Evaluation of predictive model performance of an existing model in the presence of missing data

In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of a...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 40; no. 15; pp. 3477 - 3498
Main Authors Li, Pin, Taylor, Jeremy M. G., Spratt, Daniel E., Karnes, R. Jeffery, Schipper, Matthew J.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 10.07.2021
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.8978

Cover

Abstract In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss‐specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer.
AbstractList In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss‐specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer.
In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR) scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss-specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer.
In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss-specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer.In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate prediction models of a binary outcome, such as using biomarkers to predict the risk of developing a disease in the future. The assessment of an existing prediction models using data with missing covariate values is challenging. In this article, we propose inverse probability weighted (IPW) and augmented inverse probability weighted (AIPW) estimates of AUC and BS to handle the missing data. An alternative approach uses multiple imputation (MI), which requires a model for the distribution of the missing variable. We evaluated the performance of IPW and AIPW in comparison with MI in simulation studies under missing completely at random, missing at random, and missing not at random scenarios. When there are missing observations in the data, MI and IPW can be used to obtain unbiased estimates of BS and AUC if the imputation model for the missing variable or the model for the missingness is correctly specified. MI is more efficient than IPW. Our simulation results suggest that AIPW can be more efficient than IPW, and also achieves double robustness from miss-specification of either the missingness model or the imputation model. The outcome variable should be included in the model for the missing variable under all scenarios, while it only needs to be included in missingness model if the missingness depends on the outcome. We illustrate these methods using an example from prostate cancer.
Author Spratt, Daniel E.
Schipper, Matthew J.
Taylor, Jeremy M. G.
Karnes, R. Jeffery
Li, Pin
AuthorAffiliation 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
2 Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
3 Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
AuthorAffiliation_xml – name: 1 Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
– name: 3 Department of Urology, Mayo Clinic, Rochester, MN 55905, USA
– name: 2 Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
Author_xml – sequence: 1
  givenname: Pin
  orcidid: 0000-0003-4508-3762
  surname: Li
  fullname: Li, Pin
  email: pinli@umich.edu
  organization: University of Michigan
– sequence: 2
  givenname: Jeremy M. G.
  surname: Taylor
  fullname: Taylor, Jeremy M. G.
  organization: University of Michigan
– sequence: 3
  givenname: Daniel E.
  surname: Spratt
  fullname: Spratt, Daniel E.
  organization: University of Michigan
– sequence: 4
  givenname: R. Jeffery
  surname: Karnes
  fullname: Karnes, R. Jeffery
  organization: Mayo Clinic
– sequence: 5
  givenname: Matthew J.
  orcidid: 0000-0001-6728-4720
  surname: Schipper
  fullname: Schipper, Matthew J.
  organization: University of Michigan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33843085$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1OGzEURq2KqoRQqU9QjcSmm0n9M8aeTSUUAY0EYtGythz7DhjN2MGeCfD29ZCQFlRWXtxzP53r7wDt-eABoS8EzwjG9Hty3UzWQn5AE4JrUWLK5R6aYCpEeSwI30cHKd1hTAin4hPaZ0xWDEs-Qep0rdtB9y74IjTFKoJ1pndrKLpgoS1WEJsQO-0NjHPtC3h0qXf-Zgs4X_S3MC4m2EKdS2kErO71IfrY6DbB5-07Rddnp7_nP8uLq_PF_OSiNBWTsgSiKbaUVLxhmtZLkBKLymoruGTEMrBkSY2hEqxmvGYCY7zUjWmYAMxtw6boxyZ3NSw7sAZ8H3WrVtF1Oj6poJ16PfHuVt2EtZK15BUjOeDbNiCG-wFSr_IZBtpWewhDUpQTIuu6yvAUHb1B78IQfT4vU1mtPq7ESH3912in8vL3GZhtABNDShEaZVz_3EQWdK0iWI3lqlyuGsv9q7hbeMn8D1pu0AfXwtO7nPq1uHzm_wCImbRV
CitedBy_id crossref_primary_10_1097_JS9_0000000000000966
crossref_primary_10_1016_j_jspi_2023_106130
crossref_primary_10_1007_s10238_025_01590_6
Cites_doi 10.1177/0962280210395740
10.1002/sim.4067
10.1373/clinchem.2008.115345
10.1002/9781119482260
10.1016/j.jclinepi.2006.01.009
10.1002/sim.8682
10.1016/j.jclinepi.2009.12.008
10.1111/j.1541-0420.2010.01487.x
10.2307/2528164
10.1097/01.ju.0000158155.33890.e7
10.1093/biomet/80.4.807
10.1093/biostatistics/1.2.123
10.1080/01621459.1988.10478722
10.1016/j.eururo.2016.08.065
10.1097/EDE.0b013e3181c30fb2
10.1002/bimj.201400004
10.1002/sim.5643
10.1111/j.1541-0420.2005.00377.x
10.1002/sim.966
10.1093/biomet/asx071
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.8978
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3498
ExternalDocumentID PMC8985431
33843085
10_1002_sim_8978
SIM8978
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. National Institutes of Health
  funderid: CA059827; CA129102
– fundername: NCI NIH HHS
  grantid: P01 CA059827
– fundername: NCI NIH HHS
  grantid: R01 CA129102
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4388-e1a20d2145f3a29be88074dad75831d3ed1b2cc28eda35937000bafcf37e05df3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:06:59 EDT 2025
Thu Jul 10 18:11:47 EDT 2025
Sun Sep 07 05:40:49 EDT 2025
Mon Jul 21 05:59:04 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 03:28:16 EDT 2025
Wed Jan 22 16:28:53 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords multiple imputation
augmented inverse probability weighting
inverse probability weighting
area under the ROC curve
Brier score
Language English
License 2021 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4388-e1a20d2145f3a29be88074dad75831d3ed1b2cc28eda35937000bafcf37e05df3
Notes Funding information
U.S. National Institutes of Health, CA059827; CA129102
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6728-4720
0000-0003-4508-3762
OpenAccessLink https://hdl.handle.net/2027.42/168241
PMID 33843085
PQID 2537096474
PQPubID 48361
PageCount 22
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8985431
proquest_miscellaneous_2511899454
proquest_journals_2537096474
pubmed_primary_33843085
crossref_citationtrail_10_1002_sim_8978
crossref_primary_10_1002_sim_8978
wiley_primary_10_1002_sim_8978_SIM8978
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 July 2021
PublicationDateYYYYMMDD 2021-07-10
PublicationDate_xml – month: 07
  year: 2021
  text: 10 July 2021
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 57
2009; 55
2010; 21
2005; 173
2017; 71
2013; 22
1967; 23
2002; 21
2006; 59
2020; 39
2019
2011; 30
1993; 80
1988; 83
2011; 67
2000; 1
2005; 61
2010; 63
2017; 105
2012; 31
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_10_1
e_1_2_8_21_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 105
  start-page: 215
  issue: 1
  year: 2017
  end-page: 220
  article-title: On causal estimation using‐statistics
  publication-title: Biometrika
– volume: 80
  start-page: 807
  issue: 4
  year: 1993
  end-page: 815
  article-title: A geometric approach to assess bias due to omitted covariates in generalized linear models
  publication-title: Biometrika
– volume: 22
  start-page: 278
  issue: 3
  year: 2013
  end-page: 295
  article-title: Review of inverse probability weighting for dealing with missing data
  publication-title: Stat Methods Med Res
– volume: 71
  start-page: 705
  issue: 5
  year: 2017
  end-page: 709
  article-title: The CAPRA score at 10 years: contemporary perspectives and analysis of supporting studies
  publication-title: Eur Urol
– volume: 1
  start-page: 123
  issue: 2
  year: 2000
  end-page: 140
  article-title: Combining diagnostic test results to increase accuracy
  publication-title: Biostatistics
– volume: 55
  start-page: 994
  issue: 5
  year: 2009
  end-page: 1001
  article-title: Dealing with missing predictor values when applying clinical prediction models
  publication-title: Clin Chem
– volume: 57
  start-page: 614
  issue: 4
  year: 2015
  end-page: 632
  article-title: The estimation and use of predictions for the assessment of model performance using large samples with multiply imputed data
  publication-title: Biom J
– volume: 67
  start-page: 559
  issue: 2
  year: 2011
  end-page: 567
  article-title: Robust estimation of area under ROC curve using auxiliary variables in the presence of missing biomarker values
  publication-title: Biometrics
– volume: 83
  start-page: 1198
  issue: 404
  year: 1988
  end-page: 1202
  article-title: A test of missing completely at random for multivariate data with missing values
  publication-title: J Am Stat Assoc
– volume: 63
  start-page: 721
  issue: 7
  year: 2010
  end-page: 727
  article-title: Missing covariate data in medical research: to impute is better than to ignore
  publication-title: J Clin Epidemiol
– volume: 39
  start-page: 3591
  issue: 25
  year: 2020
  end-page: 3607
  article-title: Handling missing predictor values when validating and applying a prediction model to new patients
  publication-title: Stat Med
– volume: 59
  start-page: 1092
  issue: 10
  year: 2006
  end-page: 1101
  article-title: Using the outcome for imputation of missing predictor values was preferred
  publication-title: J Clin Epidemiol
– volume: 31
  start-page: 4382
  issue: 30
  year: 2012
  end-page: 4400
  article-title: Doubly robust estimators of causal exposure effects with missing data in the outcome, exposure or a confounder
  publication-title: Stat Med
– volume: 61
  start-page: 962
  issue: 4
  year: 2005
  end-page: 973
  article-title: Doubly robust estimation in missing data and causal inference models
  publication-title: Biometrics
– volume: 173
  start-page: 1938
  issue: 6
  year: 2005
  end-page: 1942
  article-title: The University of California, san Francisco Cancer of the prostate risk assessment score: a straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy
  publication-title: J Urol
– volume: 21
  start-page: 128
  issue: 1
  year: 2010
  article-title: Assessing the performance of prediction models: a framework for some traditional and novel measures
  publication-title: Epidemiology
– year: 2019
– volume: 21
  start-page: 561
  issue: 4
  year: 2002
  end-page: 570
  article-title: Prospective prediction in the presence of missing data
  publication-title: Stat Med
– volume: 30
  start-page: 377
  issue: 4
  year: 2011
  end-page: 399
  article-title: Multiple imputation using chained equations: issues and guidance for practice
  publication-title: Stat Med
– volume: 23
  start-page: 313
  year: 1967
  end-page: 323
  article-title: A general maximum likelihood discriminant
  publication-title: Biometrics
– ident: e_1_2_8_6_1
  doi: 10.1177/0962280210395740
– ident: e_1_2_8_11_1
  doi: 10.1002/sim.4067
– ident: e_1_2_8_18_1
  doi: 10.1373/clinchem.2008.115345
– ident: e_1_2_8_3_1
  doi: 10.1002/9781119482260
– ident: e_1_2_8_10_1
  doi: 10.1016/j.jclinepi.2006.01.009
– ident: e_1_2_8_19_1
  doi: 10.1002/sim.8682
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jclinepi.2009.12.008
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1541-0420.2010.01487.x
– ident: e_1_2_8_20_1
  doi: 10.2307/2528164
– ident: e_1_2_8_14_1
  doi: 10.1097/01.ju.0000158155.33890.e7
– ident: e_1_2_8_13_1
  doi: 10.1093/biomet/80.4.807
– ident: e_1_2_8_21_1
  doi: 10.1093/biostatistics/1.2.123
– ident: e_1_2_8_16_1
  doi: 10.1080/01621459.1988.10478722
– ident: e_1_2_8_15_1
  doi: 10.1016/j.eururo.2016.08.065
– ident: e_1_2_8_2_1
  doi: 10.1097/EDE.0b013e3181c30fb2
– ident: e_1_2_8_4_1
  doi: 10.1002/bimj.201400004
– ident: e_1_2_8_8_1
  doi: 10.1002/sim.5643
– ident: e_1_2_8_9_1
  doi: 10.1111/j.1541-0420.2005.00377.x
– ident: e_1_2_8_17_1
  doi: 10.1002/sim.966
– ident: e_1_2_8_7_1
  doi: 10.1093/biomet/asx071
SSID ssj0011527
Score 2.366039
Snippet In medical research, the Brier score (BS) and the area under the receiver operating characteristic (ROC) curves (AUC) are two common metrics used to evaluate...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3477
SubjectTerms area under the ROC curve
augmented inverse probability weighting
Brier score
Computer Simulation
Data Interpretation, Statistical
Humans
inverse probability weighting
Male
Missing data
multiple imputation
Probability
Prostate cancer
ROC Curve
Title Evaluation of predictive model performance of an existing model in the presence of missing data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8978
https://www.ncbi.nlm.nih.gov/pubmed/33843085
https://www.proquest.com/docview/2537096474
https://www.proquest.com/docview/2511899454
https://pubmed.ncbi.nlm.nih.gov/PMC8985431
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHqAdUCfHY8tjSIldCcMo28SOPI6KtSqXlQKlUiUPkp1gB2VV399Jfz0ycpCwFqeopB483jnfGHtsznwHeBh2CtUYmaWp4gvOtTCrnbFJYpRyu5LjIKXd4-jk_vZBnl-qyi6qkXJjIhxg23Mgy2vGaDFyb5eENNHQ5-zUpcQ2Ew28mcsLmH30ZyFFZf1srnVDmRaZ67mzKD_uKmzPRLffydpTkn95rO_2cPIFvfcNj1MmPyXplJvb6L6bj_b7sKTzuvFL2IarRM3jgmxE8nHbn7iN4FHf3WExaGsE2-agR8bwD9fFADGfzwBZXVI1GUdZes8MWN7kJVK4bRvhNCrfuBGYNQzeUKi59J4TaR5sYjAJYn8PFyfHXj6dJd29DYqVAw_OZ5qkjBHoQmlfGl0Tccdrh2kRkTniXGW4tL73TQqF_hMOy0cEGUfhUuSBewFYzb_wrYEqovODBeJxCJdHKZCjJCbPoleaoY2N43_-Hte2g5nS3xs864ph5jZ1ZU2eO4WCQXESQxz9k9no1qDtTXtZcYQMpX1fiTwzF2A10sqIbP1-TDK7TqkoqlHkZtWZ4iRClFOjYjqHY0KdBgADfmyXN7HsL-i6rklAFY3jXqst_212ff5rSc_eugq9hm1NsDgFC0z3YWl2t_T46VyvzpjWj31pyI18
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVoJKqIXwChRYJAQnp_Y-_FBPCFql0PQArdQD0sreh4gAJ2qSC7-eGa_tEgoS4uTDzsbrzczuN7Mz3wK89KX3xlQyiuOKR7jfyqiw1kSZUcqiJ8dFSrXDk9N0fC7fX6iLDTjoamECP0QfcCPLaNZrMnAKSO9fsYYupt9HOTpBN2BLIs4gz-vdx547Kunua6UzyjRLVMc8G_P9ruf6XnQNYF7Pk_wVvzYb0NEufO6GHvJOvo5Wy2pkfvzG6vif33YHdlpgyt4ETboLG64ewM1Je_Q-gNshwMdC3dIAtgmmBpbne6APe9JwNvNsfkndaCFlzU07bH5VnkDtZc2IgZMyrluBac0QiVLHhWuFUAEpjsEoh_U-nB8dnr0dR-3VDZGRAm3PJSWPLbGge1HyonI5ke7Y0qJ7IhIrnE0qbgzPnS2FQoiEK3NVeuNF5mJlvXgAm_Wsdo-AKaHSjPvK4S4qibBM-pxwmEFgmqKaDeF19ydq0_Ka0_Ua33RgZOYaJ1PTZA7hRS85D1wef5DZ6_RAt9a80FzhAKlkV-JP9M04DXS4UtZutiIZdNWKQiqUeRjUpn-JELkUiG2HkK0pVC9AHN_rLfX0S8P1nRc5sRUM4VWjL38dt_50PKHn438VfA63xmeTE31yfPrhCWxzStUhvtB4DzaXlyv3FLHWsnrW2NRPd34nfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BkKZJ04DCWGGAkRA8pUv8kY9HtK3agE4ImDSJByvxh6gGabW2L_z13MVJRhlIiKc8-Nw47p39O_vudwAvfem9MZWM4rjiEe63MiqsNVFmlLLoyXGRUu7w5Cw9OZdvL9RFG1VJuTCBH6I_cCPLaNZrMvC59QfXpKGL6fdRjj7QbbgjUwQSBIg-9tRRSVeula4o0yxRHfFszA-6nutb0Q18eTNM8lf42uw_47vwpRt5CDu5HK2W1cj8-I3U8f8-7R7stLCUvQl6dB9uuXoAm5P24n0A2-F4j4WspQFsEUgNHM8PQB_3lOFs5tn8irrRMsqaOjtsfp2cQO1lzYh_k-KtW4FpzRCHUseFa4VQ_egUg1EE60M4Hx9_PjyJ2sINkZECLc8lJY8tcaB7UfKicjlR7tjSonMiEiucTSpuDM-dLYVCgITrclV640XmYmW92IWNela7PWBKqDTjvnK4h0qiK5M-JxRmEJamqGRDeN39h9q0rOZUXOObDnzMXONkaprMIbzoJeeByeMPMvudGujWlheaKxwgJexK_Im-GaeBrlbK2s1WJIOOWlFIhTKPgtb0LxEilwKR7RCyNX3qBYjhe72lnn5tmL7zIieugiG8atTlr-PWn04n9Hz8r4LPYfPD0Vi_Pz179wS2OMXpEFlovA8by6uVe4pAa1k9ayzqJ-6TJi0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+predictive+model+performance+of+an+existing+model+in+the+presence+of+missing+data&rft.jtitle=Statistics+in+medicine&rft.au=Li%2C+Pin&rft.au=Taylor%2C+Jeremy+M.G.&rft.au=Spratt%2C+Daniel&rft.au=Karnes%2C+R.+Jeffery&rft.date=2021-07-10&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=15&rft.spage=3477&rft.epage=3498&rft_id=info:doi/10.1002%2Fsim.8978&rft_id=info%3Apmid%2F33843085&rft.externalDocID=PMC8985431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon