Evaluation of predictive model performance of an existing model in the presence of missing data
In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of a...
Saved in:
Published in | Statistics in medicine Vol. 40; no. 15; pp. 3477 - 3498 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
10.07.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.8978 |
Cover
Abstract | In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss‐specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer. |
---|---|
AbstractList | In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss‐specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer. In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss-specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer. In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss-specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer.In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss-specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer. |
Author | Spratt, Daniel E. Schipper, Matthew J. Taylor, Jeremy M. G. Karnes, R. Jeffery Li, Pin |
AuthorAffiliation | 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA 2 Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA 3 Department of Urology, Mayo Clinic, Rochester, MN 55905, USA |
AuthorAffiliation_xml | – name: 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA – name: 3 Department of Urology, Mayo Clinic, Rochester, MN 55905, USA – name: 2 Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA |
Author_xml | – sequence: 1 givenname: Pin orcidid: 0000-0003-4508-3762 surname: Li fullname: Li, Pin email: pinli@umich.edu organization: University of Michigan – sequence: 2 givenname: Jeremy M. G. surname: Taylor fullname: Taylor, Jeremy M. G. organization: University of Michigan – sequence: 3 givenname: Daniel E. surname: Spratt fullname: Spratt, Daniel E. organization: University of Michigan – sequence: 4 givenname: R. Jeffery surname: Karnes fullname: Karnes, R. Jeffery organization: Mayo Clinic – sequence: 5 givenname: Matthew J. orcidid: 0000-0001-6728-4720 surname: Schipper fullname: Schipper, Matthew J. organization: University of Michigan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33843085$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1OGzEURq2KqoRQqU9QjcSmm0n9M8aeTSUUAY0EYtGythz7DhjN2MGeCfD29ZCQFlRWXtxzP53r7wDt-eABoS8EzwjG9Hty3UzWQn5AE4JrUWLK5R6aYCpEeSwI30cHKd1hTAin4hPaZ0xWDEs-Qep0rdtB9y74IjTFKoJ1pndrKLpgoS1WEJsQO-0NjHPtC3h0qXf-Zgs4X_S3MC4m2EKdS2kErO71IfrY6DbB5-07Rddnp7_nP8uLq_PF_OSiNBWTsgSiKbaUVLxhmtZLkBKLymoruGTEMrBkSY2hEqxmvGYCY7zUjWmYAMxtw6boxyZ3NSw7sAZ8H3WrVtF1Oj6poJ16PfHuVt2EtZK15BUjOeDbNiCG-wFSr_IZBtpWewhDUpQTIuu6yvAUHb1B78IQfT4vU1mtPq7ESH3912in8vL3GZhtABNDShEaZVz_3EQWdK0iWI3lqlyuGsv9q7hbeMn8D1pu0AfXwtO7nPq1uHzm_wCImbRV |
CitedBy_id | crossref_primary_10_1097_JS9_0000000000000966 crossref_primary_10_1016_j_jspi_2023_106130 crossref_primary_10_1007_s10238_025_01590_6 |
Cites_doi | 10.1177/0962280210395740 10.1002/sim.4067 10.1373/clinchem.2008.115345 10.1002/9781119482260 10.1016/j.jclinepi.2006.01.009 10.1002/sim.8682 10.1016/j.jclinepi.2009.12.008 10.1111/j.1541-0420.2010.01487.x 10.2307/2528164 10.1097/01.ju.0000158155.33890.e7 10.1093/biomet/80.4.807 10.1093/biostatistics/1.2.123 10.1080/01621459.1988.10478722 10.1016/j.eururo.2016.08.065 10.1097/EDE.0b013e3181c30fb2 10.1002/bimj.201400004 10.1002/sim.5643 10.1111/j.1541-0420.2005.00377.x 10.1002/sim.966 10.1093/biomet/asx071 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.8978 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 3498 |
ExternalDocumentID | PMC8985431 33843085 10_1002_sim_8978 SIM8978 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. National Institutes of Health funderid: CA059827; CA129102 – fundername: NCI NIH HHS grantid: P01 CA059827 – fundername: NCI NIH HHS grantid: R01 CA129102 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4388-e1a20d2145f3a29be88074dad75831d3ed1b2cc28eda35937000bafcf37e05df3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:06:59 EDT 2025 Thu Jul 10 18:11:47 EDT 2025 Sun Sep 07 05:40:49 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 03:28:16 EDT 2025 Wed Jan 22 16:28:53 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | multiple imputation augmented inverse probability weighting inverse probability weighting area under the ROC curve Brier score |
Language | English |
License | 2021 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4388-e1a20d2145f3a29be88074dad75831d3ed1b2cc28eda35937000bafcf37e05df3 |
Notes | Funding information U.S. National Institutes of Health, CA059827; CA129102 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6728-4720 0000-0003-4508-3762 |
OpenAccessLink | https://hdl.handle.net/2027.42/168241 |
PMID | 33843085 |
PQID | 2537096474 |
PQPubID | 48361 |
PageCount | 22 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8985431 proquest_miscellaneous_2511899454 proquest_journals_2537096474 pubmed_primary_33843085 crossref_citationtrail_10_1002_sim_8978 crossref_primary_10_1002_sim_8978 wiley_primary_10_1002_sim_8978_SIM8978 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 July 2021 |
PublicationDateYYYYMMDD | 2021-07-10 |
PublicationDate_xml | – month: 07 year: 2021 text: 10 July 2021 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 57 2009; 55 2010; 21 2005; 173 2017; 71 2013; 22 1967; 23 2002; 21 2006; 59 2020; 39 2019 2011; 30 1993; 80 1988; 83 2011; 67 2000; 1 2005; 61 2010; 63 2017; 105 2012; 31 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_10_1 e_1_2_8_21_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – volume: 105 start-page: 215 issue: 1 year: 2017 end-page: 220 article-title: On causal estimation using‐statistics publication-title: Biometrika – volume: 80 start-page: 807 issue: 4 year: 1993 end-page: 815 article-title: A geometric approach to assess bias due to omitted covariates in generalized linear models publication-title: Biometrika – volume: 22 start-page: 278 issue: 3 year: 2013 end-page: 295 article-title: Review of inverse probability weighting for dealing with missing data publication-title: Stat Methods Med Res – volume: 71 start-page: 705 issue: 5 year: 2017 end-page: 709 article-title: The CAPRA score at 10 years: contemporary perspectives and analysis of supporting studies publication-title: Eur Urol – volume: 1 start-page: 123 issue: 2 year: 2000 end-page: 140 article-title: Combining diagnostic test results to increase accuracy publication-title: Biostatistics – volume: 55 start-page: 994 issue: 5 year: 2009 end-page: 1001 article-title: Dealing with missing predictor values when applying clinical prediction models publication-title: Clin Chem – volume: 57 start-page: 614 issue: 4 year: 2015 end-page: 632 article-title: The estimation and use of predictions for the assessment of model performance using large samples with multiply imputed data publication-title: Biom J – volume: 67 start-page: 559 issue: 2 year: 2011 end-page: 567 article-title: Robust estimation of area under ROC curve using auxiliary variables in the presence of missing biomarker values publication-title: Biometrics – volume: 83 start-page: 1198 issue: 404 year: 1988 end-page: 1202 article-title: A test of missing completely at random for multivariate data with missing values publication-title: J Am Stat Assoc – volume: 63 start-page: 721 issue: 7 year: 2010 end-page: 727 article-title: Missing covariate data in medical research: to impute is better than to ignore publication-title: J Clin Epidemiol – volume: 39 start-page: 3591 issue: 25 year: 2020 end-page: 3607 article-title: Handling missing predictor values when validating and applying a prediction model to new patients publication-title: Stat Med – volume: 59 start-page: 1092 issue: 10 year: 2006 end-page: 1101 article-title: Using the outcome for imputation of missing predictor values was preferred publication-title: J Clin Epidemiol – volume: 31 start-page: 4382 issue: 30 year: 2012 end-page: 4400 article-title: Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder publication-title: Stat Med – volume: 61 start-page: 962 issue: 4 year: 2005 end-page: 973 article-title: Doubly robust estimation in missing data and causal inference models publication-title: Biometrics – volume: 173 start-page: 1938 issue: 6 year: 2005 end-page: 1942 article-title: The University of California, san Francisco Cancer of the prostate risk assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy publication-title: J Urol – volume: 21 start-page: 128 issue: 1 year: 2010 article-title: Assessing the performance of prediction models: a framework for some traditional and novel measures publication-title: Epidemiology – year: 2019 – volume: 21 start-page: 561 issue: 4 year: 2002 end-page: 570 article-title: Prospective prediction in the presence of missing data publication-title: Stat Med – volume: 30 start-page: 377 issue: 4 year: 2011 end-page: 399 article-title: Multiple imputation using chained equations: issues and guidance for practice publication-title: Stat Med – volume: 23 start-page: 313 year: 1967 end-page: 323 article-title: A general maximum likelihood discriminant publication-title: Biometrics – ident: e_1_2_8_6_1 doi: 10.1177/0962280210395740 – ident: e_1_2_8_11_1 doi: 10.1002/sim.4067 – ident: e_1_2_8_18_1 doi: 10.1373/clinchem.2008.115345 – ident: e_1_2_8_3_1 doi: 10.1002/9781119482260 – ident: e_1_2_8_10_1 doi: 10.1016/j.jclinepi.2006.01.009 – ident: e_1_2_8_19_1 doi: 10.1002/sim.8682 – ident: e_1_2_8_5_1 doi: 10.1016/j.jclinepi.2009.12.008 – ident: e_1_2_8_12_1 doi: 10.1111/j.1541-0420.2010.01487.x – ident: e_1_2_8_20_1 doi: 10.2307/2528164 – ident: e_1_2_8_14_1 doi: 10.1097/01.ju.0000158155.33890.e7 – ident: e_1_2_8_13_1 doi: 10.1093/biomet/80.4.807 – ident: e_1_2_8_21_1 doi: 10.1093/biostatistics/1.2.123 – ident: e_1_2_8_16_1 doi: 10.1080/01621459.1988.10478722 – ident: e_1_2_8_15_1 doi: 10.1016/j.eururo.2016.08.065 – ident: e_1_2_8_2_1 doi: 10.1097/EDE.0b013e3181c30fb2 – ident: e_1_2_8_4_1 doi: 10.1002/bimj.201400004 – ident: e_1_2_8_8_1 doi: 10.1002/sim.5643 – ident: e_1_2_8_9_1 doi: 10.1111/j.1541-0420.2005.00377.x – ident: e_1_2_8_17_1 doi: 10.1002/sim.966 – ident: e_1_2_8_7_1 doi: 10.1093/biomet/asx071 |
SSID | ssj0011527 |
Score | 2.366039 |
Snippet | In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3477 |
SubjectTerms | area under the ROC curve augmented inverse probability weighting Brier score Computer Simulation Data Interpretation, Statistical Humans inverse probability weighting Male Missing data multiple imputation Probability Prostate cancer ROC Curve |
Title | Evaluation of predictive model performance of an existing model in the presence of missing data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8978 https://www.ncbi.nlm.nih.gov/pubmed/33843085 https://www.proquest.com/docview/2537096474 https://www.proquest.com/docview/2511899454 https://pubmed.ncbi.nlm.nih.gov/PMC8985431 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHqAdUCfHY8tjSIldCcMo28SOPI6KtSqXlQKlUiUPkp1gB2VV399Jfz0ycpCwFqeopB483jnfGHtsznwHeBh2CtUYmaWp4gvOtTCrnbFJYpRyu5LjIKXd4-jk_vZBnl-qyi6qkXJjIhxg23Mgy2vGaDFyb5eENNHQ5-zUpcQ2Ew28mcsLmH30ZyFFZf1srnVDmRaZ67mzKD_uKmzPRLffydpTkn95rO_2cPIFvfcNj1MmPyXplJvb6L6bj_b7sKTzuvFL2IarRM3jgmxE8nHbn7iN4FHf3WExaGsE2-agR8bwD9fFADGfzwBZXVI1GUdZes8MWN7kJVK4bRvhNCrfuBGYNQzeUKi59J4TaR5sYjAJYn8PFyfHXj6dJd29DYqVAw_OZ5qkjBHoQmlfGl0Tccdrh2kRkTniXGW4tL73TQqF_hMOy0cEGUfhUuSBewFYzb_wrYEqovODBeJxCJdHKZCjJCbPoleaoY2N43_-Hte2g5nS3xs864ph5jZ1ZU2eO4WCQXESQxz9k9no1qDtTXtZcYQMpX1fiTwzF2A10sqIbP1-TDK7TqkoqlHkZtWZ4iRClFOjYjqHY0KdBgADfmyXN7HsL-i6rklAFY3jXqst_212ff5rSc_eugq9hm1NsDgFC0z3YWl2t_T46VyvzpjWj31pyI18 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVoJKqIXwChRYJAQnp_Y-_FBPCFql0PQArdQD0sreh4gAJ2qSC7-eGa_tEgoS4uTDzsbrzczuN7Mz3wK89KX3xlQyiuOKR7jfyqiw1kSZUcqiJ8dFSrXDk9N0fC7fX6iLDTjoamECP0QfcCPLaNZrMnAKSO9fsYYupt9HOTpBN2BLIs4gz-vdx547Kunua6UzyjRLVMc8G_P9ruf6XnQNYF7Pk_wVvzYb0NEufO6GHvJOvo5Wy2pkfvzG6vif33YHdlpgyt4ETboLG64ewM1Je_Q-gNshwMdC3dIAtgmmBpbne6APe9JwNvNsfkndaCFlzU07bH5VnkDtZc2IgZMyrluBac0QiVLHhWuFUAEpjsEoh_U-nB8dnr0dR-3VDZGRAm3PJSWPLbGge1HyonI5ke7Y0qJ7IhIrnE0qbgzPnS2FQoiEK3NVeuNF5mJlvXgAm_Wsdo-AKaHSjPvK4S4qibBM-pxwmEFgmqKaDeF19ydq0_Ka0_Ua33RgZOYaJ1PTZA7hRS85D1wef5DZ6_RAt9a80FzhAKlkV-JP9M04DXS4UtZutiIZdNWKQiqUeRjUpn-JELkUiG2HkK0pVC9AHN_rLfX0S8P1nRc5sRUM4VWjL38dt_50PKHn438VfA63xmeTE31yfPrhCWxzStUhvtB4DzaXlyv3FLHWsnrW2NRPd34nfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkKZJ04DCWGGAkRA8pUv8kY9HtK3agE4ImDSJByvxh6gGabW2L_z13MVJRhlIiKc8-Nw47p39O_vudwAvfem9MZWM4rjiEe63MiqsNVFmlLLoyXGRUu7w5Cw9OZdvL9RFG1VJuTCBH6I_cCPLaNZrMvC59QfXpKGL6fdRjj7QbbgjUwQSBIg-9tRRSVeula4o0yxRHfFszA-6nutb0Q18eTNM8lf42uw_47vwpRt5CDu5HK2W1cj8-I3U8f8-7R7stLCUvQl6dB9uuXoAm5P24n0A2-F4j4WspQFsEUgNHM8PQB_3lOFs5tn8irrRMsqaOjtsfp2cQO1lzYh_k-KtW4FpzRCHUseFa4VQ_egUg1EE60M4Hx9_PjyJ2sINkZECLc8lJY8tcaB7UfKicjlR7tjSonMiEiucTSpuDM-dLYVCgITrclV640XmYmW92IWNela7PWBKqDTjvnK4h0qiK5M-JxRmEJamqGRDeN39h9q0rOZUXOObDnzMXONkaprMIbzoJeeByeMPMvudGujWlheaKxwgJexK_Im-GaeBrlbK2s1WJIOOWlFIhTKPgtb0LxEilwKR7RCyNX3qBYjhe72lnn5tmL7zIieugiG8atTlr-PWn04n9Hz8r4LPYfPD0Vi_Pz179wS2OMXpEFlovA8by6uVe4pAa1k9ayzqJ-6TJi0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+predictive+model+performance+of+an+existing+model+in+the+presence+of+missing+data&rft.jtitle=Statistics+in+medicine&rft.au=Li%2C+Pin&rft.au=Taylor%2C+Jeremy+M.G.&rft.au=Spratt%2C+Daniel&rft.au=Karnes%2C+R.+Jeffery&rft.date=2021-07-10&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=15&rft.spage=3477&rft.epage=3498&rft_id=info:doi/10.1002%2Fsim.8978&rft_id=info%3Apmid%2F33843085&rft.externalDocID=PMC8985431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |