Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques
Summary The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to inv...
Saved in:
Published in | International journal for numerical methods in biomedical engineering Vol. 33; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2017
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 2040-7939 2040-7947 2040-7947 |
DOI | 10.1002/cnm.2777 |
Cover
Abstract | Summary
The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject‐specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three‐dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non‐surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.
This paper provides a thorough review of previous finite element studies in biomechanics of the human shoulder complex including their clinical implications and modelling techniques. It is found that the main challenges faced in accurately representation of the realistic functions of the shoulder mechanism in finite element simulations involve (1) subject‐specific representation; (2) accurate boundary and loading condition definition; (3) joint integral description and (4) rigorous validation. Future research directions and solutions to tackle these challenges are proposed. |
---|---|
AbstractList | Summary The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject-specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three-dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non-surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject‐specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three‐dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non‐surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject-specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three-dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non-surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd.The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject-specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three-dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non-surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject-specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three-dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non-surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. Summary The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to provide a thorough review of previous finite element (FE) studies in biomechanics of the human shoulder complex. Those FE studies to investigate shoulder biomechanics have been reviewed according to the physiological and clinical problems addressed: glenohumeral joint stability, rotator cuff tears, joint capsular and labral defects and shoulder arthroplasty. The major findings, limitations, potential clinical applications and modelling techniques of those FE studies are critically discussed. The main challenges faced in order to accurately represent the realistic physiological functions of the shoulder mechanism in FE simulations involve (1) subject‐specific representation of the anisotropic nonhomogeneous material properties of the shoulder tissues in both healthy and pathological conditions; (2) definition of boundary and loading conditions based on individualised physiological data; (3) more comprehensive modelling describing the whole shoulder complex including appropriate three‐dimensional (3D) representation of all major shoulder hard tissues and soft tissues and their delicate interactions; (4) rigorous in vivo experimental validation of FE simulation results. Fully validated shoulder FE models would greatly enhance our understanding of the aetiology of shoulder disorders, and hence facilitate the development of more efficient clinical diagnoses, non‐surgical and surgical treatments, as well as shoulder orthotics and prosthetics. © 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. This paper provides a thorough review of previous finite element studies in biomechanics of the human shoulder complex including their clinical implications and modelling techniques. It is found that the main challenges faced in accurately representation of the realistic functions of the shoulder mechanism in finite element simulations involve (1) subject‐specific representation; (2) accurate boundary and loading condition definition; (3) joint integral description and (4) rigorous validation. Future research directions and solutions to tackle these challenges are proposed. |
Author | Bartolo, Paulo jorge Da silva Peach, Chris Zheng, Manxu Zou, Zhenmin Ren, Lei |
AuthorAffiliation | 1 School of Mechanical, Aerospace and Civil Engineering University of Manchester Manchester M13 9PL UK 2 The University Hospital of South Manchester NHS Foundation Trust Southmoor Road Wythenshawe Manchester M23 9LT UK |
AuthorAffiliation_xml | – name: 2 The University Hospital of South Manchester NHS Foundation Trust Southmoor Road Wythenshawe Manchester M23 9LT UK – name: 1 School of Mechanical, Aerospace and Civil Engineering University of Manchester Manchester M13 9PL UK |
Author_xml | – sequence: 1 givenname: Manxu surname: Zheng fullname: Zheng, Manxu organization: University of Manchester – sequence: 2 givenname: Zhenmin surname: Zou fullname: Zou, Zhenmin organization: University of Manchester – sequence: 3 givenname: Paulo jorge Da silva surname: Bartolo fullname: Bartolo, Paulo jorge Da silva organization: University of Manchester – sequence: 4 givenname: Chris surname: Peach fullname: Peach, Chris organization: The University Hospital of South Manchester NHS Foundation Trust – sequence: 5 givenname: Lei surname: Ren fullname: Ren, Lei email: lei.ren@manchester.ac.uk organization: University of Manchester |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26891250$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1vFCEUholpY2tt0l9gSLzxZrbAfABemDQbqya13ug1YZgzHRoGVphp7b-X7W63H1FuOMl5zst5ed-gPR88IHRCyYISwk6NHxeMc_4KHTJSkYLLiu_t6lIeoOOUrkk-TErJy9fogDVCUlaTQzSfW28nwOBgBD_hMXTgEg49ngbAwzxqj9MQZtdBxCaMKwd_PmKNI9xYuN1yNrdc1jHaYZuRXEw2-IS17zaKuXuFJzCDt79nSG_Rfq9dguPtfYR-nX_-ufxaXPz48m15dlGYqhS8oKLkumKibGhJaF2ThogeGjCa9i3vOkNNpTsOdWtqTlrBTVtpQttWCwNlVZdH6NNGdzW3I3QmO4zaqVW0o453Kmirnne8HdRVuFE1k1xwkQU-bAViWC8-qdEmk_1oD2FOigrWNJWUYo2-f4Fehzn6bC9TDWtYLQTP1LunG-1WeUjk8UUTQ0oR-h1CiVrnrXLeap13RhcvUGOn-5_PXqz710CxGbi1Du7-K6yWl9_v-b8xpr0M |
CitedBy_id | crossref_primary_10_1053_j_sart_2020_08_002 crossref_primary_10_1080_10255842_2025_2476175 crossref_primary_10_1016_j_snb_2018_12_084 crossref_primary_10_1016_j_medengphy_2020_04_010 crossref_primary_10_1080_10255842_2019_1588963 crossref_primary_10_1186_s12903_024_04228_3 crossref_primary_10_3390_app10124165 crossref_primary_10_1016_j_jbiomech_2020_110101 crossref_primary_10_1007_s42235_020_0098_0 crossref_primary_10_3233_THC_202550 crossref_primary_10_1115_1_4051419 crossref_primary_10_1007_s10439_024_03449_5 crossref_primary_10_7717_peerj_17456 crossref_primary_10_1016_j_jmbbm_2019_05_021 crossref_primary_10_1186_s13047_017_0194_5 crossref_primary_10_1007_s12178_022_09746_7 crossref_primary_10_1016_j_jse_2024_07_002 crossref_primary_10_1016_j_injury_2023_111247 crossref_primary_10_1016_j_arthro_2022_06_024 crossref_primary_10_1080_10255842_2023_2298371 crossref_primary_10_1155_2022_8572311 crossref_primary_10_2152_jmi_69_70 crossref_primary_10_1186_s12891_022_05479_3 crossref_primary_10_1007_s40997_019_00299_8 crossref_primary_10_1016_j_medntd_2021_100076 crossref_primary_10_1177_23259671221140908 crossref_primary_10_1109_ACCESS_2019_2895997 crossref_primary_10_1007_s10439_020_02549_2 crossref_primary_10_1002_rcs_2057 crossref_primary_10_1080_10255842_2020_1714241 crossref_primary_10_1007_s10439_022_03018_8 crossref_primary_10_1002_cnm_3868 crossref_primary_10_1080_10255842_2020_1789606 crossref_primary_10_1007_s10916_019_1248_y crossref_primary_10_1007_s10439_022_03114_9 crossref_primary_10_1080_00140139_2022_2030806 crossref_primary_10_1016_j_jbiomech_2018_11_005 crossref_primary_10_1007_s12565_024_00773_7 crossref_primary_10_1016_j_asmart_2024_10_002 |
Cites_doi | 10.1016/0021-9290(88)90008-5 10.1016/j.jbiomech.2004.04.009 10.1016/S0268-0033(99)00095-9 10.1177/0954411913492303 10.1016/S1058-2746(99)90009-5 10.2106/00004623-199405000-00007 10.1016/S0268-0033(96)00047-2 10.1016/j.jbiomech.2006.10.016 10.1016/S0021-9290(02)00041-6 10.1371/journal.pone.0079424 10.1243/0954411981534583 10.2106/00004623-200403000-00017 10.1007/s10439-009-9834-7 10.1016/S1058-2746(98)90010-6 10.1016/j.jse.2004.04.008 10.1080/10255842.2011.567983 10.1016/j.clinbiomech.2007.01.015 10.1302/0301-620X.91B7.21999 10.1097/00003086-199609000-00003 10.1016/j.clinbiomech.2005.03.010 10.1002/jor.22267 10.1115/1.1894148 10.1080/10255840701592727 10.1016/S1058-2746(03)00214-3 10.1115/1.1992522 10.1067/mse.2000.106321 10.1016/S0736-0266(01)00137-1 10.1016/0021-9290(94)90064-7 10.1080/10255840008908000 10.1016/j.jse.2005.04.003 10.1016/j.jbiomech.2012.06.010 10.1007/s10439-010-0105-4 10.1016/j.jbiomech.2003.11.025 10.1177/0363546509350295 10.1016/S0021-9290(98)00077-3 10.1002/jor.1100110413 10.1115/1.2132373 10.1080/10255842.2012.719605 10.1117/12.2043677 10.1016/S1058-2746(09)80068-2 10.1016/j.jse.2004.10.003 10.1016/j.jbiomech.2010.11.018 10.1002/nme.951 10.1016/j.jbiomech.2014.01.040 10.1007/s00776-008-1240-8 10.1016/j.jbiomech.2007.02.010 10.1016/j.jbiomech.2006.10.038 10.1016/j.jbiomech.2014.01.054 10.1243/09544119JEIM147 10.1098/rsif.2013.1146 10.1177/0363546504268404 10.3928/01477447-20080901-21 10.1016/0021-9290(94)00134-P 10.1243/PIME_PROC_1991_205_258_02 10.1016/S1058-2746(98)90196-3 10.1016/j.jbiomech.2007.05.017 10.1002/1097-4636(20000915)51:4<711::AID-JBM20>3.0.CO;2-Z 10.1002/jor.1100130413 10.1016/j.clinbiomech.2003.09.009 10.1016/j.jbiomech.2006.01.024 10.1016/j.medengphy.2014.11.003 10.1002/jor.20102 10.1016/j.clinbiomech.2005.01.010 10.1007/s007760200040 10.1115/1.4027665 10.1016/S1350-4533(99)00028-4 10.1111/j.1469-7580.2007.00832.x 10.1016/0304-4165(76)90205-1 10.1016/0021-9290(94)90065-5 10.1016/0045-7825(88)90073-4 10.1016/0021-9290(74)90018-9 10.1115/1.4002622 10.1243/095441104322984022 10.1115/1.1286318 10.1016/S1058-2746(09)80114-6 10.2106/00004623-200001000-00005 10.1080/10255842.2012.738198 10.1002/jor.22245 10.1115/1.3138605 10.1080/10255840903317378 10.1016/S1672-6529(08)60138-9 10.1016/j.clinbiomech.2003.12.002 10.1115/1.2895534 10.1016/j.jse.2005.09.021 10.1007/s10237-013-0537-5 10.1007/s10439-005-3320-7 10.1007/s11517-013-1099-5 10.1115/1.1695574 10.1007/s11434-014-0452-x 10.1016/S0268-0033(02)00106-7 10.1097/01.blo.0000201148.06454.ef 10.1016/j.jbiomech.2004.06.030 10.1007/s00167-012-2008-4 10.1016/S1058-2746(09)80011-6 10.1007/978-3-319-15311-7 10.1007/s11517-011-0839-7 10.1016/0021-9290(70)90055-2 |
ContentType | Journal Article |
Copyright | 2016 The Authors. published by John Wiley & Sons Ltd. 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. Copyright © 2017 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2016 The Authors. published by John Wiley & Sons Ltd. – notice: 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. – notice: Copyright © 2017 John Wiley & Sons, Ltd. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
DOI | 10.1002/cnm.2777 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Civil Engineering Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Civil Engineering Abstracts CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
DocumentTitleAlternate | Finite Element Models of Human Shoulder Complex |
EISSN | 2040-7947 |
EndPage | n/a |
ExternalDocumentID | PMC5297878 4309498051 26891250 10_1002_cnm_2777 CNM2777 |
Genre | reviewArticle Journal Article Review |
GrantInformation_xml | – fundername: UK EPSRC funderid: EP/I033602/1; EP/K019759/1 – fundername: UK EPSRC grantid: EP/I033602/1; EP/K019759/1 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 4.4 50Z 51W 51X 52N 52O 52P 52S 52T 52U 52W 52X 53G 66C 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDBF ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACPRK ACRPL ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ ML~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WLBEL WOHZO WRC WXSBR WYISQ XG1 XV2 ~IA ~WT 1OB AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D P64 7X8 5PM |
ID | FETCH-LOGICAL-c4387-1837a428361301550608fe6eca1fb7ddc1c4ad7e5bc570b87cb4a01bba8ce3453 |
IEDL.DBID | DR2 |
ISSN | 2040-7939 2040-7947 |
IngestDate | Thu Aug 21 14:00:37 EDT 2025 Fri Sep 05 04:57:56 EDT 2025 Wed Aug 13 09:55:44 EDT 2025 Mon Jul 21 06:03:51 EDT 2025 Sun Aug 24 03:22:16 EDT 2025 Thu Apr 24 22:55:56 EDT 2025 Wed Jan 22 16:45:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | computational modelling glenohumeral joint biomechanics finite element arthroplasty human shoulder complex |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 2016 The Authors. International Journal for Numerical Methods in Biomedical Engineering published by John Wiley & Sons Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4387-1837a428361301550608fe6eca1fb7ddc1c4ad7e5bc570b87cb4a01bba8ce3453 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2777 |
PMID | 26891250 |
PQID | 1862625887 |
PQPubID | 2034586 |
PageCount | 24 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5297878 proquest_miscellaneous_1826649988 proquest_journals_1862625887 pubmed_primary_26891250 crossref_primary_10_1002_cnm_2777 crossref_citationtrail_10_1002_cnm_2777 wiley_primary_10_1002_cnm_2777_CNM2777 |
PublicationCentury | 2000 |
PublicationDate | February 2017 |
PublicationDateYYYYMMDD | 2017-02-01 |
PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Chichester – name: Hoboken |
PublicationTitle | International journal for numerical methods in biomedical engineering |
PublicationTitleAlternate | Int J Numer Method Biomed Eng |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2002; 17 2015; 37 2004; 126 2004; 60 2010; 13 2013; 21 2000; 9 2000; 51 2005; 20 1895; 2009 1994; 27 1971 2012; 17 2012; 15 2008; 31 1974; 7 2013; 8 2014; 136 1970; 3 2003; 12 1986; 108 1995; 28 2000 2006; 24 2000; 15 2009; 91 2013; 51 2004; 37 1997; 12 2014; 59 2014; 13 1996; 330 2000; 122 2014; 17 2005; 38 2004; 218 2007; 22 1992; 1 2006; 128 2005; 33 2014; 11 1994; 76 2006; 444 2004; 86 2010; 38 1976; 428 1995; 13 2002; 35 2002; 7 2013; 227 2006; 15 1997; 211 2014; 47 1999; 21 2008; 13 1999; 8 2007; 10 2002; 20 2004; 19 2001; 4 1993; 11 2013; 31 2005; 127 2004; 13 1988; 21 2010; 132 1988; 66 2006; 220 2011; 44 2000; 82 2015 2009; 6 2007; 40 2014 2008; 212 1998; 7 2011; 49 1991; 205 2012; 45 1994; 3 1993; 115 1998; 31 2008; 130 2005; 14 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_19_1 Martini FH (e_1_2_6_4_1) 2000 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 Zienkiewics O (e_1_2_6_23_1) 1971 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 Buechel FF (e_1_2_6_6_1) 2015 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_61_1 e_1_2_6_101_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 Favre P (e_1_2_6_21_1) 1895; 2009 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 Yanagawa T (e_1_2_6_39_1) 2008; 130 e_1_2_6_100_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_75_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_8_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 3 start-page: 111 issue: 1 year: 1970 end-page: 124 article-title: Mechanical characterization of skin‐finite deformations publication-title: Journal of Biomechanics – volume: 15 start-page: 100 issue: 1 year: 2006 end-page: 105 article-title: Stress distribution in the supraspinatus tendon with partial‐thickness tears: an analysis using two‐dimensional finite element model publication-title: Journal of Shoulder and Elbow Surgery – volume: 10 start-page: 389 issue: 6 year: 2007 end-page: 400 article-title: A mathematical musculoskeletal shoulder model for proactive ergonomic analysis publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 47 start-page: 1241 issue: 6 year: 2014 end-page: 1250 article-title: Biological variability in biomechanical engineering research: significance and meta‐analysis of current modeling practices publication-title: Journal of Biomechanics – volume: 20 start-page: 710 issue: 7 year: 2005 end-page: 717 article-title: Bone–cement interface of the glenoid component: stress analysis for varying cement thickness publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 7 start-page: 616 issue: 6 year: 1998 end-page: 620 article-title: Mechanical environment associated with rotator cuff tears publication-title: Journal of Shoulder and Elbow Surgery – volume: 59 start-page: 4578 issue: 33 year: 2014 end-page: 4588 article-title: A dynamic finite element model of human cervical spine with in vivo kinematic validation publication-title: Chinese Science Bulletin – volume: 7 start-page: 271 issue: 3 year: 1974 end-page: 275 article-title: The elastic modulus for bone publication-title: Journal of Biomechanics – volume: 15 start-page: 456 issue: 6 year: 2000 end-page: 462 article-title: Mechanical properties of the posterior rotator cuff publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 13 start-page: 413 issue: 3 year: 2010 end-page: 418 article-title: Finite element modelling of the glenohumeral capsule can help assess the tested region during a clinical exam publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 27 start-page: 527 issue: 5 year: 1994 end-page: 550 article-title: Analysis of the kinematic and dynamic behavior of the shoulder mechanism publication-title: Journal of Biomechanics – volume: 8 start-page: 151 issue: 2 year: 1999 end-page: 158 article-title: Stress analyses of glenoid components in total shoulder arthroplasty publication-title: Journal of Shoulder and Elbow Surgery – volume: 17 start-page: 1129 issue: 10 year: 2014 end-page: 1143 article-title: Subject‐specific bone remodelling of the scapula publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 11 issue: 93 year: 2014 article-title: Effects of densitometry, material mapping and load estimation uncertainties on the accuracy of patient‐specific finite‐element models of the scapula publication-title: Journal of the Royal Society Interface – year: 2014 – volume: 31 start-page: 601 issue: 4 year: 2013 end-page: 607 article-title: Theoretical model of the effect of combined glenohumeral bone defects on anterior shoulder instability: a finite element approach publication-title: Journal of Orthopaedic Research – volume: 13 start-page: 348 issue: 4 year: 2008 end-page: 353 article-title: Mechanical environment of the supraspinatus tendon: three‐dimensional finite element model analysis publication-title: Journal of Orthopaedic Science – volume: 6 start-page: 387 issue: 4 year: 2009 end-page: 397 article-title: An in vivo experimental validation of a computational model of human foot publication-title: Journal of Bionic Engineering – volume: 12 start-page: 612 issue: 6 year: 2003 end-page: 617 article-title: Mechanical environment of the supraspinatus tendon: a two‐dimensional finite element model analysis publication-title: Journal of Shoulder and Elbow Surgery – volume: 33 start-page: 395 issue: 3 year: 2005 end-page: 401 article-title: Stress distribution in the superior labrum during throwing motion publication-title: American Journal of Sports Medicine – volume: 11 start-page: 581 issue: 4 year: 1993 end-page: 591 article-title: Cellular‐shape and pressure may mediate mechanical control of tissue composition in tendons publication-title: Journal of Orthopaedic Research – volume: 38 start-page: 594 issue: 3 year: 2010 end-page: 599 article-title: Effect of humeral head defect size on glenohumeral stability: a cadaveric study of simulated Hill‐Sachs defects publication-title: American Journal of Sports Medicine – volume: 15 start-page: 963 issue: 9 year: 2012 end-page: 979 article-title: Computational modelling of the natural hip: a review of finite element and multibody simulations publication-title: Computer Methods in Biomechanics and Biomedical Engineering – start-page: 223 year: 2000 – volume: 49 start-page: 1425 issue: 12 year: 2011 end-page: 1435 article-title: Development of a comprehensive musculoskeletal model of the shoulder and elbow publication-title: Medical and Biological Engineering and Computing – volume: 31 start-page: 472 issue: 3 year: 2013 end-page: 479 article-title: Optimization of the position of the acetabulum in a ganz periacetabular osteotomy by finite element analysis publication-title: Journal of Orthopaedic Research – volume: 91 start-page: 977 issue: 7 year: 2009 end-page: 982 article-title: Comparison of polyethylene wear in anatomical and reversed shoulder prostheses publication-title: Journal of Bone and Joint Surgery (British) – volume: 444 start-page: 184 year: 2006 end-page: 192 article-title: Computer‐assisted total knee arthroplasty using patient‐specific templating publication-title: Clinical Orthopaedics and Related Research – volume: 35 start-page: 943 issue: 7 year: 2002 end-page: 950 article-title: Ligament material behavior is nonlinear, viscoelastic and rate‐independent under shear loading publication-title: Journal of Biomechanics – volume: 2009 start-page: 2095 issue: 367 year: 1895 end-page: 2118 article-title: Numerical modelling of the shoulder for clinical applications publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – volume: 1 start-page: 261 issue: 5 year: 1992 end-page: 270 article-title: Finite element modeling of the glenoid component: effect of design parameters on stress distribution publication-title: Journal of Shoulder and Elbow Surgery – start-page: 385 year: 2015 – volume: 227 start-page: 1041 issue: 10 year: 2013 end-page: 1057 article-title: Musculoskeletal shoulder models: a technical review and proposals for research foci publication-title: Proceedings of the Institution of Mechanical Engineers. Part H – volume: 51 start-page: 711 issue: 4 year: 2000 end-page: 716 article-title: In situ compressive properties of the glenoid labrum publication-title: Journal of Biomedical Materials Research – volume: 40 start-page: 2318 issue: 10 year: 2007 end-page: 2323 article-title: Physiologically based boundary conditions in finite element modelling publication-title: Journal of Biomechanics – volume: 66 start-page: 125 issue: 2 year: 1988 end-page: 161 article-title: On the dynamics in space of rods undergoing large motions—a geometrically exact approach publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 19 start-page: 292 issue: 3 year: 2004 end-page: 302 article-title: The possibilities of uncemented glenoid component—a finite element study publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 22 start-page: 645 issue: 6 year: 2007 end-page: 651 article-title: Effect of supraspinatus deficiency on humerus translation and glenohumeral contact force during abduction publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 40 start-page: 603 issue: 3 year: 2007 end-page: 612 article-title: Methodology and sensitivity studies for finite element modeling of the inferior glenohumeral ligament complex publication-title: Journal of Biomechanics – volume: 428 start-page: 741 issue: 3 year: 1976 end-page: 760 article-title: The effects of proteolytic enzymes on the mechanical properties of adult human articular cartilage publication-title: Biochimica Et Biophysica Acta – volume: 47 start-page: 1251 issue: 6 year: 2014 end-page: 1261 article-title: From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review publication-title: Journal of Biomechanics – volume: 76 start-page: 667 issue: 5 year: 1994 end-page: 676 article-title: Changes in the moment arms of the rotator cuff and deltoid muscles with abduction and rotation publication-title: Journal of Bone and Joint Surgery – volume: 19 start-page: 16 issue: 1 year: 2004 end-page: 23 article-title: Benefits of an anatomical reconstruction of the humeral head during shoulder arthroplasty: a finite element analysis publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 127 start-page: 364 issue: 3 year: 2005 end-page: 373 article-title: Subject‐specific finite element model of the pelvis: development, validation and sensitivity studies publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 132 start-page: 121003 issue: 12 year: 2010 article-title: The impact of glenoid labrum thickness and modulus on labrum and glenohumeral capsule function publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 13 start-page: 827 issue: 4 year: 2014 end-page: 838 article-title: Bone remodelling of the scapula after a total shoulder arthroplasty publication-title: Biomechanics and Modeling in Mechanobiology – volume: 51 start-page: 953 issue: 9 year: 2013 end-page: 963 article-title: Clinical applications of musculoskeletal modelling for the shoulder and upper limb publication-title: Medical and Biological Engineering and Computing – volume: 21 start-page: 95 issue: 2 year: 1999 end-page: 100 article-title: Strain rate effect on the mechanical behavior of the anterior cruciate ligament–bone complex publication-title: Medical Engineering and Physics – volume: 38 start-page: 657 issue: 4 year: 2005 end-page: 665 article-title: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii publication-title: Journal of Biomechanics – volume: 40 start-page: 2982 issue: 13 year: 2007 end-page: 2989 article-title: Subject‐specific finite element models can accurately predict strain levels in long bones publication-title: Journal of Biomechanics – volume: 220 start-page: 801 issue: H8 year: 2006 end-page: 812 article-title: A model for the prediction of the forces at the glenohumeral joint publication-title: Proceedings of the Institution of Mechanical Engineers. Part H – volume: 82 start-page: 35 issue: 1 year: 2000 end-page: 46 article-title: The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study publication-title: Journal of Bone and Joint Surgery (American) – volume: 28 start-page: 767 issue: 7 year: 1995 end-page: 777 article-title: Structure and internal consistency of a shoulder model publication-title: Journal of Biomechanics – volume: 38 start-page: 3766 issue: 12 year: 2010 end-page: 3776 article-title: Development and validation of a finite element model of the superior glenoid labrum publication-title: Annals of Biomedical Engineering – volume: 13 start-page: 668 issue: 6 year: 2004 end-page: 675 article-title: The effects of glenoid component alignment variations on cement mantle stresses in total shoulder arthroplasty publication-title: Journal of Shoulder and Elbow Surgery – volume: 122 start-page: 430 issue: 4 year: 2000 end-page: 436 article-title: Three‐dimensional finite element analysis of glenoid replacement prostheses: a comparison of keeled and pegged anchorage systems publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 33 start-page: 829 issue: 6 year: 2005 end-page: 840 article-title: A model of the upper extremity for simulating musculoskeletal surgery and analyzing neuromuscular control publication-title: Annals of Biomedical Engineering – volume: 37 start-page: 93 issue: 1 year: 2015 end-page: 99 article-title: A non‐invasive, 3D, dynamic MRI method for measuring muscle moment arms in vivo: demonstration in the human ankle joint and Achilles tendon publication-title: Medical Engineering and Physics – volume: 27 start-page: 551 issue: 5 year: 1994 end-page: 569 article-title: A finite‐element musculoskeletal model of the shoulder mechanism publication-title: Journal of Biomechanics – volume: 1 start-page: 15 issue: 1 year: 1992 end-page: 25 article-title: An electromyographic analysis of the upper extremity in pitching publication-title: Journal of Shoulder and Elbow Surgery – volume: 44 start-page: 607 issue: 4 year: 2011 end-page: 613 article-title: Finding consistent strain distributions in the glenohumeral capsule between two subjects: implications for development of physical examinations publication-title: Journal of Biomechanics – volume: 20 start-page: 439 issue: 3 year: 2002 end-page: 446 article-title: The effect of rotator cuff tears on reaction forces at the glenohumeral joint publication-title: Journal of Orthopaedic Research – volume: 115 start-page: 520 issue: 4B year: 1993 end-page: 527 article-title: From structure to process, from organ to cell: recent developments of FE‐analysis in orthopaedic biomechanics publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 126 start-page: 284 issue: 2 year: 2004 end-page: 288 article-title: Bi‐directional mechanical properties of the axillary pouch of the glenohumeral capsule: implications for modeling and surgical repair publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 108 start-page: 215 issue: 3 year: 1986 end-page: 221 article-title: Statistical data base for the biomechanical properties of the human shoulder complex—I: Kinematics of the shoulder complex publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 17 start-page: 630 issue: 9‐10 year: 2002 end-page: 639 article-title: A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 37 start-page: 1001 issue: 7 year: 2004 end-page: 1009 article-title: Load transfer across the scapula during humeral abduction publication-title: Journal of Biomechanics – volume: 330 start-page: 13 year: 1996 end-page: 30 article-title: Glenohumeral stability: biomechanical properties of passive and active stabilizers publication-title: Clinical Orthopaedics and Related Research – volume: 14 start-page: S24 issue: 1 year: 2005 end-page: S31 article-title: Stress and strain in the anterior band of the inferior glenohumeral ligament during a simulated clinical examination publication-title: Journal of Shoulder and Elbow Surgery – volume: 212 start-page: 49 issue: 1 year: 2008 end-page: 54 article-title: Tensile properties of the human glenoid labrum publication-title: Journal of Anatomy – volume: 205 start-page: 27 issue: 1 year: 1991 end-page: 34 article-title: Stress wave effects in a finite element analysis of an impulsively loaded articular joint publication-title: Proceedings of the Institution of Mechanical Engineers. Part H – volume: 127 start-page: 813 issue: 5 year: 2005 end-page: 818 article-title: Comparison of deformable and elastic foundation finite element simulations for predicting knee replacement mechanics publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 40 start-page: 2119 issue: 10 year: 2007 end-page: 2129 article-title: Shoulder function: the perfect compromise between mobility and stability publication-title: Journal of Biomechanics – volume: 8 issue: 11 year: 2013 article-title: A dynamic finite element analysis of human foot complex in the sagittal plane during level walking publication-title: Plos One – volume: 9 start-page: 409 issue: 5 year: 2000 end-page: 417 article-title: Experimental investigation of reaction forces at the glenohumeral joint during active abduction publication-title: Journal of Shoulder and Elbow Surgery – volume: 15 start-page: 515 issue: 4 year: 2006 end-page: 520 article-title: Influence of glenohumeral conformity on glenoid stresses after total shoulder arthroplasty publication-title: Journal of Shoulder and Elbow Surgery – volume: 24 start-page: 800 issue: 4 year: 2006 end-page: 810 article-title: Medial collateral ligament insertion site and contact forces in the ACL‐deficient knee publication-title: Journal of Orthopaedic Research – volume: 13 start-page: 578 issue: 4 year: 1995 end-page: 584 article-title: Tensile properties of the supraspinatus tendon publication-title: Journal of Orthopaedic Research – volume: 130 start-page: 21 issue: 2 year: 2008 end-page: 24 article-title: Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 86 start-page: 575 issue: 3 year: 2004 end-page: 580 article-title: Influence of humeral prosthesis height on biomechanics of glenohumeral abduction publication-title: Journal of Bone and Joint Surgery – start-page: 521 year: 1971 – volume: 128 start-page: 135 issue: 1 year: 2006 end-page: 141 article-title: Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading: a finite element analysis with image‐based experimental validation publication-title: Journal of Biomechanical Engineering‐T Asme – volume: 31 start-page: 753 issue: 8 year: 1998 end-page: 757 article-title: Viscoelastic constitutive law in large deformations: application to human knee ligaments and tendons publication-title: Journal of Biomechanics – volume: 21 start-page: 155 issue: 2 year: 1988 end-page: 168 article-title: On the dependence of the elasticity and strength of cancellous bone on apparent density publication-title: Journal of Biomechanics – volume: 3 start-page: 79 issue: 2 year: 1994 end-page: 87 article-title: Histologic and biomechanical characteristics of the supraspinatus tendon: reference to rotator cuff tearing publication-title: Journal of Shoulder and Elbow Surgery – volume: 38 start-page: 66 issue: 1 year: 2010 end-page: 76 article-title: The glenohumeral capsule should be evaluated as a sheet of fibrous tissue: a validated finite element model publication-title: Annals of Biomedical Engineering – volume: 136 start-page: 084502 issue: 8 year: 2014 article-title: Measurement and description of three‐dimensional shoulder range of motion with degrees of freedom interactions publication-title: Journal of Biomechanical Engineering – volume: 21 start-page: 1151 issue: 5 year: 2013 end-page: 1157 article-title: Nonlinear stress analysis of the supraspinatus tendon using three‐dimensional finite element analysis publication-title: Knee Surgery, Sports Traumatology, Arthroscopy – volume: 218 start-page: 127 issue: 2 year: 2004 end-page: 142 article-title: Development and experimental validation of a three‐dimensional finite element model of the human scapula publication-title: Proceedings of the Institution of Mechanical Engineers. Part H – volume: 31 start-page: 927 issue: 9 year: 2008 article-title: Patient‐specific approach in total knee arthroplasty publication-title: Orthopedics – volume: 20 start-page: 451 issue: 5 year: 2005 end-page: 454 article-title: Extracting clinically relevant data from finite element simulations publication-title: Clinical Biomechanics (Bristol, Avon) – volume: 45 start-page: 2248 issue: 13 year: 2012 end-page: 2255 article-title: An integrated model of active glenohumeral stability publication-title: Journal of Biomechanics – volume: 7 start-page: 243 issue: 2 year: 2002 end-page: 246 article-title: Mechanical analysis of the lumbar vertebrae in a three‐dimensional finite element method model in which intradiscal pressure in the nucleus pulposus was used to establish the model publication-title: Journal of Orthopaedic Science – volume: 40 start-page: 3373 issue: 15 year: 2007 end-page: 3380 article-title: Effects of rotator cuff tears on muscle moment arms: a computational study publication-title: Journal of Biomechanics – volume: 38 start-page: 1702 issue: 8 year: 2005 end-page: 1711 article-title: Acromion‐fixation of glenoid components in total shoulder arthroplasty publication-title: Journal of Biomechanics – volume: 17 start-page: 829 issue: 8 year: 2012 end-page: 837 article-title: 3D finite element models of shoulder muscles for computing lines of actions and moment arms publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 7 start-page: 467 issue: 5 year: 1998 end-page: 471 article-title: The anterior band of the inferior glenohumeral ligament: biomechanical properties from tensile testing in the position of apprehension publication-title: Journal of Shoulder and Elbow Surgery – volume: 12 start-page: 32 issue: 1 year: 1997 end-page: 38 article-title: Roles of deltoid and rotator cuff muscles in shoulder elevation publication-title: Clinical Biomechanics – volume: 60 start-page: 3 issue: 1 year: 2004 end-page: 10 article-title: The birth of the finite element method and of computational mechanics publication-title: International Journal for Numerical Methods in Engineering – volume: 4 start-page: 93 issue: 2 year: 2001 end-page: 126 article-title: Musculoskeletal model of the upper limb based on the visible human male dataset publication-title: Computer Methods in Biomechanics and Biomedical Engineering – volume: 211 start-page: 467 issue: 6 year: 1997 end-page: 474 article-title: Stress analysis of glenoid component designs for shoulder arthroplasty publication-title: Proceedings of the Institution of Mechanical Engineers. Part H – ident: e_1_2_6_27_1 doi: 10.1016/0021-9290(88)90008-5 – ident: e_1_2_6_89_1 doi: 10.1016/j.jbiomech.2004.04.009 – ident: e_1_2_6_48_1 doi: 10.1016/S0268-0033(99)00095-9 – ident: e_1_2_6_19_1 doi: 10.1177/0954411913492303 – ident: e_1_2_6_74_1 doi: 10.1016/S1058-2746(99)90009-5 – ident: e_1_2_6_35_1 doi: 10.2106/00004623-199405000-00007 – ident: e_1_2_6_34_1 doi: 10.1016/S0268-0033(96)00047-2 – volume: 2009 start-page: 2095 issue: 367 year: 1895 ident: e_1_2_6_21_1 article-title: Numerical modelling of the shoulder for clinical applications publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – ident: e_1_2_6_2_1 doi: 10.1016/j.jbiomech.2006.10.016 – ident: e_1_2_6_68_1 doi: 10.1016/S0021-9290(02)00041-6 – ident: e_1_2_6_92_1 doi: 10.1371/journal.pone.0079424 – ident: e_1_2_6_73_1 doi: 10.1243/0954411981534583 – ident: e_1_2_6_38_1 doi: 10.2106/00004623-200403000-00017 – ident: e_1_2_6_59_1 doi: 10.1007/s10439-009-9834-7 – ident: e_1_2_6_42_1 doi: 10.1016/S1058-2746(98)90010-6 – ident: e_1_2_6_77_1 doi: 10.1016/j.jse.2004.04.008 – ident: e_1_2_6_20_1 doi: 10.1080/10255842.2011.567983 – ident: e_1_2_6_36_1 doi: 10.1016/j.clinbiomech.2007.01.015 – volume: 130 start-page: 21 issue: 2 year: 2008 ident: e_1_2_6_39_1 article-title: Contributions of the individual muscles of the shoulder to glenohumeral joint stability during abduction publication-title: Journal of Biomechanical Engineering‐T Asme – ident: e_1_2_6_81_1 doi: 10.1302/0301-620X.91B7.21999 – ident: e_1_2_6_71_1 doi: 10.1097/00003086-199609000-00003 – ident: e_1_2_6_79_1 doi: 10.1016/j.clinbiomech.2005.03.010 – ident: e_1_2_6_37_1 doi: 10.1002/jor.22267 – ident: e_1_2_6_99_1 doi: 10.1115/1.1894148 – ident: e_1_2_6_13_1 doi: 10.1080/10255840701592727 – ident: e_1_2_6_33_1 doi: 10.1016/S1058-2746(03)00214-3 – ident: e_1_2_6_47_1 doi: 10.1115/1.1992522 – ident: e_1_2_6_9_1 doi: 10.1067/mse.2000.106321 – ident: e_1_2_6_10_1 doi: 10.1016/S0736-0266(01)00137-1 – ident: e_1_2_6_52_1 doi: 10.1016/0021-9290(94)90064-7 – start-page: 223 volume-title: Human Anatomy year: 2000 ident: e_1_2_6_4_1 – ident: e_1_2_6_14_1 doi: 10.1080/10255840008908000 – ident: e_1_2_6_45_1 doi: 10.1016/j.jse.2005.04.003 – ident: e_1_2_6_40_1 doi: 10.1016/j.jbiomech.2012.06.010 – ident: e_1_2_6_67_1 doi: 10.1007/s10439-010-0105-4 – ident: e_1_2_6_90_1 doi: 10.1016/j.jbiomech.2003.11.025 – ident: e_1_2_6_12_1 doi: 10.1177/0363546509350295 – ident: e_1_2_6_29_1 doi: 10.1016/S0021-9290(98)00077-3 – ident: e_1_2_6_41_1 doi: 10.1002/jor.1100110413 – ident: e_1_2_6_66_1 doi: 10.1115/1.2132373 – ident: e_1_2_6_85_1 doi: 10.1080/10255842.2012.719605 – start-page: 521 volume-title: The Finite Element Method in Engineering Science year: 1971 ident: e_1_2_6_23_1 – ident: e_1_2_6_95_1 doi: 10.1117/12.2043677 – ident: e_1_2_6_72_1 doi: 10.1016/S1058-2746(09)80068-2 – ident: e_1_2_6_54_1 doi: 10.1016/j.jse.2004.10.003 – ident: e_1_2_6_69_1 doi: 10.1016/j.jbiomech.2010.11.018 – ident: e_1_2_6_22_1 doi: 10.1002/nme.951 – ident: e_1_2_6_98_1 doi: 10.1016/j.jbiomech.2014.01.040 – ident: e_1_2_6_46_1 doi: 10.1007/s00776-008-1240-8 – ident: e_1_2_6_100_1 doi: 10.1016/j.jbiomech.2007.02.010 – ident: e_1_2_6_91_1 doi: 10.1016/j.jbiomech.2006.10.038 – ident: e_1_2_6_96_1 doi: 10.1016/j.jbiomech.2014.01.054 – ident: e_1_2_6_17_1 doi: 10.1243/09544119JEIM147 – ident: e_1_2_6_84_1 doi: 10.1098/rsif.2013.1146 – ident: e_1_2_6_63_1 doi: 10.1177/0363546504268404 – ident: e_1_2_6_102_1 doi: 10.3928/01477447-20080901-21 – ident: e_1_2_6_15_1 doi: 10.1016/0021-9290(94)00134-P – ident: e_1_2_6_43_1 doi: 10.1243/PIME_PROC_1991_205_258_02 – ident: e_1_2_6_56_1 doi: 10.1016/S1058-2746(98)90196-3 – ident: e_1_2_6_49_1 doi: 10.1016/j.jbiomech.2007.05.017 – ident: e_1_2_6_64_1 doi: 10.1002/1097-4636(20000915)51:4<711::AID-JBM20>3.0.CO;2-Z – ident: e_1_2_6_44_1 doi: 10.1002/jor.1100130413 – ident: e_1_2_6_70_1 doi: 10.1016/j.clinbiomech.2003.09.009 – ident: e_1_2_6_57_1 doi: 10.1016/j.jbiomech.2006.01.024 – ident: e_1_2_6_94_1 doi: 10.1016/j.medengphy.2014.11.003 – ident: e_1_2_6_11_1 doi: 10.1002/jor.20102 – ident: e_1_2_6_25_1 doi: 10.1016/j.clinbiomech.2005.01.010 – ident: e_1_2_6_50_1 doi: 10.1007/s007760200040 – ident: e_1_2_6_3_1 doi: 10.1115/1.4027665 – ident: e_1_2_6_30_1 doi: 10.1016/S1350-4533(99)00028-4 – ident: e_1_2_6_65_1 doi: 10.1111/j.1469-7580.2007.00832.x – ident: e_1_2_6_31_1 doi: 10.1016/0304-4165(76)90205-1 – ident: e_1_2_6_16_1 doi: 10.1016/0021-9290(94)90065-5 – ident: e_1_2_6_58_1 doi: 10.1016/0045-7825(88)90073-4 – ident: e_1_2_6_26_1 doi: 10.1016/0021-9290(74)90018-9 – ident: e_1_2_6_61_1 doi: 10.1115/1.4002622 – ident: e_1_2_6_93_1 doi: 10.1243/095441104322984022 – ident: e_1_2_6_75_1 doi: 10.1115/1.1286318 – ident: e_1_2_6_51_1 doi: 10.1016/S1058-2746(09)80114-6 – ident: e_1_2_6_8_1 doi: 10.2106/00004623-200001000-00005 – ident: e_1_2_6_83_1 doi: 10.1080/10255842.2012.738198 – ident: e_1_2_6_86_1 doi: 10.1002/jor.22245 – ident: e_1_2_6_5_1 doi: 10.1115/1.3138605 – ident: e_1_2_6_60_1 doi: 10.1080/10255840903317378 – ident: e_1_2_6_97_1 doi: 10.1016/S1672-6529(08)60138-9 – ident: e_1_2_6_76_1 doi: 10.1016/j.clinbiomech.2003.12.002 – ident: e_1_2_6_24_1 doi: 10.1115/1.2895534 – ident: e_1_2_6_80_1 doi: 10.1016/j.jse.2005.09.021 – ident: e_1_2_6_82_1 doi: 10.1007/s10237-013-0537-5 – ident: e_1_2_6_88_1 doi: 10.1007/s10439-005-3320-7 – ident: e_1_2_6_7_1 doi: 10.1007/s11517-013-1099-5 – ident: e_1_2_6_55_1 doi: 10.1115/1.1695574 – ident: e_1_2_6_87_1 doi: 10.1007/s11434-014-0452-x – ident: e_1_2_6_32_1 doi: 10.1016/S0268-0033(02)00106-7 – ident: e_1_2_6_101_1 doi: 10.1097/01.blo.0000201148.06454.ef – ident: e_1_2_6_78_1 doi: 10.1016/j.jbiomech.2004.06.030 – ident: e_1_2_6_53_1 doi: 10.1007/s00167-012-2008-4 – ident: e_1_2_6_62_1 doi: 10.1016/S1058-2746(09)80011-6 – start-page: 385 volume-title: Principles of Human Joint Replacement year: 2015 ident: e_1_2_6_6_1 doi: 10.1007/978-3-319-15311-7 – ident: e_1_2_6_18_1 doi: 10.1007/s11517-011-0839-7 – ident: e_1_2_6_28_1 doi: 10.1016/0021-9290(70)90055-2 |
SSID | ssj0000299973 |
Score | 2.3504994 |
SecondaryResourceType | review_article |
Snippet | Summary
The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper... The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper is to... Summary The human shoulder is a complicated musculoskeletal structure and is a perfect compromise between mobility and stability. The objective of this paper... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | arthroplasty Biomechanical Phenomena biomechanics computational modelling finite element Finite Element Analysis glenohumeral joint human shoulder complex Humans Models, Anatomic Review Shoulder - anatomy & histology Shoulder - physiology Shoulder - physiopathology Shoulder - surgery Shoulder Joint - anatomy & histology Shoulder Joint - physiology Shoulder Joint - physiopathology Shoulder Joint - surgery |
Title | Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.2777 https://www.ncbi.nlm.nih.gov/pubmed/26891250 https://www.proquest.com/docview/1862625887 https://www.proquest.com/docview/1826649988 https://pubmed.ncbi.nlm.nih.gov/PMC5297878 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0T760flVPa1lB2qe7SzYfu_FNqkcR7ijFwkEfwn4dPao5ae5A_Oud2d3EXqsgPgWyk83XzOQ32ZnfALyjhtquwEjVGkPLjKUbytLqobayrKy1QngGvumsPL3IP8-LecyqpFqYwA_R_3Ajy_D-mgxc6Xb8mzTUNN9GXAgqJE-zkmjzP57z_vdKgm628uvL3OfMVVnVUc8mfNwdu_0xuocw7ydK3gaw_gs02YPL7tpD4sn1aLPWI_PzDq3j_93cY9iNwJR9CJr0BB645insRZDKogton8FmsiSYylzIO2e-lU7LVguGUJL5ln-svaLG2e6G-YR19-M9UyzUyES5JQ7Fkky2vJXTzlRjw4xUJc96gtn2OVxMPn05OR3G3g1DkxNdL3oKoYjMjeITCoPKRC5c6YxKF1pYa1KTKytcoU0hEi2F0blKUq2VNC7Li2wfdppV414CQ1CRWcSVLjcVyhRK49ELJ3VFe5J0AMfdS6xNJDan_hpf60DJzGt8mjU9zQG87SW_BzKPP8gcdHpQR3Nu65TiPl6gQ8Yp-mE0RFpdUY1bbUgGsQ7Gj1IO4EVQm_4kvJQVIslkAGJLoXoBIvneHmmWV57su-AY5wuc88jry1-vuz6ZTWn76l8FX8MjThDFZ6AfwM76ZuPeIMBa60N4yPOzQ29QvwAM6Sav |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED913cP2AhvboNBtRkLbU0fiJrHDniZE1Q1a7aGV-hb5q6ISpIi0En8-d84HVN0kniLFFyfK-ezf2Xe_AzihgtouRk_VGkPHjInrycTqnrYySa21QngGvtE4GU6jP7N41oKfdS5MyQ_RbLiRZfj5mgycNqRPn1hDTX77gwshXsHrCGE5xfPx6G-zwRLgRJv6E2buo-bSflqTzwb8tH54cznawpjboZLPIaxfgwbvYKcCj-xXqe330HL5HuxWQJJVZlp8gPVgQVCSuTI2nPlyNwVbzhnCPebL8rHimopbu3vmg8rdwxlTrMxjqeQW2FSlTbLFs7hzpnJb9kiZ7KwhgS0-wnRwMTkf9qr6Cj0TEaUuWrNQRLhGPgS5Kkkg5y5xRoVzLaw1oYmUFS7WJhaBlsLoSAWh1koa14_i_ido58vcHQDDhb9vEfu5yKQoEyuNT8-d1CndCcIOfK9_c2Yq8nGqgXGTlbTJPEOFZKSQDhw3kncl4cY_ZLq1prLK5IosJN-MxzhpYhdNMxoLnYCo3C3XJIN4BH08KTuwXyq2eQlPZIpoL-iA2FB5I0BE3Jst-eLaE3LHHH1xgX1-84Pjv9-dnY9HdD18qeBXeDOcjK6yq9_jyyN4ywlS-IjxLrRX92v3GQHRSn_xA_8RE78Jbw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-0BfHF2mrbs1W3IPXprslekk18k-rRz0OkhYIPYb9Cj2quNHcg_vWd2d3EnlUoPgWyk02yOzP5TXb2NwDvqKC2TTFSNVrTMmNm-3lmVF-ZPCuMMUI4Br7TcXZwnhxdpBchq5L2wnh-iO6HG1mG89dk4Nem2vtNGqrrHwMuhHgMy0mGQIIA0Vfe_V-J0M8WboGZu6S5Yli03LMR32svXvwa3YOY9zMl7yJY9wkarcC39uF95snVYD5TA_3rD17H_3u75_AsIFP20avSKjyy9RqsBJTKgg9oXsB8NCGcyqxPPGeulk7DphVDLMlczT_WXFLlbHvDXMa6_fmBSeY3yQS5CTaFPZlsciepncna-B5pmzzrGGabl3A--ny2f9APxRv6OiG-XnQVQhKbGwUoFAfhHFU2s1rGlRLG6Fgn0gibKp2KSOVCq0RGsVIy13aYpMN1WKqntd0EhqhiaBBY2kQXKJNKhVdXNlcFnYniHrxvJ7HUgdmcCmx8Lz0nMy9xNEsazR7sdJLXns3jLzLbrR6UwZ6bMqbAj6fokbGLrhktkZZXZG2nc5JBsIMBZJ73YMOrTXcTnuUFQsmoB2JBoToBYvlebKknl47tO-UY6Avsc9fpyz-fu9wfn9Lx1UMF38KTL59G5cnh-HgLnnKCKy4bfRuWZjdz-xrB1ky9cVZ1C9fKKKY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite+element+models+of+the+human+shoulder+complex%3A+a+review+of+their+clinical+implications+and+modelling+techniques&rft.jtitle=International+journal+for+numerical+methods+in+biomedical+engineering&rft.au=Zheng%2C+Manxu&rft.au=Zou%2C+Zhenmin&rft.au=Bartolo%2C+Paulo+Jorge+Da+Silva&rft.au=Peach%2C+Chris&rft.date=2017-02-01&rft.issn=2040-7947&rft.eissn=2040-7947&rft.volume=33&rft.issue=2&rft_id=info:doi/10.1002%2Fcnm.2777&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-7939&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-7939&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-7939&client=summon |