Split of spatial attention as predicted by a systems-level model of visual attention
Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & P...
Saved in:
Published in | The European journal of neuroscience Vol. 33; no. 11; pp. 2035 - 2045 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.06.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/j.1460-9568.2011.07718.x |
Cover
Loading…
Abstract | Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403–423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade‐related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems‐level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection. |
---|---|
AbstractList | Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403–423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade‐related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems‐level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection. Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009) Journal of Vision , 9 , 3.1–11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999) Perception & Psychophysics , 61, 403–423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade‐related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems‐level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection. Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1-11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403-423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade-related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems-level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection.Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9, 3.1-11] such a split of spatial attention might be limited to short periods of time. Following N. P. Bichot et al. [(1999)Perception & Psychophysics, 61, 403-423] subjects had to report the identity of multiple letters that were briefly presented at different locations, while two of these locations (targets) were relevant for a concurrent shape comparison task. In addition to the design used by Bichot et al. stimulus onset asynchrony between shape onset and letters was systematically varied. In general, the performance of subjects was superior at target locations. Furthermore, for short stimulus onset asynchronies, performance was simultaneously increasing at both target locations. For longer stimulus onset asynchronies, however, performance deteriorated at one of the target locations while increasing at the other target location. It was hypothesized that this dynamic deployment of attention might be caused by competitive processes in saccade-related structures such as the frontal eye field. Here we simulated the task of Dubois et al. using a systems-level model of attention. Our results are consistent with recent findings in the frontal eye field obtained during covert visual search, and they support the view of a transient deployment of spatial attention to multiple stimuli in the early epoch of target selection. |
Author | Zirnsak, Marc Hamker, Fred H. Beuth, Frederik |
Author_xml | – sequence: 1 givenname: Marc surname: Zirnsak fullname: Zirnsak, Marc organization: Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA – sequence: 2 givenname: Frederik surname: Beuth fullname: Beuth, Frederik organization: Department of Computer Science, Artificial Intelligence, Chemnitz University of Technology, Straße der Nationen 62, 09107 Chemnitz, Germany – sequence: 3 givenname: Fred H. surname: Hamker fullname: Hamker, Fred H. organization: Department of Computer Science, Artificial Intelligence, Chemnitz University of Technology, Straße der Nationen 62, 09107 Chemnitz, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21645099$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAUhS1URKeFv4C8Y5X0Ok5iewESKm0BjaYLigaxuXISR_LgPIg9Zebf12HaCrFpvfD143zHuj4n5KgfekMIZZCyOM42KctLSFRRyjQDxlIQgsl094IsHi-OyAJUwRPJyh_H5MT7DQDIMi9ekeOMxQpKLcjNt9HZQIeW-lEHqx3VIZg-2KGn2tNxMo2tg2lotaea-r0PpvOJM7fG0W5o4hzRW-u3_5KvyctWO2_e3NdT8v3y4ub8c7K8vvpy_nGZ1DmXMsmaiulCNUUrFZQVr6BWWZ2JrKpKaeZtW0uZG5NzYbhuykKoPG80AIN4zvkpeXfwHafh99b4gJ31tXFO92bYelQMROw4Z08qpWAAWcFmz7f3ym3VmQbHyXZ62uPDl0XBh4OgngbvJ9NibYOe2w6Ttg4Z4JwRbnCOAucocM4I_2aEu2gg_zN4eOMZ6PsD-sc6s382hxdfV_Mq8smBtzHH3SOvp19YCi4KXK-ucHm5_rRe_lyh4HcPmLeH |
CitedBy_id | crossref_primary_10_1007_s00426_018_1018_3 crossref_primary_10_1016_j_neunet_2023_08_034 crossref_primary_10_1111_infa_12087 crossref_primary_10_1016_j_neunet_2016_05_001 crossref_primary_10_1167_jov_20_9_16 crossref_primary_10_1523_JNEUROSCI_0867_13_2014 crossref_primary_10_1016_j_visres_2015_04_004 crossref_primary_10_1523_JNEUROSCI_3407_11_2011 crossref_primary_10_1016_j_visres_2017_06_007 crossref_primary_10_3758_s13414_014_0645_z crossref_primary_10_1016_j_tics_2014_10_002 crossref_primary_10_1016_j_visres_2021_08_009 crossref_primary_10_3758_s13414_021_02386_y crossref_primary_10_1111_j_1460_9568_2011_07739_x crossref_primary_10_3389_fnsys_2015_00135 crossref_primary_10_1016_j_neuron_2014_06_014 crossref_primary_10_3389_fncom_2014_00025 crossref_primary_10_3389_fninf_2015_00019 crossref_primary_10_1109_TAMD_2014_2332875 crossref_primary_10_1016_j_neunet_2021_07_008 crossref_primary_10_1027_1618_3169_a000182 |
Cites_doi | 10.1523/JNEUROSCI.0974-07.2007 10.1038/381697a0 10.1126/science.1109676 10.1016/S0896-6273(03)00237-X 10.1016/j.neunet.2005.06.015 10.1037/0096-1523.26.2.834 10.1093/cercor/bhh146 10.1016/0010-0285(80)90005-5 10.1523/JNEUROSCI.2376-06.2006 10.1152/jn.00015.2006 10.1523/JNEUROSCI.22-11-04675.2002 10.1016/j.neuropsychologia.2004.12.003 10.1523/JNEUROSCI.3710-09.2009 10.1016/j.biosystems.2006.03.010 10.1073/pnas.0408311101 10.1111/j.1467-9280.1995.tb00530.x 10.1016/0004-3702(95)00025-9 10.1073/pnas.0907658106 10.1073/pnas.0403507101 10.1038/nature01812 10.1152/jn.00750.2009 10.1167/3.11.14 10.1038/35058500 10.1016/j.neunet.2003.08.006 10.1152/jn.00270.2009 10.1167/9.5.3 10.1016/j.cviu.2004.09.005 10.1037/a0019082 10.1038/nature01341 10.1371/journal.pcbi.0040031 10.3758/BF03200774 10.1523/JNEUROSCI.14-04-02178.1994 10.1016/S0896-6273(00)81206-4 10.1523/JNEUROSCI.0741-05.2005 10.1016/j.visres.2003.09.033 10.1016/j.neucom.2003.09.006 10.1523/JNEUROSCI.19-01-00431.1999 10.1016/0028-3932(87)90041-8 10.1016/j.visres.2004.01.012 10.1073/pnas.98.3.1273 10.1152/jn.1987.58.6.1387 10.3758/BF03211962 10.1152/jn.1998.80.6.2918 10.1093/cercor/bhj156 10.1152/jn.01086.2002 10.3758/CABN.4.4.483 10.3389/neuro.05.002.2009 10.1162/089892902320474553 10.1016/S0042-6989(99)00163-7 |
ContentType | Journal Article |
Copyright | 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. |
Copyright_xml | – notice: 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd – notice: 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TK |
DOI | 10.1111/j.1460-9568.2011.07718.x |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Neurosciences Abstracts |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 2045 |
ExternalDocumentID | 21645099 10_1111_j_1460_9568_2011_07718_x EJN7718 ark_67375_WNG_LFWDWLZN_7 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7TK |
ID | FETCH-LOGICAL-c4388-2db1a59d5f8906b3b0c92c272bb68e3b0cfc884ee437e3ad657944da001088433 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Fri Jul 11 03:29:35 EDT 2025 Fri Jul 11 04:24:43 EDT 2025 Thu Apr 03 06:57:06 EDT 2025 Thu Apr 24 23:08:18 EDT 2025 Tue Jul 01 04:00:30 EDT 2025 Wed Jan 22 16:59:18 EST 2025 Wed Oct 30 09:48:08 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 2011 The Authors. European Journal of Neuroscience © 2011 Federation of European Neuroscience Societies and Blackwell Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4388-2db1a59d5f8906b3b0c92c272bb68e3b0cfc884ee437e3ad657944da001088433 |
Notes | ArticleID:EJN7718 istex:AA5AE0F5774AA7387B45C6EA604640BFF465DA10 ark:/67375/WNG-LFWDWLZN-7 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 21645099 |
PQID | 871002513 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_910786441 proquest_miscellaneous_871002513 pubmed_primary_21645099 crossref_citationtrail_10_1111_j_1460_9568_2011_07718_x crossref_primary_10_1111_j_1460_9568_2011_07718_x wiley_primary_10_1111_j_1460_9568_2011_07718_x_EJN7718 istex_primary_ark_67375_WNG_LFWDWLZN_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-06 June 2011 2011-06-00 2011-Jun 20110601 |
PublicationDateYYYYMMDD | 2011-06-01 |
PublicationDate_xml | – month: 06 year: 2011 text: 2011-06 |
PublicationDecade | 2010 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2011 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Hamker, F.H. (2004a) A dynamic model of how feature cues guide spatial attention. Vision Res., 44, 501-521. Hamker, F.H. (2004b) Predictions of a model of spatial attention using sum- and max-pooling functions. Neurocomputing, 56C, 329-343. Bichot, N.P., Rossi, A.F. & Desimone, R. (2005) Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308, 529-534. Moore, T. & Armstrong, K.M. (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370-373. Cavanaugh, J., Alvarez, B.D. & Wurtz, R.H. (2006) Enhanced performance with brain stimulation: attentional shift or visual cue? J. Neurosci., 26, 11347-11358. Bichot, N.P., Schall, J.D. & Thompson, K.G. (1996) Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature, 381, 697-699. Heinzle, J., Hepp, K. & Martin, K.A. (2007) A microcircuit model of the frontal eye fields. J. Neurosci., 27, 9341-9353. Hamker, F.H., Zirnsak, M., Calow, D. & Lappe, M. (2008) The peri-saccadic perception of objects and space. PLoS Comput. Biol., 4, e31. Grosbras, M.H. & Paus, T. (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J. Cogn. Neurosci., 14, 1109-1120. McAdams, C.J. & Maunsell, J.H. (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci., 19, 431-441. Itti, L. & Koch, C. (2001) Computational modelling of visual attention. Nat. Rev. Neurosci., 2, 194-203. Itti, L. & Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res., 40, 1489-1506. Tsotsos, J.K., Culhane, S.M., Wai, W., Lai, Y., Davis, N. & Nuflo, F. (1995) Modeling visual attention via selective tuning. Artif. Intell., 78, 507-545. Moore, T. & Fallah, M. (2001) Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. USA, 98, 1273-1276. Taylor, P.C., Nobre, A.C. & Rushworth, M.F. (2007) FEF TMS affects visual cortical activity. Cereb. Cortex, 17, 391-399. Chelazzi, L., Duncan, J., Miller, E.K. & Desimone, R. (1998) Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol., 80, 2918-2940. Pouget, P., Stepniewska, I., Crowder, E.A., Leslie, M.W., Emeric, E.E., Nelson, M.J. & Schall, J.D. (2009) Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection. Front. Neuroanat., 3, 2. Silvanto, J., Lavie, N. & Walsh, V. (2006) Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol., 96, 941-945. Jans, B., Peters, J.C. & De Weerd, P. (2010) Visual spatial attention to multiple locations at once: the jury is still out. Psychol. Rev., 117, 637-684. Monosov, I.E. & Thompson, K.G. (2009) Frontal eye field activity enhances object identification during covert visual search. J. Neurophysiol., 120, 3656-3672. Burrows, B.E. & Moore, T. (2009) Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J. Neurosci., 29, 15169-15177. Treisman, A. & Gelade, G. (1980) A feature integration theory of attention. Cogn. Psychol., 12, 97-136. Wolfe, J.M. (1994) Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev., 1, 202-238. Bichot, N.P., Cave, K.R. & Pashler, H. (1999) Visual selection mediated by location: feature-based selection of non-contiguous locations. Percept. Psychophys., 61, 403-423. Gobell, J.L., Tseng, C.H. & Sperling, G. (2004) The spatial distribution of visual attention. Vision Res., 44, 1273-1296. Itti, L., Rees, G. & Tsotsos, J.K. (eds) (2005) Neurobiology of Attention. Elsevier/Academic Press, New York. Motter, B.C. (1994) Neural correlates of attentive selection for color or luminance in extrastriate area V4. J. Neurosci., 14, 2178-2189. Muggleton, N.G., Juan, C.H., Cowey, A. & Walsh, V. (2003) Human frontal eye fields and visual search. J. Neurophysiol., 89, 3340-3343. Smith, D.T., Jackson, S.R. & Rorden, C. (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 43, 1288-1296. Hamker, F.H. (2005a) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb. Cortex, 15, 431-447. Thompson, K.G., Biscoe, K.L. & Sato, T.R. (2005) Neural basis of covert spatial attention in the frontal eye field. J. Neurosci., 25, 9479-9487. Sato, T.R. & Schall, J.D. (2003) Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38, 637-648. Awh, E. & Pashler, H. (2000) Evidence for split attentional foci. J. Exp. Psychol. Hum. Percept. Perform., 26, 834-846. Hamker, F.H. (2006) Modeling feature-based attention as an active top-down inference process. BioSystems, 86, 91-99. Kastner, S. & Pinsk, M.A. (2004) Visual attention as a multilevel selection process. Cogn. Affect. Behav. Neurosci., 4, 483-500. Buffalo, E.A., Fries, P., Landman, R., Liang, H. & Desimone, R. (2010) A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. USA, 107, 361-365. Muller, J.R., Philiastides, M.G. & Newsome, W.T. (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA, 102, 524-529. Kramer, A.F. & Hahn, S. (1995) Splitting the beam: distribution of attention over noncontiguous regions of the visual field. Psychol. Sci., 6, 381-386. Koch, C. & Ullman, S. (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Psychol., 4, 219-227. Bichot, N.P. & Schall, J.D. (2002) Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. J. Neurosci., 22, 4675-4685. Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31-40. Hamker, F.H. (2005b) The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. Comput. Vis. Image Underst., 100, 64-106. Ray, S., Pouget, P. & Schall, J.D. (2009) Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding. J. Neurophysiol., 102, 3091-3100. Reynolds, J.H., Pasternal, T. & Desimone, R. (2000) Attention increases sensitivity of V4 neurons. Neuron, 26, 703-714. Juan, C.H., Shorter-Jacobi, S.M. & Schall, J.D. (2004) Dissociation of spatial attention and saccade preparation. Proc. Natl. Acad. Sci. USA, 101, 15541-15544. Standage, D.I., Trappenberg, T.P. & Klein, R.M. (2005) Modelling divided visual attention with a winner-take-all network. Neural Netw., 18, 620-627. Brown, J.W., Bullock, D. & Grossberg, S. (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw., 17, 471-510. Segraves, M.A. & Goldberg, M.E. (1987) Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol., 58, 1387-1419. Hamker, F.H. (2003) The reentry hypothesis: linking eye movements to visual perception. J. Vis., 3, 808-816. Dubois, J., Hamker, F.H. & VanRullen, R. (2009) Attentional selection of noncontiguous locations: the spotlight is only transiently 'split'. J. Vis., 9, 3. Muller, M.M., Malinowski, P., Gruber, T. & Hillyard, S.A. (2003) Sustained division of the attentional spotlight. Nature, 424, 309-312. 2002; 14 2005a; 15 2010; 107 2004a; 44 1995; 78 2004; 4 1996; 381 1998; 80 2008; 4 2005; 25 1999; 19 2010; 117 2005; 102 2006; 26 2003; 3 2005; 308 2009; 120 2007; 27 2001; 98 2003; 89 2004; 101 2007; 17 2004; 44 1987; 58 2006; 96 2000; 26 1985; 4 2004b; 56C 2003; 38 2005; 43 2005 1999; 61 1995; 6 2009; 29 1987; 25 2006; 86 2003; 424 2004; 17 1980; 12 2002; 22 2000; 40 2009; 9 1994; 14 2009; 102 2005b; 100 2001; 2 2009; 3 1994; 1 2003; 421 2005; 18 e_1_2_6_51_1 e_1_2_6_32_1 e_1_2_6_30_1 Segraves M.A. (e_1_2_6_44_1) 1987; 58 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_7_1 Koch C. (e_1_2_6_29_1) 1985; 4 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_10_1 e_1_2_6_50_1 Itti L. (e_1_2_6_25_1) 2005 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 e_1_2_6_8_1 McAdams C.J. (e_1_2_6_31_1) 1999; 19 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_48_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – reference: Pouget, P., Stepniewska, I., Crowder, E.A., Leslie, M.W., Emeric, E.E., Nelson, M.J. & Schall, J.D. (2009) Visual and motor connectivity and the distribution of calcium-binding proteins in macaque frontal eye field: implications for saccade target selection. Front. Neuroanat., 3, 2. – reference: Hamker, F.H. (2006) Modeling feature-based attention as an active top-down inference process. BioSystems, 86, 91-99. – reference: Brown, J.W., Bullock, D. & Grossberg, S. (2004) How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw., 17, 471-510. – reference: Silvanto, J., Lavie, N. & Walsh, V. (2006) Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex. J. Neurophysiol., 96, 941-945. – reference: Dubois, J., Hamker, F.H. & VanRullen, R. (2009) Attentional selection of noncontiguous locations: the spotlight is only transiently 'split'. J. Vis., 9, 3. – reference: Buffalo, E.A., Fries, P., Landman, R., Liang, H. & Desimone, R. (2010) A backward progression of attentional effects in the ventral stream. Proc. Natl. Acad. Sci. USA, 107, 361-365. – reference: Muller, M.M., Malinowski, P., Gruber, T. & Hillyard, S.A. (2003) Sustained division of the attentional spotlight. Nature, 424, 309-312. – reference: Hamker, F.H., Zirnsak, M., Calow, D. & Lappe, M. (2008) The peri-saccadic perception of objects and space. PLoS Comput. Biol., 4, e31. – reference: Motter, B.C. (1994) Neural correlates of attentive selection for color or luminance in extrastriate area V4. J. Neurosci., 14, 2178-2189. – reference: Juan, C.H., Shorter-Jacobi, S.M. & Schall, J.D. (2004) Dissociation of spatial attention and saccade preparation. Proc. Natl. Acad. Sci. USA, 101, 15541-15544. – reference: Reynolds, J.H., Pasternal, T. & Desimone, R. (2000) Attention increases sensitivity of V4 neurons. Neuron, 26, 703-714. – reference: Itti, L. & Koch, C. (2001) Computational modelling of visual attention. Nat. Rev. Neurosci., 2, 194-203. – reference: Ray, S., Pouget, P. & Schall, J.D. (2009) Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding. J. Neurophysiol., 102, 3091-3100. – reference: Itti, L., Rees, G. & Tsotsos, J.K. (eds) (2005) Neurobiology of Attention. Elsevier/Academic Press, New York. – reference: Segraves, M.A. & Goldberg, M.E. (1987) Functional properties of corticotectal neurons in the monkey's frontal eye field. J. Neurophysiol., 58, 1387-1419. – reference: Hamker, F.H. (2004b) Predictions of a model of spatial attention using sum- and max-pooling functions. Neurocomputing, 56C, 329-343. – reference: Chelazzi, L., Duncan, J., Miller, E.K. & Desimone, R. (1998) Responses of neurons in inferior temporal cortex during memory-guided visual search. J. Neurophysiol., 80, 2918-2940. – reference: Bichot, N.P., Schall, J.D. & Thompson, K.G. (1996) Visual feature selectivity in frontal eye fields induced by experience in mature macaques. Nature, 381, 697-699. – reference: Muggleton, N.G., Juan, C.H., Cowey, A. & Walsh, V. (2003) Human frontal eye fields and visual search. J. Neurophysiol., 89, 3340-3343. – reference: Hamker, F.H. (2005a) The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb. Cortex, 15, 431-447. – reference: Kastner, S. & Pinsk, M.A. (2004) Visual attention as a multilevel selection process. Cogn. Affect. Behav. Neurosci., 4, 483-500. – reference: Taylor, P.C., Nobre, A.C. & Rushworth, M.F. (2007) FEF TMS affects visual cortical activity. Cereb. Cortex, 17, 391-399. – reference: Grosbras, M.H. & Paus, T. (2002) Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention. J. Cogn. Neurosci., 14, 1109-1120. – reference: Treisman, A. & Gelade, G. (1980) A feature integration theory of attention. Cogn. Psychol., 12, 97-136. – reference: Smith, D.T., Jackson, S.R. & Rorden, C. (2005) Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 43, 1288-1296. – reference: Wolfe, J.M. (1994) Guided search 2.0: a revised model of visual search. Psychon. Bull. Rev., 1, 202-238. – reference: Bichot, N.P., Cave, K.R. & Pashler, H. (1999) Visual selection mediated by location: feature-based selection of non-contiguous locations. Percept. Psychophys., 61, 403-423. – reference: Moore, T. & Fallah, M. (2001) Control of eye movements and spatial attention. Proc. Natl. Acad. Sci. USA, 98, 1273-1276. – reference: Kramer, A.F. & Hahn, S. (1995) Splitting the beam: distribution of attention over noncontiguous regions of the visual field. Psychol. Sci., 6, 381-386. – reference: McAdams, C.J. & Maunsell, J.H. (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci., 19, 431-441. – reference: Heinzle, J., Hepp, K. & Martin, K.A. (2007) A microcircuit model of the frontal eye fields. J. Neurosci., 27, 9341-9353. – reference: Hamker, F.H. (2004a) A dynamic model of how feature cues guide spatial attention. Vision Res., 44, 501-521. – reference: Bichot, N.P., Rossi, A.F. & Desimone, R. (2005) Parallel and serial neural mechanisms for visual search in macaque area V4. Science, 308, 529-534. – reference: Bichot, N.P. & Schall, J.D. (2002) Priming in macaque frontal cortex during popout visual search: feature-based facilitation and location-based inhibition of return. J. Neurosci., 22, 4675-4685. – reference: Monosov, I.E. & Thompson, K.G. (2009) Frontal eye field activity enhances object identification during covert visual search. J. Neurophysiol., 120, 3656-3672. – reference: Moore, T. & Armstrong, K.M. (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370-373. – reference: Muller, J.R., Philiastides, M.G. & Newsome, W.T. (2005) Microstimulation of the superior colliculus focuses attention without moving the eyes. Proc. Natl. Acad. Sci. USA, 102, 524-529. – reference: Tsotsos, J.K., Culhane, S.M., Wai, W., Lai, Y., Davis, N. & Nuflo, F. (1995) Modeling visual attention via selective tuning. Artif. Intell., 78, 507-545. – reference: Thompson, K.G., Biscoe, K.L. & Sato, T.R. (2005) Neural basis of covert spatial attention in the frontal eye field. J. Neurosci., 25, 9479-9487. – reference: Koch, C. & Ullman, S. (1985) Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Psychol., 4, 219-227. – reference: Itti, L. & Koch, C. (2000) A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Res., 40, 1489-1506. – reference: Jans, B., Peters, J.C. & De Weerd, P. (2010) Visual spatial attention to multiple locations at once: the jury is still out. Psychol. Rev., 117, 637-684. – reference: Sato, T.R. & Schall, J.D. (2003) Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron, 38, 637-648. – reference: Awh, E. & Pashler, H. (2000) Evidence for split attentional foci. J. Exp. Psychol. Hum. Percept. Perform., 26, 834-846. – reference: Hamker, F.H. (2003) The reentry hypothesis: linking eye movements to visual perception. J. Vis., 3, 808-816. – reference: Standage, D.I., Trappenberg, T.P. & Klein, R.M. (2005) Modelling divided visual attention with a winner-take-all network. Neural Netw., 18, 620-627. – reference: Cavanaugh, J., Alvarez, B.D. & Wurtz, R.H. (2006) Enhanced performance with brain stimulation: attentional shift or visual cue? J. Neurosci., 26, 11347-11358. – reference: Hamker, F.H. (2005b) The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. Comput. Vis. Image Underst., 100, 64-106. – reference: Burrows, B.E. & Moore, T. (2009) Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J. Neurosci., 29, 15169-15177. – reference: Gobell, J.L., Tseng, C.H. & Sperling, G. (2004) The spatial distribution of visual attention. Vision Res., 44, 1273-1296. – reference: Rizzolatti, G., Riggio, L., Dascola, I. & Umilta, C. (1987) Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia, 25, 31-40. – volume: 107 start-page: 361 year: 2010 end-page: 365 article-title: A backward progression of attentional effects in the ventral stream publication-title: Proc. Natl. Acad. Sci. USA – year: 2005 – volume: 98 start-page: 1273 year: 2001 end-page: 1276 article-title: Control of eye movements and spatial attention publication-title: Proc. Natl. Acad. Sci. USA – volume: 26 start-page: 834 year: 2000 end-page: 846 article-title: Evidence for split attentional foci publication-title: J. Exp. Psychol. Hum. Percept. Perform. – volume: 25 start-page: 31 year: 1987 end-page: 40 article-title: Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention publication-title: Neuropsychologia – volume: 17 start-page: 391 year: 2007 end-page: 399 article-title: FEF TMS affects visual cortical activity publication-title: Cereb. Cortex – volume: 381 start-page: 697 year: 1996 end-page: 699 article-title: Visual feature selectivity in frontal eye fields induced by experience in mature macaques publication-title: Nature – volume: 25 start-page: 9479 year: 2005 end-page: 9487 article-title: Neural basis of covert spatial attention in the frontal eye field publication-title: J. Neurosci. – volume: 26 start-page: 11347 year: 2006 end-page: 11358 article-title: Enhanced performance with brain stimulation: attentional shift or visual cue? publication-title: J. Neurosci. – volume: 56C start-page: 329 year: 2004b end-page: 343 article-title: Predictions of a model of spatial attention using sum‐ and max‐pooling functions publication-title: Neurocomputing – volume: 44 start-page: 501 year: 2004a end-page: 521 article-title: A dynamic model of how feature cues guide spatial attention publication-title: Vision Res. – volume: 308 start-page: 529 year: 2005 end-page: 534 article-title: Parallel and serial neural mechanisms for visual search in macaque area V4 publication-title: Science – volume: 3 start-page: 2 year: 2009 article-title: Visual and motor connectivity and the distribution of calcium‐binding proteins in macaque frontal eye field: implications for saccade target selection publication-title: Front. Neuroanat. – volume: 44 start-page: 1273 year: 2004 end-page: 1296 article-title: The spatial distribution of visual attention publication-title: Vision Res. – volume: 1 start-page: 202 year: 1994 end-page: 238 article-title: Guided search 2.0: a revised model of visual search publication-title: Psychon. Bull. Rev. – volume: 421 start-page: 370 year: 2003 end-page: 373 article-title: Selective gating of visual signals by microstimulation of frontal cortex publication-title: Nature – volume: 120 start-page: 3656 year: 2009 end-page: 3672 article-title: Frontal eye field activity enhances object identification during covert visual search publication-title: J. Neurophysiol. – volume: 18 start-page: 620 year: 2005 end-page: 627 article-title: Modelling divided visual attention with a winner‐take‐all network publication-title: Neural Netw. – volume: 117 start-page: 637 year: 2010 end-page: 684 article-title: Visual spatial attention to multiple locations at once: the jury is still out publication-title: Psychol. Rev. – volume: 86 start-page: 91 year: 2006 end-page: 99 article-title: Modeling feature‐based attention as an active top‐down inference process publication-title: BioSystems – volume: 43 start-page: 1288 year: 2005 end-page: 1296 article-title: Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues publication-title: Neuropsychologia – volume: 38 start-page: 637 year: 2003 end-page: 648 article-title: Effects of stimulus‐response compatibility on neural selection in frontal eye field publication-title: Neuron – volume: 6 start-page: 381 year: 1995 end-page: 386 article-title: Splitting the beam: distribution of attention over noncontiguous regions of the visual field publication-title: Psychol. Sci. – volume: 40 start-page: 1489 year: 2000 end-page: 1506 article-title: A saliency‐based search mechanism for overt and covert shifts of visual attention publication-title: Vision Res. – volume: 96 start-page: 941 year: 2006 end-page: 945 article-title: Stimulation of the human frontal eye fields modulates sensitivity of extrastriate visual cortex publication-title: J. Neurophysiol. – volume: 14 start-page: 2178 year: 1994 end-page: 2189 article-title: Neural correlates of attentive selection for color or luminance in extrastriate area V4 publication-title: J. Neurosci. – volume: 19 start-page: 431 year: 1999 end-page: 441 article-title: Effects of attention on orientation‐tuning functions of single neurons in macaque cortical area V4 publication-title: J. Neurosci. – volume: 100 start-page: 64 year: 2005b end-page: 106 article-title: The emergence of attention by population‐based inference and its role in distributed processing and cognitive control of vision publication-title: Comput. Vis. Image Underst. – volume: 101 start-page: 15541 year: 2004 end-page: 15544 article-title: Dissociation of spatial attention and saccade preparation publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: e31 year: 2008 article-title: The peri‐saccadic perception of objects and space publication-title: PLoS Comput. Biol. – volume: 61 start-page: 403 year: 1999 end-page: 423 article-title: Visual selection mediated by location: feature‐based selection of non‐contiguous locations publication-title: Percept. Psychophys. – volume: 29 start-page: 15169 year: 2009 end-page: 15177 article-title: Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons publication-title: J. Neurosci. – volume: 15 start-page: 431 year: 2005a end-page: 447 article-title: The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement publication-title: Cereb. Cortex – volume: 80 start-page: 2918 year: 1998 end-page: 2940 article-title: Responses of neurons in inferior temporal cortex during memory‐guided visual search publication-title: J. Neurophysiol. – volume: 58 start-page: 1387 year: 1987 end-page: 1419 article-title: Functional properties of corticotectal neurons in the monkey’s frontal eye field publication-title: J. Neurophysiol. – volume: 14 start-page: 1109 year: 2002 end-page: 1120 article-title: Transcranial magnetic stimulation of the human frontal eye field: effects on visual perception and attention publication-title: J. Cogn. Neurosci. – volume: 4 start-page: 483 year: 2004 end-page: 500 article-title: Visual attention as a multilevel selection process publication-title: Cogn. Affect. Behav. Neurosci. – volume: 26 start-page: 703 year: 2000 end-page: 714 article-title: Attention increases sensitivity of V4 neurons publication-title: Neuron – volume: 102 start-page: 3091 year: 2009 end-page: 3100 article-title: Functional distinction between visuomovement and movement neurons in macaque frontal eye field during saccade countermanding publication-title: J. Neurophysiol. – volume: 4 start-page: 219 year: 1985 end-page: 227 article-title: Shifts in selective visual attention: towards the underlying neural circuitry publication-title: Hum. Psychol. – volume: 424 start-page: 309 year: 2003 end-page: 312 article-title: Sustained division of the attentional spotlight publication-title: Nature – volume: 22 start-page: 4675 year: 2002 end-page: 4685 article-title: Priming in macaque frontal cortex during popout visual search: feature‐based facilitation and location‐based inhibition of return publication-title: J. Neurosci. – volume: 9 start-page: 3 year: 2009 article-title: Attentional selection of noncontiguous locations: the spotlight is only transiently ‘split’ publication-title: J. Vis. – volume: 89 start-page: 3340 year: 2003 end-page: 3343 article-title: Human frontal eye fields and visual search publication-title: J. Neurophysiol. – volume: 102 start-page: 524 year: 2005 end-page: 529 article-title: Microstimulation of the superior colliculus focuses attention without moving the eyes publication-title: Proc. Natl. Acad. Sci. USA – volume: 27 start-page: 9341 year: 2007 end-page: 9353 article-title: A microcircuit model of the frontal eye fields publication-title: J. Neurosci. – volume: 3 start-page: 808 year: 2003 end-page: 816 article-title: The reentry hypothesis: linking eye movements to visual perception publication-title: J. Vis. – volume: 12 start-page: 97 year: 1980 end-page: 136 article-title: A feature integration theory of attention publication-title: Cogn. Psychol. – volume: 78 start-page: 507 year: 1995 end-page: 545 article-title: Modeling visual attention via selective tuning publication-title: Artif. Intell. – volume: 2 start-page: 194 year: 2001 end-page: 203 article-title: Computational modelling of visual attention publication-title: Nat. Rev. Neurosci. – volume: 17 start-page: 471 year: 2004 end-page: 510 article-title: How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades publication-title: Neural Netw. – ident: e_1_2_6_22_1 doi: 10.1523/JNEUROSCI.0974-07.2007 – ident: e_1_2_6_4_1 doi: 10.1038/381697a0 – ident: e_1_2_6_6_1 doi: 10.1126/science.1109676 – ident: e_1_2_6_43_1 doi: 10.1016/S0896-6273(03)00237-X – ident: e_1_2_6_47_1 doi: 10.1016/j.neunet.2005.06.015 – ident: e_1_2_6_2_1 doi: 10.1037/0096-1523.26.2.834 – ident: e_1_2_6_18_1 doi: 10.1093/cercor/bhh146 – ident: e_1_2_6_50_1 doi: 10.1016/0010-0285(80)90005-5 – ident: e_1_2_6_10_1 doi: 10.1523/JNEUROSCI.2376-06.2006 – ident: e_1_2_6_45_1 doi: 10.1152/jn.00015.2006 – ident: e_1_2_6_3_1 doi: 10.1523/JNEUROSCI.22-11-04675.2002 – ident: e_1_2_6_46_1 doi: 10.1016/j.neuropsychologia.2004.12.003 – ident: e_1_2_6_9_1 doi: 10.1523/JNEUROSCI.3710-09.2009 – ident: e_1_2_6_20_1 doi: 10.1016/j.biosystems.2006.03.010 – ident: e_1_2_6_38_1 doi: 10.1073/pnas.0408311101 – volume-title: Neurobiology of Attention year: 2005 ident: e_1_2_6_25_1 – ident: e_1_2_6_30_1 doi: 10.1111/j.1467-9280.1995.tb00530.x – ident: e_1_2_6_51_1 doi: 10.1016/0004-3702(95)00025-9 – ident: e_1_2_6_8_1 doi: 10.1073/pnas.0907658106 – ident: e_1_2_6_27_1 doi: 10.1073/pnas.0403507101 – ident: e_1_2_6_37_1 doi: 10.1038/nature01812 – volume: 4 start-page: 219 year: 1985 ident: e_1_2_6_29_1 article-title: Shifts in selective visual attention: towards the underlying neural circuitry publication-title: Hum. Psychol. – ident: e_1_2_6_32_1 doi: 10.1152/jn.00750.2009 – ident: e_1_2_6_15_1 doi: 10.1167/3.11.14 – ident: e_1_2_6_24_1 doi: 10.1038/35058500 – ident: e_1_2_6_7_1 doi: 10.1016/j.neunet.2003.08.006 – ident: e_1_2_6_40_1 doi: 10.1152/jn.00270.2009 – ident: e_1_2_6_12_1 doi: 10.1167/9.5.3 – ident: e_1_2_6_19_1 doi: 10.1016/j.cviu.2004.09.005 – ident: e_1_2_6_26_1 doi: 10.1037/a0019082 – ident: e_1_2_6_33_1 doi: 10.1038/nature01341 – ident: e_1_2_6_21_1 doi: 10.1371/journal.pcbi.0040031 – ident: e_1_2_6_52_1 doi: 10.3758/BF03200774 – ident: e_1_2_6_35_1 doi: 10.1523/JNEUROSCI.14-04-02178.1994 – ident: e_1_2_6_41_1 doi: 10.1016/S0896-6273(00)81206-4 – ident: e_1_2_6_49_1 doi: 10.1523/JNEUROSCI.0741-05.2005 – ident: e_1_2_6_16_1 doi: 10.1016/j.visres.2003.09.033 – ident: e_1_2_6_17_1 doi: 10.1016/j.neucom.2003.09.006 – volume: 19 start-page: 431 year: 1999 ident: e_1_2_6_31_1 article-title: Effects of attention on orientation‐tuning functions of single neurons in macaque cortical area V4 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-01-00431.1999 – ident: e_1_2_6_42_1 doi: 10.1016/0028-3932(87)90041-8 – ident: e_1_2_6_13_1 doi: 10.1016/j.visres.2004.01.012 – ident: e_1_2_6_34_1 doi: 10.1073/pnas.98.3.1273 – volume: 58 start-page: 1387 year: 1987 ident: e_1_2_6_44_1 article-title: Functional properties of corticotectal neurons in the monkey’s frontal eye field publication-title: J. Neurophysiol. doi: 10.1152/jn.1987.58.6.1387 – ident: e_1_2_6_5_1 doi: 10.3758/BF03211962 – ident: e_1_2_6_11_1 doi: 10.1152/jn.1998.80.6.2918 – ident: e_1_2_6_48_1 doi: 10.1093/cercor/bhj156 – ident: e_1_2_6_36_1 doi: 10.1152/jn.01086.2002 – ident: e_1_2_6_28_1 doi: 10.3758/CABN.4.4.483 – ident: e_1_2_6_39_1 doi: 10.3389/neuro.05.002.2009 – ident: e_1_2_6_14_1 doi: 10.1162/089892902320474553 – ident: e_1_2_6_23_1 doi: 10.1016/S0042-6989(99)00163-7 |
SSID | ssj0008645 |
Score | 2.1730835 |
Snippet | Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9,... Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009) Journal of Vision ,... Can we attend to multiple distinct spatial locations at the same time? According to a recent psychophysical study [J. Dubois et al. (2009)Journal of Vision, 9,... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2035 |
SubjectTerms | Attention - physiology Computer Simulation Eye Movements - physiology frontal eye field Indexing in process Models, Neurological Space Perception - physiology split of attention Visual Perception - physiology visual search |
Title | Split of spatial attention as predicted by a systems-level model of visual attention |
URI | https://api.istex.fr/ark:/67375/WNG-LFWDWLZN-7/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2011.07718.x https://www.ncbi.nlm.nih.gov/pubmed/21645099 https://www.proquest.com/docview/871002513 https://www.proquest.com/docview/910786441 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9tAEB1V9EAvbYG2uAW0h4qbI8e79q6PiBIQghza0kS9rHbttYQCDoqTCnrqT-hv7C_pzNoJBIGEqt7iyOOP9cz6zfjtG4CPXGSYJ0dFiNMjJihG2jAzVoW8EJkpc266JRX0T_vp0Zk4HibDlv9Ea2EafYhFwY0iw8_XFODG1veDPAppuVurxClxnu0QniTqFuGjz7dKUir1_YpJXS1U3XS4TOp58EBLb6rnNOjXD8HQZVTrX0u9VzCa31DDRhl1ZlPbyX_e03r8P3f8Gl626JXtNe62Bs9ctQ4bexVm7pc3bJd5Pqkv1K_D6v68l9wGfPuCWHfKxiWricGNhyBZT0-0ZKZmVxP6XITYl9kbZlijLl3_-fX7gihNzHfrIeMf5_Xsru0bOOsdfN0_CtuODmEuOIVkYbsmyYqkVFmUWm6jPIvzWMbWpsrRZpkrJZwTXDpuijTB6UIUhjJX_J_zt7BSjSu3CSyJpYuc8jmjEMJg2ilEjIaFTWjxbwBy_vR03sqdU9eNC72U9kSahlPTcGo_nPo6gO7C8qqR_HiCza53kIWBmYyIMicTPegf6pPe4NPg5HtfywDY3IM0PgP6OmMqN57VWpHOEqJN_vguCO2kIgAbwLvG-RbnizHtReyXBZB6F3ryleuD4z79ev-vhh_gRVNnp8rUFqxMJzO3jUBtand8CP4Fs8IsPw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEB2h9lAuFFo-XCjsAfXmyPGu7fWxKg2hpD5ASyIuq117LaGmThUnVcuJn8Bv5Jd0Zu0EUhWpQtziyOOP9cz6vfHsG4C3XKTIk4PCx-kRCYpOjJ9qI31eiFSXOdfdkhL6x1ncPxVHo2jUtgOitTCNPsQy4UaR4eZrCnBKSN-O8sCn9W6tFGeCE20HAeU6Nfh2_OrTby0pGbuOxaSv5stuPFot67nzSCvvqnUa9qu7gOgqrnUvpt4mjBe31NSjnHXmM9PJv99Se_xP9_wYHrUAlu03HvcEHthqC7b3KyTv59dsj7mSUper34KNg0U7uW348hnh7oxNSlZTETcegpQ9Xa0l0zW7mNIXI4S_zFwzzRqB6frXj59jqmpirmEPGV9-q-d_2j6F097hyUHfb5s6-LngFJWF6eooLaJSpkFsuAnyNMzDJDQmlpY2y1xKYa3gieW6iCOcMUShibzi_5w_g7VqUtkXwKIwsYGVjjYKITQyTyFCNCxMROt_PUgWj0_lreI5Nd4YqxXmEygaTkXDqdxwqisPukvLi0b14x42e85DlgZ6ekZVc0mkhtl7NegN3w0HXzOVeMAWLqTwGdAHGl3ZybxWkqSWEHDyv--C6C6RhGE9eN543_J8ITJfhH-pB7HzoXtfuTo8yujXzr8avoGN_snxQA0-ZB9fwsMm7U6JqlewNpvO7S7itpl57eLxBnyUMFo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Rb9MwED6hTQJeBmzAAgz8gPaWKo2dxHmc1nVjlAgBoxUvlp04EupIq6ZFG0_8BH4jv4Q7Jy10GtKEeEuinJM4d_Z35_N3AC-5SNFPDgofh0d0UHRi_FQb6fNCpLrMue6WFNB_k8UnZ-J0FI3a_CfaC9PwQ6wCbmQZbrwmA58W5VUjD3za7tYycSY4znYQT27idUka3nv3m0pKxq5gMdGr-bIbj9azeq5taW2q2qRev7gOh67DWjcv9e_BePlFTTrKuLOYm07-7QrZ4__55Puw1cJXdtDo2wO4Zatt2Dmo0HX_csn2mUsodZH6bbhzuCwmtwMf3yPYnbNJyWpK4cYmiNfTZVoyXbPpjNaLEPwyc8k0a-il65_ff5xTThNz5XpI-OvnevGn7EM46x99ODzx25IOfi442WRhujpKi6iUaRAbboI8DfMwCY2JpaXTMpdSWCt4Yrku4gjHC1Focl3xOuePYKOaVHYXWBQmNrDSOY1CCI1-pxAhChYmot2_HiTLv6fylu-cym6cqzW_J1DUnYq6U7nuVBcedFeS04bz4wYy-05BVgJ6NqacuSRSw-xYDfrD3nDwKVOJB2ypQQr_AS3P6MpOFrWSRLSEcJP__RbEdokkBOvB40b5Vs8L0e9F8Jd6EDsVuvGbq6PTjI6e_KvgC7j9ttdXg1fZ66dwt4m5U5TqGWzMZwu7h6Btbp47a_wFzLcvEg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Split+of+spatial+attention+as+predicted+by+a+systems-level+model+of+visual+attention&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Zirnsak%2C+Marc&rft.au=Beuth%2C+Frederik&rft.au=Hamker%2C+Fred+H&rft.date=2011-06-01&rft.issn=1460-9568&rft.eissn=1460-9568&rft.volume=33&rft.issue=11&rft.spage=2035&rft_id=info:doi/10.1111%2Fj.1460-9568.2011.07718.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |