Evidence for Carbon Saturation in a Highly Structured and Organic-Matter-Rich Soil

Recent studies suggest that mineral soils of temperate ecosystems have a limit in C sequestration capacity, and we reasoned that C saturation will be most evident in soils that are already rich in soil organic C (SOC) and have been exposed to a broad range of C inputs. Therefore, we determined soil...

Full description

Saved in:
Bibliographic Details
Published inSoil Science Society of America journal Vol. 74; no. 1; pp. 130 - 138
Main Authors Chung, Haegeun, Ngo, Kathie J, Plante, Alain, Six, Johan
Format Journal Article
LanguageEnglish
Published Madison Soil Science Society 01.01.2010
Soil Science Society of America
American Society of Agronomy
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent studies suggest that mineral soils of temperate ecosystems have a limit in C sequestration capacity, and we reasoned that C saturation will be most evident in soils that are already rich in soil organic C (SOC) and have been exposed to a broad range of C inputs. Therefore, we determined soil C saturation in an agricultural experiment located in Ellerslie, AB, Canada, where organic-matter-rich soils have been cropped to cereal grain for 25 yr. In this experiment, the soils were subject to a broad range of soil C inputs due to a combination of straw retention, tillage, and N fertilization treatments. We determined if C saturation is occurring in soil size fractions that are functionally different. Soils were highly aggregated, with >85% of the soils consisting of macroaggregates. Straw retention, tillage, and N fertilization had no significant effect on the SOC concentration of most soil fractions. Soil organic C concentration of whole soil and soil aggregates isolated from whole soil did not increase with greater soil C inputs. Most of the soil fractions within the large or small macroaggregates did not sequester additional SOC in response to higher soil C inputs. Conversely, SOC concentration in experimental plot soils was significantly lower than that of adjacent grassland soils, which suggests that the maximum C sequestration level for a specific soil type depends on the management practices used. We conclude that C sequestration is governed by C saturation in this highly structured and high-C soil. Our study suggests that soils of temperate ecosystems that are closer to their C saturation capacity may store additional C less effectively than soils that are further away from their saturation capacity.
Bibliography:http://dx.doi.org/10.2136/sssaj2009.0097
All rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permission for printing and for reprinting the material contained herein has been obtained by the publisher.
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
ISSN:0361-5995
1435-0661
DOI:10.2136/sssaj2009.0097