Extent of Mitochondrial Hexokinase II Dissociation During Ischemia Correlates With Mitochondrial Cytochrome c Release, Reactive Oxygen Species Production, and Infarct Size on Reperfusion

Background The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion injury remain unclear. Here we investigate whether and how mitochondria‐bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effe...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Heart Association Vol. 2; no. 1; pp. e005645 - n/a
Main Authors Pasdois, Philippe, Parker, Joanne Elizabeth, Halestrap, Andrew Philip
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.02.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion injury remain unclear. Here we investigate whether and how mitochondria‐bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP. Methods and Results Control and IP Langendorff‐perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl‐xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose‐6‐phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose‐6‐phosphate and intracellular pHi revealed a strong inverse correlation between end‐ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation. Conclusions We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl‐xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments.
AbstractList The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP.BACKGROUNDThe mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP.Control and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl-xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose-6-phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose-6-phosphate and intracellular pHi revealed a strong inverse correlation between end-ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation.METHODS AND RESULTSControl and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl-xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose-6-phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose-6-phosphate and intracellular pHi revealed a strong inverse correlation between end-ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation.We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl-xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments.CONCLUSIONSWe propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl-xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments.
The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury remain unclear. Here we investigate whether and how mitochondria-bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP. Control and IP Langendorff-perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl-xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose-6-phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose-6-phosphate and intracellular pHi revealed a strong inverse correlation between end-ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation. We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl-xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments.
Background The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion injury remain unclear. Here we investigate whether and how mitochondria‐bound hexokinase 2 (mtHK2) may exert part of the cardioprotective effects of IP. Methods and Results Control and IP Langendorff‐perfused rat hearts were subject to ischemia and reperfusion with measurement of hemodynamic function and infarct size. Outer mitochondrial membrane (OMM) permeabilization after ischemia was determined by measuring rates of respiration and H2O2 production in the presence and absence of added cytochrome c in isolated mitochondria and permeabilized fibers. IP prevented OMM permeabilization during ischemia and reduced the loss of mtHK2, but not Bcl‐xL, observed in control ischemic hearts. By contrast, treatment of permeabilized fibers with glucose‐6‐phosphate at pH 6.3 induced mtHK2 loss without OMM permeabilization. However, metabolic pretreatments of the perfused heart chosen to modulate glucose‐6‐phosphate and intracellular pHi revealed a strong inverse correlation between end‐ischemic mtHK2 content and infarct size after reperfusion. Loss of mtHK2 was also associated with reduced rates of creatine phosphate generation during the early phase of reperfusion. This could be mimicked in permeabilized fibers after mtHK2 dissociation. Conclusions We propose that loss of mtHK2 during ischemia destabilizes mitochondrial contact sites, which, when accompanied by degradation of Bcl‐xL, induces OMM permeabilization and cytochrome c loss. This stimulates reactive oxygen species production and mitochondrial permeability transition pore opening on reperfusion, leading to infarction. Consequently, inhibition of mtHK2 loss during ischemia could be an important mechanism responsible for the cardioprotection mediated by IP and other pretreatments.
Author Pasdois, Philippe
Halestrap, Andrew Philip
Parker, Joanne Elizabeth
Author_xml – sequence: 1
  givenname: Philippe
  surname: Pasdois
  fullname: Pasdois, Philippe
  organization: University of Bristol
– sequence: 2
  givenname: Joanne Elizabeth
  surname: Parker
  fullname: Parker, Joanne Elizabeth
  organization: University of Bristol
– sequence: 3
  givenname: Andrew Philip
  surname: Halestrap
  fullname: Halestrap, Andrew Philip
  organization: University of Bristol
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23525412$$D View this record in MEDLINE/PubMed
BookMark eNqFUktvEzEQtlARLaVnbshHDk3rx3ofF6QoLWRRUVEL4mg53tnEsGuntrck_DR-HV7SolIJ4Yu_0XwPaWaeoz3rLCD0kpITSnN6-n46nybETggReSaeoANGsmJSVSXZe4D30VEIX0l6OSu4qJ6hfcYFExllB-jn-SaCjdi1-IOJTq-cbbxRHZ7Dxn0zVgXAdY3PTAhOGxWNs_hs8MYucR30Cnqj8Mx5D52KEPAXE1ePjGbbsfKuB6zxFXSQLI8TUDqaW8CXm-0SLL5egzbJ4KN3zaDHmGOsbINr2yqvI742PwCn7CtYg2-HkAgv0NNWdQGO7v5D9Pnt-afZfHJx-a6eTS8mOuNlMQHQVJSiXGRQNmXFW5G3UJQFaRhpWalF0eZUlbpI7UVV0rxluuCci8TUJKP8EL3Z-a6HRQ-NTuPyqpNrb3rlt9IpI__uWLOSS3creU44y0gyeH1n4N3NACHK3gQNXacsuCFIymmV07RBnqivHmb9CblfWCKIHUF7F4KHVmoTf68lRZtOUiLH25DjbSTE5O42ku70ke7e-t-KbKf4bjrY_o8-1pzygv8CROrOHg
CitedBy_id crossref_primary_10_1038_cddis_2017_43
crossref_primary_10_1016_j_drudis_2022_05_017
crossref_primary_10_1038_s42255_022_00707_5
crossref_primary_10_1016_j_phrs_2015_04_013
crossref_primary_10_1007_s10557_021_07189_9
crossref_primary_10_1016_j_bbadis_2017_05_001
crossref_primary_10_1371_journal_pone_0100579
crossref_primary_10_1161_CIRCRESAHA_116_305348
crossref_primary_10_1186_s12974_025_03334_5
crossref_primary_10_3390_ijms19020494
crossref_primary_10_3390_cells10051223
crossref_primary_10_1016_j_bbadis_2017_06_011
crossref_primary_10_3390_cells12101432
crossref_primary_10_3892_ijmm_2019_4304
crossref_primary_10_1093_cvr_cvy054
crossref_primary_10_1016_j_biopha_2023_116111
crossref_primary_10_30607_kvj_437999
crossref_primary_10_1016_j_gene_2015_12_046
crossref_primary_10_1016_j_jare_2024_08_016
crossref_primary_10_1161_CIRCRESAHA_113_302987
crossref_primary_10_1016_j_freeradbiomed_2021_01_036
crossref_primary_10_3389_fcvm_2021_740515
crossref_primary_10_1007_s11010_017_3001_5
crossref_primary_10_1007_s00395_024_01042_4
crossref_primary_10_3390_life11111123
crossref_primary_10_1016_j_freeradbiomed_2022_11_035
crossref_primary_10_1074_jbc_M113_482026
crossref_primary_10_7197_223_vi_577914
crossref_primary_10_1016_j_tem_2019_04_011
crossref_primary_10_1186_s12871_017_0330_6
crossref_primary_10_1038_s41598_017_13096_7
crossref_primary_10_1111_bph_13709
crossref_primary_10_1152_japplphysiol_00207_2018
crossref_primary_10_1016_j_metabol_2017_04_008
crossref_primary_10_1016_j_freeradbiomed_2018_01_024
crossref_primary_10_1016_j_mito_2016_07_005
crossref_primary_10_1085_jgp_201310968
crossref_primary_10_3389_fphys_2018_00755
crossref_primary_10_1111_febs_12353
crossref_primary_10_1152_japplphysiol_01035_2014
crossref_primary_10_1111_bph_12899
crossref_primary_10_1371_journal_pone_0167300
crossref_primary_10_1016_j_yjmcc_2014_08_018
crossref_primary_10_1093_cvr_cvz004
crossref_primary_10_2174_2212796817666230510095530
crossref_primary_10_1007_s10863_016_9652_1
crossref_primary_10_1016_j_biopha_2021_111679
crossref_primary_10_1016_j_ejphar_2015_04_056
crossref_primary_10_1371_journal_pone_0234653
crossref_primary_10_3390_ijms25084491
crossref_primary_10_1007_s10863_016_9672_x
crossref_primary_10_1038_s41418_023_01187_0
crossref_primary_10_1016_j_ijbiomac_2024_138831
crossref_primary_10_1111_bph_12363
crossref_primary_10_1016_j_yjmcc_2014_09_020
crossref_primary_10_1016_j_ejphar_2015_04_009
crossref_primary_10_1016_S1875_5364_17_30087_0
crossref_primary_10_1111_jcmm_15180
crossref_primary_10_1016_j_freeradbiomed_2018_11_033
crossref_primary_10_1016_j_molcel_2022_02_028
crossref_primary_10_1016_j_yjmcc_2017_06_016
Cites_doi 10.1042/BJ20081386
10.1042/BJ20101957
10.1006/jmcc.1996.0224
10.1113/jphysiol.2007.130369
10.1016/0003-2697(74)90248-6
10.1006/jmcc.2001.1357
10.1161/01.RES.66.4.913
10.1042/bj2440159
10.1093/cvr/cvp151
10.1006/jmcc.1996.0097
10.1113/jphysiol.2003.034231
10.1074/jbc.M109950200
10.1161/CIRCRESAHA.107.167072
10.1016/S0925-4439(01)00062-X
10.1042/bj3480343
10.1161/CIRCRESAHA.110.223115
10.1007/s10863-008-9148-8
10.1101/gad.889901
10.1006/jmcc.1998.0931
10.1074/jbc.271.28.16690
10.1158/0008-5472.CAN-05-1925
10.1016/j.bbabio.2008.12.017
10.1152/ajpheart.01345.2007
10.1152/japplphysiol.90537.2008
10.1007/s10557-010-6236-x
10.1093/cvr/cvs232
10.1016/S0008-6363(03)00533-9
10.1152/ajpheart.01016.2003
10.1042/bst0250151
10.1023/A:1006884607272
10.1038/nrm2952
10.1016/j.bbadis.2005.09.007
10.1161/01.RES.75.4.760
10.1161/01.RES.85.8.723
10.1016/j.bbabio.2006.04.029
10.1016/0005-2728(87)90174-5
10.1074/jbc.M110.172486
10.1016/0005-2728(93)90166-D
10.1159/000046878
10.1073/pnas.1201608109
10.1152/ajpcell.1993.265.4.C1146
10.1016/j.bbamem.2011.11.013
10.1073/pnas.0401897101
10.1016/0005-2736(91)90287-I
10.1006/jmcc.2001.1425
10.1196/annals.1427.015
10.1042/bj2680153
10.1007/s00395-009-0010-x
10.1177/153537020222700717
10.1042/BST0380841
10.1161/CIRCRESAHA.111.244962
10.1371/journal.pone.0001852
10.1124/jpet.110.167486
10.1093/cvr/28.5.581
ContentType Journal Article
Copyright 2012 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley‐Blackwell.
2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell. 2013
Copyright_xml – notice: 2012 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley‐Blackwell.
– notice: 2013 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley-Blackwell. 2013
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1161/JAHA.112.005645
DatabaseName Wiley-Blackwell Open Access Titles
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2047-9980
EndPage n/a
ExternalDocumentID PMC3603240
23525412
10_1161_JAHA_112_005645
JAH3137
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The British Heart Foundation
  funderid: RG/08/001/24717
– fundername: British Heart Foundation
  grantid: RG/08/001/24717
GroupedDBID 0R~
1OC
24P
53G
5VS
8-1
AAZKR
ACCMX
ACGFO
ACXQS
ADBBV
ADKYN
ADRAZ
ADZMN
AEGXH
AENEX
AIAGR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AVUZU
BAWUL
BCNDV
DIK
EBS
EJD
EMOBN
GODZA
GROUPED_DOAJ
GX1
H13
HYE
KQ8
M48
M~E
OK1
RAH
RHF
RNS
RPM
WIN
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
5PM
ID FETCH-LOGICAL-c4387-eec15858b4e8d893f56fe7870d20f28c57f61a8c7e8db9816f2c733353f5c0413
IEDL.DBID M48
ISSN 2047-9980
IngestDate Thu Aug 21 18:33:26 EDT 2025
Fri Jul 11 00:52:35 EDT 2025
Wed Feb 19 02:16:05 EST 2025
Thu Apr 24 22:56:09 EDT 2025
Tue Jul 01 04:01:16 EDT 2025
Wed Jan 22 16:37:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial
This is an Open Access article under the terms of the Creative Commons Attribution Noncommercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4387-eec15858b4e8d893f56fe7870d20f28c57f61a8c7e8db9816f2c733353f5c0413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1161/JAHA.112.005645
PMID 23525412
PQID 1319616453
PQPubID 23479
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3603240
proquest_miscellaneous_1319616453
pubmed_primary_23525412
crossref_citationtrail_10_1161_JAHA_112_005645
crossref_primary_10_1161_JAHA_112_005645
wiley_primary_10_1161_JAHA_112_005645_JAH3137
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2013
PublicationDateYYYYMMDD 2013-02-01
PublicationDate_xml – month: 02
  year: 2013
  text: February 2013
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of the American Heart Association
PublicationTitleAlternate J Am Heart Assoc
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 287
2010; 11
2004; 61
1990; 268
2011; 436
2009; 83
1997; 41
2007; 581
2002; 277
2005; 65
1999; 85
2008; 3
2006; 1762
2008; 102
1994; 28
1991; 1061
2012; 96
1991; 261
1996; 28
2010; 24
2006; 1757
2002; 227
2001; 1537
2001; 15
2012; 1818
2011; 286
2001; 10
1994; 75
2004; 101
2009; 1787
2010; 38
1987; 244
1997; 174
1997; 25
2009; 417
2012; 109
1993; 265
2003; 549
2008; 1147
1990; 66
2011; 108
1987; 892
1974; 60
2000; 348
2010; 333
1996; 271
1993; 1144
1995; 268
1999; 31
2001; 33
2008; 40
2009; 104
2008; 294
2009; 106
e_1_3_4_3_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
Cave AC (e_1_3_4_40_2) 1997; 41
Pasdois P (e_1_3_4_26_2)
e_1_3_4_30_2
Kingsley PB (e_1_3_4_29_2) 1991; 261
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
e_1_3_4_52_2
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_56_2
Schaefer S (e_1_3_4_38_2) 1995; 268
e_1_3_4_18_2
e_1_3_4_39_2
8238305 - Am J Physiol. 1993 Oct;265(4 Pt 1):C1146-55
18350175 - PLoS One. 2008;3(3):e1852
16829228 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17
11390360 - Genes Dev. 2001 Jun 1;15(11):1406-18
18683036 - J Bioenerg Biomembr. 2008 Jun;40(3):171-82
18296562 - Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2088-97
10816428 - Biochem J. 2000 Jun 1;348 Pt 2:343-50
11751859 - J Biol Chem. 2002 Mar 1;277(9):7610-8
15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45
21071708 - Circ Res. 2011 Jan 7;108(1):60-9
11566253 - Biochim Biophys Acta. 2001 Sep 28;1537(2):101-9
19242644 - Basic Res Cardiol. 2009 Mar;104(2):189-202
19168026 - Biochim Biophys Acta. 2009 Nov;1787(11):1402-15
11549338 - J Mol Cell Cardiol. 2001 Sep;33(9):1571-88
21410437 - Biochem J. 2011 Jun 1;436(2):493-505
12094017 - Exp Biol Med (Maywood). 2002 Jul;227(7):520-8
19447775 - Cardiovasc Res. 2009 Jul 15;83(2):213-25
8396441 - Biochim Biophys Acta. 1993 Sep 13;1144(2):134-48
10521246 - Circ Res. 1999 Oct 15;85(8):723-30
9309669 - Mol Cell Biochem. 1997 Sep;174(1-2):79-85
19061483 - Biochem J. 2009 Jan 1;417(1):1-13
10329217 - J Mol Cell Cardiol. 1999 Apr;31(4):907-17
20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32
2160810 - Biochem J. 1990 May 15;268(1):153-60
20215409 - J Pharmacol Exp Ther. 2010 Jun;333(3):696-706
21062740 - J Biol Chem. 2011 Jan 14;286(2):1046-53
11343417 - J Mol Cell Cardiol. 2001 May;33(5):947-56
22787134 - Cardiovasc Res. 2012 Oct 1;96(1):23-31
14962470 - Cardiovasc Res. 2004 Feb 15;61(3):372-85
2317895 - Circ Res. 1990 Apr;66(4):913-31
17395631 - J Physiol. 2007 Jun 15;581(Pt 3):1147-61
9056862 - Biochem Soc Trans. 1997 Feb;25(1):151-7
7900892 - Am J Physiol. 1995 Mar;268(3 Pt 2):H935-44
23329796 - Circ Res. 2013 Jan 18;112(2):e3-7
22120575 - Biochim Biophys Acta. 2012 Jun;1818(6):1520-5
8762042 - J Mol Cell Cardiol. 1996 May;28(5):1045-57
19228992 - J Appl Physiol (1985). 2009 Jun;106(6):1909-16
16324828 - Biochim Biophys Acta. 2006 Feb;1762(2):148-63
8663315 - J Biol Chem. 1996 Jul 12;271(28):16690-4
1998693 - Biochim Biophys Acta. 1991 Jan 30;1061(2):215-25
11223643 - Biol Signals Recept. 2001 Jan-Apr;10(1-2):93-111
12692185 - J Physiol. 2003 Jun 1;549(Pt 2):513-24
22493254 - Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6566-71
1877673 - Am J Physiol. 1991 Aug;261(2 Pt 2):H469-78
21527739 - Circ Res. 2011 May 13;108(10):1165-9
3593705 - Biochim Biophys Acta. 1987 Jun 29;892(2):191-6
9038977 - Am J Physiol. 1997 Jan;272(1 Pt 2):H544-52
4844560 - Anal Biochem. 1974 Aug;60(2):405-12
8025901 - Cardiovasc Res. 1994 May;28(5):581-97
15148411 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):7988-93
20505987 - Cardiovasc Drugs Ther. 2010 Jun;24(3):225-34
9004148 - J Mol Cell Cardiol. 1996 Dec;28(12):2305-21
3663110 - Biochem J. 1987 May 15;244(1):159-64
7923621 - Circ Res. 1994 Oct;75(4):760-9
20658967 - Biochem Soc Trans. 2010 Aug;38(4):841-60
16288047 - Cancer Res. 2005 Nov 15;65(22):10545-54
19076429 - Ann N Y Acad Sci. 2008 Dec;1147:37-52
18356542 - Circ Res. 2008 May 9;102(9):1082-90
References_xml – volume: 1144
  start-page: 134
  year: 1993
  end-page: 148
  article-title: Retarded diffusion of ADP in cardiomyocytes: possible role of mitochondrial outer membrane and creatine kinase in cellular regulation of oxidative phosphorylation
  publication-title: Biochim Biophys Acta
– volume: 1762
  start-page: 148
  year: 2006
  end-page: 163
  article-title: Mitochondrial contact sites: their role in energy metabolism and apoptosis
  publication-title: Biochim Biophys Acta
– volume: 24
  start-page: 225
  year: 2010
  end-page: 234
  article-title: Mechanism of cardioprotection by early ischemic preconditioning
  publication-title: Cardiovasc Drugs Ther
– volume: 106
  start-page: 1909
  year: 2009
  end-page: 1916
  article-title: Ischemic preconditioning affects hexokinase activity and HKII in different subcellular compartments throughout cardiac ischemia–reperfusion
  publication-title: J Appl Physiol
– volume: 28
  start-page: 2305
  year: 1996
  end-page: 2321
  article-title: Does preconditioning act by glycogen depletion in the isolated rat heart?
  publication-title: J Mol Cell Cardiol
– volume: 61
  start-page: 372
  year: 2004
  end-page: 385
  article-title: Mitochondrial permeability transition pore opening during myocardial reperfusion—a target for cardioprotection
  publication-title: Cardiovasc Res
– volume: 333
  start-page: 696
  year: 2010
  end-page: 706
  article-title: TRO40303, a new cardioprotective compound, inhibits mitochondrial permeability transition
  publication-title: J Pharmacol Exp Ther
– volume: 271
  start-page: 16690
  year: 1996
  end-page: 16694
  article-title: Analysis of the signaling pathway involved in the regulation of hexokinase II gene transcription by insulin
  publication-title: J Biol Chem
– volume: 25
  start-page: 151
  year: 1997
  end-page: 157
  article-title: Complexes between hexokinase, mitochondrial porin and adenylate translocator in brain: regulation of hexokinase, oxidative phosphorylation and permeability transition pore
  publication-title: Biochem Soc Trans
– volume: 28
  start-page: 581
  year: 1994
  end-page: 597
  article-title: Ionic basis of ischaemic cardiac injury: insights from cellular studies
  publication-title: Cardiovasc Res
– volume: 265
  start-page: C1146
  year: 1993
  end-page: C1155
  article-title: Effects of adenosine antagonists on hexose uptake and preconditioning in perfused rat heart
  publication-title: Am J Physiol
– volume: 227
  start-page: 520
  year: 2002
  end-page: 528
  article-title: Influence of ischemic preconditioning on intracellular sodium, pH, and cellular energy status in isolated perfused heart
  publication-title: Exp Biol Med (Maywood)
– volume: 1537
  start-page: 101
  year: 2001
  end-page: 109
  article-title: Release of mitochondrial cytochrome c and activation of cytosolic caspases induced by myocardial ischaemia
  publication-title: Biochim BiophysActa
– volume: 268
  start-page: 153
  year: 1990
  end-page: 160
  article-title: Inhibition of Ca2+‐induced large amplitude swelling of liver and heart mitochondria by cyclosporin A is probably caused by the inhibitor binding to mitochondrial matrix peptidyl‐prolyl cis‐trans isomerase and preventing it interacting with the adenine nucleotide translocase
  publication-title: Biochem J
– volume: 581
  start-page: 1147
  year: 2007
  end-page: 1161
  article-title: Temperature preconditioning of isolated rat hearts—a potent cardioprotective mechanism involving a reduction in oxidative stress and inhibition of the mitochondrial permeability transition pore
  publication-title: J Physiol
– volume: 83
  start-page: 213
  year: 2009
  end-page: 225
  article-title: Regulation and pharmacology of the mitochondrial permeability transition pore
  publication-title: Cardiovasc Res
– volume: 65
  start-page: 10545
  year: 2005
  end-page: 10554
  article-title: Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage‐dependent anion channel and potentiates chemotherapy‐induced cytotoxicity
  publication-title: Cancer Res
– volume: 41
  start-page: H544
  year: 1997
  end-page: H552
  article-title: Ischemic preconditioning and intracellular pH: a P‐31 NMR study in the isolated rat heart
  publication-title: Am J Physiol
– volume: 1757
  start-page: 509
  year: 2006
  end-page: 517
  article-title: Mitochondrial ROS‐induced ROS release: an update and review
  publication-title: Biochim Biophys Acta
– volume: 892
  start-page: 191
  year: 1987
  end-page: 196
  article-title: Mitochondrial respiratory parameters in cardiac tissue: a novel method of assessment by using saponin‐skinned fibers
  publication-title: Biochim Biophys Acta
– volume: 3
  start-page: e1852
  year: 2008
  article-title: Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage‐dependent anion channels
  publication-title: PLoS ONE
– volume: 96
  start-page: 23
  year: 2012
  end-page: 31
  article-title: Contribution of calpains to myocardial ischemia/reperfusion injury
  publication-title: Cardiovasc Res
– volume: 294
  start-page: H2088
  year: 2008
  end-page: H2097
  article-title: Effect of diazoxide on flavoprotein oxidation and ROS generation during ischemia–reperfusion: a study on Langendorff‐perfused rat hearts using optic fibers
  publication-title: Am J Physiol
– volume: 109
  start-page: 6566
  year: 2012
  end-page: 6571
  article-title: Bax regulates primary necrosis through mitochondrial dynamics
  publication-title: Proc Natl Acad Sci USA
– volume: 28
  start-page: 1045
  year: 1996
  end-page: 1057
  article-title: Paradoxical effect of ischemic preconditioning on ischemic contracture? NMR studies of energy metabolism and intracellular pH in the rat heart
  publication-title: J Mol Cell Cardiol
– volume: 38
  start-page: 841
  year: 2010
  end-page: 860
  article-title: A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection
  publication-title: Biochem Soc Trans
– volume: 40
  start-page: 171
  year: 2008
  end-page: 182
  article-title: Regulation of hexokinase binding to VDAC
  publication-title: J Bioenerg Biomembr
– volume: 15
  start-page: 1406
  year: 2001
  end-page: 1418
  article-title: Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase
  publication-title: Genes Dev
– volume: 85
  start-page: 723
  year: 1999
  end-page: 730
  article-title: Role of Na+/H+ exchanger during ischemia and preconditioning in the isolated rat heart
  publication-title: Circ Res
– volume: 104
  start-page: 189
  year: 2009
  end-page: 202
  article-title: The mitochondrial permeability transition pore as a target for preconditioning and postconditioning
  publication-title: Basic Res Cardiol
– volume: 549
  start-page: 513
  year: 2003
  end-page: 524
  article-title: Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart
  publication-title: J Physiol
– volume: 108
  start-page: 60
  year: 2011
  end-page: 69
  article-title: Reduction in hexokinase II levels results in decreased cardiac function and altered remodeling after ischemia/reperfusion injury
  publication-title: Circ Res
– volume: 75
  start-page: 760
  year: 1994
  end-page: 769
  article-title: Alteration of the cytosolic‐mitochondrial distribution of high‐energy phosphates during global myocardial ischemia may contribute to early contractile failure
  publication-title: Circ Res
– volume: 102
  start-page: 1082
  year: 2008
  end-page: 1090
  article-title: Inhibition of mitochondrial permeability transition pore opening by ischemic preconditioning is probably mediated by reduction of oxidative stress rather than mitochondrial protein phosphorylation
  publication-title: Circ Res
– volume: 31
  start-page: 907
  year: 1999
  end-page: 917
  article-title: Repetitive acidosis protects the ischemic heart: implications for mechanisms in preconditioned hearts
  publication-title: J Mol Cell Cardiol
– volume: 261
  start-page: H469
  year: 1991
  end-page: H478
  article-title: Ischemic contracture begins when anaerobic glycolysis stops: a 31P‐NMR study of isolated rat hearts
  publication-title: Am J Physiol
– volume: 348
  start-page: 343
  year: 2000
  end-page: 350
  article-title: Cytochrome c release from isolated rat liver mitochondria can occur independently of outer‐membrane rupture: possible role of contact sites
  publication-title: Biochem J
– volume: 108
  start-page: 1165
  year: 2011
  end-page: 1169
  article-title: Disruption of hexokinase II‐mitochondrial binding blocks ischemic preconditioning and causes rapid cardiac necrosis
  publication-title: Circ Res
– volume: 286
  start-page: 1046
  year: 2011
  end-page: 1053
  article-title: Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor)
  publication-title: J Biol Chem
– volume: 244
  start-page: 159
  year: 1987
  end-page: 164
  article-title: The regulation of the oxidation of fatty acids and other substrates in rat heart mitochondria by changes in matrix volume induced by osmotic strength, valinomycin and Ca
  publication-title: Biochem J
– volume: 1061
  start-page: 215
  year: 1991
  end-page: 225
  article-title: Location and regulation of octameric mitochondrial creatine kinase in the contact sites
  publication-title: Biochim Biophys Acta
– article-title: Hexokinase II and reperfusion injury: TAT‐HK2 peptide impairs vascular function in Langendorff‐perfused rat hearts
  publication-title: Circ Res
– volume: 1147
  start-page: 37
  year: 2008
  end-page: 52
  article-title: The role of mitochondria in reactive oxygen species metabolism and signaling
  publication-title: Ann N Y Acad Sci
– volume: 174
  start-page: 79
  year: 1997
  end-page: 85
  article-title: Detection of early ischemic damage by analysis of mitochondrial function in skinned fibers
  publication-title: Mol Cell Biochem
– volume: 101
  start-page: 7988
  year: 2004
  end-page: 7993
  article-title: Cytomegalovirus cell death suppressor vMIA blocks Bax‐ but not Bak‐mediated apoptosis by binding and sequestering Bax at mitochondria
  publication-title: Proc Natl Acad Sci USA
– volume: 10
  start-page: 93
  year: 2001
  end-page: 111
  article-title: Mitochondrial creatine kinase in contact sites: interaction with porin and adenine nucleotide translocase, role in permeability transition and sensitivity to oxidative damage
  publication-title: Biol Signals Recept
– volume: 33
  start-page: 1571
  year: 2001
  end-page: 1588
  article-title: Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection
  publication-title: J Mol Cell Cardiol
– volume: 268
  start-page: H935
  year: 1995
  end-page: H944
  article-title: Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning
  publication-title: Am J Physiol
– volume: 436
  start-page: 493
  year: 2011
  end-page: 505
  article-title: The role of oxidized cytochrome c in regulating mitochondrial reactive oxygen species production and its perturbation in ischaemia
  publication-title: Biochem J
– volume: 277
  start-page: 7610
  year: 2002
  end-page: 7618
  article-title: Mitochondrial binding of hexokinase II inhibits Bax‐induced cytochrome c release and apoptosis
  publication-title: J Biol Chem
– volume: 1818
  start-page: 1520
  year: 2012
  end-page: 1525
  article-title: VDAC proteomics: post‐translation modifications
  publication-title: Biochim Biophys Acta
– volume: 66
  start-page: 913
  year: 1990
  end-page: 931
  article-title: Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode
  publication-title: Circ Res
– volume: 1787
  start-page: 1402
  year: 2009
  end-page: 1415
  article-title: The role of the mitochondrial permeability transition pore in heart disease
  publication-title: Biochim Biophys Acta
– volume: 417
  start-page: 1
  year: 2009
  end-page: 13
  article-title: How mitochondria produce reactive oxygen species
  publication-title: Biochem J
– volume: 287
  start-page: H1039
  year: 2004
  end-page: H1045
  article-title: Creatine kinase‐deficient hearts exhibit increased susceptibility to ischemia–reperfusion injury and impaired calcium homeostasis
  publication-title: Am J Physiol
– volume: 11
  start-page: 621
  year: 2010
  end-page: 632
  article-title: Mitochondria and cell death: outer membrane permeabilization and beyond
  publication-title: Nat Rev Mol Cell Biol
– volume: 60
  start-page: 405
  year: 1974
  end-page: 412
  article-title: A comparison of three methods of glycogen measurement in tissues
  publication-title: Anal Biochem
– volume: 33
  start-page: 947
  year: 2001
  end-page: 956
  article-title: Cardioprotection by ischemic preconditioning preserves mitochondrial function and functional coupling between adenine nucleotide translocase and creatine kinase
  publication-title: J Mol Cell Cardiol
– ident: e_1_3_4_7_2
  doi: 10.1042/BJ20081386
– ident: e_1_3_4_9_2
  doi: 10.1042/BJ20101957
– ident: e_1_3_4_28_2
  doi: 10.1006/jmcc.1996.0224
– ident: e_1_3_4_5_2
  doi: 10.1113/jphysiol.2007.130369
– ident: e_1_3_4_23_2
  doi: 10.1016/0003-2697(74)90248-6
– ident: e_1_3_4_51_2
  doi: 10.1006/jmcc.2001.1357
– volume: 41
  start-page: H544
  year: 1997
  ident: e_1_3_4_40_2
  article-title: Ischemic preconditioning and intracellular pH: a P‐31 NMR study in the isolated rat heart
  publication-title: Am J Physiol
– ident: e_1_3_4_36_2
  doi: 10.1161/01.RES.66.4.913
– ident: e_1_3_4_19_2
  doi: 10.1042/bj2440159
– volume: 261
  start-page: H469
  year: 1991
  ident: e_1_3_4_29_2
  article-title: Ischemic contracture begins when anaerobic glycolysis stops: a 31P‐NMR study of isolated rat hearts
  publication-title: Am J Physiol
– ident: e_1_3_4_15_2
  doi: 10.1093/cvr/cvp151
– ident: e_1_3_4_39_2
  doi: 10.1006/jmcc.1996.0097
– ident: e_1_3_4_17_2
  doi: 10.1113/jphysiol.2003.034231
– ident: e_1_3_4_27_2
  doi: 10.1074/jbc.M109950200
– ident: e_1_3_4_6_2
  doi: 10.1161/CIRCRESAHA.107.167072
– ident: e_1_3_4_10_2
  doi: 10.1016/S0925-4439(01)00062-X
– ident: e_1_3_4_32_2
  doi: 10.1042/bj3480343
– ident: e_1_3_4_53_2
  doi: 10.1161/CIRCRESAHA.110.223115
– ident: e_1_3_4_16_2
  doi: 10.1007/s10863-008-9148-8
– volume: 268
  start-page: H935
  year: 1995
  ident: e_1_3_4_38_2
  article-title: Effects of glycogen depletion on ischemic injury in isolated rat hearts: insights into preconditioning
  publication-title: Am J Physiol
– ident: e_1_3_4_52_2
  doi: 10.1101/gad.889901
– ident: e_1_3_4_41_2
  doi: 10.1006/jmcc.1998.0931
– ident: e_1_3_4_44_2
  doi: 10.1074/jbc.271.28.16690
– ident: e_1_3_4_57_2
  doi: 10.1158/0008-5472.CAN-05-1925
– ident: e_1_3_4_56_2
  doi: 10.1016/j.bbabio.2008.12.017
– ident: e_1_3_4_18_2
  doi: 10.1152/ajpheart.01345.2007
– ident: e_1_3_4_12_2
  doi: 10.1152/japplphysiol.90537.2008
– ident: e_1_3_4_4_2
  doi: 10.1007/s10557-010-6236-x
– ident: e_1_3_4_54_2
  doi: 10.1093/cvr/cvs232
– ident: e_1_3_4_11_2
  doi: 10.1016/S0008-6363(03)00533-9
– ident: e_1_3_4_26_2
  article-title: Hexokinase II and reperfusion injury: TAT‐HK2 peptide impairs vascular function in Langendorff‐perfused rat hearts
  publication-title: Circ Res
– ident: e_1_3_4_49_2
  doi: 10.1152/ajpheart.01016.2003
– ident: e_1_3_4_30_2
  doi: 10.1042/bst0250151
– ident: e_1_3_4_20_2
  doi: 10.1023/A:1006884607272
– ident: e_1_3_4_59_2
  doi: 10.1038/nrm2952
– ident: e_1_3_4_33_2
  doi: 10.1016/j.bbadis.2005.09.007
– ident: e_1_3_4_50_2
  doi: 10.1161/01.RES.75.4.760
– ident: e_1_3_4_42_2
  doi: 10.1161/01.RES.85.8.723
– ident: e_1_3_4_55_2
  doi: 10.1016/j.bbabio.2006.04.029
– ident: e_1_3_4_22_2
  doi: 10.1016/0005-2728(87)90174-5
– ident: e_1_3_4_45_2
  doi: 10.1074/jbc.M110.172486
– ident: e_1_3_4_21_2
  doi: 10.1016/0005-2728(93)90166-D
– ident: e_1_3_4_34_2
  doi: 10.1159/000046878
– ident: e_1_3_4_13_2
  doi: 10.1073/pnas.1201608109
– ident: e_1_3_4_37_2
  doi: 10.1152/ajpcell.1993.265.4.C1146
– ident: e_1_3_4_58_2
  doi: 10.1016/j.bbamem.2011.11.013
– ident: e_1_3_4_24_2
  doi: 10.1073/pnas.0401897101
– ident: e_1_3_4_31_2
  doi: 10.1016/0005-2736(91)90287-I
– ident: e_1_3_4_35_2
  doi: 10.1006/jmcc.2001.1425
– ident: e_1_3_4_8_2
  doi: 10.1196/annals.1427.015
– ident: e_1_3_4_47_2
  doi: 10.1042/bj2680153
– ident: e_1_3_4_3_2
  doi: 10.1007/s00395-009-0010-x
– ident: e_1_3_4_43_2
  doi: 10.1177/153537020222700717
– ident: e_1_3_4_2_2
  doi: 10.1042/BST0380841
– ident: e_1_3_4_25_2
  doi: 10.1161/CIRCRESAHA.111.244962
– ident: e_1_3_4_14_2
  doi: 10.1371/journal.pone.0001852
– ident: e_1_3_4_46_2
  doi: 10.1124/jpet.110.167486
– ident: e_1_3_4_48_2
  doi: 10.1093/cvr/28.5.581
– reference: 14962470 - Cardiovasc Res. 2004 Feb 15;61(3):372-85
– reference: 20683470 - Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32
– reference: 11390360 - Genes Dev. 2001 Jun 1;15(11):1406-18
– reference: 9038977 - Am J Physiol. 1997 Jan;272(1 Pt 2):H544-52
– reference: 18296562 - Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2088-97
– reference: 21062740 - J Biol Chem. 2011 Jan 14;286(2):1046-53
– reference: 9056862 - Biochem Soc Trans. 1997 Feb;25(1):151-7
– reference: 19061483 - Biochem J. 2009 Jan 1;417(1):1-13
– reference: 4844560 - Anal Biochem. 1974 Aug;60(2):405-12
– reference: 17395631 - J Physiol. 2007 Jun 15;581(Pt 3):1147-61
– reference: 11751859 - J Biol Chem. 2002 Mar 1;277(9):7610-8
– reference: 3593705 - Biochim Biophys Acta. 1987 Jun 29;892(2):191-6
– reference: 1998693 - Biochim Biophys Acta. 1991 Jan 30;1061(2):215-25
– reference: 8762042 - J Mol Cell Cardiol. 1996 May;28(5):1045-57
– reference: 20658967 - Biochem Soc Trans. 2010 Aug;38(4):841-60
– reference: 22787134 - Cardiovasc Res. 2012 Oct 1;96(1):23-31
– reference: 9004148 - J Mol Cell Cardiol. 1996 Dec;28(12):2305-21
– reference: 10521246 - Circ Res. 1999 Oct 15;85(8):723-30
– reference: 2160810 - Biochem J. 1990 May 15;268(1):153-60
– reference: 8025901 - Cardiovasc Res. 1994 May;28(5):581-97
– reference: 20215409 - J Pharmacol Exp Ther. 2010 Jun;333(3):696-706
– reference: 2317895 - Circ Res. 1990 Apr;66(4):913-31
– reference: 19228992 - J Appl Physiol (1985). 2009 Jun;106(6):1909-16
– reference: 8238305 - Am J Physiol. 1993 Oct;265(4 Pt 1):C1146-55
– reference: 15148411 - Proc Natl Acad Sci U S A. 2004 May 25;101(21):7988-93
– reference: 11549338 - J Mol Cell Cardiol. 2001 Sep;33(9):1571-88
– reference: 11223643 - Biol Signals Recept. 2001 Jan-Apr;10(1-2):93-111
– reference: 11343417 - J Mol Cell Cardiol. 2001 May;33(5):947-56
– reference: 8396441 - Biochim Biophys Acta. 1993 Sep 13;1144(2):134-48
– reference: 20505987 - Cardiovasc Drugs Ther. 2010 Jun;24(3):225-34
– reference: 21527739 - Circ Res. 2011 May 13;108(10):1165-9
– reference: 21071708 - Circ Res. 2011 Jan 7;108(1):60-9
– reference: 11566253 - Biochim Biophys Acta. 2001 Sep 28;1537(2):101-9
– reference: 18683036 - J Bioenerg Biomembr. 2008 Jun;40(3):171-82
– reference: 16829228 - Biochim Biophys Acta. 2006 May-Jun;1757(5-6):509-17
– reference: 16288047 - Cancer Res. 2005 Nov 15;65(22):10545-54
– reference: 16324828 - Biochim Biophys Acta. 2006 Feb;1762(2):148-63
– reference: 12094017 - Exp Biol Med (Maywood). 2002 Jul;227(7):520-8
– reference: 22493254 - Proc Natl Acad Sci U S A. 2012 Apr 24;109(17):6566-71
– reference: 19076429 - Ann N Y Acad Sci. 2008 Dec;1147:37-52
– reference: 19242644 - Basic Res Cardiol. 2009 Mar;104(2):189-202
– reference: 23329796 - Circ Res. 2013 Jan 18;112(2):e3-7
– reference: 7900892 - Am J Physiol. 1995 Mar;268(3 Pt 2):H935-44
– reference: 10816428 - Biochem J. 2000 Jun 1;348 Pt 2:343-50
– reference: 7923621 - Circ Res. 1994 Oct;75(4):760-9
– reference: 9309669 - Mol Cell Biochem. 1997 Sep;174(1-2):79-85
– reference: 18356542 - Circ Res. 2008 May 9;102(9):1082-90
– reference: 8663315 - J Biol Chem. 1996 Jul 12;271(28):16690-4
– reference: 18350175 - PLoS One. 2008;3(3):e1852
– reference: 22120575 - Biochim Biophys Acta. 2012 Jun;1818(6):1520-5
– reference: 3663110 - Biochem J. 1987 May 15;244(1):159-64
– reference: 10329217 - J Mol Cell Cardiol. 1999 Apr;31(4):907-17
– reference: 21410437 - Biochem J. 2011 Jun 1;436(2):493-505
– reference: 1877673 - Am J Physiol. 1991 Aug;261(2 Pt 2):H469-78
– reference: 19168026 - Biochim Biophys Acta. 2009 Nov;1787(11):1402-15
– reference: 12692185 - J Physiol. 2003 Jun 1;549(Pt 2):513-24
– reference: 15105171 - Am J Physiol Heart Circ Physiol. 2004 Sep;287(3):H1039-45
– reference: 19447775 - Cardiovasc Res. 2009 Jul 15;83(2):213-25
SSID ssj0000627359
Score 2.2476003
Snippet Background The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia–reperfusion...
The mechanisms by which ischemic preconditioning (IP) inhibits mitochondrial permeability transition pore opening and, hence, ischemia-reperfusion injury...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e005645
SubjectTerms Animals
bcl-2-Associated X Protein - metabolism
bcl-X Protein - metabolism
Cytochromes c - metabolism
Disease Models, Animal
Glucose-6-Phosphate - metabolism
Hemodynamics
hexokinase
Hexokinase - metabolism
Hydrogen Peroxide - metabolism
ischemia/reperfusion injury
Ischemic Preconditioning, Myocardial
Male
mitochondria
Mitochondria, Heart - enzymology
Mitochondria, Heart - pathology
Mitochondrial Membrane Transport Proteins - metabolism
Mitochondrial Membranes - metabolism
Myocardial Infarction - enzymology
Myocardial Infarction - pathology
Myocardial Infarction - physiopathology
Myocardial Reperfusion Injury - enzymology
Myocardial Reperfusion Injury - pathology
Myocardial Reperfusion Injury - physiopathology
Myocardial Reperfusion Injury - prevention & control
Myocardium - enzymology
Myocardium - pathology
Original Research
Permeability
permeability transition pore
Phosphocreatine - metabolism
Rats
Rats, Wistar
reactive oxygen species
Reactive Oxygen Species - metabolism
SummonAdditionalLinks – databaseName: Wiley-Blackwell Open Access Titles
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIhLRXmGlwaJA4emJLbjZI-rbavdSgsVUMEtcvxQI9ps1Wallp_Gr2PGyYZuK4S4JbIzjjRv2_MNY--8Gem0KmRstdOxlCKPRzl38cgr721mbWKpwHn-UU2P5MH3bHWbkGphOnyIYcONNCPYa1JwXfVdSBQp-cF4OqYCmB1Cs5TZXXaPCmwJPp_Lw2GbhVB4RWiZxgmTAJOLpAf4QSofbtBY9023As7b9yavx7PBIe0_ZJt9JAnjjvVb7I5rHrH78_6s_DH7tUf72y0sPMxRbdHMNZakDabucvGjbtB9wWwGu_UfBsFuKFqEGaa87rTWMKHeHScUjsK3uj2-QWhyRW-EdwAGPqP_QpLb-KCDDYVPl1conRA63COBww5bFpfZBt1YmDUelayFL_VPB7g2pgLu3C9p9-4JO9rf-zqZxn2nhthIAud1zqSYdxSVdIXFCMhnyjsyBZYnnhcmy71KdWFyHK5GRao8N7kQIsOZJkE_-pRtNIvGPWeQJanRQlZKFpm0Vhcqp7POkBkVKD8R21nxqDQ9jDl10zgpQzqj0pKYik-87JgasffDB2cdgsffp75dMb1ELaOjE924xfKiTMlSYWaZiYg964RgIMYJUVamPGL5mngMEwjBe32kqY8DkrdQCQEiRiwOgvSv_6N3kYr8xX_Of8ke8NDFg27hvGIb7fnSvcZYqq3eBG35DQ1xF_s
  priority: 102
  providerName: Wiley-Blackwell
Title Extent of Mitochondrial Hexokinase II Dissociation During Ischemia Correlates With Mitochondrial Cytochrome c Release, Reactive Oxygen Species Production, and Infarct Size on Reperfusion
URI https://onlinelibrary.wiley.com/doi/abs/10.1161%2FJAHA.112.005645
https://www.ncbi.nlm.nih.gov/pubmed/23525412
https://www.proquest.com/docview/1319616453
https://pubmed.ncbi.nlm.nih.gov/PMC3603240
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9wwEBZNCqWX0HedposKPfQQby1bku1DKEtJ2AS29NCF3IysBzHd2Jt9wG5-Wn9dZ2Tvttsk9Cahh2XNjGZGj28I-eh0rliZ8dAoq0LOkzTM09iGuZPOGWFMZPCB8-ibHI75xaW4_BMOqJvA-b2uHcaTGs8m_dXN-gsI_IkXeMk-XwyGA3wK00dcSy72yGNQSylK6aiz9dtlGTS1yDt4n3vaIS4wgoNyFu8qqTuW590LlH8btl4znT0jB51JSQctDzwnj2z9gjwZdYfmL8mvU9zoXtDG0WuQX_jl2iDb0Su7an5WNegxen5O8WR-Qynavl6kFUyQva4U1RjEY4J2KcWd23860mvMIfAB1RSjsECXx5BQfjGlzWoNbErxUSf45XTagszCZ46pqg2FWQdpW9B5dQt1a2g3tTO3xG28V2R8dvrj6zDsQjaEmiNKr7WagQOSldxmBkwhJ6SzuCaYOHJxpkXqJFOZTqG4zDMmXazTJEkE1NQRKNTXZL9uavuWUBExrRJeSp4JbozKZIqHnt5FyoCRAtLf0KjQHZ45htWYFN6vkaxA-kIqLlr6BuTTtsG0hfJ4uOqHDdELEDc8Q1G1bZbzguGSBS6mSALypmWCbWcb7glIusMe2woI5b1bUldXHtI7kREiIwYk9Iz0v_FhPmFJevjgGN6Rp7EP3IEXb47I_mK2tO_BfFqUPbIX8-89v_nQ8yLyG1f6GrQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZaKrW9VH039OVKPfRAILEdJ3tcLaCEshS1oHKLHD9EVMgiyErAT-PXdcYJKQuqqt4SxTtZaeabl-NvCPns9EjFVSZCo6wKheBpOEqZDUdOOmcSYyKDB5ynOzLfF1sHycGNszAdP8TQcENkeH-NAMeGdIdyiSjfGudjPAGzinSWIrlPHgjJUgQnE7tDnwVpeLmfmcaQlACqi6hn-AEpa7dkLAanOxnn3Q8nbya0PiJtPiVP-lSSjjvdPyP3bPOcPJz2m-UvyNUGNrhbOnN0CrgFP9cYNDea2_PZr7qB-EWLgq7XfzRE1_2pRVpAzWuPa0UnOLzjCPNR-rNuD28JmlzgHRIeUE2_QwADkStwobwTpd_OL8A8qR9xDwJ2O3JZeM0KVY2hReMAZS39UV9aCu-GWsCeujm2716S_c2NvUke9qMaQi2QnddaHUPhkVXCZgZSIJdIZ9EXGBY5lukkdTJWmU7hcTXKYumYTjnnCazUEQTSV2SpmTX2DaFJFGvFRSVFlghjVCZT3Oz0pVEGBhSQ1WsdlbrnMcdxGkelr2dkXKJS4YqVnVID8mX4wUlH4fH3pZ-ulV4CzHDvRDV2Nj8rY3RVUFomPCCvOyMYhDGklBUxC0i6YB7DAqTwXnzS1IeeypvLCBkRAxJ6Q_rX_8N7HvN0-T_XfySP8r3pdrld7Hx9Sx4zP9IDP8l5R5ba07l9D4lVW33wyPkNJRAbZw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZgSBMviDsZt4PEAw_LSGLHSR-rdlU76KiACd4ixxctYqTTlkobP41fxzlOGugmhHizZec40rn78h3GXjs9UHGZi9Aoq0IheBYOssSGAyedM6kxkaEHzvNDOT0SB1_T9W1CegvT4kP0G26kGd5ek4KfGtcquSQlPxhOh_QAZo_QLEV6k93yR34E7iwW_TYLofByXzItIUwCTC6iDuAHqby9QmPTN10LOK_fm_wznvUOaXKX3ekiSRi2rL_Hbtj6Ptued2flD9jPfdrfbmDpYI5qi2auNiRtMLUXy29Vje4LZjMYV78ZBGP_aBFmmPLa75WCEdXuOKFwFL5UzfEVQqNL6hHeAWj4iP4LSe5iQ3kbCh8uLlE6wVe4RwKLFlsWl9kFVRuY1Q6VrIFP1Q8LuDamAvbMrWj37iE7mux_Hk3DrlJDqAWB81qrY8w78lLY3GAE5FLpLJkCk0QuyXWaORmrXGc4XA7yWLpEZ5zzFGfqCP3oI7ZVL2v7hEEaxVpxUUqRp8IYlcuMzjp9ZpSj_ARsb82jQncw5lRN46Tw6YyMC2IqtpKiZWrA3vQfnLYIHn-f-mrN9AK1jI5OVG2Xq_MiJkuFmWXKA_a4FYKeWEKIsiJOApZtiEc_gRC8N0fq6tgjeXMZESBiwEIvSP_6P-rzmGc7_zn_JdtejCfF-9nhu6fsduILetCFnGdsqzlb2ecYVjXlC684vwBkaxqZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extent+of+mitochondrial+hexokinase+II+dissociation+during+ischemia+correlates+with+mitochondrial+cytochrome+c+release%2C+reactive+oxygen+species+production%2C+and+infarct+size+on+reperfusion&rft.jtitle=Journal+of+the+American+Heart+Association&rft.au=Pasdois%2C+Philippe&rft.au=Parker%2C+Joanne+Elizabeth&rft.au=Halestrap%2C+Andrew+Philip&rft.date=2013-02-01&rft.eissn=2047-9980&rft.volume=2&rft.issue=1&rft.spage=e005645&rft_id=info:doi/10.1161%2FJAHA.112.005645&rft_id=info%3Apmid%2F23525412&rft.externalDocID=23525412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-9980&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-9980&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-9980&client=summon