach, which is efficient, time‐reversible and conserves vorticity by construction. We further demonstrate that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex shedding from boundaries. Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used Eulerian description of the fluid using its time-varying velocity field, we propose to model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space continuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface using linear operators, which can be discretized efficiently using the recently introduced functional approach to vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically simple approach, which is efficient, time-reversible and conserves vorticity by construction. We further demonstrate that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex shedding from boundaries. [PUBLICATION ABSTRACT] |
Author | Ovsjanikov, Maks Wardetzky, Max Weißmann, Steffen Ben-Chen, Mirela Azencot, Omri |
Author_xml | – sequence: 1 givenname: Omri surname: Azencot fullname: Azencot, Omri organization: Technion - Israel Institute of Technology – sequence: 2 givenname: Steffen surname: Weißmann fullname: Weißmann, Steffen organization: TU Berlin – sequence: 3 givenname: Maks surname: Ovsjanikov fullname: Ovsjanikov, Maks organization: LIX, École Polytechnique – sequence: 4 givenname: Max surname: Wardetzky fullname: Wardetzky, Max organization: University of Göttingen – sequence: 5 givenname: Mirela surname: Ben-Chen fullname: Ben-Chen, Mirela organization: Technion - Israel Institute of Technology |
BookMark | eNp9kMFLwzAUxoNMcJse_AOEgRc9dEuapEmOWuwU5hRUPIY0TaSza2fSovvvzZx6GOg7vBcev-974RuAXt3UBoBjBMco1ES_2DGKCRF7oI9IwiKeUNEDfYjCm0FKD8DA-wWEkLCE9sFJ1tW6LZtaVaOs6srCj5p69NA5q7Txh2Dfqsqbo-85BE_Z1WN6Hc3upjfpxSzSBHMR5RTZ3OLExgkPm1gVyhQGx0iHnhtLchHnMYoVMtxwXFCNjGDCwhxhCznHQ3C29V255q0zvpXL0mtTVao2TeclYozDcAomAT3dQRdN58L3A0UpJRAxsTE831LaNd47Y-XKlUvl1hJBuQlKhqDkV1CBneywumzVJpPWqbL6T_FeVmb9t7VMp9mPItoqSt-aj1-Fcq8yYZhR-TyfSkHvb-fkMpUz_AnRKYhx |
CitedBy_id | crossref_primary_10_1145_3658165 crossref_primary_10_1145_2816795_2818130 crossref_primary_10_1145_3687970 crossref_primary_10_1111_cgf_14360 crossref_primary_10_1002_nme_6317 crossref_primary_10_1111_cgf_12708 crossref_primary_10_1109_TPAMI_2017_2730205 crossref_primary_10_1111_cgf_14098 crossref_primary_10_1145_3152156 crossref_primary_10_1111_cgf_13495 crossref_primary_10_1002_gamm_201410009 crossref_primary_10_1109_TVCG_2024_3360521 crossref_primary_10_1007_s41095_023_0368_y crossref_primary_10_1111_cgf_13312 crossref_primary_10_1111_cgf_12942 crossref_primary_10_1111_cgf_12864 crossref_primary_10_1111_cgf_13238 crossref_primary_10_1111_cgf_13924 crossref_primary_10_1016_j_cad_2016_05_002 crossref_primary_10_1145_3320285 crossref_primary_10_1109_TVCG_2017_2789203 |
Cites_doi | 10.1002/cav.19 10.1007/s00332-013-9182-5 10.1103/PhysRevE.86.056603 10.1063/1.2169443 10.1145/1531326.1531344 10.1145/311535.311548 10.1007/978-3-662-05105-4_6 10.1111/cgf.12174 10.1007/11567646_26 10.1016/j.jcp.2012.09.005 10.1007/BF02352494 10.1109/TVCG.2010.121 10.1103/PhysRevA.45.2328 10.1007/978-1-4419-8728-0 10.1145/2077341.2077351 10.1007/s002200050642 10.4310/CIS.2009.v9.n2.a3 10.1145/1073368.1073406 10.1145/2516971.2516977 10.1145/1073368.1073404 10.1145/1189762.1189766 10.1007/b97593 10.1088/0951-7715/12/6/314 10.1016/j.physd.2010.10.012 10.1145/1778765.1778852 10.1137/100788860 10.1007/s11432-013-4806-9 10.1145/1618452.1618467 10.1017/S0022112004002113 10.1201/b10635 10.1111/j.1467-8659.2012.03071.x |
ContentType | Journal Article |
Copyright | 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. 2014 The Eurographics Association and John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. – notice: 2014 The Eurographics Association and John Wiley & Sons Ltd. |
DBID | BSCLL AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1111/cgf.12449 |
DatabaseName | Istex CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Computer and Information Systems Abstracts Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1467-8659 |
EndPage | 246 |
ExternalDocumentID | 3410909681 10_1111_cgf_12449 CGF12449 ark_67375_WNG_95PMN4BC_L |
Genre | article Feature |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 15B 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8VB 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABDPE ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AEMOZ AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EAD EAP EBA EBO EBR EBS EBU EDO EJD EMK EST ESX F00 F01 F04 F5P FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K1G K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QWB R.K RDJ RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 TN5 TUS UB1 V8K W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WXSBR WYISQ WZISG XG1 ZL0 ZZTAW ~IA ~IF ~WT AAHQN AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ AHQJS ALVPJ AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c4389-b51fbf36f268c432adaede321cde3bef4b92b212a1e8e83d5c1e979f0b13f0883 |
IEDL.DBID | DR2 |
ISSN | 0167-7055 |
IngestDate | Fri Jul 11 11:22:06 EDT 2025 Fri Jul 25 23:46:14 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Tue Jul 01 02:23:04 EDT 2025 Wed Jan 22 16:25:45 EST 2025 Wed Oct 30 09:54:49 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4389-b51fbf36f268c432adaede321cde3bef4b92b212a1e8e83d5c1e979f0b13f0883 |
Notes | istex:0838F1D1938B938EC7D8144EF8163F12AB9AD196 ark:/67375/WNG-95PMN4BC-L Supporting Information ArticleID:CGF12449 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1555401798 |
PQPubID | 30877 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1778043806 proquest_journals_1555401798 crossref_primary_10_1111_cgf_12449 crossref_citationtrail_10_1111_cgf_12449 wiley_primary_10_1111_cgf_12449_CGF12449 istex_primary_ark_67375_WNG_95PMN4BC_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2014 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: August 2014 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Computer graphics forum |
PublicationTitleAlternate | Computer Graphics Forum |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Communications in Mathematical Physics 139, 2 (1991), 217-243. 2, 5 San O., Staples A.E.: A coarse-grid projection method for accelerating incompressible flow computations. Journal of Computational Physics 233 (2013), 480-508. 8 Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 2, 3, 4 Miller J., Weichman P.B., Cross M.C.: Statistical mechanics, Euler's equation, and Jupiter's Red Spot. Phys. Rev. A 45 (Feb 1992), 2328-2359. 1 Zhu J., Liu Y., Chang Y., Wu E.: Animating turbulent water by vortex shedding in pic/flip. Science China Information Sciences 56, 3 (2013), 1-11. 3 Baek S.K.: Vortex interaction on curved surfaces. Phys. Rev. E 86 (Nov 2012), 056603. 1 Mullen P., Crane K., Pavlov D., Tong Y., Desbrun M.: Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3 (2009), 38:1-38:8. 3, 5, 6, 7, 8 Davidson P.A.: Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford, UK New York, 2004. 3 Hegeman K., Ashikhmin M., Wang H., Qin H., Gu X.: GPU-based conformal flow on surfaces. Commun. Inf. Syst. 9, 2 (2009), 197-212. 2 Marsden J.E., Pekarsky S., Shkoller S.: Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12, 6 (1999), 1647-1662. 2, 5 Bridson R.: Fluid Simulation for Computer Graphics. A K Peters, 2008. 1 De Witt T., Lessig C., Fiume E.: Fluid simulation using Laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 10. 2 Crowdy D., Marshall J.: Analytical solutions for rotating vortex arrays involving multiple vortex patches. Journal of Fluid Mechanics 523 (2005), 307-337. 1 Bobenko A.I., Suris Y.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Comm. Math. Phys. 204, 1 (1999), 147-188. 2, 5 Saffman P.G.: Vortex Dynamics. Cambridge Univ Pr, 1992. 2, 3 Chorin A.J.: Vorticity and Turbulence. Springer, 1994. 7 Weissmann S., Pinkall U.: Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1-115:12. 3 Al-Mohy A.H., Higham N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM journal on scientific computing 33, 2 (2011), 488-511. 6, 7 Polthier K., Preuss E.: Identifying vector field singularities using a discrete hodge decomposition. Visualization and Mathematics 3 (2003), 113-134. 5 Shi L., Yu Y.: Inviscid and incompressible fluid simulation on triangle meshes. Computer Animation and Virtual Worlds 15, 3-4 (2004), 173-181. 2 Chorin A.J., Marsden J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, 2000. 3 Crane K., Weischedel C., Wardetzky M.: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32 (2013). 8 Pfaff T., Thuerey N., Selle A., Gross M.: Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (2009), 121:1-121:10. 3 Pavlov D., Mullen P., Tong Y., Kanso E., Marsden J.E., Desbrun M.: Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6 (2011), 443-458. 3, 5, 6, 7 Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. In Comp. Graph. Forum (Proc. SGP) (2013), vol. 32, pp. 73-82. 2, 3, 4, 5, 6, 9 Anderson Jr J.D.: Ludwig Prandtl's boundary layer. Physics Today 58, 12 (December 2005). 3 Auer S., Macdonald C.B., Treib M., Schneider J., Westermann R.: Real-time fluid effects on surfaces using the Closest Point Method. Computer Graphics Forum 31, 6 (2012), 1909-1923. 2 Arnold V.I., Khesin B.A.: Topological Methods in Hydrodynamics. Springer, 1998. 3 Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26, 1 (2007), 4. 2 McKenzie A.: HOLA: a High-Order Lie Advection of discrete differential forms, with applications in fluid dynamics. PhD thesis, California Institute of Technology, 2007. 7, 8 Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. Visualization and Computer Graphics, IEEE Transactions on 17, 7 (2011), 947-955. 7 2012 1998 2008 2011; 33 2007 1994 2005 2004 1992 2011; 17 1991; 139 1999; 204 2012; 31 2009; 28 1999 2001 2013; 32 2000 2010; 29 2013; 56 2004; 15 2005; 523 2013; 233 1999; 12 2003; 3 2009; 9 2013 2011; 240 1992; 45 2012; 86 2007; 26 2003; 22 2005; 58 e_1_2_10_22_2 Saffman P.G. (e_1_2_10_33_2) 1992 e_1_2_10_23_2 e_1_2_10_20_2 e_1_2_10_40_2 McKenzie A. (e_1_2_10_21_2) 2007 Stam J. (e_1_2_10_36_2) 2003 Davidson P.A. (e_1_2_10_14_2) 2004 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_6_2 e_1_2_10_35_2 e_1_2_10_9_2 Neill P. (e_1_2_10_26_2) 2007 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_12_2 Ovsjanikov M. (e_1_2_10_27_2) 2012 e_1_2_10_32_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_30_2 Hegeman K. (e_1_2_10_19_2) 2009; 9 e_1_2_10_28_2 e_1_2_10_29_2 Chorin A.J. (e_1_2_10_11_2) 2000 e_1_2_10_24_2 e_1_2_10_25_2 |
References_xml | – reference: Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 2, 3, 4 – reference: Zhu J., Liu Y., Chang Y., Wu E.: Animating turbulent water by vortex shedding in pic/flip. Science China Information Sciences 56, 3 (2013), 1-11. 3 – reference: Pavlov D., Mullen P., Tong Y., Kanso E., Marsden J.E., Desbrun M.: Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6 (2011), 443-458. 3, 5, 6, 7 – reference: Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Communications in Mathematical Physics 139, 2 (1991), 217-243. 2, 5 – reference: Crowdy D., Marshall J.: Analytical solutions for rotating vortex arrays involving multiple vortex patches. Journal of Fluid Mechanics 523 (2005), 307-337. 1 – reference: McKenzie A.: HOLA: a High-Order Lie Advection of discrete differential forms, with applications in fluid dynamics. PhD thesis, California Institute of Technology, 2007. 7, 8 – reference: Weissmann S., Pinkall U.: Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1-115:12. 3 – reference: Auer S., Macdonald C.B., Treib M., Schneider J., Westermann R.: Real-time fluid effects on surfaces using the Closest Point Method. Computer Graphics Forum 31, 6 (2012), 1909-1923. 2 – reference: Polthier K., Preuss E.: Identifying vector field singularities using a discrete hodge decomposition. Visualization and Mathematics 3 (2003), 113-134. 5 – reference: Marsden J.E., Pekarsky S., Shkoller S.: Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12, 6 (1999), 1647-1662. 2, 5 – reference: Pfaff T., Thuerey N., Selle A., Gross M.: Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (2009), 121:1-121:10. 3 – reference: Anderson Jr J.D.: Ludwig Prandtl's boundary layer. Physics Today 58, 12 (December 2005). 3 – reference: Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. In Comp. Graph. Forum (Proc. SGP) (2013), vol. 32, pp. 73-82. 2, 3, 4, 5, 6, 9 – reference: Arnold V.I., Khesin B.A.: Topological Methods in Hydrodynamics. Springer, 1998. 3 – reference: Chorin A.J.: Vorticity and Turbulence. Springer, 1994. 7 – reference: Miller J., Weichman P.B., Cross M.C.: Statistical mechanics, Euler's equation, and Jupiter's Red Spot. Phys. Rev. A 45 (Feb 1992), 2328-2359. 1 – reference: Al-Mohy A.H., Higham N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM journal on scientific computing 33, 2 (2011), 488-511. 6, 7 – reference: Mullen P., Crane K., Pavlov D., Tong Y., Desbrun M.: Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3 (2009), 38:1-38:8. 3, 5, 6, 7, 8 – reference: De Witt T., Lessig C., Fiume E.: Fluid simulation using Laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 10. 2 – reference: Crane K., Weischedel C., Wardetzky M.: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32 (2013). 8 – reference: Bobenko A.I., Suris Y.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Comm. Math. Phys. 204, 1 (1999), 147-188. 2, 5 – reference: Bridson R.: Fluid Simulation for Computer Graphics. A K Peters, 2008. 1 – reference: Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26, 1 (2007), 4. 2 – reference: Davidson P.A.: Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford, UK New York, 2004. 3 – reference: Hegeman K., Ashikhmin M., Wang H., Qin H., Gu X.: GPU-based conformal flow on surfaces. Commun. Inf. Syst. 9, 2 (2009), 197-212. 2 – reference: Baek S.K.: Vortex interaction on curved surfaces. Phys. Rev. E 86 (Nov 2012), 056603. 1 – reference: Saffman P.G.: Vortex Dynamics. Cambridge Univ Pr, 1992. 2, 3 – reference: Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. Visualization and Computer Graphics, IEEE Transactions on 17, 7 (2011), 947-955. 7 – reference: Shi L., Yu Y.: Inviscid and incompressible fluid simulation on triangle meshes. Computer Animation and Virtual Worlds 15, 3-4 (2004), 173-181. 2 – reference: Chorin A.J., Marsden J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, 2000. 3 – reference: San O., Staples A.E.: A coarse-grid projection method for accelerating incompressible flow computations. Journal of Computational Physics 233 (2013), 480-508. 8 – volume: 9 start-page: 197 issue: 2 year: 2009 end-page: 212 article-title: GPU‐based conformal flow on surfaces publication-title: Commun. Inf. Syst – start-page: 30:1 issue: 4 year: 2012 end-page: 30:11 article-title: Functional maps: a flexible representation of maps between shapes publication-title: ACM Trans. Graph – volume: 56 start-page: 1 issue: 3 year: 2013 end-page: 11 article-title: Animating turbulent water by vortex shedding in pic/flip publication-title: Science China Information Sciences – volume: 139 start-page: 217 issue: 2 year: 1991 end-page: 243 article-title: Discrete versions of some classical integrable systems and factorization of matrix polynomials publication-title: Communications in Mathematical Physics – volume: 3 start-page: 113 year: 2003 end-page: 134 article-title: Identifying vector field singularities using a discrete hodge decomposition publication-title: Visualization and Mathematics – year: 2007 – year: 2000 – volume: 28 start-page: 121:1 issue: 5 year: 2009 end-page: 121:10 article-title: Synthetic turbulence using artificial boundary layers publication-title: ACM Trans. Graph – start-page: 1 year: 2013 end-page: 37 – volume: 22 start-page: 724 year: 2003 end-page: 731 – start-page: 121 year: 1999 end-page: 128 – volume: 204 start-page: 147 issue: 1 year: 1999 end-page: 188 article-title: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top publication-title: Comm. Math. Phys – year: 1992 – year: 1994 – year: 1998 – start-page: 307 year: 2005 end-page: 319 – volume: 33 start-page: 488 issue: 2 year: 2011 end-page: 511 article-title: Computing the action of the matrix exponential, with an application to exponential integrators publication-title: SIAM journal on scientific computing – volume: 523 start-page: 307 year: 2005 end-page: 337 article-title: Analytical solutions for rotating vortex arrays involving multiple vortex patches publication-title: Journal of Fluid Mechanics – volume: 45 start-page: 2328 year: 1992 end-page: 2359 article-title: Statistical mechanics, Euler's equation, and Jupiter's Red Spot publication-title: Phys. Rev. A – volume: 29 start-page: 115:1 issue: 4 year: 2010 end-page: 115:12 article-title: Filament‐based smoke with vortex shedding and variational reconnection publication-title: ACM Trans. Graph – volume: 26 start-page: 4 issue: 1 year: 2007 article-title: Stable, circulation‐preserving, simplicial fluids publication-title: ACM Transactions on Graphics (TOG) – volume: 15 start-page: 173 issue: 3 year: 2004 end-page: 4 181 article-title: Inviscid and incompressible fluid simulation on triangle meshes publication-title: Computer Animation and Virtual Worlds – volume: 12 start-page: 1647 issue: 6 year: 1999 end-page: 1662 article-title: Discrete Euler‐Poincaré and Lie‐Poisson equations publication-title: Nonlinearity – volume: 17 start-page: 947 issue: 7 year: 2011 end-page: 955 article-title: Interactive visualization of rotational symmetry fields on surfaces publication-title: Visualization and Computer Graphics, IEEE Transactions on – start-page: 261 year: 2005 end-page: 270 – volume: 31 start-page: 10 issue: 1 year: 2012 article-title: Fluid simulation using Laplacian eigenfunctions publication-title: ACM Transactions on Graphics (TOG) – volume: 58 issue: 12 year: 2005 article-title: Ludwig Prandtl's boundary layer publication-title: Physics Today – year: 2008 – volume: 28 start-page: 38:1 issue: 3 year: 2009 end-page: 38:8 article-title: Energy‐preserving integrators for fluid animation publication-title: ACM Trans. Graph – year: 2004 – volume: 31 start-page: 1909 issue: 6 year: 2012 end-page: 1923 article-title: Real‐time fluid effects on surfaces using the Closest Point Method publication-title: Computer Graphics Forum – volume: 86 start-page: 056603 year: 2012 article-title: Vortex interaction on curved surfaces publication-title: Phys. Rev. E – volume: 32 year: 2013 article-title: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow publication-title: ACM Trans. Graph – volume: 240 start-page: 443 issue: 6 year: 2011 end-page: 458 article-title: Structure‐preserving discretization of incompressible fluids publication-title: Physica D: Nonlinear Phenomena – volume: 233 start-page: 480 year: 2013 end-page: 508 article-title: A coarse‐grid projection method for accelerating incompressible flow computations publication-title: Journal of Computational Physics – volume: 32 start-page: 73 year: 2013 end-page: 82 article-title: An operator approach to tangent vector field processing publication-title: Comp. Graph. Forum (Proc. SGP) – start-page: 245 year: 2005 end-page: 254 – start-page: 15 year: 2001 end-page: 22 – ident: e_1_2_10_37_2 doi: 10.1002/cav.19 – ident: e_1_2_10_38_2 doi: 10.1007/s00332-013-9182-5 – ident: e_1_2_10_7_2 doi: 10.1103/PhysRevE.86.056603 – ident: e_1_2_10_3_2 doi: 10.1063/1.2169443 – volume-title: A Mathematical Introduction to Fluid Mechanics year: 2000 ident: e_1_2_10_11_2 – ident: e_1_2_10_22_2 doi: 10.1145/1531326.1531344 – ident: e_1_2_10_35_2 doi: 10.1145/311535.311548 – ident: e_1_2_10_30_2 doi: 10.1007/978-3-662-05105-4_6 – ident: e_1_2_10_2_2 doi: 10.1111/cgf.12174 – ident: e_1_2_10_20_2 doi: 10.1007/11567646_26 – ident: e_1_2_10_34_2 doi: 10.1016/j.jcp.2012.09.005 – ident: e_1_2_10_24_2 doi: 10.1007/BF02352494 – ident: e_1_2_10_32_2 doi: 10.1109/TVCG.2010.121 – ident: e_1_2_10_25_2 doi: 10.1103/PhysRevA.45.2328 – ident: e_1_2_10_17_2 – ident: e_1_2_10_10_2 doi: 10.1007/978-1-4419-8728-0 – ident: e_1_2_10_15_2 doi: 10.1145/2077341.2077351 – ident: e_1_2_10_9_2 doi: 10.1007/s002200050642 – volume: 9 start-page: 197 issue: 2 year: 2009 ident: e_1_2_10_19_2 article-title: GPU‐based conformal flow on surfaces publication-title: Commun. Inf. Syst doi: 10.4310/CIS.2009.v9.n2.a3 – volume-title: ACM SIGGRAPH 2007 Posters year: 2007 ident: e_1_2_10_26_2 – ident: e_1_2_10_28_2 doi: 10.1145/1073368.1073406 – ident: e_1_2_10_13_2 doi: 10.1145/2516971.2516977 – ident: e_1_2_10_18_2 doi: 10.1145/1073368.1073404 – start-page: 30:1 issue: 4 year: 2012 ident: e_1_2_10_27_2 article-title: Functional maps: a flexible representation of maps between shapes publication-title: ACM Trans. Graph – volume-title: HOLA: a High‐Order Lie Advection of discrete differential forms, with applications in fluid dynamics year: 2007 ident: e_1_2_10_21_2 – ident: e_1_2_10_16_2 doi: 10.1145/1189762.1189766 – ident: e_1_2_10_4_2 doi: 10.1007/b97593 – ident: e_1_2_10_23_2 doi: 10.1088/0951-7715/12/6/314 – ident: e_1_2_10_29_2 doi: 10.1016/j.physd.2010.10.012 – start-page: 724 volume-title: ACM Transactions On Graphics (TOG) year: 2003 ident: e_1_2_10_36_2 – ident: e_1_2_10_39_2 doi: 10.1145/1778765.1778852 – ident: e_1_2_10_5_2 doi: 10.1137/100788860 – ident: e_1_2_10_40_2 doi: 10.1007/s11432-013-4806-9 – ident: e_1_2_10_31_2 doi: 10.1145/1618452.1618467 – ident: e_1_2_10_12_2 doi: 10.1017/S0022112004002113 – ident: e_1_2_10_8_2 doi: 10.1201/b10635 – volume-title: Turbulence: an introduction for scientists and engineers year: 2004 ident: e_1_2_10_14_2 – volume-title: Vortex Dynamics year: 1992 ident: e_1_2_10_33_2 – ident: e_1_2_10_6_2 doi: 10.1111/j.1467-8659.2012.03071.x |
SSID | ssj0004765 |
Score | 2.2773182 |
Snippet | Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 237 |
SubjectTerms | Algorithms Analysis Categories and Subject Descriptors (according to ACM CCS) Computational fluid dynamics Computer graphics Computer Graphics [I.3.5]: Computational Geometry and Object Modeling-Physically based modeling Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism-Animation Computer simulation Fluid flow Fluids Mathematical analysis Mathematical models Scalars Simulation Studies Vorticity |
Title | Functional Fluids on Surfaces |
URI | https://api.istex.fr/ark:/67375/WNG-95PMN4BC-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12449 https://www.proquest.com/docview/1555401798 https://www.proquest.com/docview/1778043806 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WvejBt7jqShURL12aNn3hSReriO7BB3oQQpImIitd2d2C-Oud9OUqCuKlhHYKk0xm5ms6-QKwLwMRUk5cW9IotWlMuM218m2SRpEQQRwL12xOvuoH53f04sF_aMFRvRem5IdoFtyMZxTx2jg4F-MpJ5dPumuSk9m8Z2q1DCC6_qSOomHg17zehjGmYhUyVTzNm19y0awZ1rcvQHMarhb5JlmEx1rTssxk0M0noivfv5E4_rMrS7BQ4VDruJw4y9BS2QrMT7ETrkInwZxXLhVayUv-nI6tYWbd5CNtyrjW4C45ve2d29VpCmgGRCW28IkW2gu0G0R4x-UpV6nyXCLxKpSmInYFJjJOVKQiL_UlUXEYa0cQT2Ms8tZhJhtmagMsP3U8maIdEVtRqmLuCYoNGXHH4Q7RbTisx5XJimrcnHjxwupPDuwxK3rchr1G9LXk1_hJ6KAwTiPBRwNTkBb67L5_xmKMDn160mOXbdiurccqXxwzREwISw0xWxt2m8foRebXCM_UMEeZ0BAxeZEToO6FqX7XhvXOkqKx-XfRLZhDpEXLysFtmJmMctVBNDMRO8W0_QCLI-2R |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPhRZQl1fTCiEuWcWJ87DEBVYN23bZAw_BBVm2Y1fVoixaNlLFr2ecF0sFEuISWclE8ng8ns_2-DPAnopkTAXxXUWTzKWMCFcYHbokSxIpI8akbw8nnw6j_iX9dR1ez8Fhcxam4odoF9ysZ5TjtXVwuyA94-Xqj-na6MTmYdHe6F1OqM6eyKNoHIUNs7fljKl5hWweT_vrs2i0aBv23zOoOQtYy4iTrsBNU9cq0WTULaayqx7-o3F8rzKr8LGGos5R1Xc-wZzOP8OHGYLCNdhJMexVq4VOelv8ze6dce6cFxNjM7nW4TL9cdHru_WFCmgJBCauDImRJoiMHyX4xheZ0JkOfKLwKbWhkvkSY5kgOtFJkIWKaBYz40kSGByOgg1YyMe5_gJOmHmBytCUCK8o1UwEkmJBJcLzhEdMBw6ahuWqZhu3l17c8mbWgRrzUuMOfG9F7yqKjZeE9kvrtBJiMrI5aXHIr4YnnOEAMaTHPT7owHZjPl674z1H0ITI1HKzdeBb-xkdye6OiFyPC5SJLRdTkHgR1r201eu14b2TtCxsvl30Kyz1L04HfPBz-HsLlhF40SqRcBsWppNC7yC4mcrdsg8_AmvG8aw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sgrQP_dLSa7XGUsSXHNlkk-zSp_ZstFWPYhXvQVj2sxQlJ-cFSv_6zuarp7QgfQlLMoHZnZ2ZXzazvwV4pzOVU0niUFNmQsqJDKWzaUgMY0plnKvYb04-HmcHZ_TLJJ0swftuL0zDD9EvuHnPqOO1d_Br4xacXH93Q5-c-ANYoVnE_JTeO_nDHUXzLO2IvT1lTEsr5Mt4-ldvJaMVP64_byHNRbxaJ5ziCVx0qjZ1JpfDaq6G-tcdFsf_7MtTeNwC0eBDM3OewZItn8OjBXrCNdgsMOk1a4VBcVX9MDfBtAy-VTPn67jW4az4dDo6CNvjFNAOCEtClRKnXJK5OGN4J5ZGWmOTmGi8Kuuo4rHCTCaJZZYlJtXE8py7SJHEYTBKXsByOS3tSwhSEyXaoCERXFFquUwUxYZmMopkRNwAdrtxFbrlGvdHXlyJ7psDeyzqHg_gbS963RBs_E1opzZOLyFnl74iLU_F-XhfcAwPY_pxJI4GsNFZT7TOeCMQMiEu9cxsA9juH6Mb-X8jsrTTCmVyz8SUsChD3WtT_VsbMdov6sar-4tuwerXvUIcfR4fvoaHiLpoU0W4AcvzWWU3EdnM1Zt6Bv8GucLwZA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Fluids+on+Surfaces&rft.jtitle=Computer+graphics+forum&rft.au=Azencot%2C+Omri&rft.au=Wei%C3%9Fmann%2C+Steffen&rft.au=Ovsjanikov%2C+Maks&rft.au=Wardetzky%2C+Max&rft.date=2014-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=5&rft.spage=237&rft.epage=246&rft_id=info:doi/10.1111%2Fcgf.12449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12449 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon |