Functional Fluids on Surfaces

Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triang...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 33; no. 5; pp. 237 - 246
Main Authors Azencot, Omri, Weißmann, Steffen, Ovsjanikov, Maks, Wardetzky, Max, Ben-Chen, Mirela
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used Eulerian description of the fluid using its time‐varying velocity field, we propose to model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space continuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface using linear operators, which can be discretized efficiently using the recently introduced functional approach to vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically simple approach, which is efficient, time‐reversible and conserves vorticity by construction. We further demonstrate that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex shedding from boundaries.
AbstractList Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used Eulerian description of the fluid using its time‐varying velocity field, we propose to model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space continuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface using linear operators, which can be discretized efficiently using the recently introduced functional approach to vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically simple approach, which is efficient, time‐reversible and conserves vorticity by construction. We further demonstrate that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex shedding from boundaries.
Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean domains, we consider the problem of simulating the behavior of an incompressible fluid on a curved surface represented as an unstructured triangle mesh. Unlike the commonly used Eulerian description of the fluid using its time-varying velocity field, we propose to model fluids using their vorticity, i.e., by a (time varying) scalar function on the surface. During each time step, we advance scalar vorticity along two consecutive, stationary velocity fields. This approach leads to a variational integrator in the space continuous setting. In addition, using this approach, the update rule amounts to manipulating functions on the surface using linear operators, which can be discretized efficiently using the recently introduced functional approach to vector fields. Combining these time and space discretizations leads to a conceptually and algorithmically simple approach, which is efficient, time-reversible and conserves vorticity by construction. We further demonstrate that our method exhibits no numerical dissipation and is able to reproduce intricate phenomena such as vortex shedding from boundaries. [PUBLICATION ABSTRACT]
Author Ovsjanikov, Maks
Wardetzky, Max
Weißmann, Steffen
Ben-Chen, Mirela
Azencot, Omri
Author_xml – sequence: 1
  givenname: Omri
  surname: Azencot
  fullname: Azencot, Omri
  organization: Technion - Israel Institute of Technology
– sequence: 2
  givenname: Steffen
  surname: Weißmann
  fullname: Weißmann, Steffen
  organization: TU Berlin
– sequence: 3
  givenname: Maks
  surname: Ovsjanikov
  fullname: Ovsjanikov, Maks
  organization: LIX, École Polytechnique
– sequence: 4
  givenname: Max
  surname: Wardetzky
  fullname: Wardetzky, Max
  organization: University of Göttingen
– sequence: 5
  givenname: Mirela
  surname: Ben-Chen
  fullname: Ben-Chen, Mirela
  organization: Technion - Israel Institute of Technology
BookMark eNp9kMFLwzAUxoNMcJse_AOEgRc9dEuapEmOWuwU5hRUPIY0TaSza2fSovvvzZx6GOg7vBcev-974RuAXt3UBoBjBMco1ES_2DGKCRF7oI9IwiKeUNEDfYjCm0FKD8DA-wWEkLCE9sFJ1tW6LZtaVaOs6srCj5p69NA5q7Txh2Dfqsqbo-85BE_Z1WN6Hc3upjfpxSzSBHMR5RTZ3OLExgkPm1gVyhQGx0iHnhtLchHnMYoVMtxwXFCNjGDCwhxhCznHQ3C29V255q0zvpXL0mtTVao2TeclYozDcAomAT3dQRdN58L3A0UpJRAxsTE831LaNd47Y-XKlUvl1hJBuQlKhqDkV1CBneywumzVJpPWqbL6T_FeVmb9t7VMp9mPItoqSt-aj1-Fcq8yYZhR-TyfSkHvb-fkMpUz_AnRKYhx
CitedBy_id crossref_primary_10_1145_3658165
crossref_primary_10_1145_2816795_2818130
crossref_primary_10_1145_3687970
crossref_primary_10_1111_cgf_14360
crossref_primary_10_1002_nme_6317
crossref_primary_10_1111_cgf_12708
crossref_primary_10_1109_TPAMI_2017_2730205
crossref_primary_10_1111_cgf_14098
crossref_primary_10_1145_3152156
crossref_primary_10_1111_cgf_13495
crossref_primary_10_1002_gamm_201410009
crossref_primary_10_1109_TVCG_2024_3360521
crossref_primary_10_1007_s41095_023_0368_y
crossref_primary_10_1111_cgf_13312
crossref_primary_10_1111_cgf_12942
crossref_primary_10_1111_cgf_12864
crossref_primary_10_1111_cgf_13238
crossref_primary_10_1111_cgf_13924
crossref_primary_10_1016_j_cad_2016_05_002
crossref_primary_10_1145_3320285
crossref_primary_10_1109_TVCG_2017_2789203
Cites_doi 10.1002/cav.19
10.1007/s00332-013-9182-5
10.1103/PhysRevE.86.056603
10.1063/1.2169443
10.1145/1531326.1531344
10.1145/311535.311548
10.1007/978-3-662-05105-4_6
10.1111/cgf.12174
10.1007/11567646_26
10.1016/j.jcp.2012.09.005
10.1007/BF02352494
10.1109/TVCG.2010.121
10.1103/PhysRevA.45.2328
10.1007/978-1-4419-8728-0
10.1145/2077341.2077351
10.1007/s002200050642
10.4310/CIS.2009.v9.n2.a3
10.1145/1073368.1073406
10.1145/2516971.2516977
10.1145/1073368.1073404
10.1145/1189762.1189766
10.1007/b97593
10.1088/0951-7715/12/6/314
10.1016/j.physd.2010.10.012
10.1145/1778765.1778852
10.1137/100788860
10.1007/s11432-013-4806-9
10.1145/1618452.1618467
10.1017/S0022112004002113
10.1201/b10635
10.1111/j.1467-8659.2012.03071.x
ContentType Journal Article
Copyright 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2014 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2014 The Author(s) Computer Graphics Forum © 2014 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2014 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1111/cgf.12449
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Computer and Information Systems Abstracts
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1467-8659
EndPage 246
ExternalDocumentID 3410909681
10_1111_cgf_12449
CGF12449
ark_67375_WNG_95PMN4BC_L
Genre article
Feature
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
AHQJS
ALVPJ
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c4389-b51fbf36f268c432adaede321cde3bef4b92b212a1e8e83d5c1e979f0b13f0883
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Fri Jul 11 11:22:06 EDT 2025
Fri Jul 25 23:46:14 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Tue Jul 01 02:23:04 EDT 2025
Wed Jan 22 16:25:45 EST 2025
Wed Oct 30 09:54:49 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4389-b51fbf36f268c432adaede321cde3bef4b92b212a1e8e83d5c1e979f0b13f0883
Notes istex:0838F1D1938B938EC7D8144EF8163F12AB9AD196
ark:/67375/WNG-95PMN4BC-L
Supporting Information
ArticleID:CGF12449
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1555401798
PQPubID 30877
PageCount 10
ParticipantIDs proquest_miscellaneous_1778043806
proquest_journals_1555401798
crossref_primary_10_1111_cgf_12449
crossref_citationtrail_10_1111_cgf_12449
wiley_primary_10_1111_cgf_12449_CGF12449
istex_primary_ark_67375_WNG_95PMN4BC_L
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Communications in Mathematical Physics 139, 2 (1991), 217-243. 2, 5
San O., Staples A.E.: A coarse-grid projection method for accelerating incompressible flow computations. Journal of Computational Physics 233 (2013), 480-508. 8
Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 2, 3, 4
Miller J., Weichman P.B., Cross M.C.: Statistical mechanics, Euler's equation, and Jupiter's Red Spot. Phys. Rev. A 45 (Feb 1992), 2328-2359. 1
Zhu J., Liu Y., Chang Y., Wu E.: Animating turbulent water by vortex shedding in pic/flip. Science China Information Sciences 56, 3 (2013), 1-11. 3
Baek S.K.: Vortex interaction on curved surfaces. Phys. Rev. E 86 (Nov 2012), 056603. 1
Mullen P., Crane K., Pavlov D., Tong Y., Desbrun M.: Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3 (2009), 38:1-38:8. 3, 5, 6, 7, 8
Davidson P.A.: Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford, UK New York, 2004. 3
Hegeman K., Ashikhmin M., Wang H., Qin H., Gu X.: GPU-based conformal flow on surfaces. Commun. Inf. Syst. 9, 2 (2009), 197-212. 2
Marsden J.E., Pekarsky S., Shkoller S.: Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12, 6 (1999), 1647-1662. 2, 5
Bridson R.: Fluid Simulation for Computer Graphics. A K Peters, 2008. 1
De Witt T., Lessig C., Fiume E.: Fluid simulation using Laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 10. 2
Crowdy D., Marshall J.: Analytical solutions for rotating vortex arrays involving multiple vortex patches. Journal of Fluid Mechanics 523 (2005), 307-337. 1
Bobenko A.I., Suris Y.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Comm. Math. Phys. 204, 1 (1999), 147-188. 2, 5
Saffman P.G.: Vortex Dynamics. Cambridge Univ Pr, 1992. 2, 3
Chorin A.J.: Vorticity and Turbulence. Springer, 1994. 7
Weissmann S., Pinkall U.: Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1-115:12. 3
Al-Mohy A.H., Higham N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM journal on scientific computing 33, 2 (2011), 488-511. 6, 7
Polthier K., Preuss E.: Identifying vector field singularities using a discrete hodge decomposition. Visualization and Mathematics 3 (2003), 113-134. 5
Shi L., Yu Y.: Inviscid and incompressible fluid simulation on triangle meshes. Computer Animation and Virtual Worlds 15, 3-4 (2004), 173-181. 2
Chorin A.J., Marsden J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, 2000. 3
Crane K., Weischedel C., Wardetzky M.: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32 (2013). 8
Pfaff T., Thuerey N., Selle A., Gross M.: Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (2009), 121:1-121:10. 3
Pavlov D., Mullen P., Tong Y., Kanso E., Marsden J.E., Desbrun M.: Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6 (2011), 443-458. 3, 5, 6, 7
Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. In Comp. Graph. Forum (Proc. SGP) (2013), vol. 32, pp. 73-82. 2, 3, 4, 5, 6, 9
Anderson Jr J.D.: Ludwig Prandtl's boundary layer. Physics Today 58, 12 (December 2005). 3
Auer S., Macdonald C.B., Treib M., Schneider J., Westermann R.: Real-time fluid effects on surfaces using the Closest Point Method. Computer Graphics Forum 31, 6 (2012), 1909-1923. 2
Arnold V.I., Khesin B.A.: Topological Methods in Hydrodynamics. Springer, 1998. 3
Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26, 1 (2007), 4. 2
McKenzie A.: HOLA: a High-Order Lie Advection of discrete differential forms, with applications in fluid dynamics. PhD thesis, California Institute of Technology, 2007. 7, 8
Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. Visualization and Computer Graphics, IEEE Transactions on 17, 7 (2011), 947-955. 7
2012
1998
2008
2011; 33
2007
1994
2005
2004
1992
2011; 17
1991; 139
1999; 204
2012; 31
2009; 28
1999
2001
2013; 32
2000
2010; 29
2013; 56
2004; 15
2005; 523
2013; 233
1999; 12
2003; 3
2009; 9
2013
2011; 240
1992; 45
2012; 86
2007; 26
2003; 22
2005; 58
e_1_2_10_22_2
Saffman P.G. (e_1_2_10_33_2) 1992
e_1_2_10_23_2
e_1_2_10_20_2
e_1_2_10_40_2
McKenzie A. (e_1_2_10_21_2) 2007
Stam J. (e_1_2_10_36_2) 2003
Davidson P.A. (e_1_2_10_14_2) 2004
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_39_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_38_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_37_2
e_1_2_10_7_2
e_1_2_10_13_2
e_1_2_10_6_2
e_1_2_10_35_2
e_1_2_10_9_2
Neill P. (e_1_2_10_26_2) 2007
e_1_2_10_34_2
e_1_2_10_8_2
e_1_2_10_12_2
Ovsjanikov M. (e_1_2_10_27_2) 2012
e_1_2_10_32_2
e_1_2_10_10_2
e_1_2_10_31_2
e_1_2_10_30_2
Hegeman K. (e_1_2_10_19_2) 2009; 9
e_1_2_10_28_2
e_1_2_10_29_2
Chorin A.J. (e_1_2_10_11_2) 2000
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Ovsjanikov M., Ben-Chen M., Solomon J., Butscher A., Guibas L.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 4 (July 2012), 30:1-30:11. 2, 3, 4
– reference: Zhu J., Liu Y., Chang Y., Wu E.: Animating turbulent water by vortex shedding in pic/flip. Science China Information Sciences 56, 3 (2013), 1-11. 3
– reference: Pavlov D., Mullen P., Tong Y., Kanso E., Marsden J.E., Desbrun M.: Structure-preserving discretization of incompressible fluids. Physica D: Nonlinear Phenomena 240, 6 (2011), 443-458. 3, 5, 6, 7
– reference: Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Communications in Mathematical Physics 139, 2 (1991), 217-243. 2, 5
– reference: Crowdy D., Marshall J.: Analytical solutions for rotating vortex arrays involving multiple vortex patches. Journal of Fluid Mechanics 523 (2005), 307-337. 1
– reference: McKenzie A.: HOLA: a High-Order Lie Advection of discrete differential forms, with applications in fluid dynamics. PhD thesis, California Institute of Technology, 2007. 7, 8
– reference: Weissmann S., Pinkall U.: Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1-115:12. 3
– reference: Auer S., Macdonald C.B., Treib M., Schneider J., Westermann R.: Real-time fluid effects on surfaces using the Closest Point Method. Computer Graphics Forum 31, 6 (2012), 1909-1923. 2
– reference: Polthier K., Preuss E.: Identifying vector field singularities using a discrete hodge decomposition. Visualization and Mathematics 3 (2003), 113-134. 5
– reference: Marsden J.E., Pekarsky S., Shkoller S.: Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12, 6 (1999), 1647-1662. 2, 5
– reference: Pfaff T., Thuerey N., Selle A., Gross M.: Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (2009), 121:1-121:10. 3
– reference: Anderson Jr J.D.: Ludwig Prandtl's boundary layer. Physics Today 58, 12 (December 2005). 3
– reference: Azencot O., Ben-Chen M., Chazal F., Ovsjanikov M.: An operator approach to tangent vector field processing. In Comp. Graph. Forum (Proc. SGP) (2013), vol. 32, pp. 73-82. 2, 3, 4, 5, 6, 9
– reference: Arnold V.I., Khesin B.A.: Topological Methods in Hydrodynamics. Springer, 1998. 3
– reference: Chorin A.J.: Vorticity and Turbulence. Springer, 1994. 7
– reference: Miller J., Weichman P.B., Cross M.C.: Statistical mechanics, Euler's equation, and Jupiter's Red Spot. Phys. Rev. A 45 (Feb 1992), 2328-2359. 1
– reference: Al-Mohy A.H., Higham N.J.: Computing the action of the matrix exponential, with an application to exponential integrators. SIAM journal on scientific computing 33, 2 (2011), 488-511. 6, 7
– reference: Mullen P., Crane K., Pavlov D., Tong Y., Desbrun M.: Energy-preserving integrators for fluid animation. ACM Trans. Graph. 28, 3 (2009), 38:1-38:8. 3, 5, 6, 7, 8
– reference: De Witt T., Lessig C., Fiume E.: Fluid simulation using Laplacian eigenfunctions. ACM Transactions on Graphics (TOG) 31, 1 (2012), 10. 2
– reference: Crane K., Weischedel C., Wardetzky M.: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow. ACM Trans. Graph. 32 (2013). 8
– reference: Bobenko A.I., Suris Y.B.: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top. Comm. Math. Phys. 204, 1 (1999), 147-188. 2, 5
– reference: Bridson R.: Fluid Simulation for Computer Graphics. A K Peters, 2008. 1
– reference: Elcott S., Tong Y., Kanso E., Schröder P., Desbrun M.: Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics (TOG) 26, 1 (2007), 4. 2
– reference: Davidson P.A.: Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford, UK New York, 2004. 3
– reference: Hegeman K., Ashikhmin M., Wang H., Qin H., Gu X.: GPU-based conformal flow on surfaces. Commun. Inf. Syst. 9, 2 (2009), 197-212. 2
– reference: Baek S.K.: Vortex interaction on curved surfaces. Phys. Rev. E 86 (Nov 2012), 056603. 1
– reference: Saffman P.G.: Vortex Dynamics. Cambridge Univ Pr, 1992. 2, 3
– reference: Palacios J., Zhang E.: Interactive visualization of rotational symmetry fields on surfaces. Visualization and Computer Graphics, IEEE Transactions on 17, 7 (2011), 947-955. 7
– reference: Shi L., Yu Y.: Inviscid and incompressible fluid simulation on triangle meshes. Computer Animation and Virtual Worlds 15, 3-4 (2004), 173-181. 2
– reference: Chorin A.J., Marsden J.E.: A Mathematical Introduction to Fluid Mechanics. Springer, 2000. 3
– reference: San O., Staples A.E.: A coarse-grid projection method for accelerating incompressible flow computations. Journal of Computational Physics 233 (2013), 480-508. 8
– volume: 9
  start-page: 197
  issue: 2
  year: 2009
  end-page: 212
  article-title: GPU‐based conformal flow on surfaces
  publication-title: Commun. Inf. Syst
– start-page: 30:1
  issue: 4
  year: 2012
  end-page: 30:11
  article-title: Functional maps: a flexible representation of maps between shapes
  publication-title: ACM Trans. Graph
– volume: 56
  start-page: 1
  issue: 3
  year: 2013
  end-page: 11
  article-title: Animating turbulent water by vortex shedding in pic/flip
  publication-title: Science China Information Sciences
– volume: 139
  start-page: 217
  issue: 2
  year: 1991
  end-page: 243
  article-title: Discrete versions of some classical integrable systems and factorization of matrix polynomials
  publication-title: Communications in Mathematical Physics
– volume: 3
  start-page: 113
  year: 2003
  end-page: 134
  article-title: Identifying vector field singularities using a discrete hodge decomposition
  publication-title: Visualization and Mathematics
– year: 2007
– year: 2000
– volume: 28
  start-page: 121:1
  issue: 5
  year: 2009
  end-page: 121:10
  article-title: Synthetic turbulence using artificial boundary layers
  publication-title: ACM Trans. Graph
– start-page: 1
  year: 2013
  end-page: 37
– volume: 22
  start-page: 724
  year: 2003
  end-page: 731
– start-page: 121
  year: 1999
  end-page: 128
– volume: 204
  start-page: 147
  issue: 1
  year: 1999
  end-page: 188
  article-title: Discrete time Lagrangian mechanics on Lie groups, with an application to the Lagrange top
  publication-title: Comm. Math. Phys
– year: 1992
– year: 1994
– year: 1998
– start-page: 307
  year: 2005
  end-page: 319
– volume: 33
  start-page: 488
  issue: 2
  year: 2011
  end-page: 511
  article-title: Computing the action of the matrix exponential, with an application to exponential integrators
  publication-title: SIAM journal on scientific computing
– volume: 523
  start-page: 307
  year: 2005
  end-page: 337
  article-title: Analytical solutions for rotating vortex arrays involving multiple vortex patches
  publication-title: Journal of Fluid Mechanics
– volume: 45
  start-page: 2328
  year: 1992
  end-page: 2359
  article-title: Statistical mechanics, Euler's equation, and Jupiter's Red Spot
  publication-title: Phys. Rev. A
– volume: 29
  start-page: 115:1
  issue: 4
  year: 2010
  end-page: 115:12
  article-title: Filament‐based smoke with vortex shedding and variational reconnection
  publication-title: ACM Trans. Graph
– volume: 26
  start-page: 4
  issue: 1
  year: 2007
  article-title: Stable, circulation‐preserving, simplicial fluids
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 15
  start-page: 173
  issue: 3
  year: 2004
  end-page: 4 181
  article-title: Inviscid and incompressible fluid simulation on triangle meshes
  publication-title: Computer Animation and Virtual Worlds
– volume: 12
  start-page: 1647
  issue: 6
  year: 1999
  end-page: 1662
  article-title: Discrete Euler‐Poincaré and Lie‐Poisson equations
  publication-title: Nonlinearity
– volume: 17
  start-page: 947
  issue: 7
  year: 2011
  end-page: 955
  article-title: Interactive visualization of rotational symmetry fields on surfaces
  publication-title: Visualization and Computer Graphics, IEEE Transactions on
– start-page: 261
  year: 2005
  end-page: 270
– volume: 31
  start-page: 10
  issue: 1
  year: 2012
  article-title: Fluid simulation using Laplacian eigenfunctions
  publication-title: ACM Transactions on Graphics (TOG)
– volume: 58
  issue: 12
  year: 2005
  article-title: Ludwig Prandtl's boundary layer
  publication-title: Physics Today
– year: 2008
– volume: 28
  start-page: 38:1
  issue: 3
  year: 2009
  end-page: 38:8
  article-title: Energy‐preserving integrators for fluid animation
  publication-title: ACM Trans. Graph
– year: 2004
– volume: 31
  start-page: 1909
  issue: 6
  year: 2012
  end-page: 1923
  article-title: Real‐time fluid effects on surfaces using the Closest Point Method
  publication-title: Computer Graphics Forum
– volume: 86
  start-page: 056603
  year: 2012
  article-title: Vortex interaction on curved surfaces
  publication-title: Phys. Rev. E
– volume: 32
  year: 2013
  article-title: Geodesics in Heat: A New Approach to Computing Distance Based on Heat Flow
  publication-title: ACM Trans. Graph
– volume: 240
  start-page: 443
  issue: 6
  year: 2011
  end-page: 458
  article-title: Structure‐preserving discretization of incompressible fluids
  publication-title: Physica D: Nonlinear Phenomena
– volume: 233
  start-page: 480
  year: 2013
  end-page: 508
  article-title: A coarse‐grid projection method for accelerating incompressible flow computations
  publication-title: Journal of Computational Physics
– volume: 32
  start-page: 73
  year: 2013
  end-page: 82
  article-title: An operator approach to tangent vector field processing
  publication-title: Comp. Graph. Forum (Proc. SGP)
– start-page: 245
  year: 2005
  end-page: 254
– start-page: 15
  year: 2001
  end-page: 22
– ident: e_1_2_10_37_2
  doi: 10.1002/cav.19
– ident: e_1_2_10_38_2
  doi: 10.1007/s00332-013-9182-5
– ident: e_1_2_10_7_2
  doi: 10.1103/PhysRevE.86.056603
– ident: e_1_2_10_3_2
  doi: 10.1063/1.2169443
– volume-title: A Mathematical Introduction to Fluid Mechanics
  year: 2000
  ident: e_1_2_10_11_2
– ident: e_1_2_10_22_2
  doi: 10.1145/1531326.1531344
– ident: e_1_2_10_35_2
  doi: 10.1145/311535.311548
– ident: e_1_2_10_30_2
  doi: 10.1007/978-3-662-05105-4_6
– ident: e_1_2_10_2_2
  doi: 10.1111/cgf.12174
– ident: e_1_2_10_20_2
  doi: 10.1007/11567646_26
– ident: e_1_2_10_34_2
  doi: 10.1016/j.jcp.2012.09.005
– ident: e_1_2_10_24_2
  doi: 10.1007/BF02352494
– ident: e_1_2_10_32_2
  doi: 10.1109/TVCG.2010.121
– ident: e_1_2_10_25_2
  doi: 10.1103/PhysRevA.45.2328
– ident: e_1_2_10_17_2
– ident: e_1_2_10_10_2
  doi: 10.1007/978-1-4419-8728-0
– ident: e_1_2_10_15_2
  doi: 10.1145/2077341.2077351
– ident: e_1_2_10_9_2
  doi: 10.1007/s002200050642
– volume: 9
  start-page: 197
  issue: 2
  year: 2009
  ident: e_1_2_10_19_2
  article-title: GPU‐based conformal flow on surfaces
  publication-title: Commun. Inf. Syst
  doi: 10.4310/CIS.2009.v9.n2.a3
– volume-title: ACM SIGGRAPH 2007 Posters
  year: 2007
  ident: e_1_2_10_26_2
– ident: e_1_2_10_28_2
  doi: 10.1145/1073368.1073406
– ident: e_1_2_10_13_2
  doi: 10.1145/2516971.2516977
– ident: e_1_2_10_18_2
  doi: 10.1145/1073368.1073404
– start-page: 30:1
  issue: 4
  year: 2012
  ident: e_1_2_10_27_2
  article-title: Functional maps: a flexible representation of maps between shapes
  publication-title: ACM Trans. Graph
– volume-title: HOLA: a High‐Order Lie Advection of discrete differential forms, with applications in fluid dynamics
  year: 2007
  ident: e_1_2_10_21_2
– ident: e_1_2_10_16_2
  doi: 10.1145/1189762.1189766
– ident: e_1_2_10_4_2
  doi: 10.1007/b97593
– ident: e_1_2_10_23_2
  doi: 10.1088/0951-7715/12/6/314
– ident: e_1_2_10_29_2
  doi: 10.1016/j.physd.2010.10.012
– start-page: 724
  volume-title: ACM Transactions On Graphics (TOG)
  year: 2003
  ident: e_1_2_10_36_2
– ident: e_1_2_10_39_2
  doi: 10.1145/1778765.1778852
– ident: e_1_2_10_5_2
  doi: 10.1137/100788860
– ident: e_1_2_10_40_2
  doi: 10.1007/s11432-013-4806-9
– ident: e_1_2_10_31_2
  doi: 10.1145/1618452.1618467
– ident: e_1_2_10_12_2
  doi: 10.1017/S0022112004002113
– ident: e_1_2_10_8_2
  doi: 10.1201/b10635
– volume-title: Turbulence: an introduction for scientists and engineers
  year: 2004
  ident: e_1_2_10_14_2
– volume-title: Vortex Dynamics
  year: 1992
  ident: e_1_2_10_33_2
– ident: e_1_2_10_6_2
  doi: 10.1111/j.1467-8659.2012.03071.x
SSID ssj0004765
Score 2.2773182
Snippet Fluid simulation plays a key role in various domains of science including computer graphics. While most existing work addresses fluids on bounded Euclidean...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 237
SubjectTerms Algorithms
Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computational fluid dynamics
Computer graphics
Computer Graphics [I.3.5]: Computational Geometry and Object Modeling-Physically based modeling
Computer Graphics [I.3.7]: Three-Dimensional Graphics and Realism-Animation
Computer simulation
Fluid flow
Fluids
Mathematical analysis
Mathematical models
Scalars
Simulation
Studies
Vorticity
Title Functional Fluids on Surfaces
URI https://api.istex.fr/ark:/67375/WNG-95PMN4BC-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12449
https://www.proquest.com/docview/1555401798
https://www.proquest.com/docview/1778043806
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB4WvejBt7jqShURL12aNn3hSReriO7BB3oQQpImIitd2d2C-Oud9OUqCuKlhHYKk0xm5ms6-QKwLwMRUk5cW9IotWlMuM218m2SRpEQQRwL12xOvuoH53f04sF_aMFRvRem5IdoFtyMZxTx2jg4F-MpJ5dPumuSk9m8Z2q1DCC6_qSOomHg17zehjGmYhUyVTzNm19y0awZ1rcvQHMarhb5JlmEx1rTssxk0M0noivfv5E4_rMrS7BQ4VDruJw4y9BS2QrMT7ETrkInwZxXLhVayUv-nI6tYWbd5CNtyrjW4C45ve2d29VpCmgGRCW28IkW2gu0G0R4x-UpV6nyXCLxKpSmInYFJjJOVKQiL_UlUXEYa0cQT2Ms8tZhJhtmagMsP3U8maIdEVtRqmLuCYoNGXHH4Q7RbTisx5XJimrcnHjxwupPDuwxK3rchr1G9LXk1_hJ6KAwTiPBRwNTkBb67L5_xmKMDn160mOXbdiurccqXxwzREwISw0xWxt2m8foRebXCM_UMEeZ0BAxeZEToO6FqX7XhvXOkqKx-XfRLZhDpEXLysFtmJmMctVBNDMRO8W0_QCLI-2R
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xOEAPhRZQl1fTCiEuWcWJ87DEBVYN23bZAw_BBVm2Y1fVoixaNlLFr2ecF0sFEuISWclE8ng8ns_2-DPAnopkTAXxXUWTzKWMCFcYHbokSxIpI8akbw8nnw6j_iX9dR1ez8Fhcxam4odoF9ysZ5TjtXVwuyA94-Xqj-na6MTmYdHe6F1OqM6eyKNoHIUNs7fljKl5hWweT_vrs2i0aBv23zOoOQtYy4iTrsBNU9cq0WTULaayqx7-o3F8rzKr8LGGos5R1Xc-wZzOP8OHGYLCNdhJMexVq4VOelv8ze6dce6cFxNjM7nW4TL9cdHru_WFCmgJBCauDImRJoiMHyX4xheZ0JkOfKLwKbWhkvkSY5kgOtFJkIWKaBYz40kSGByOgg1YyMe5_gJOmHmBytCUCK8o1UwEkmJBJcLzhEdMBw6ahuWqZhu3l17c8mbWgRrzUuMOfG9F7yqKjZeE9kvrtBJiMrI5aXHIr4YnnOEAMaTHPT7owHZjPl674z1H0ITI1HKzdeBb-xkdye6OiFyPC5SJLRdTkHgR1r201eu14b2TtCxsvl30Kyz1L04HfPBz-HsLlhF40SqRcBsWppNC7yC4mcrdsg8_AmvG8aw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB-sgrQP_dLSa7XGUsSXHNlkk-zSp_ZstFWPYhXvQVj2sxQlJ-cFSv_6zuarp7QgfQlLMoHZnZ2ZXzazvwV4pzOVU0niUFNmQsqJDKWzaUgMY0plnKvYb04-HmcHZ_TLJJ0swftuL0zDD9EvuHnPqOO1d_Br4xacXH93Q5-c-ANYoVnE_JTeO_nDHUXzLO2IvT1lTEsr5Mt4-ldvJaMVP64_byHNRbxaJ5ziCVx0qjZ1JpfDaq6G-tcdFsf_7MtTeNwC0eBDM3OewZItn8OjBXrCNdgsMOk1a4VBcVX9MDfBtAy-VTPn67jW4az4dDo6CNvjFNAOCEtClRKnXJK5OGN4J5ZGWmOTmGi8Kuuo4rHCTCaJZZYlJtXE8py7SJHEYTBKXsByOS3tSwhSEyXaoCERXFFquUwUxYZmMopkRNwAdrtxFbrlGvdHXlyJ7psDeyzqHg_gbS963RBs_E1opzZOLyFnl74iLU_F-XhfcAwPY_pxJI4GsNFZT7TOeCMQMiEu9cxsA9juH6Mb-X8jsrTTCmVyz8SUsChD3WtT_VsbMdov6sar-4tuwerXvUIcfR4fvoaHiLpoU0W4AcvzWWU3EdnM1Zt6Bv8GucLwZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Fluids+on+Surfaces&rft.jtitle=Computer+graphics+forum&rft.au=Azencot%2C+Omri&rft.au=Wei%C3%9Fmann%2C+Steffen&rft.au=Ovsjanikov%2C+Maks&rft.au=Wardetzky%2C+Max&rft.date=2014-08-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=33&rft.issue=5&rft.spage=237&rft.epage=246&rft_id=info:doi/10.1111%2Fcgf.12449&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12449
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon