Extent of Mitochondrial Hexokinase II Dissociation During Ischemia Correlates With Mitochondrial Cytochrome c Release, Reactive Oxygen Species Production, and Infarct Size on Reperfusion
Background The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion injury remain unclear. Here we investigate whether and how mitochondria‐bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effe...
Saved in:
Published in | Journal of the American Heart Association Vol. 2; no. 1; pp. e005645 - n/a |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Blackwell Publishing Ltd
01.02.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion injury remain unclear. Here we investigate whether and how mitochondria‐bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP.
Methods and Results
Control and IP Langendorff‐perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl‐xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose‐6‐phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose‐6‐phosphate and intracellular pHi revealed a strong inverse correlation between end‐ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation.
Conclusions
We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl‐xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments. |
---|---|
AbstractList | The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP.BACKGROUNDThe mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP.Control and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl-xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose-6-phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose-6-phosphate and intracellular pHi revealed a strong inverse correlation between end-ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation.METHODS AND RESULTSControl and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl-xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose-6-phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose-6-phosphate and intracellular pHi revealed a strong inverse correlation between end-ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation.We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl-xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments.CONCLUSIONSWe propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl-xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments. The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP. Control and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl-xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose-6-phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose-6-phosphate and intracellular pHi revealed a strong inverse correlation between end-ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation. We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl-xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments. Background The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion injury remain unclear. Here we investigate whether and how mitochondria‐bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP. Methods and Results Control and IP Langendorff‐perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl‐xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose‐6‐phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose‐6‐phosphate and intracellular pHi revealed a strong inverse correlation between end‐ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation. Conclusions We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl‐xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments. |
Author | Pasdois, Philippe Halestrap, Andrew Philip Parker, Joanne Elizabeth |
Author_xml | – sequence: 1 givenname: Philippe surname: Pasdois fullname: Pasdois, Philippe organization: University of Bristol – sequence: 2 givenname: Joanne Elizabeth surname: Parker fullname: Parker, Joanne Elizabeth organization: University of Bristol – sequence: 3 givenname: Andrew Philip surname: Halestrap fullname: Halestrap, Andrew Philip organization: University of Bristol |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23525412$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUktvEzEQtlARLaVnbshHDk3rx3ofF6QoLWRRUVEL4mg53tnEsGuntrck_DR-HV7SolIJ4Yu_0XwPaWaeoz3rLCD0kpITSnN6-n46nybETggReSaeoANGsmJSVSXZe4D30VEIX0l6OSu4qJ6hfcYFExllB-jn-SaCjdi1-IOJTq-cbbxRHZ7Dxn0zVgXAdY3PTAhOGxWNs_hs8MYucR30Cnqj8Mx5D52KEPAXE1ePjGbbsfKuB6zxFXSQLI8TUDqaW8CXm-0SLL5egzbJ4KN3zaDHmGOsbINr2yqvI742PwCn7CtYg2-HkAgv0NNWdQGO7v5D9Pnt-afZfHJx-a6eTS8mOuNlMQHQVJSiXGRQNmXFW5G3UJQFaRhpWalF0eZUlbpI7UVV0rxluuCci8TUJKP8EL3Z-a6HRQ-NTuPyqpNrb3rlt9IpI__uWLOSS3creU44y0gyeH1n4N3NACHK3gQNXacsuCFIymmV07RBnqivHmb9CblfWCKIHUF7F4KHVmoTf68lRZtOUiLH25DjbSTE5O42ku70ke7e-t-KbKf4bjrY_o8-1pzygv8CROrOHg |
CitedBy_id | crossref_primary_10_1038_cddis_2017_43 crossref_primary_10_1016_j_drudis_2022_05_017 crossref_primary_10_1038_s42255_022_00707_5 crossref_primary_10_1016_j_phrs_2015_04_013 crossref_primary_10_1007_s10557_021_07189_9 crossref_primary_10_1016_j_bbadis_2017_05_001 crossref_primary_10_1371_journal_pone_0100579 crossref_primary_10_1161_CIRCRESAHA_116_305348 crossref_primary_10_1186_s12974_025_03334_5 crossref_primary_10_3390_ijms19020494 crossref_primary_10_3390_cells10051223 crossref_primary_10_1016_j_bbadis_2017_06_011 crossref_primary_10_3390_cells12101432 crossref_primary_10_3892_ijmm_2019_4304 crossref_primary_10_1093_cvr_cvy054 crossref_primary_10_1016_j_biopha_2023_116111 crossref_primary_10_30607_kvj_437999 crossref_primary_10_1016_j_gene_2015_12_046 crossref_primary_10_1016_j_jare_2024_08_016 crossref_primary_10_1161_CIRCRESAHA_113_302987 crossref_primary_10_1016_j_freeradbiomed_2021_01_036 crossref_primary_10_3389_fcvm_2021_740515 crossref_primary_10_1007_s11010_017_3001_5 crossref_primary_10_1007_s00395_024_01042_4 crossref_primary_10_3390_life11111123 crossref_primary_10_1016_j_freeradbiomed_2022_11_035 crossref_primary_10_1074_jbc_M113_482026 crossref_primary_10_7197_223_vi_577914 crossref_primary_10_1016_j_tem_2019_04_011 crossref_primary_10_1186_s12871_017_0330_6 crossref_primary_10_1038_s41598_017_13096_7 crossref_primary_10_1111_bph_13709 crossref_primary_10_1152_japplphysiol_00207_2018 crossref_primary_10_1016_j_metabol_2017_04_008 crossref_primary_10_1016_j_freeradbiomed_2018_01_024 crossref_primary_10_1016_j_mito_2016_07_005 crossref_primary_10_1085_jgp_201310968 crossref_primary_10_3389_fphys_2018_00755 crossref_primary_10_1111_febs_12353 crossref_primary_10_1152_japplphysiol_01035_2014 crossref_primary_10_1111_bph_12899 crossref_primary_10_1371_journal_pone_0167300 crossref_primary_10_1016_j_yjmcc_2014_08_018 crossref_primary_10_1093_cvr_cvz004 crossref_primary_10_2174_2212796817666230510095530 crossref_primary_10_1007_s10863_016_9652_1 crossref_primary_10_1016_j_biopha_2021_111679 crossref_primary_10_1016_j_ejphar_2015_04_056 crossref_primary_10_1371_journal_pone_0234653 crossref_primary_10_3390_ijms25084491 crossref_primary_10_1007_s10863_016_9672_x crossref_primary_10_1038_s41418_023_01187_0 crossref_primary_10_1016_j_ijbiomac_2024_138831 crossref_primary_10_1111_bph_12363 crossref_primary_10_1016_j_yjmcc_2014_09_020 crossref_primary_10_1016_j_ejphar_2015_04_009 crossref_primary_10_1016_S1875_5364_17_30087_0 crossref_primary_10_1111_jcmm_15180 crossref_primary_10_1016_j_freeradbiomed_2018_11_033 crossref_primary_10_1016_j_molcel_2022_02_028 crossref_primary_10_1016_j_yjmcc_2017_06_016 |
Cites_doi | 10.1042/BJ20081386 10.1042/BJ20101957 10.1006/jmcc.1996.0224 10.1113/jphysiol.2007.130369 10.1016/0003-2697(74)90248-6 10.1006/jmcc.2001.1357 10.1161/01.RES.66.4.913 10.1042/bj2440159 10.1093/cvr/cvp151 10.1006/jmcc.1996.0097 10.1113/jphysiol.2003.034231 10.1074/jbc.M109950200 10.1161/CIRCRESAHA.107.167072 10.1016/S0925-4439(01)00062-X 10.1042/bj3480343 10.1161/CIRCRESAHA.110.223115 10.1007/s10863-008-9148-8 10.1101/gad.889901 10.1006/jmcc.1998.0931 10.1074/jbc.271.28.16690 10.1158/0008-5472.CAN-05-1925 10.1016/j.bbabio.2008.12.017 10.1152/ajpheart.01345.2007 10.1152/japplphysiol.90537.2008 10.1007/s10557-010-6236-x 10.1093/cvr/cvs232 10.1016/S0008-6363(03)00533-9 10.1152/ajpheart.01016.2003 10.1042/bst0250151 10.1023/A:1006884607272 10.1038/nrm2952 10.1016/j.bbadis.2005.09.007 10.1161/01.RES.75.4.760 10.1161/01.RES.85.8.723 10.1016/j.bbabio.2006.04.029 10.1016/0005-2728(87)90174-5 10.1074/jbc.M110.172486 10.1016/0005-2728(93)90166-D 10.1159/000046878 10.1073/pnas.1201608109 10.1152/ajpcell.1993.265.4.C1146 10.1016/j.bbamem.2011.11.013 10.1073/pnas.0401897101 10.1016/0005-2736(91)90287-I 10.1006/jmcc.2001.1425 10.1196/annals.1427.015 10.1042/bj2680153 10.1007/s00395-009-0010-x 10.1177/153537020222700717 10.1042/BST0380841 10.1161/CIRCRESAHA.111.244962 10.1371/journal.pone.0001852 10.1124/jpet.110.167486 10.1093/cvr/28.5.581 |
ContentType | Journal Article |
Copyright | 2012 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley‐Blackwell. 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell. 2013 |
Copyright_xml | – notice: 2012 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley‐Blackwell. – notice: 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell. 2013 |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1161/JAHA.112.005645 |
DatabaseName | Wiley-Blackwell Open Access Titles CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2047-9980 |
EndPage | n/a |
ExternalDocumentID | PMC3603240 23525412 10_1161_JAHA_112_005645 JAH3137 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: The British Heart Foundation funderid: RG/08/001/24717 – fundername: British Heart Foundation grantid: RG/08/001/24717 |
GroupedDBID | 0R~ 1OC 24P 53G 5VS 8-1 AAZKR ACCMX ACGFO ACXQS ADBBV ADKYN ADRAZ ADZMN AEGXH AENEX AIAGR ALAGY ALMA_UNASSIGNED_HOLDINGS AOIJS AVUZU BAWUL BCNDV DIK EBS EJD EMOBN GODZA GROUPED_DOAJ GX1 H13 HYE KQ8 M48 M~E OK1 RAH RHF RNS RPM WIN AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 5PM |
ID | FETCH-LOGICAL-c4387-eec15858b4e8d893f56fe7870d20f28c57f61a8c7e8db9816f2c733353f5c0413 |
IEDL.DBID | M48 |
ISSN | 2047-9980 |
IngestDate | Thu Aug 21 18:33:26 EDT 2025 Fri Jul 11 00:52:35 EDT 2025 Wed Feb 19 02:16:05 EST 2025 Thu Apr 24 22:56:09 EDT 2025 Tue Jul 01 04:01:16 EDT 2025 Wed Jan 22 16:37:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial This is an Open Access article under the terms of the Creative Commons Attribution Noncommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4387-eec15858b4e8d893f56fe7870d20f28c57f61a8c7e8db9816f2c733353f5c0413 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1161/JAHA.112.005645 |
PMID | 23525412 |
PQID | 1319616453 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3603240 proquest_miscellaneous_1319616453 pubmed_primary_23525412 crossref_citationtrail_10_1161_JAHA_112_005645 crossref_primary_10_1161_JAHA_112_005645 wiley_primary_10_1161_JAHA_112_005645_JAH3137 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2013 |
PublicationDateYYYYMMDD | 2013-02-01 |
PublicationDate_xml | – month: 02 year: 2013 text: February 2013 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of the American Heart Association |
PublicationTitleAlternate | J Am Heart Assoc |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2004; 287 2010; 11 2004; 61 1990; 268 2011; 436 2009; 83 1997; 41 2007; 581 2002; 277 2005; 65 1999; 85 2008; 3 2006; 1762 2008; 102 1994; 28 1991; 1061 2012; 96 1991; 261 1996; 28 2010; 24 2006; 1757 2002; 227 2001; 1537 2001; 15 2012; 1818 2011; 286 2001; 10 1994; 75 2004; 101 2009; 1787 2010; 38 1987; 244 1997; 174 1997; 25 2009; 417 2012; 109 1993; 265 2003; 549 2008; 1147 1990; 66 2011; 108 1987; 892 1974; 60 2000; 348 2010; 333 1996; 271 1993; 1144 1995; 268 1999; 31 2001; 33 2008; 40 2009; 104 2008; 294 2009; 106 e_1_3_4_3_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 Cave AC (e_1_3_4_40_2) 1997; 41 Pasdois P (e_1_3_4_26_2) e_1_3_4_30_2 Kingsley PB (e_1_3_4_29_2) 1991; 261 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 e_1_3_4_52_2 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_56_2 Schaefer S (e_1_3_4_38_2) 1995; 268 e_1_3_4_18_2 e_1_3_4_39_2 8238305 - Am J Physiol. 1993 Oct;265(4 Pt 1):C1146-55 18350175 - PLoS One. 2008;3(3):e1852 16829228 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17 11390360 - Genes Dev. 2001 Jun 1;15(11):1406-18 18683036 - J Bioenerg Biomembr. 2008 Jun;40(3):171-82 18296562 - Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2088-97 10816428 - Biochem J. 2000 Jun 1;348 Pt 2:343-50 11751859 - J Biol Chem. 2002 Mar 1;277(9):7610-8 15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45 21071708 - Circ Res. 2011 Jan 7;108(1):60-9 11566253 - Biochim Biophys Acta. 2001 Sep 28;1537(2):101-9 19242644 - Basic Res Cardiol. 2009 Mar;104(2):189-202 19168026 - Biochim Biophys Acta. 2009 Nov;1787(11):1402-15 11549338 - J Mol Cell Cardiol. 2001 Sep;33(9):1571-88 21410437 - Biochem J. 2011 Jun 1;436(2):493-505 12094017 - Exp Biol Med (Maywood). 2002 Jul;227(7):520-8 19447775 - Cardiovasc Res. 2009 Jul 15;83(2):213-25 8396441 - Biochim Biophys Acta. 1993 Sep 13;1144(2):134-48 10521246 - Circ Res. 1999 Oct 15;85(8):723-30 9309669 - Mol Cell Biochem. 1997 Sep;174(1-2):79-85 19061483 - Biochem J. 2009 Jan 1;417(1):1-13 10329217 - J Mol Cell Cardiol. 1999 Apr;31(4):907-17 20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32 2160810 - Biochem J. 1990 May 15;268(1):153-60 20215409 - J Pharmacol Exp Ther. 2010 Jun;333(3):696-706 21062740 - J Biol Chem. 2011 Jan 14;286(2):1046-53 11343417 - J Mol Cell Cardiol. 2001 May;33(5):947-56 22787134 - Cardiovasc Res. 2012 Oct 1;96(1):23-31 14962470 - Cardiovasc Res. 2004 Feb 15;61(3):372-85 2317895 - Circ Res. 1990 Apr;66(4):913-31 17395631 - J Physiol. 2007 Jun 15;581(Pt 3):1147-61 9056862 - Biochem Soc Trans. 1997 Feb;25(1):151-7 7900892 - Am J Physiol. 1995 Mar;268(3 Pt 2):H935-44 23329796 - Circ Res. 2013 Jan 18;112(2):e3-7 22120575 - Biochim Biophys Acta. 2012 Jun;1818(6):1520-5 8762042 - J Mol Cell Cardiol. 1996 May;28(5):1045-57 19228992 - J Appl Physiol (1985). 2009 Jun;106(6):1909-16 16324828 - Biochim Biophys Acta. 2006 Feb;1762(2):148-63 8663315 - J Biol Chem. 1996 Jul 12;271(28):16690-4 1998693 - Biochim Biophys Acta. 1991 Jan 30;1061(2):215-25 11223643 - Biol Signals Recept. 2001 Jan-Apr;10(1-2):93-111 12692185 - J Physiol. 2003 Jun 1;549(Pt 2):513-24 22493254 - Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6566-71 1877673 - Am J Physiol. 1991 Aug;261(2 Pt 2):H469-78 21527739 - Circ Res. 2011 May 13;108(10):1165-9 3593705 - Biochim Biophys Acta. 1987 Jun 29;892(2):191-6 9038977 - Am J Physiol. 1997 Jan;272(1 Pt 2):H544-52 4844560 - Anal Biochem. 1974 Aug;60(2):405-12 8025901 - Cardiovasc Res. 1994 May;28(5):581-97 15148411 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):7988-93 20505987 - Cardiovasc Drugs Ther. 2010 Jun;24(3):225-34 9004148 - J Mol Cell Cardiol. 1996 Dec;28(12):2305-21 3663110 - Biochem J. 1987 May 15;244(1):159-64 7923621 - Circ Res. 1994 Oct;75(4):760-9 20658967 - Biochem Soc Trans. 2010 Aug;38(4):841-60 16288047 - Cancer Res. 2005 Nov 15;65(22):10545-54 19076429 - Ann N Y Acad Sci. 2008 Dec;1147:37-52 18356542 - Circ Res. 2008 May 9;102(9):1082-90 |
References_xml | – volume: 1144 start-page: 134 year: 1993 end-page: 148 article-title: Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation publication-title: Biochim Biophys Acta – volume: 1762 start-page: 148 year: 2006 end-page: 163 article-title: Mitochondrial contact sites: their role in energy metabolism and apoptosis publication-title: Biochim Biophys Acta – volume: 24 start-page: 225 year: 2010 end-page: 234 article-title: Mechanism of cardioprotection by early ischemic preconditioning publication-title: Cardiovasc Drugs Ther – volume: 106 start-page: 1909 year: 2009 end-page: 1916 article-title: Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia–reperfusion publication-title: J Appl Physiol – volume: 28 start-page: 2305 year: 1996 end-page: 2321 article-title: Does preconditioning act by glycogen depletion in the isolated rat heart? publication-title: J Mol Cell Cardiol – volume: 61 start-page: 372 year: 2004 end-page: 385 article-title: Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection publication-title: Cardiovasc Res – volume: 333 start-page: 696 year: 2010 end-page: 706 article-title: TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition publication-title: J Pharmacol Exp Ther – volume: 271 start-page: 16690 year: 1996 end-page: 16694 article-title: Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin publication-title: J Biol Chem – volume: 25 start-page: 151 year: 1997 end-page: 157 article-title: Complexes between hexokinase, mitochondrial porin and adenylate translocator in brain: regulation of hexokinase, oxidative phosphorylation and permeability transition pore publication-title: Biochem Soc Trans – volume: 28 start-page: 581 year: 1994 end-page: 597 article-title: Ionic basis of ischaemic cardiac injury: insights from cellular studies publication-title: Cardiovasc Res – volume: 265 start-page: C1146 year: 1993 end-page: C1155 article-title: Effects of adenosine antagonists on hexose uptake and preconditioning in perfused rat heart publication-title: Am J Physiol – volume: 227 start-page: 520 year: 2002 end-page: 528 article-title: Influence of ischemic preconditioning on intracellular sodium, pH, and cellular energy status in isolated perfused heart publication-title: Exp Biol Med (Maywood) – volume: 1537 start-page: 101 year: 2001 end-page: 109 article-title: Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia publication-title: Biochim BiophysActa – volume: 268 start-page: 153 year: 1990 end-page: 160 article-title: Inhibition of Ca2+‐induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl‐prolyl cis‐trans isomerase and preventing it interacting with the adenine nucleotide translocase publication-title: Biochem J – volume: 581 start-page: 1147 year: 2007 end-page: 1161 article-title: Temperature preconditioning of isolated rat hearts—a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore publication-title: J Physiol – volume: 83 start-page: 213 year: 2009 end-page: 225 article-title: Regulation and pharmacology of the mitochondrial permeability transition pore publication-title: Cardiovasc Res – volume: 65 start-page: 10545 year: 2005 end-page: 10554 article-title: Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage‐dependent anion channel and potentiates chemotherapy‐induced cytotoxicity publication-title: Cancer Res – volume: 41 start-page: H544 year: 1997 end-page: H552 article-title: Ischemic preconditioning and intracellular pH: a P‐31 NMR study in the isolated rat heart publication-title: Am J Physiol – volume: 1757 start-page: 509 year: 2006 end-page: 517 article-title: Mitochondrial ROS‐induced ROS release: an update and review publication-title: Biochim Biophys Acta – volume: 892 start-page: 191 year: 1987 end-page: 196 article-title: Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin‐skinned fibers publication-title: Biochim Biophys Acta – volume: 3 start-page: e1852 year: 2008 article-title: Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage‐dependent anion channels publication-title: PLoS ONE – volume: 96 start-page: 23 year: 2012 end-page: 31 article-title: Contribution of calpains to myocardial ischemia/reperfusion injury publication-title: Cardiovasc Res – volume: 294 start-page: H2088 year: 2008 end-page: H2097 article-title: Effect of diazoxide on flavoprotein oxidation and ROS generation during ischemia–reperfusion: a study on Langendorff‐perfused rat hearts using optic fibers publication-title: Am J Physiol – volume: 109 start-page: 6566 year: 2012 end-page: 6571 article-title: Bax regulates primary necrosis through mitochondrial dynamics publication-title: Proc Natl Acad Sci USA – volume: 28 start-page: 1045 year: 1996 end-page: 1057 article-title: Paradoxical effect of ischemic preconditioning on ischemic contracture? NMR studies of energy metabolism and intracellular pH in the rat heart publication-title: J Mol Cell Cardiol – volume: 38 start-page: 841 year: 2010 end-page: 860 article-title: A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection publication-title: Biochem Soc Trans – volume: 40 start-page: 171 year: 2008 end-page: 182 article-title: Regulation of hexokinase binding to VDAC publication-title: J Bioenerg Biomembr – volume: 15 start-page: 1406 year: 2001 end-page: 1418 article-title: Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase publication-title: Genes Dev – volume: 85 start-page: 723 year: 1999 end-page: 730 article-title: Role of Na+/H+ exchanger during ischemia and preconditioning in the isolated rat heart publication-title: Circ Res – volume: 104 start-page: 189 year: 2009 end-page: 202 article-title: The mitochondrial permeability transition pore as a target for preconditioning and postconditioning publication-title: Basic Res Cardiol – volume: 549 start-page: 513 year: 2003 end-page: 524 article-title: Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart publication-title: J Physiol – volume: 108 start-page: 60 year: 2011 end-page: 69 article-title: Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury publication-title: Circ Res – volume: 75 start-page: 760 year: 1994 end-page: 769 article-title: Alteration of the cytosolic‐mitochondrial distribution of high‐energy phosphates during global myocardial ischemia may contribute to early contractile failure publication-title: Circ Res – volume: 102 start-page: 1082 year: 2008 end-page: 1090 article-title: Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation publication-title: Circ Res – volume: 31 start-page: 907 year: 1999 end-page: 917 article-title: Repetitive acidosis protects the ischemic heart: implications for mechanisms in preconditioned hearts publication-title: J Mol Cell Cardiol – volume: 261 start-page: H469 year: 1991 end-page: H478 article-title: Ischemic contracture begins when anaerobic glycolysis stops: a 31P‐NMR study of isolated rat hearts publication-title: Am J Physiol – volume: 348 start-page: 343 year: 2000 end-page: 350 article-title: Cytochrome c release from isolated rat liver mitochondria can occur independently of outer‐membrane rupture: possible role of contact sites publication-title: Biochem J – volume: 108 start-page: 1165 year: 2011 end-page: 1169 article-title: Disruption of hexokinase II‐mitochondrial binding blocks ischemic preconditioning and causes rapid cardiac necrosis publication-title: Circ Res – volume: 286 start-page: 1046 year: 2011 end-page: 1053 article-title: Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor) publication-title: J Biol Chem – volume: 244 start-page: 159 year: 1987 end-page: 164 article-title: The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in matrix volume induced by osmotic strength, valinomycin and Ca publication-title: Biochem J – volume: 1061 start-page: 215 year: 1991 end-page: 225 article-title: Location and regulation of octameric mitochondrial creatine kinase in the contact sites publication-title: Biochim Biophys Acta – article-title: Hexokinase II and reperfusion injury: TAT‐HK2 peptide impairs vascular function in Langendorff‐perfused rat hearts publication-title: Circ Res – volume: 1147 start-page: 37 year: 2008 end-page: 52 article-title: The role of mitochondria in reactive oxygen species metabolism and signaling publication-title: Ann N Y Acad Sci – volume: 174 start-page: 79 year: 1997 end-page: 85 article-title: Detection of early ischemic damage by analysis of mitochondrial function in skinned fibers publication-title: Mol Cell Biochem – volume: 101 start-page: 7988 year: 2004 end-page: 7993 article-title: Cytomegalovirus cell death suppressor vMIA blocks Bax‐ but not Bak‐mediated apoptosis by binding and sequestering Bax at mitochondria publication-title: Proc Natl Acad Sci USA – volume: 10 start-page: 93 year: 2001 end-page: 111 article-title: Mitochondrial creatine kinase in contact sites: interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage publication-title: Biol Signals Recept – volume: 33 start-page: 1571 year: 2001 end-page: 1588 article-title: Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection publication-title: J Mol Cell Cardiol – volume: 268 start-page: H935 year: 1995 end-page: H944 article-title: Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning publication-title: Am J Physiol – volume: 436 start-page: 493 year: 2011 end-page: 505 article-title: The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia publication-title: Biochem J – volume: 277 start-page: 7610 year: 2002 end-page: 7618 article-title: Mitochondrial binding of hexokinase II inhibits Bax‐induced cytochrome c release and apoptosis publication-title: J Biol Chem – volume: 1818 start-page: 1520 year: 2012 end-page: 1525 article-title: VDAC proteomics: post‐translation modifications publication-title: Biochim Biophys Acta – volume: 66 start-page: 913 year: 1990 end-page: 931 article-title: Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode publication-title: Circ Res – volume: 1787 start-page: 1402 year: 2009 end-page: 1415 article-title: The role of the mitochondrial permeability transition pore in heart disease publication-title: Biochim Biophys Acta – volume: 417 start-page: 1 year: 2009 end-page: 13 article-title: How mitochondria produce reactive oxygen species publication-title: Biochem J – volume: 287 start-page: H1039 year: 2004 end-page: H1045 article-title: Creatine kinase‐deficient hearts exhibit increased susceptibility to ischemia–reperfusion injury and impaired calcium homeostasis publication-title: Am J Physiol – volume: 11 start-page: 621 year: 2010 end-page: 632 article-title: Mitochondria and cell death: outer membrane permeabilization and beyond publication-title: Nat Rev Mol Cell Biol – volume: 60 start-page: 405 year: 1974 end-page: 412 article-title: A comparison of three methods of glycogen measurement in tissues publication-title: Anal Biochem – volume: 33 start-page: 947 year: 2001 end-page: 956 article-title: Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase publication-title: J Mol Cell Cardiol – ident: e_1_3_4_7_2 doi: 10.1042/BJ20081386 – ident: e_1_3_4_9_2 doi: 10.1042/BJ20101957 – ident: e_1_3_4_28_2 doi: 10.1006/jmcc.1996.0224 – ident: e_1_3_4_5_2 doi: 10.1113/jphysiol.2007.130369 – ident: e_1_3_4_23_2 doi: 10.1016/0003-2697(74)90248-6 – ident: e_1_3_4_51_2 doi: 10.1006/jmcc.2001.1357 – volume: 41 start-page: H544 year: 1997 ident: e_1_3_4_40_2 article-title: Ischemic preconditioning and intracellular pH: a P‐31 NMR study in the isolated rat heart publication-title: Am J Physiol – ident: e_1_3_4_36_2 doi: 10.1161/01.RES.66.4.913 – ident: e_1_3_4_19_2 doi: 10.1042/bj2440159 – volume: 261 start-page: H469 year: 1991 ident: e_1_3_4_29_2 article-title: Ischemic contracture begins when anaerobic glycolysis stops: a 31P‐NMR study of isolated rat hearts publication-title: Am J Physiol – ident: e_1_3_4_15_2 doi: 10.1093/cvr/cvp151 – ident: e_1_3_4_39_2 doi: 10.1006/jmcc.1996.0097 – ident: e_1_3_4_17_2 doi: 10.1113/jphysiol.2003.034231 – ident: e_1_3_4_27_2 doi: 10.1074/jbc.M109950200 – ident: e_1_3_4_6_2 doi: 10.1161/CIRCRESAHA.107.167072 – ident: e_1_3_4_10_2 doi: 10.1016/S0925-4439(01)00062-X – ident: e_1_3_4_32_2 doi: 10.1042/bj3480343 – ident: e_1_3_4_53_2 doi: 10.1161/CIRCRESAHA.110.223115 – ident: e_1_3_4_16_2 doi: 10.1007/s10863-008-9148-8 – volume: 268 start-page: H935 year: 1995 ident: e_1_3_4_38_2 article-title: Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning publication-title: Am J Physiol – ident: e_1_3_4_52_2 doi: 10.1101/gad.889901 – ident: e_1_3_4_41_2 doi: 10.1006/jmcc.1998.0931 – ident: e_1_3_4_44_2 doi: 10.1074/jbc.271.28.16690 – ident: e_1_3_4_57_2 doi: 10.1158/0008-5472.CAN-05-1925 – ident: e_1_3_4_56_2 doi: 10.1016/j.bbabio.2008.12.017 – ident: e_1_3_4_18_2 doi: 10.1152/ajpheart.01345.2007 – ident: e_1_3_4_12_2 doi: 10.1152/japplphysiol.90537.2008 – ident: e_1_3_4_4_2 doi: 10.1007/s10557-010-6236-x – ident: e_1_3_4_54_2 doi: 10.1093/cvr/cvs232 – ident: e_1_3_4_11_2 doi: 10.1016/S0008-6363(03)00533-9 – ident: e_1_3_4_26_2 article-title: Hexokinase II and reperfusion injury: TAT‐HK2 peptide impairs vascular function in Langendorff‐perfused rat hearts publication-title: Circ Res – ident: e_1_3_4_49_2 doi: 10.1152/ajpheart.01016.2003 – ident: e_1_3_4_30_2 doi: 10.1042/bst0250151 – ident: e_1_3_4_20_2 doi: 10.1023/A:1006884607272 – ident: e_1_3_4_59_2 doi: 10.1038/nrm2952 – ident: e_1_3_4_33_2 doi: 10.1016/j.bbadis.2005.09.007 – ident: e_1_3_4_50_2 doi: 10.1161/01.RES.75.4.760 – ident: e_1_3_4_42_2 doi: 10.1161/01.RES.85.8.723 – ident: e_1_3_4_55_2 doi: 10.1016/j.bbabio.2006.04.029 – ident: e_1_3_4_22_2 doi: 10.1016/0005-2728(87)90174-5 – ident: e_1_3_4_45_2 doi: 10.1074/jbc.M110.172486 – ident: e_1_3_4_21_2 doi: 10.1016/0005-2728(93)90166-D – ident: e_1_3_4_34_2 doi: 10.1159/000046878 – ident: e_1_3_4_13_2 doi: 10.1073/pnas.1201608109 – ident: e_1_3_4_37_2 doi: 10.1152/ajpcell.1993.265.4.C1146 – ident: e_1_3_4_58_2 doi: 10.1016/j.bbamem.2011.11.013 – ident: e_1_3_4_24_2 doi: 10.1073/pnas.0401897101 – ident: e_1_3_4_31_2 doi: 10.1016/0005-2736(91)90287-I – ident: e_1_3_4_35_2 doi: 10.1006/jmcc.2001.1425 – ident: e_1_3_4_8_2 doi: 10.1196/annals.1427.015 – ident: e_1_3_4_47_2 doi: 10.1042/bj2680153 – ident: e_1_3_4_3_2 doi: 10.1007/s00395-009-0010-x – ident: e_1_3_4_43_2 doi: 10.1177/153537020222700717 – ident: e_1_3_4_2_2 doi: 10.1042/BST0380841 – ident: e_1_3_4_25_2 doi: 10.1161/CIRCRESAHA.111.244962 – ident: e_1_3_4_14_2 doi: 10.1371/journal.pone.0001852 – ident: e_1_3_4_46_2 doi: 10.1124/jpet.110.167486 – ident: e_1_3_4_48_2 doi: 10.1093/cvr/28.5.581 – reference: 14962470 - Cardiovasc Res. 2004 Feb 15;61(3):372-85 – reference: 20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32 – reference: 11390360 - Genes Dev. 2001 Jun 1;15(11):1406-18 – reference: 9038977 - Am J Physiol. 1997 Jan;272(1 Pt 2):H544-52 – reference: 18296562 - Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2088-97 – reference: 21062740 - J Biol Chem. 2011 Jan 14;286(2):1046-53 – reference: 9056862 - Biochem Soc Trans. 1997 Feb;25(1):151-7 – reference: 19061483 - Biochem J. 2009 Jan 1;417(1):1-13 – reference: 4844560 - Anal Biochem. 1974 Aug;60(2):405-12 – reference: 17395631 - J Physiol. 2007 Jun 15;581(Pt 3):1147-61 – reference: 11751859 - J Biol Chem. 2002 Mar 1;277(9):7610-8 – reference: 3593705 - Biochim Biophys Acta. 1987 Jun 29;892(2):191-6 – reference: 1998693 - Biochim Biophys Acta. 1991 Jan 30;1061(2):215-25 – reference: 8762042 - J Mol Cell Cardiol. 1996 May;28(5):1045-57 – reference: 20658967 - Biochem Soc Trans. 2010 Aug;38(4):841-60 – reference: 22787134 - Cardiovasc Res. 2012 Oct 1;96(1):23-31 – reference: 9004148 - J Mol Cell Cardiol. 1996 Dec;28(12):2305-21 – reference: 10521246 - Circ Res. 1999 Oct 15;85(8):723-30 – reference: 2160810 - Biochem J. 1990 May 15;268(1):153-60 – reference: 8025901 - Cardiovasc Res. 1994 May;28(5):581-97 – reference: 20215409 - J Pharmacol Exp Ther. 2010 Jun;333(3):696-706 – reference: 2317895 - Circ Res. 1990 Apr;66(4):913-31 – reference: 19228992 - J Appl Physiol (1985). 2009 Jun;106(6):1909-16 – reference: 8238305 - Am J Physiol. 1993 Oct;265(4 Pt 1):C1146-55 – reference: 15148411 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):7988-93 – reference: 11549338 - J Mol Cell Cardiol. 2001 Sep;33(9):1571-88 – reference: 11223643 - Biol Signals Recept. 2001 Jan-Apr;10(1-2):93-111 – reference: 11343417 - J Mol Cell Cardiol. 2001 May;33(5):947-56 – reference: 8396441 - Biochim Biophys Acta. 1993 Sep 13;1144(2):134-48 – reference: 20505987 - Cardiovasc Drugs Ther. 2010 Jun;24(3):225-34 – reference: 21527739 - Circ Res. 2011 May 13;108(10):1165-9 – reference: 21071708 - Circ Res. 2011 Jan 7;108(1):60-9 – reference: 11566253 - Biochim Biophys Acta. 2001 Sep 28;1537(2):101-9 – reference: 18683036 - J Bioenerg Biomembr. 2008 Jun;40(3):171-82 – reference: 16829228 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17 – reference: 16288047 - Cancer Res. 2005 Nov 15;65(22):10545-54 – reference: 16324828 - Biochim Biophys Acta. 2006 Feb;1762(2):148-63 – reference: 12094017 - Exp Biol Med (Maywood). 2002 Jul;227(7):520-8 – reference: 22493254 - Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6566-71 – reference: 19076429 - Ann N Y Acad Sci. 2008 Dec;1147:37-52 – reference: 19242644 - Basic Res Cardiol. 2009 Mar;104(2):189-202 – reference: 23329796 - Circ Res. 2013 Jan 18;112(2):e3-7 – reference: 7900892 - Am J Physiol. 1995 Mar;268(3 Pt 2):H935-44 – reference: 10816428 - Biochem J. 2000 Jun 1;348 Pt 2:343-50 – reference: 7923621 - Circ Res. 1994 Oct;75(4):760-9 – reference: 9309669 - Mol Cell Biochem. 1997 Sep;174(1-2):79-85 – reference: 18356542 - Circ Res. 2008 May 9;102(9):1082-90 – reference: 8663315 - J Biol Chem. 1996 Jul 12;271(28):16690-4 – reference: 18350175 - PLoS One. 2008;3(3):e1852 – reference: 22120575 - Biochim Biophys Acta. 2012 Jun;1818(6):1520-5 – reference: 3663110 - Biochem J. 1987 May 15;244(1):159-64 – reference: 10329217 - J Mol Cell Cardiol. 1999 Apr;31(4):907-17 – reference: 21410437 - Biochem J. 2011 Jun 1;436(2):493-505 – reference: 1877673 - Am J Physiol. 1991 Aug;261(2 Pt 2):H469-78 – reference: 19168026 - Biochim Biophys Acta. 2009 Nov;1787(11):1402-15 – reference: 12692185 - J Physiol. 2003 Jun 1;549(Pt 2):513-24 – reference: 15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45 – reference: 19447775 - Cardiovasc Res. 2009 Jul 15;83(2):213-25 |
SSID | ssj0000627359 |
Score | 2.2476003 |
Snippet | Background
The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion... The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e005645 |
SubjectTerms | Animals bcl-2-Associated X Protein - metabolism bcl-X Protein - metabolism Cytochromes c - metabolism Disease Models, Animal Glucose-6-Phosphate - metabolism Hemodynamics hexokinase Hexokinase - metabolism Hydrogen Peroxide - metabolism ischemia/reperfusion injury Ischemic Preconditioning, Myocardial Male mitochondria Mitochondria, Heart - enzymology Mitochondria, Heart - pathology Mitochondrial Membrane Transport Proteins - metabolism Mitochondrial Membranes - metabolism Myocardial Infarction - enzymology Myocardial Infarction - pathology Myocardial Infarction - physiopathology Myocardial Reperfusion Injury - enzymology Myocardial Reperfusion Injury - pathology Myocardial Reperfusion Injury - physiopathology Myocardial Reperfusion Injury - prevention & control Myocardium - enzymology Myocardium - pathology Original Research Permeability permeability transition pore Phosphocreatine - metabolism Rats Rats, Wistar reactive oxygen species Reactive Oxygen Species - metabolism |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell Open Access Titles dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIhLRXmGlwaJA4emJLbjZI-rbavdSgsVUMEtcvxQI9ps1Wallp_Gr2PGyYZuK4S4JbIzjjRv2_MNY--8Gem0KmRstdOxlCKPRzl38cgr721mbWKpwHn-UU2P5MH3bHWbkGphOnyIYcONNCPYa1JwXfVdSBQp-cF4OqYCmB1Cs5TZXXaPCmwJPp_Lw2GbhVB4RWiZxgmTAJOLpAf4QSofbtBY9023As7b9yavx7PBIe0_ZJt9JAnjjvVb7I5rHrH78_6s_DH7tUf72y0sPMxRbdHMNZakDabucvGjbtB9wWwGu_UfBsFuKFqEGaa87rTWMKHeHScUjsK3uj2-QWhyRW-EdwAGPqP_QpLb-KCDDYVPl1conRA63COBww5bFpfZBt1YmDUelayFL_VPB7g2pgLu3C9p9-4JO9rf-zqZxn2nhthIAud1zqSYdxSVdIXFCMhnyjsyBZYnnhcmy71KdWFyHK5GRao8N7kQIsOZJkE_-pRtNIvGPWeQJanRQlZKFpm0Vhcqp7POkBkVKD8R21nxqDQ9jDl10zgpQzqj0pKYik-87JgasffDB2cdgsffp75dMb1ELaOjE924xfKiTMlSYWaZiYg964RgIMYJUVamPGL5mngMEwjBe32kqY8DkrdQCQEiRiwOgvSv_6N3kYr8xX_Of8ke8NDFg27hvGIb7fnSvcZYqq3eBG35DQ1xF_s priority: 102 providerName: Wiley-Blackwell |
Title | Extent of Mitochondrial Hexokinase II Dissociation During Ischemia Correlates With Mitochondrial Cytochrome c Release, Reactive Oxygen Species Production, and Infarct Size on Reperfusion |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1161%2FJAHA.112.005645 https://www.ncbi.nlm.nih.gov/pubmed/23525412 https://www.proquest.com/docview/1319616453 https://pubmed.ncbi.nlm.nih.gov/PMC3603240 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBZNCqWX0HedposKPfQQby1bku1DKEtJ2AS29NCF3IysBzHd2Jt9wG5-Wn9dZ2Tvttsk9Cahh2XNjGZGj28I-eh0rliZ8dAoq0LOkzTM09iGuZPOGWFMZPCB8-ibHI75xaW4_BMOqJvA-b2uHcaTGs8m_dXN-gsI_IkXeMk-XwyGA3wK00dcSy72yGNQSylK6aiz9dtlGTS1yDt4n3vaIS4wgoNyFu8qqTuW590LlH8btl4znT0jB51JSQctDzwnj2z9gjwZdYfmL8mvU9zoXtDG0WuQX_jl2iDb0Su7an5WNegxen5O8WR-Qynavl6kFUyQva4U1RjEY4J2KcWd23860mvMIfAB1RSjsECXx5BQfjGlzWoNbErxUSf45XTagszCZ46pqg2FWQdpW9B5dQt1a2g3tTO3xG28V2R8dvrj6zDsQjaEmiNKr7WagQOSldxmBkwhJ6SzuCaYOHJxpkXqJFOZTqG4zDMmXazTJEkE1NQRKNTXZL9uavuWUBExrRJeSp4JbozKZIqHnt5FyoCRAtLf0KjQHZ45htWYFN6vkaxA-kIqLlr6BuTTtsG0hfJ4uOqHDdELEDc8Q1G1bZbzguGSBS6mSALypmWCbWcb7glIusMe2woI5b1bUldXHtI7kREiIwYk9Iz0v_FhPmFJevjgGN6Rp7EP3IEXb47I_mK2tO_BfFqUPbIX8-89v_nQ8yLyG1f6GrQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKrW9VH039OVKPfRAILEdJ3tcLaCEshS1oHKLHD9EVMgiyErAT-PXdcYJKQuqqt4SxTtZaeabl-NvCPns9EjFVSZCo6wKheBpOEqZDUdOOmcSYyKDB5ynOzLfF1sHycGNszAdP8TQcENkeH-NAMeGdIdyiSjfGudjPAGzinSWIrlPHgjJUgQnE7tDnwVpeLmfmcaQlACqi6hn-AEpa7dkLAanOxnn3Q8nbya0PiJtPiVP-lSSjjvdPyP3bPOcPJz2m-UvyNUGNrhbOnN0CrgFP9cYNDea2_PZr7qB-EWLgq7XfzRE1_2pRVpAzWuPa0UnOLzjCPNR-rNuD28JmlzgHRIeUE2_QwADkStwobwTpd_OL8A8qR9xDwJ2O3JZeM0KVY2hReMAZS39UV9aCu-GWsCeujm2716S_c2NvUke9qMaQi2QnddaHUPhkVXCZgZSIJdIZ9EXGBY5lukkdTJWmU7hcTXKYumYTjnnCazUEQTSV2SpmTX2DaFJFGvFRSVFlghjVCZT3Oz0pVEGBhSQ1WsdlbrnMcdxGkelr2dkXKJS4YqVnVID8mX4wUlH4fH3pZ-ulV4CzHDvRDV2Nj8rY3RVUFomPCCvOyMYhDGklBUxC0i6YB7DAqTwXnzS1IeeypvLCBkRAxJ6Q_rX_8N7HvN0-T_XfySP8r3pdrld7Hx9Sx4zP9IDP8l5R5ba07l9D4lVW33wyPkNJRAbZw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSBMviDsZt4PEAw_LSGLHSR-rdlU76KiACd4ixxctYqTTlkobP41fxzlOGugmhHizZec40rn78h3GXjs9UHGZi9Aoq0IheBYOssSGAyedM6kxkaEHzvNDOT0SB1_T9W1CegvT4kP0G26kGd5ek4KfGtcquSQlPxhOh_QAZo_QLEV6k93yR34E7iwW_TYLofByXzItIUwCTC6iDuAHqby9QmPTN10LOK_fm_wznvUOaXKX3ekiSRi2rL_Hbtj6Ptued2flD9jPfdrfbmDpYI5qi2auNiRtMLUXy29Vje4LZjMYV78ZBGP_aBFmmPLa75WCEdXuOKFwFL5UzfEVQqNL6hHeAWj4iP4LSe5iQ3kbCh8uLlE6wVe4RwKLFlsWl9kFVRuY1Q6VrIFP1Q8LuDamAvbMrWj37iE7mux_Hk3DrlJDqAWB81qrY8w78lLY3GAE5FLpLJkCk0QuyXWaORmrXGc4XA7yWLpEZ5zzFGfqCP3oI7ZVL2v7hEEaxVpxUUqRp8IYlcuMzjp9ZpSj_ARsb82jQncw5lRN46Tw6YyMC2IqtpKiZWrA3vQfnLYIHn-f-mrN9AK1jI5OVG2Xq_MiJkuFmWXKA_a4FYKeWEKIsiJOApZtiEc_gRC8N0fq6tgjeXMZESBiwEIvSP_6P-rzmGc7_zn_JdtejCfF-9nhu6fsduILetCFnGdsqzlb2ecYVjXlC684vwBkaxqZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extent+of+mitochondrial+hexokinase+II+dissociation+during+ischemia+correlates+with+mitochondrial+cytochrome+c+release%2C+reactive+oxygen+species+production%2C+and+infarct+size+on+reperfusion&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Pasdois%2C+Philippe&rft.au=Parker%2C+Joanne+Elizabeth&rft.au=Halestrap%2C+Andrew+Philip&rft.date=2013-02-01&rft.eissn=2047-9980&rft.volume=2&rft.issue=1&rft.spage=e005645&rft_id=info:doi/10.1161%2FJAHA.112.005645&rft_id=info%3Apmid%2F23525412&rft.externalDocID=23525412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon |