Split of spatial attention as predicted by a systems-level model of visual attention

Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & P...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 33; no. 11; pp. 2035 - 2045
Main Authors Zirnsak, Marc, Beuth, Frederik, Hamker, Fred H.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.06.2011
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/j.1460-9568.2011.07718.x

Cover

Loading…
Abstract Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403–423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade‐related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems‐level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection.
AbstractList Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403–423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade‐related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems‐level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection.
Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009) Journal of Vision , 9 , 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999) Perception & Psychophysics , 61, 403–423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade‐related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems‐level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection.
Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1-11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403-423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade-related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems-level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection.Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1-11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403-423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade-related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems-level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection.
Author Zirnsak, Marc
Hamker, Fred H.
Beuth, Frederik
Author_xml – sequence: 1
  givenname: Marc
  surname: Zirnsak
  fullname: Zirnsak, Marc
  organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
– sequence: 2
  givenname: Frederik
  surname: Beuth
  fullname: Beuth, Frederik
  organization: Department of Computer Science, Artificial Intelligence, Chemnitz University of Technology, Straße der Nationen 62, 09107 Chemnitz, Germany
– sequence: 3
  givenname: Fred H.
  surname: Hamker
  fullname: Hamker, Fred H.
  organization: Department of Computer Science, Artificial Intelligence, Chemnitz University of Technology, Straße der Nationen 62, 09107 Chemnitz, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21645099$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv1DAUhS1URKeFv4C8Y5X0Ok5iewESKm0BjaYLigaxuXISR_LgPIg9Zebf12HaCrFpvfD143zHuj4n5KgfekMIZZCyOM42KctLSFRRyjQDxlIQgsl094IsHi-OyAJUwRPJyh_H5MT7DQDIMi9ekeOMxQpKLcjNt9HZQIeW-lEHqx3VIZg-2KGn2tNxMo2tg2lotaea-r0PpvOJM7fG0W5o4hzRW-u3_5KvyctWO2_e3NdT8v3y4ub8c7K8vvpy_nGZ1DmXMsmaiulCNUUrFZQVr6BWWZ2JrKpKaeZtW0uZG5NzYbhuykKoPG80AIN4zvkpeXfwHafh99b4gJ31tXFO92bYelQMROw4Z08qpWAAWcFmz7f3ym3VmQbHyXZ62uPDl0XBh4OgngbvJ9NibYOe2w6Ttg4Z4JwRbnCOAucocM4I_2aEu2gg_zN4eOMZ6PsD-sc6s382hxdfV_Mq8smBtzHH3SOvp19YCi4KXK-ucHm5_rRe_lyh4HcPmLeH
CitedBy_id crossref_primary_10_1007_s00426_018_1018_3
crossref_primary_10_1016_j_neunet_2023_08_034
crossref_primary_10_1111_infa_12087
crossref_primary_10_1016_j_neunet_2016_05_001
crossref_primary_10_1167_jov_20_9_16
crossref_primary_10_1523_JNEUROSCI_0867_13_2014
crossref_primary_10_1016_j_visres_2015_04_004
crossref_primary_10_1523_JNEUROSCI_3407_11_2011
crossref_primary_10_1016_j_visres_2017_06_007
crossref_primary_10_3758_s13414_014_0645_z
crossref_primary_10_1016_j_tics_2014_10_002
crossref_primary_10_1016_j_visres_2021_08_009
crossref_primary_10_3758_s13414_021_02386_y
crossref_primary_10_1111_j_1460_9568_2011_07739_x
crossref_primary_10_3389_fnsys_2015_00135
crossref_primary_10_1016_j_neuron_2014_06_014
crossref_primary_10_3389_fncom_2014_00025
crossref_primary_10_3389_fninf_2015_00019
crossref_primary_10_1109_TAMD_2014_2332875
crossref_primary_10_1016_j_neunet_2021_07_008
crossref_primary_10_1027_1618_3169_a000182
Cites_doi 10.1523/JNEUROSCI.0974-07.2007
10.1038/381697a0
10.1126/science.1109676
10.1016/S0896-6273(03)00237-X
10.1016/j.neunet.2005.06.015
10.1037/0096-1523.26.2.834
10.1093/cercor/bhh146
10.1016/0010-0285(80)90005-5
10.1523/JNEUROSCI.2376-06.2006
10.1152/jn.00015.2006
10.1523/JNEUROSCI.22-11-04675.2002
10.1016/j.neuropsychologia.2004.12.003
10.1523/JNEUROSCI.3710-09.2009
10.1016/j.biosystems.2006.03.010
10.1073/pnas.0408311101
10.1111/j.1467-9280.1995.tb00530.x
10.1016/0004-3702(95)00025-9
10.1073/pnas.0907658106
10.1073/pnas.0403507101
10.1038/nature01812
10.1152/jn.00750.2009
10.1167/3.11.14
10.1038/35058500
10.1016/j.neunet.2003.08.006
10.1152/jn.00270.2009
10.1167/9.5.3
10.1016/j.cviu.2004.09.005
10.1037/a0019082
10.1038/nature01341
10.1371/journal.pcbi.0040031
10.3758/BF03200774
10.1523/JNEUROSCI.14-04-02178.1994
10.1016/S0896-6273(00)81206-4
10.1523/JNEUROSCI.0741-05.2005
10.1016/j.visres.2003.09.033
10.1016/j.neucom.2003.09.006
10.1523/JNEUROSCI.19-01-00431.1999
10.1016/0028-3932(87)90041-8
10.1016/j.visres.2004.01.012
10.1073/pnas.98.3.1273
10.1152/jn.1987.58.6.1387
10.3758/BF03211962
10.1152/jn.1998.80.6.2918
10.1093/cercor/bhj156
10.1152/jn.01086.2002
10.3758/CABN.4.4.483
10.3389/neuro.05.002.2009
10.1162/089892902320474553
10.1016/S0042-6989(99)00163-7
ContentType Journal Article
Copyright 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Copyright_xml – notice: 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd
– notice: 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TK
DOI 10.1111/j.1460-9568.2011.07718.x
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Neurosciences Abstracts
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 2045
ExternalDocumentID 21645099
10_1111_j_1460_9568_2011_07718_x
EJN7718
ark_67375_WNG_LFWDWLZN_7
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7TK
ID FETCH-LOGICAL-c4388-2db1a59d5f8906b3b0c92c272bb68e3b0cfc884ee437e3ad657944da001088433
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Fri Jul 11 03:29:35 EDT 2025
Fri Jul 11 04:24:43 EDT 2025
Thu Apr 03 06:57:06 EDT 2025
Thu Apr 24 23:08:18 EDT 2025
Tue Jul 01 04:00:30 EDT 2025
Wed Jan 22 16:59:18 EST 2025
Wed Oct 30 09:48:08 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4388-2db1a59d5f8906b3b0c92c272bb68e3b0cfc884ee437e3ad657944da001088433
Notes ArticleID:EJN7718
istex:AA5AE0F5774AA7387B45C6EA604640BFF465DA10
ark:/67375/WNG-LFWDWLZN-7
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 21645099
PQID 871002513
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_910786441
proquest_miscellaneous_871002513
pubmed_primary_21645099
crossref_citationtrail_10_1111_j_1460_9568_2011_07718_x
crossref_primary_10_1111_j_1460_9568_2011_07718_x
wiley_primary_10_1111_j_1460_9568_2011_07718_x_EJN7718
istex_primary_ark_67375_WNG_LFWDWLZN_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-06
June 2011
2011-06-00
2011-Jun
20110601
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: 2011-06
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: France
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2011
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Hamker, F.H. (2004a) A dynamic model of how feature cues guide spatial attention. Vision Res., 44, 501-521.
Hamker, F.H. (2004b) Predictions of a model of spatial attention using sum- and max-pooling functions. Neurocomputing, 56C, 329-343.
Bichot, N.P., Rossi, A.F. & Desimone, R. (2005) Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308, 529-534.
Moore, T. & Armstrong, K.M. (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370-373.
Cavanaugh, J., Alvarez, B.D. & Wurtz, R.H. (2006) Enhanced performance with brain stimulation: attentional shift or visual cue? J. Neurosci., 26, 11347-11358.
Bichot, N.P., Schall, J.D. & Thompson, K.G. (1996) Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature, 381, 697-699.
Heinzle, J., Hepp, K. & Martin, K.A. (2007) A microcircuit model of the frontal eye fields. J. Neurosci., 27, 9341-9353.
Hamker, F.H., Zirnsak, M., Calow, D. & Lappe, M. (2008) The peri-saccadic perception of objects and space. PLoS Comput. Biol., 4, e31.
Grosbras, M.H. & Paus, T. (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J. Cogn. Neurosci., 14, 1109-1120.
McAdams, C.J. & Maunsell, J.H. (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci., 19, 431-441.
Itti, L. & Koch, C. (2001) Computational modelling of visual attention. Nat. Rev. Neurosci., 2, 194-203.
Itti, L. & Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res., 40, 1489-1506.
Tsotsos, J.K., Culhane, S.M., Wai, W., Lai, Y., Davis, N. & Nuflo, F. (1995) Modeling visual attention via selective tuning. Artif. Intell., 78, 507-545.
Moore, T. & Fallah, M. (2001) Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. USA, 98, 1273-1276.
Taylor, P.C., Nobre, A.C. & Rushworth, M.F. (2007) FEF TMS affects visual cortical activity. Cereb. Cortex, 17, 391-399.
Chelazzi, L., Duncan, J., Miller, E.K. & Desimone, R. (1998) Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol., 80, 2918-2940.
Pouget, P., Stepniewska, I., Crowder, E.A., Leslie, M.W., Emeric, E.E., Nelson, M.J. & Schall, J.D. (2009) Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection. Front. Neuroanat., 3, 2.
Silvanto, J., Lavie, N. & Walsh, V. (2006) Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol., 96, 941-945.
Jans, B., Peters, J.C. & De Weerd, P. (2010) Visual spatial attention to multiple locations at once: the jury is still out. Psychol. Rev., 117, 637-684.
Monosov, I.E. & Thompson, K.G. (2009) Frontal eye field activity enhances object identification during covert visual search. J. Neurophysiol., 120, 3656-3672.
Burrows, B.E. & Moore, T. (2009) Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J. Neurosci., 29, 15169-15177.
Treisman, A. & Gelade, G. (1980) A feature integration theory of attention. Cogn. Psychol., 12, 97-136.
Wolfe, J.M. (1994) Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev., 1, 202-238.
Bichot, N.P., Cave, K.R. & Pashler, H. (1999) Visual selection mediated by location: feature-based selection of non-contiguous locations. Percept. Psychophys., 61, 403-423.
Gobell, J.L., Tseng, C.H. & Sperling, G. (2004) The spatial distribution of visual attention. Vision Res., 44, 1273-1296.
Itti, L., Rees, G. & Tsotsos, J.K. (eds) (2005) Neurobiology of Attention. Elsevier/Academic Press, New York.
Motter, B.C. (1994) Neural correlates of attentive selection for color or luminance in extrastriate area V4. J. Neurosci., 14, 2178-2189.
Muggleton, N.G., Juan, C.H., Cowey, A. & Walsh, V. (2003) Human frontal eye fields and visual search. J. Neurophysiol., 89, 3340-3343.
Smith, D.T., Jackson, S.R. & Rorden, C. (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 43, 1288-1296.
Hamker, F.H. (2005a) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb. Cortex, 15, 431-447.
Thompson, K.G., Biscoe, K.L. & Sato, T.R. (2005) Neural basis of covert spatial attention in the frontal eye field. J. Neurosci., 25, 9479-9487.
Sato, T.R. & Schall, J.D. (2003) Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38, 637-648.
Awh, E. & Pashler, H. (2000) Evidence for split attentional foci. J. Exp. Psychol. Hum. Percept. Perform., 26, 834-846.
Hamker, F.H. (2006) Modeling feature-based attention as an active top-down inference process. BioSystems, 86, 91-99.
Kastner, S. & Pinsk, M.A. (2004) Visual attention as a multilevel selection process. Cogn. Affect. Behav. Neurosci., 4, 483-500.
Buffalo, E.A., Fries, P., Landman, R., Liang, H. & Desimone, R. (2010) A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. USA, 107, 361-365.
Muller, J.R., Philiastides, M.G. & Newsome, W.T. (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA, 102, 524-529.
Kramer, A.F. & Hahn, S. (1995) Splitting the beam: distribution of attention over noncontiguous regions of the visual field. Psychol. Sci., 6, 381-386.
Koch, C. & Ullman, S. (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Psychol., 4, 219-227.
Bichot, N.P. & Schall, J.D. (2002) Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. J. Neurosci., 22, 4675-4685.
Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31-40.
Hamker, F.H. (2005b) The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. Comput. Vis. Image Underst., 100, 64-106.
Ray, S., Pouget, P. & Schall, J.D. (2009) Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding. J. Neurophysiol., 102, 3091-3100.
Reynolds, J.H., Pasternal, T. & Desimone, R. (2000) Attention increases sensitivity of V4 neurons. Neuron, 26, 703-714.
Juan, C.H., Shorter-Jacobi, S.M. & Schall, J.D. (2004) Dissociation of spatial attention and saccade preparation. Proc. Natl. Acad. Sci. USA, 101, 15541-15544.
Standage, D.I., Trappenberg, T.P. & Klein, R.M. (2005) Modelling divided visual attention with a winner-take-all network. Neural Netw., 18, 620-627.
Brown, J.W., Bullock, D. & Grossberg, S. (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw., 17, 471-510.
Segraves, M.A. & Goldberg, M.E. (1987) Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol., 58, 1387-1419.
Hamker, F.H. (2003) The reentry hypothesis: linking eye movements to visual perception. J. Vis., 3, 808-816.
Dubois, J., Hamker, F.H. & VanRullen, R. (2009) Attentional selection of noncontiguous locations: the spotlight is only transiently 'split'. J. Vis., 9, 3.
Muller, M.M., Malinowski, P., Gruber, T. & Hillyard, S.A. (2003) Sustained division of the attentional spotlight. Nature, 424, 309-312.
2002; 14
2005a; 15
2010; 107
2004a; 44
1995; 78
2004; 4
1996; 381
1998; 80
2008; 4
2005; 25
1999; 19
2010; 117
2005; 102
2006; 26
2003; 3
2005; 308
2009; 120
2007; 27
2001; 98
2003; 89
2004; 101
2007; 17
2004; 44
1987; 58
2006; 96
2000; 26
1985; 4
2004b; 56C
2003; 38
2005; 43
2005
1999; 61
1995; 6
2009; 29
1987; 25
2006; 86
2003; 424
2004; 17
1980; 12
2002; 22
2000; 40
2009; 9
1994; 14
2009; 102
2005b; 100
2001; 2
2009; 3
1994; 1
2003; 421
2005; 18
e_1_2_6_51_1
e_1_2_6_32_1
e_1_2_6_30_1
Segraves M.A. (e_1_2_6_44_1) 1987; 58
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
Koch C. (e_1_2_6_29_1) 1985; 4
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_50_1
Itti L. (e_1_2_6_25_1) 2005
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_8_1
McAdams C.J. (e_1_2_6_31_1) 1999; 19
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – reference: Pouget, P., Stepniewska, I., Crowder, E.A., Leslie, M.W., Emeric, E.E., Nelson, M.J. & Schall, J.D. (2009) Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection. Front. Neuroanat., 3, 2.
– reference: Hamker, F.H. (2006) Modeling feature-based attention as an active top-down inference process. BioSystems, 86, 91-99.
– reference: Brown, J.W., Bullock, D. & Grossberg, S. (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw., 17, 471-510.
– reference: Silvanto, J., Lavie, N. & Walsh, V. (2006) Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol., 96, 941-945.
– reference: Dubois, J., Hamker, F.H. & VanRullen, R. (2009) Attentional selection of noncontiguous locations: the spotlight is only transiently 'split'. J. Vis., 9, 3.
– reference: Buffalo, E.A., Fries, P., Landman, R., Liang, H. & Desimone, R. (2010) A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. USA, 107, 361-365.
– reference: Muller, M.M., Malinowski, P., Gruber, T. & Hillyard, S.A. (2003) Sustained division of the attentional spotlight. Nature, 424, 309-312.
– reference: Hamker, F.H., Zirnsak, M., Calow, D. & Lappe, M. (2008) The peri-saccadic perception of objects and space. PLoS Comput. Biol., 4, e31.
– reference: Motter, B.C. (1994) Neural correlates of attentive selection for color or luminance in extrastriate area V4. J. Neurosci., 14, 2178-2189.
– reference: Juan, C.H., Shorter-Jacobi, S.M. & Schall, J.D. (2004) Dissociation of spatial attention and saccade preparation. Proc. Natl. Acad. Sci. USA, 101, 15541-15544.
– reference: Reynolds, J.H., Pasternal, T. & Desimone, R. (2000) Attention increases sensitivity of V4 neurons. Neuron, 26, 703-714.
– reference: Itti, L. & Koch, C. (2001) Computational modelling of visual attention. Nat. Rev. Neurosci., 2, 194-203.
– reference: Ray, S., Pouget, P. & Schall, J.D. (2009) Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding. J. Neurophysiol., 102, 3091-3100.
– reference: Itti, L., Rees, G. & Tsotsos, J.K. (eds) (2005) Neurobiology of Attention. Elsevier/Academic Press, New York.
– reference: Segraves, M.A. & Goldberg, M.E. (1987) Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol., 58, 1387-1419.
– reference: Hamker, F.H. (2004b) Predictions of a model of spatial attention using sum- and max-pooling functions. Neurocomputing, 56C, 329-343.
– reference: Chelazzi, L., Duncan, J., Miller, E.K. & Desimone, R. (1998) Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol., 80, 2918-2940.
– reference: Bichot, N.P., Schall, J.D. & Thompson, K.G. (1996) Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature, 381, 697-699.
– reference: Muggleton, N.G., Juan, C.H., Cowey, A. & Walsh, V. (2003) Human frontal eye fields and visual search. J. Neurophysiol., 89, 3340-3343.
– reference: Hamker, F.H. (2005a) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb. Cortex, 15, 431-447.
– reference: Kastner, S. & Pinsk, M.A. (2004) Visual attention as a multilevel selection process. Cogn. Affect. Behav. Neurosci., 4, 483-500.
– reference: Taylor, P.C., Nobre, A.C. & Rushworth, M.F. (2007) FEF TMS affects visual cortical activity. Cereb. Cortex, 17, 391-399.
– reference: Grosbras, M.H. & Paus, T. (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J. Cogn. Neurosci., 14, 1109-1120.
– reference: Treisman, A. & Gelade, G. (1980) A feature integration theory of attention. Cogn. Psychol., 12, 97-136.
– reference: Smith, D.T., Jackson, S.R. & Rorden, C. (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 43, 1288-1296.
– reference: Wolfe, J.M. (1994) Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev., 1, 202-238.
– reference: Bichot, N.P., Cave, K.R. & Pashler, H. (1999) Visual selection mediated by location: feature-based selection of non-contiguous locations. Percept. Psychophys., 61, 403-423.
– reference: Moore, T. & Fallah, M. (2001) Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. USA, 98, 1273-1276.
– reference: Kramer, A.F. & Hahn, S. (1995) Splitting the beam: distribution of attention over noncontiguous regions of the visual field. Psychol. Sci., 6, 381-386.
– reference: McAdams, C.J. & Maunsell, J.H. (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci., 19, 431-441.
– reference: Heinzle, J., Hepp, K. & Martin, K.A. (2007) A microcircuit model of the frontal eye fields. J. Neurosci., 27, 9341-9353.
– reference: Hamker, F.H. (2004a) A dynamic model of how feature cues guide spatial attention. Vision Res., 44, 501-521.
– reference: Bichot, N.P., Rossi, A.F. & Desimone, R. (2005) Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308, 529-534.
– reference: Bichot, N.P. & Schall, J.D. (2002) Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. J. Neurosci., 22, 4675-4685.
– reference: Monosov, I.E. & Thompson, K.G. (2009) Frontal eye field activity enhances object identification during covert visual search. J. Neurophysiol., 120, 3656-3672.
– reference: Moore, T. & Armstrong, K.M. (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370-373.
– reference: Muller, J.R., Philiastides, M.G. & Newsome, W.T. (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA, 102, 524-529.
– reference: Tsotsos, J.K., Culhane, S.M., Wai, W., Lai, Y., Davis, N. & Nuflo, F. (1995) Modeling visual attention via selective tuning. Artif. Intell., 78, 507-545.
– reference: Thompson, K.G., Biscoe, K.L. & Sato, T.R. (2005) Neural basis of covert spatial attention in the frontal eye field. J. Neurosci., 25, 9479-9487.
– reference: Koch, C. & Ullman, S. (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Psychol., 4, 219-227.
– reference: Itti, L. & Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res., 40, 1489-1506.
– reference: Jans, B., Peters, J.C. & De Weerd, P. (2010) Visual spatial attention to multiple locations at once: the jury is still out. Psychol. Rev., 117, 637-684.
– reference: Sato, T.R. & Schall, J.D. (2003) Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38, 637-648.
– reference: Awh, E. & Pashler, H. (2000) Evidence for split attentional foci. J. Exp. Psychol. Hum. Percept. Perform., 26, 834-846.
– reference: Hamker, F.H. (2003) The reentry hypothesis: linking eye movements to visual perception. J. Vis., 3, 808-816.
– reference: Standage, D.I., Trappenberg, T.P. & Klein, R.M. (2005) Modelling divided visual attention with a winner-take-all network. Neural Netw., 18, 620-627.
– reference: Cavanaugh, J., Alvarez, B.D. & Wurtz, R.H. (2006) Enhanced performance with brain stimulation: attentional shift or visual cue? J. Neurosci., 26, 11347-11358.
– reference: Hamker, F.H. (2005b) The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. Comput. Vis. Image Underst., 100, 64-106.
– reference: Burrows, B.E. & Moore, T. (2009) Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J. Neurosci., 29, 15169-15177.
– reference: Gobell, J.L., Tseng, C.H. & Sperling, G. (2004) The spatial distribution of visual attention. Vision Res., 44, 1273-1296.
– reference: Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31-40.
– volume: 107
  start-page: 361
  year: 2010
  end-page: 365
  article-title: A backward progression of attentional effects in the ventral stream
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2005
– volume: 98
  start-page: 1273
  year: 2001
  end-page: 1276
  article-title: Control of eye movements and spatial attention
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 26
  start-page: 834
  year: 2000
  end-page: 846
  article-title: Evidence for split attentional foci
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
– volume: 25
  start-page: 31
  year: 1987
  end-page: 40
  article-title: Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention
  publication-title: Neuropsychologia
– volume: 17
  start-page: 391
  year: 2007
  end-page: 399
  article-title: FEF TMS affects visual cortical activity
  publication-title: Cereb. Cortex
– volume: 381
  start-page: 697
  year: 1996
  end-page: 699
  article-title: Visual feature selectivity in frontal eye fields induced by experience in mature macaques
  publication-title: Nature
– volume: 25
  start-page: 9479
  year: 2005
  end-page: 9487
  article-title: Neural basis of covert spatial attention in the frontal eye field
  publication-title: J. Neurosci.
– volume: 26
  start-page: 11347
  year: 2006
  end-page: 11358
  article-title: Enhanced performance with brain stimulation: attentional shift or visual cue?
  publication-title: J. Neurosci.
– volume: 56C
  start-page: 329
  year: 2004b
  end-page: 343
  article-title: Predictions of a model of spatial attention using sum‐ and max‐pooling functions
  publication-title: Neurocomputing
– volume: 44
  start-page: 501
  year: 2004a
  end-page: 521
  article-title: A dynamic model of how feature cues guide spatial attention
  publication-title: Vision Res.
– volume: 308
  start-page: 529
  year: 2005
  end-page: 534
  article-title: Parallel and serial neural mechanisms for visual search in macaque area V4
  publication-title: Science
– volume: 3
  start-page: 2
  year: 2009
  article-title: Visual and motor connectivity and the distribution of calcium‐binding proteins in macaque frontal eye field: implications for saccade target selection
  publication-title: Front. Neuroanat.
– volume: 44
  start-page: 1273
  year: 2004
  end-page: 1296
  article-title: The spatial distribution of visual attention
  publication-title: Vision Res.
– volume: 1
  start-page: 202
  year: 1994
  end-page: 238
  article-title: Guided search 2.0: a revised model of visual search
  publication-title: Psychon. Bull. Rev.
– volume: 421
  start-page: 370
  year: 2003
  end-page: 373
  article-title: Selective gating of visual signals by microstimulation of frontal cortex
  publication-title: Nature
– volume: 120
  start-page: 3656
  year: 2009
  end-page: 3672
  article-title: Frontal eye field activity enhances object identification during covert visual search
  publication-title: J. Neurophysiol.
– volume: 18
  start-page: 620
  year: 2005
  end-page: 627
  article-title: Modelling divided visual attention with a winner‐take‐all network
  publication-title: Neural Netw.
– volume: 117
  start-page: 637
  year: 2010
  end-page: 684
  article-title: Visual spatial attention to multiple locations at once: the jury is still out
  publication-title: Psychol. Rev.
– volume: 86
  start-page: 91
  year: 2006
  end-page: 99
  article-title: Modeling feature‐based attention as an active top‐down inference process
  publication-title: BioSystems
– volume: 43
  start-page: 1288
  year: 2005
  end-page: 1296
  article-title: Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues
  publication-title: Neuropsychologia
– volume: 38
  start-page: 637
  year: 2003
  end-page: 648
  article-title: Effects of stimulus‐response compatibility on neural selection in frontal eye field
  publication-title: Neuron
– volume: 6
  start-page: 381
  year: 1995
  end-page: 386
  article-title: Splitting the beam: distribution of attention over noncontiguous regions of the visual field
  publication-title: Psychol. Sci.
– volume: 40
  start-page: 1489
  year: 2000
  end-page: 1506
  article-title: A saliency‐based search mechanism for overt and covert shifts of visual attention
  publication-title: Vision Res.
– volume: 96
  start-page: 941
  year: 2006
  end-page: 945
  article-title: Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex
  publication-title: J. Neurophysiol.
– volume: 14
  start-page: 2178
  year: 1994
  end-page: 2189
  article-title: Neural correlates of attentive selection for color or luminance in extrastriate area V4
  publication-title: J. Neurosci.
– volume: 19
  start-page: 431
  year: 1999
  end-page: 441
  article-title: Effects of attention on orientation‐tuning functions of single neurons in macaque cortical area V4
  publication-title: J. Neurosci.
– volume: 100
  start-page: 64
  year: 2005b
  end-page: 106
  article-title: The emergence of attention by population‐based inference and its role in distributed processing and cognitive control of vision
  publication-title: Comput. Vis. Image Underst.
– volume: 101
  start-page: 15541
  year: 2004
  end-page: 15544
  article-title: Dissociation of spatial attention and saccade preparation
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: e31
  year: 2008
  article-title: The peri‐saccadic perception of objects and space
  publication-title: PLoS Comput. Biol.
– volume: 61
  start-page: 403
  year: 1999
  end-page: 423
  article-title: Visual selection mediated by location: feature‐based selection of non‐contiguous locations
  publication-title: Percept. Psychophys.
– volume: 29
  start-page: 15169
  year: 2009
  end-page: 15177
  article-title: Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons
  publication-title: J. Neurosci.
– volume: 15
  start-page: 431
  year: 2005a
  end-page: 447
  article-title: The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement
  publication-title: Cereb. Cortex
– volume: 80
  start-page: 2918
  year: 1998
  end-page: 2940
  article-title: Responses of neurons in inferior temporal cortex during memory‐guided visual search
  publication-title: J. Neurophysiol.
– volume: 58
  start-page: 1387
  year: 1987
  end-page: 1419
  article-title: Functional properties of corticotectal neurons in the monkey’s frontal eye field
  publication-title: J. Neurophysiol.
– volume: 14
  start-page: 1109
  year: 2002
  end-page: 1120
  article-title: Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention
  publication-title: J. Cogn. Neurosci.
– volume: 4
  start-page: 483
  year: 2004
  end-page: 500
  article-title: Visual attention as a multilevel selection process
  publication-title: Cogn. Affect. Behav. Neurosci.
– volume: 26
  start-page: 703
  year: 2000
  end-page: 714
  article-title: Attention increases sensitivity of V4 neurons
  publication-title: Neuron
– volume: 102
  start-page: 3091
  year: 2009
  end-page: 3100
  article-title: Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding
  publication-title: J. Neurophysiol.
– volume: 4
  start-page: 219
  year: 1985
  end-page: 227
  article-title: Shifts in selective visual attention: towards the underlying neural circuitry
  publication-title: Hum. Psychol.
– volume: 424
  start-page: 309
  year: 2003
  end-page: 312
  article-title: Sustained division of the attentional spotlight
  publication-title: Nature
– volume: 22
  start-page: 4675
  year: 2002
  end-page: 4685
  article-title: Priming in macaque frontal cortex during popout visual search: feature‐based facilitation and location‐based inhibition of return
  publication-title: J. Neurosci.
– volume: 9
  start-page: 3
  year: 2009
  article-title: Attentional selection of noncontiguous locations: the spotlight is only transiently ‘split’
  publication-title: J. Vis.
– volume: 89
  start-page: 3340
  year: 2003
  end-page: 3343
  article-title: Human frontal eye fields and visual search
  publication-title: J. Neurophysiol.
– volume: 102
  start-page: 524
  year: 2005
  end-page: 529
  article-title: Microstimulation of the superior colliculus focuses attention without moving the eyes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 27
  start-page: 9341
  year: 2007
  end-page: 9353
  article-title: A microcircuit model of the frontal eye fields
  publication-title: J. Neurosci.
– volume: 3
  start-page: 808
  year: 2003
  end-page: 816
  article-title: The reentry hypothesis: linking eye movements to visual perception
  publication-title: J. Vis.
– volume: 12
  start-page: 97
  year: 1980
  end-page: 136
  article-title: A feature integration theory of attention
  publication-title: Cogn. Psychol.
– volume: 78
  start-page: 507
  year: 1995
  end-page: 545
  article-title: Modeling visual attention via selective tuning
  publication-title: Artif. Intell.
– volume: 2
  start-page: 194
  year: 2001
  end-page: 203
  article-title: Computational modelling of visual attention
  publication-title: Nat. Rev. Neurosci.
– volume: 17
  start-page: 471
  year: 2004
  end-page: 510
  article-title: How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades
  publication-title: Neural Netw.
– ident: e_1_2_6_22_1
  doi: 10.1523/JNEUROSCI.0974-07.2007
– ident: e_1_2_6_4_1
  doi: 10.1038/381697a0
– ident: e_1_2_6_6_1
  doi: 10.1126/science.1109676
– ident: e_1_2_6_43_1
  doi: 10.1016/S0896-6273(03)00237-X
– ident: e_1_2_6_47_1
  doi: 10.1016/j.neunet.2005.06.015
– ident: e_1_2_6_2_1
  doi: 10.1037/0096-1523.26.2.834
– ident: e_1_2_6_18_1
  doi: 10.1093/cercor/bhh146
– ident: e_1_2_6_50_1
  doi: 10.1016/0010-0285(80)90005-5
– ident: e_1_2_6_10_1
  doi: 10.1523/JNEUROSCI.2376-06.2006
– ident: e_1_2_6_45_1
  doi: 10.1152/jn.00015.2006
– ident: e_1_2_6_3_1
  doi: 10.1523/JNEUROSCI.22-11-04675.2002
– ident: e_1_2_6_46_1
  doi: 10.1016/j.neuropsychologia.2004.12.003
– ident: e_1_2_6_9_1
  doi: 10.1523/JNEUROSCI.3710-09.2009
– ident: e_1_2_6_20_1
  doi: 10.1016/j.biosystems.2006.03.010
– ident: e_1_2_6_38_1
  doi: 10.1073/pnas.0408311101
– volume-title: Neurobiology of Attention
  year: 2005
  ident: e_1_2_6_25_1
– ident: e_1_2_6_30_1
  doi: 10.1111/j.1467-9280.1995.tb00530.x
– ident: e_1_2_6_51_1
  doi: 10.1016/0004-3702(95)00025-9
– ident: e_1_2_6_8_1
  doi: 10.1073/pnas.0907658106
– ident: e_1_2_6_27_1
  doi: 10.1073/pnas.0403507101
– ident: e_1_2_6_37_1
  doi: 10.1038/nature01812
– volume: 4
  start-page: 219
  year: 1985
  ident: e_1_2_6_29_1
  article-title: Shifts in selective visual attention: towards the underlying neural circuitry
  publication-title: Hum. Psychol.
– ident: e_1_2_6_32_1
  doi: 10.1152/jn.00750.2009
– ident: e_1_2_6_15_1
  doi: 10.1167/3.11.14
– ident: e_1_2_6_24_1
  doi: 10.1038/35058500
– ident: e_1_2_6_7_1
  doi: 10.1016/j.neunet.2003.08.006
– ident: e_1_2_6_40_1
  doi: 10.1152/jn.00270.2009
– ident: e_1_2_6_12_1
  doi: 10.1167/9.5.3
– ident: e_1_2_6_19_1
  doi: 10.1016/j.cviu.2004.09.005
– ident: e_1_2_6_26_1
  doi: 10.1037/a0019082
– ident: e_1_2_6_33_1
  doi: 10.1038/nature01341
– ident: e_1_2_6_21_1
  doi: 10.1371/journal.pcbi.0040031
– ident: e_1_2_6_52_1
  doi: 10.3758/BF03200774
– ident: e_1_2_6_35_1
  doi: 10.1523/JNEUROSCI.14-04-02178.1994
– ident: e_1_2_6_41_1
  doi: 10.1016/S0896-6273(00)81206-4
– ident: e_1_2_6_49_1
  doi: 10.1523/JNEUROSCI.0741-05.2005
– ident: e_1_2_6_16_1
  doi: 10.1016/j.visres.2003.09.033
– ident: e_1_2_6_17_1
  doi: 10.1016/j.neucom.2003.09.006
– volume: 19
  start-page: 431
  year: 1999
  ident: e_1_2_6_31_1
  article-title: Effects of attention on orientation‐tuning functions of single neurons in macaque cortical area V4
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.19-01-00431.1999
– ident: e_1_2_6_42_1
  doi: 10.1016/0028-3932(87)90041-8
– ident: e_1_2_6_13_1
  doi: 10.1016/j.visres.2004.01.012
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.98.3.1273
– volume: 58
  start-page: 1387
  year: 1987
  ident: e_1_2_6_44_1
  article-title: Functional properties of corticotectal neurons in the monkey’s frontal eye field
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1987.58.6.1387
– ident: e_1_2_6_5_1
  doi: 10.3758/BF03211962
– ident: e_1_2_6_11_1
  doi: 10.1152/jn.1998.80.6.2918
– ident: e_1_2_6_48_1
  doi: 10.1093/cercor/bhj156
– ident: e_1_2_6_36_1
  doi: 10.1152/jn.01086.2002
– ident: e_1_2_6_28_1
  doi: 10.3758/CABN.4.4.483
– ident: e_1_2_6_39_1
  doi: 10.3389/neuro.05.002.2009
– ident: e_1_2_6_14_1
  doi: 10.1162/089892902320474553
– ident: e_1_2_6_23_1
  doi: 10.1016/S0042-6989(99)00163-7
SSID ssj0008645
Score 2.1730835
Snippet Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9,...
Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009) Journal of Vision ,...
Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2035
SubjectTerms Attention - physiology
Computer Simulation
Eye Movements - physiology
frontal eye field
Indexing in process
Models, Neurological
Space Perception - physiology
split of attention
Visual Perception - physiology
visual search
Title Split of spatial attention as predicted by a systems-level model of visual attention
URI https://api.istex.fr/ark:/67375/WNG-LFWDWLZN-7/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2011.07718.x
https://www.ncbi.nlm.nih.gov/pubmed/21645099
https://www.proquest.com/docview/871002513
https://www.proquest.com/docview/910786441
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1V9EAvbYG2uAW0h4qbI8e79q6PiBIQghza0kS9rHbttYQCDoqTCnrqT-hv7C_pzNoJBIGEqt7iyOOP9cz6zfjtG4CPXGSYJ0dFiNMjJihG2jAzVoW8EJkpc266JRX0T_vp0Zk4HibDlv9Ea2EafYhFwY0iw8_XFODG1veDPAppuVurxClxnu0QniTqFuGjz7dKUir1_YpJXS1U3XS4TOp58EBLb6rnNOjXD8HQZVTrX0u9VzCa31DDRhl1ZlPbyX_e03r8P3f8Gl626JXtNe62Bs9ctQ4bexVm7pc3bJd5Pqkv1K_D6v68l9wGfPuCWHfKxiWricGNhyBZT0-0ZKZmVxP6XITYl9kbZlijLl3_-fX7gihNzHfrIeMf5_Xsru0bOOsdfN0_CtuODmEuOIVkYbsmyYqkVFmUWm6jPIvzWMbWpsrRZpkrJZwTXDpuijTB6UIUhjJX_J_zt7BSjSu3CSyJpYuc8jmjEMJg2ilEjIaFTWjxbwBy_vR03sqdU9eNC72U9kSahlPTcGo_nPo6gO7C8qqR_HiCza53kIWBmYyIMicTPegf6pPe4NPg5HtfywDY3IM0PgP6OmMqN57VWpHOEqJN_vguCO2kIgAbwLvG-RbnizHtReyXBZB6F3ryleuD4z79ev-vhh_gRVNnp8rUFqxMJzO3jUBtand8CP4Fs8IsPw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB2h9lAuFFo-XCjsAfXmyPGu7fWxKg2hpD5ASyIuq117LaGmThUnVcuJn8Bv5Jd0Zu0EUhWpQtziyOOP9cz6vfHsG4C3XKTIk4PCx-kRCYpOjJ9qI31eiFSXOdfdkhL6x1ncPxVHo2jUtgOitTCNPsQy4UaR4eZrCnBKSN-O8sCn9W6tFGeCE20HAeU6Nfh2_OrTby0pGbuOxaSv5stuPFot67nzSCvvqnUa9qu7gOgqrnUvpt4mjBe31NSjnHXmM9PJv99Se_xP9_wYHrUAlu03HvcEHthqC7b3KyTv59dsj7mSUper34KNg0U7uW348hnh7oxNSlZTETcegpQ9Xa0l0zW7mNIXI4S_zFwzzRqB6frXj59jqmpirmEPGV9-q-d_2j6F097hyUHfb5s6-LngFJWF6eooLaJSpkFsuAnyNMzDJDQmlpY2y1xKYa3gieW6iCOcMUShibzi_5w_g7VqUtkXwKIwsYGVjjYKITQyTyFCNCxMROt_PUgWj0_lreI5Nd4YqxXmEygaTkXDqdxwqisPukvLi0b14x42e85DlgZ6ekZVc0mkhtl7NegN3w0HXzOVeMAWLqTwGdAHGl3ZybxWkqSWEHDyv--C6C6RhGE9eN543_J8ITJfhH-pB7HzoXtfuTo8yujXzr8avoGN_snxQA0-ZB9fwsMm7U6JqlewNpvO7S7itpl57eLxBnyUMFo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED6hTQJeBmzAAgz8gPaWKo2dxHmc1nVjlAgBoxUvlp04EupIq6ZFG0_8BH4jv4Q7Jy10GtKEeEuinJM4d_Z35_N3AC-5SNFPDgofh0d0UHRi_FQb6fNCpLrMue6WFNB_k8UnZ-J0FI3a_CfaC9PwQ6wCbmQZbrwmA58W5VUjD3za7tYycSY4znYQT27idUka3nv3m0pKxq5gMdGr-bIbj9azeq5taW2q2qRev7gOh67DWjcv9e_BePlFTTrKuLOYm07-7QrZ4__55Puw1cJXdtDo2wO4Zatt2Dmo0HX_csn2mUsodZH6bbhzuCwmtwMf3yPYnbNJyWpK4cYmiNfTZVoyXbPpjNaLEPwyc8k0a-il65_ff5xTThNz5XpI-OvnevGn7EM46x99ODzx25IOfi442WRhujpKi6iUaRAbboI8DfMwCY2JpaXTMpdSWCt4Yrku4gjHC1Focl3xOuePYKOaVHYXWBQmNrDSOY1CCI1-pxAhChYmot2_HiTLv6fylu-cym6cqzW_J1DUnYq6U7nuVBcedFeS04bz4wYy-05BVgJ6NqacuSRSw-xYDfrD3nDwKVOJB2ypQQr_AS3P6MpOFrWSRLSEcJP__RbEdokkBOvB40b5Vs8L0e9F8Jd6EDsVuvGbq6PTjI6e_KvgC7j9ttdXg1fZ66dwt4m5U5TqGWzMZwu7h6Btbp47a_wFzLcvEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Split+of+spatial+attention+as+predicted+by+a+systems-level+model+of+visual+attention&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Zirnsak%2C+Marc&rft.au=Beuth%2C+Frederik&rft.au=Hamker%2C+Fred+H&rft.date=2011-06-01&rft.issn=1460-9568&rft.eissn=1460-9568&rft.volume=33&rft.issue=11&rft.spage=2035&rft_id=info:doi/10.1111%2Fj.1460-9568.2011.07718.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon