Estimating misclassification errors in the reporting of maternal mortality in national civil registration vital statistics systems: A Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple countries and years with missing data
Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Informat...
Saved in:
Published in | Statistics in medicine Vol. 41; no. 14; pp. 2483 - 2496 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
30.06.2022
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0277-6715 1097-0258 1097-0258 |
DOI | 10.1002/sim.9335 |
Cover
Abstract | Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS‐adjustment approach used until 2018 by the UN Maternal Mortality Inter‐Agency Group (UN‐MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN‐MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data. |
---|---|
AbstractList | Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS-adjustment approach used until 2018 by the UN Maternal Mortality Inter-Agency Group (UN-MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN-MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data. Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS-adjustment approach used until 2018 by the UN Maternal Mortality Inter-Agency Group (UN-MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN-MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data.Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS-adjustment approach used until 2018 by the UN Maternal Mortality Inter-Agency Group (UN-MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN-MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data. |
Author | Peterson, Emily Gemmill, Alison Chou, Doris Moller, Ann‐Beth Alkema, Leontine Say, Lale |
AuthorAffiliation | 2 Department of Sexual and Reproductive Health and Research World Health Organization Geneva Switzerland 3 Department of Population, Family, and Reproductive Health Johns Hopkins University Baltimore Maryland USA 4 Department of Biostatistics and Epidemiology University of Massachusetts Amherst Amherst Massachusetts USA 1 Department of Biostatistics and Bioinformatics Emory University Atlanta Georgia |
AuthorAffiliation_xml | – name: 3 Department of Population, Family, and Reproductive Health Johns Hopkins University Baltimore Maryland USA – name: 4 Department of Biostatistics and Epidemiology University of Massachusetts Amherst Amherst Massachusetts USA – name: 1 Department of Biostatistics and Bioinformatics Emory University Atlanta Georgia – name: 2 Department of Sexual and Reproductive Health and Research World Health Organization Geneva Switzerland |
Author_xml | – sequence: 1 givenname: Emily orcidid: 0000-0002-7606-8445 surname: Peterson fullname: Peterson, Emily email: emily.nancy.peterson@emory.edu organization: Emory University – sequence: 2 givenname: Doris surname: Chou fullname: Chou, Doris organization: World Health Organization – sequence: 3 givenname: Ann‐Beth surname: Moller fullname: Moller, Ann‐Beth organization: World Health Organization – sequence: 4 givenname: Alison surname: Gemmill fullname: Gemmill, Alison organization: Johns Hopkins University – sequence: 5 givenname: Lale surname: Say fullname: Say, Lale organization: World Health Organization – sequence: 6 givenname: Leontine surname: Alkema fullname: Alkema, Leontine organization: University of Massachusetts Amherst |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35165916$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kk1v1DAQhgMqotuChPgByBIXLlnsZJ0PDkilKlCpiANwjhxn0p3i2Ivt7Cr_nsluKVDByfL4mZn39cxJcmSdhSR5JvhScJ69Djgs6zyXD5OF4HWZ8kxWR8mCZ2WZFqWQx8lJCDecCyGz8nFynEtRyFoUiwfPL0LEQUW012zAoI0KAXvUFHGWgffOB4aWxTUwDxvn96TrGeWAt8qwgWLKYJxmzO7zKKpxi4YyrjFEfyi2ReJYiHSjnjqwMIUIQ3jDztg7NUFAZdkawSuv16TAsBa3yiM1Yl7Zzg1sp8x3atiBYdExOEgHFsAGjNSRRBDIwgb0bGK-986zYTQRNwaYdqONHiHssQkUmdthXM_Ww2ysU1E9SR71ygR4enueJt_eX3w9_5heff5weX52lepVXsm0rwDattdc1lrrrm5XVcWLXtTA-xKKHAToFqpsJbQoMp61q7wrVlrLQkCnJc9Pk7eHupuxHSgEJE2ZZuPJlJ8ap7D5-8Xiurl226bOeb4qcyrw6raAdz9G-o1mniAYoyy4MTRZkdWkLueC0Jf30Bs3zuObqbLMZS0rSdSLPxXdSfm1Lr87au9C8NDfIYI38yY2tInNvImELu-hNI79IpAXNP9KSA8JOzQw_bdw8-Xy057_CRQE-Vs |
CitedBy_id | crossref_primary_10_1186_s12884_023_06077_4 crossref_primary_10_1080_2330443X_2023_2286313 crossref_primary_10_1590_0102_311xen098323 crossref_primary_10_1007_s44197_024_00318_1 crossref_primary_10_1016_j_xagr_2024_100438 crossref_primary_10_1590_0102_311xpt098323 |
Cites_doi | 10.1016/S0140-6736(15)00838-7 10.1016/j.jclinepi.2006.06.011 10.1214/ss/1177011136 10.1016/S0140-6736(15)60171-4 10.1214/16-AOAS1014 10.1214/06-BA117A 10.1016/j.jclinepi.2005.02.022 |
ContentType | Journal Article |
Copyright | 2022 World Health Organization; licensed by John Wiley & Sons Ltd. published by John Wiley & Sons Ltd. 2022 World Health Organization; licensed by John Wiley & Sons Ltd. Statistics in Medicine published by John Wiley & Sons Ltd. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 World Health Organization; licensed by John Wiley & Sons Ltd. published by John Wiley & Sons Ltd. – notice: 2022 World Health Organization; licensed by John Wiley & Sons Ltd. Statistics in Medicine published by John Wiley & Sons Ltd. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
DOI | 10.1002/sim.9335 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
DocumentTitleAlternate | PETERSON et al |
EISSN | 1097-0258 |
EndPage | 2496 |
ExternalDocumentID | PMC9303473 35165916 10_1002_sim_9335 SIM9335 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: USAID – fundername: WHO – fundername: University of Massachusetts Amherst – fundername: World Health Organization grantid: 001 – fundername: ; |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 24P 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM K9. 7X8 5PM |
ID | FETCH-LOGICAL-c4385-f8eebbfc059cccd9b48806f19e0f7e63e1ecbe8241c16202b43d64cc561edc503 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Aug 21 18:09:45 EDT 2025 Fri Jul 11 09:33:52 EDT 2025 Sun Jul 13 05:16:48 EDT 2025 Mon Jul 21 05:45:49 EDT 2025 Tue Jul 01 03:28:17 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Wed Jan 22 16:23:19 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 14 |
Keywords | Bayesian hierarchical models maternal mortality misclassification |
Language | English |
License | Attribution 2022 World Health Organization; licensed by John Wiley & Sons Ltd. Statistics in Medicine published by John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4385-f8eebbfc059cccd9b48806f19e0f7e63e1ecbe8241c16202b43d64cc561edc503 |
Notes | Funding information WHO, USAID, University of Massachusetts Amherst ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 License: CC BY IGO. The views expressed in this article are those of the authors and do not necessarily reflect the views of the WHO, UNICEF, UNFPA, the World Bank Group, or the United National Population Division. Funding information WHO, USAID, University of Massachusetts Amherst |
ORCID | 0000-0002-7606-8445 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9335 |
PMID | 35165916 |
PQID | 2677359585 |
PQPubID | 48361 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303473 proquest_miscellaneous_2629059301 proquest_journals_2677359585 pubmed_primary_35165916 crossref_primary_10_1002_sim_9335 crossref_citationtrail_10_1002_sim_9335 wiley_primary_10_1002_sim_9335_SIM9335 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 June 2022 |
PublicationDateYYYYMMDD | 2022-06-30 |
PublicationDate_xml | – month: 06 year: 2022 text: 30 June 2022 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York – name: Hoboken |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2016; 387 1992; 7 2012; 3 2006; 1 2017; 11 2015; 386 2005; 58 2006; 59 Wilmoth J (e_1_2_8_3_1) 2012; 3 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_10_1 e_1_2_8_11_1 e_1_2_8_12_1 |
References_xml | – volume: 58 start-page: 982 issue: 10 year: 2005 end-page: 990 article-title: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews publication-title: J Clin Epidemiol – volume: 7 start-page: 457 issue: 4 year: 1992 end-page: 472 article-title: Inference from iterative simulation using multiple sequences publication-title: Stat Sci – volume: 1 start-page: 515 issue: 3 year: 2006 end-page: 534 article-title: Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) publication-title: Bayesian Anal – volume: 387 start-page: 462 issue: 10017 year: 2016 end-page: 474 article-title: Global, regional, and national levels and trends in maternal mortality between 1990 and 2015, with scenario‐based projections to 2030: a systematic analysis by the UN Interagency group for maternal mortality estimation publication-title: Lancet – volume: 386 start-page: 1395 issue: 10001 year: 2015 end-page: 1406 article-title: A global assessment of civil registration and vital statistics systems: monitoring data quality and progress publication-title: Lancet – volume: 11 issue: 3 year: 2017 article-title: A Bayesian approach to the global estimation of maternal mortality publication-title: Ann Appl Stat – volume: 59 start-page: 1331 issue: 12 year: 2006 end-page: 1333 article-title: Bivariate meta‐analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach publication-title: J Clin Epidemiol – volume: 3 start-page: 2151 issue: 2 year: 2012 end-page: 7509 article-title: A new method for deriving global estimates of maternal mortality publication-title: Stat Polit Policy – ident: e_1_2_8_2_1 – ident: e_1_2_8_10_1 – ident: e_1_2_8_5_1 doi: 10.1016/S0140-6736(15)00838-7 – ident: e_1_2_8_7_1 doi: 10.1016/j.jclinepi.2006.06.011 – ident: e_1_2_8_14_1 – ident: e_1_2_8_16_1 doi: 10.1214/ss/1177011136 – ident: e_1_2_8_8_1 – ident: e_1_2_8_11_1 doi: 10.1016/S0140-6736(15)60171-4 – ident: e_1_2_8_15_1 – ident: e_1_2_8_12_1 – ident: e_1_2_8_9_1 doi: 10.1214/16-AOAS1014 – ident: e_1_2_8_13_1 doi: 10.1214/06-BA117A – volume: 3 start-page: 2151 issue: 2 year: 2012 ident: e_1_2_8_3_1 article-title: A new method for deriving global estimates of maternal mortality publication-title: Stat Polit Policy – ident: e_1_2_8_6_1 doi: 10.1016/j.jclinepi.2005.02.022 – ident: e_1_2_8_4_1 |
SSID | ssj0011527 |
Score | 2.4186573 |
Snippet | Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2483 |
SubjectTerms | Bayes Theorem Bayesian hierarchical models Bias Female Humans Maternal Mortality misclassification Missing data Sensitivity and Specificity Vital Statistics |
Title | Estimating misclassification errors in the reporting of maternal mortality in national civil registration vital statistics systems: A Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple countries and years with missing data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9335 https://www.ncbi.nlm.nih.gov/pubmed/35165916 https://www.proquest.com/docview/2677359585 https://www.proquest.com/docview/2629059301 https://pubmed.ncbi.nlm.nih.gov/PMC9303473 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwEDawBzQJASsMAmM6JARP6WLHSRreBmwaSEUImDSJhyh2HIjWJqhpi8av585OAmUgIZ6aKpfYlu-cz-e77xh7gnpjglJKn2M3fZmX0s-VMH4ehfj5K0qtrDNn-jY-OZVvzqKzLqqScmEcP8TgcCPLsOs1GXiu2oOfpKFtNR_jbpzyy3kYE23-q_cDcxTvq7XSCWWc8KjnnQ3EQf_g5pfoEry8HCX5K3q1n5_jW-xT33EXdXI-Xi3VWH__jdPx_0Z2m93sUCkcOjXaYVdNPWLXp925-4jdcN49cElLI7ZNGNVRPN-5snOEFwR868-AWqMJj1MAkp1zMItFs2ihqgGhJrgjCpJsSsBnLAM1zO0eAPcDJNa7J0FX62oGVDmi5_aFNZU4gXZoHBwRdfscDuFFfmEoIxSourc9H0H1A1Wtc7SxJTad10Uzh2_57Bxs_R9YNmBc1w20FMjvKmkACgJloNIg6D_ieugDL8EW1yD_ghW7wIWiBXJm09DJ7wIUc3uXnR4ffXx54nelJnwtw0nklxNjlCo1gk2tdZEqWtfikqeoyImJQ8ONVmaCcEfzWARCybCIpdaIPlFBoiDcZVt1U5v7DNAqyjyNVCLCErEqV3kpTJTGBTdEPik99qxXu0x3POxUDmSWOQZpkeH8ZzT_Hns8SH513CN_kNnrNTfrVp82E3GSUML1hF4x3CYNoIi62jQrkhEplXMMuMfuOUUfGgkjHke4b_BYsmECgwBxkm_eqasvlpscXxjKJPTYU6vhf-139uH1lH4f_KvgQ7YtKPPEhmrusa3lYmUeIR5cqn12Tch3-9b-fwDgkmnJ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwEDZjSGwSQqz8Cgw4JARPYYljJw08DbSpg3VCYpP2FsWOwyLaBDVd0f577uwkUA0knpoql9iRP8dfznffMfYKcWOCUgg_xG76Ii-Fnytu_FxGuPwVpVbWmTM9iSdn4tO5PN9g7_tcGKcPMTjcaGbY9zVNcHJI7_1WDW2r-Vv8HJc32S2BtJzi-bj4Mmwh9PVaaY8yTkLZK88GfK-_cn0tukYwr8dJ_slf7QJ0eI_d7Zgj7Luh3mEbph6x29Nub3zE7jgPHLjEohHbJh7pZJjv39g5wAMip_U3wJHVxJkpSMiOC5jFolm0UNWAdBDcNgJZNiXgNVYlGuaWpyNnJ7PehQi6WlUzoOoOvf4urKgMCbRD4-DEott3sA8f8itDWZtAFbjtHgZCBFS1wi92bAhw4SyaOfzMZ9_B1uiBZQPGdd1AS8H2rtoFoCFQlig9BP1H7g19cCTYAhjkA7BmVziZWyCHMz06-UaA4mIfsLPDg9OPE78rB-FrEY2lX46NUarUSAi11kWq6N0Tl2GKYEtMHJnQaGXGSEl0GPOAKxEVsdAaGSIOoQyih2yzbmrzmAEit8xTqRIelcgnQ5WX3Mg0LkJDApHCY296YGS600qnkh2zzKk88wwhlBGEPPZysPzh9EH-YrPbYyvr3hBtxuMkoaToMd1iOE0IoKi32jSXZMNTKrkYhB575KA4NBLJMJbI7T2WrIF0MCDd8PUzdXVh9cPxhpFIIo-9tnD-Z7-zr0dT-n3yv4Yv2NbkdHqcHR-dfH7KtjllitjQyl22uVxcmmfI35bquZ2nvwC3g0yB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwEDcwpGkSAla-AgMOCcFTunw4ScPbgFUb0AkBkybxEMWODdHaZGraovHXc2cngTKQEE9JlEtsy2f75_Pd7xh7inqjPM2562M1XZ5r7uYiUG4ehbj8FVoKY8yZHMUHx_zNSXTSelVSLIzlh-gNbjQyzHxNA_ys0Ls_SUObcjbE3Xh0hV3lMQIJAkQfeuoov0vXSkeUceJHHfGsF-x2X64vRRfw5UU3yV_hq1l_xjfY567m1u3kdLhciKH8_hup4_817Sa73sJS2LN6tM0uq2rANiftwfuAXbPmPbBRSwO2RSDVcjzfurS9jzeEfKsvgGojCZCTB5LpdFDzeT1voKwAsSbYMwqSrDXgN4aCGmZmE4AbAhLr7JMgy1U5BUod0ZH7wopynEDTFw6Wibp5AXvwMj9XFBIKlN7bHJCg_oEoVzkOsgUWnVdFPYNv-fQUTAIgWNSgbNUVNOTJb1NpAAoChaBSI-gZgT10npdgsmuQgcGIneNM0QBZs6npZHgBcrq9zY7H-59eHbhtrglX8nAUuXqklBBaItqUUhapoIkt1n6KmpyoOFS-kkKNEO9IPw68QPCwiLmUCD9RQSIvvMM2qrpS9xjgsNB5GokkCDWCVV_kOlBRGhe-IvZJ7rDnndplsiVip3wg08xSSAcZ9n9G_e-wJ73kmSUf-YPMTqe5WTv9NFkQJwlFXI_oF_1r0gByqatUvSSZIKV8jp7vsLtW0ftCwsiPI9w4OCxZGwK9AJGSr7-pyq-GnBx_GPIkdNgzo-F_rXf28XBC1_v_KviYbb5_Pc7eHR69fcC2AopCMW6bO2xjMV-qh4gNF-KRmQR-ACc_a8A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+misclassification+errors+in+the+reporting+of+maternal+mortality+in+national+civil+registration+vital+statistics+systems%3A+A+Bayesian+hierarchical+bivariate+random+walk+model+to+estimate+sensitivity+and+specificity+for+multiple+countries+and+years+with+missing+data&rft.jtitle=Statistics+in+medicine&rft.au=Peterson%2C+Emily&rft.au=Chou%2C+Doris&rft.au=Moller%2C+Ann%E2%80%90Beth&rft.au=Gemmill%2C+Alison&rft.date=2022-06-30&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=41&rft.issue=14&rft.spage=2483&rft.epage=2496&rft_id=info:doi/10.1002%2Fsim.9335&rft_id=info%3Apmid%2F35165916&rft.externalDocID=PMC9303473 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |