Estimating misclassification errors in the reporting of maternal mortality in national civil registration vital statistics systems: A Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple countries and years with missing data

Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Informat...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 41; no. 14; pp. 2483 - 2496
Main Authors Peterson, Emily, Chou, Doris, Moller, Ann‐Beth, Gemmill, Alison, Say, Lale, Alkema, Leontine
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.06.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.9335

Cover

Abstract Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS‐adjustment approach used until 2018 by the UN Maternal Mortality Inter‐Agency Group (UN‐MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN‐MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data.
AbstractList Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS-adjustment approach used until 2018 by the UN Maternal Mortality Inter-Agency Group (UN-MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN-MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data.
Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS-adjustment approach used until 2018 by the UN Maternal Mortality Inter-Agency Group (UN-MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN-MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data.Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and programs. However, CRVS maternal mortality data may be subject to substantial reporting errors due to misclassification of maternal deaths. Information on misclassification is available for selected countries and periods only. We developed a Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple populations and years and used the model to estimate misclassification errors in the reporting of maternal mortality in CRVS systems. The proposed Bayesian misclassification (BMis) model captures differences in sensitivity and specificity across populations and over time, allows for extrapolations to periods with missing data, and includes an exact likelihood function for data provided in aggregated form. Validation exercises using maternal mortality data suggest that BMis is reasonably well calibrated and improves upon the CRVS-adjustment approach used until 2018 by the UN Maternal Mortality Inter-Agency Group (UN-MMEIG) to account for bias in CRVS data resulting from misclassification error. Since 2019, BMis is used by the UN-MMEIG to account for misclassification errors when estimating maternal mortality using CRVS data.
Author Peterson, Emily
Gemmill, Alison
Chou, Doris
Moller, Ann‐Beth
Alkema, Leontine
Say, Lale
AuthorAffiliation 2 Department of Sexual and Reproductive Health and Research World Health Organization Geneva Switzerland
3 Department of Population, Family, and Reproductive Health Johns Hopkins University Baltimore Maryland USA
4 Department of Biostatistics and Epidemiology University of Massachusetts Amherst Amherst Massachusetts USA
1 Department of Biostatistics and Bioinformatics Emory University Atlanta Georgia
AuthorAffiliation_xml – name: 3 Department of Population, Family, and Reproductive Health Johns Hopkins University Baltimore Maryland USA
– name: 4 Department of Biostatistics and Epidemiology University of Massachusetts Amherst Amherst Massachusetts USA
– name: 1 Department of Biostatistics and Bioinformatics Emory University Atlanta Georgia
– name: 2 Department of Sexual and Reproductive Health and Research World Health Organization Geneva Switzerland
Author_xml – sequence: 1
  givenname: Emily
  orcidid: 0000-0002-7606-8445
  surname: Peterson
  fullname: Peterson, Emily
  email: emily.nancy.peterson@emory.edu
  organization: Emory University
– sequence: 2
  givenname: Doris
  surname: Chou
  fullname: Chou, Doris
  organization: World Health Organization
– sequence: 3
  givenname: Ann‐Beth
  surname: Moller
  fullname: Moller, Ann‐Beth
  organization: World Health Organization
– sequence: 4
  givenname: Alison
  surname: Gemmill
  fullname: Gemmill, Alison
  organization: Johns Hopkins University
– sequence: 5
  givenname: Lale
  surname: Say
  fullname: Say, Lale
  organization: World Health Organization
– sequence: 6
  givenname: Leontine
  surname: Alkema
  fullname: Alkema, Leontine
  organization: University of Massachusetts Amherst
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35165916$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1v1DAQhgMqotuChPgByBIXLlnsZJ0PDkilKlCpiANwjhxn0p3i2Ivt7Cr_nsluKVDByfL4mZn39cxJcmSdhSR5JvhScJ69Djgs6zyXD5OF4HWZ8kxWR8mCZ2WZFqWQx8lJCDecCyGz8nFynEtRyFoUiwfPL0LEQUW012zAoI0KAXvUFHGWgffOB4aWxTUwDxvn96TrGeWAt8qwgWLKYJxmzO7zKKpxi4YyrjFEfyi2ReJYiHSjnjqwMIUIQ3jDztg7NUFAZdkawSuv16TAsBa3yiM1Yl7Zzg1sp8x3atiBYdExOEgHFsAGjNSRRBDIwgb0bGK-986zYTQRNwaYdqONHiHssQkUmdthXM_Ww2ysU1E9SR71ygR4enueJt_eX3w9_5heff5weX52lepVXsm0rwDattdc1lrrrm5XVcWLXtTA-xKKHAToFqpsJbQoMp61q7wrVlrLQkCnJc9Pk7eHupuxHSgEJE2ZZuPJlJ8ap7D5-8Xiurl226bOeb4qcyrw6raAdz9G-o1mniAYoyy4MTRZkdWkLueC0Jf30Bs3zuObqbLMZS0rSdSLPxXdSfm1Lr87au9C8NDfIYI38yY2tInNvImELu-hNI79IpAXNP9KSA8JOzQw_bdw8-Xy057_CRQE-Vs
CitedBy_id crossref_primary_10_1186_s12884_023_06077_4
crossref_primary_10_1080_2330443X_2023_2286313
crossref_primary_10_1590_0102_311xen098323
crossref_primary_10_1007_s44197_024_00318_1
crossref_primary_10_1016_j_xagr_2024_100438
crossref_primary_10_1590_0102_311xpt098323
Cites_doi 10.1016/S0140-6736(15)00838-7
10.1016/j.jclinepi.2006.06.011
10.1214/ss/1177011136
10.1016/S0140-6736(15)60171-4
10.1214/16-AOAS1014
10.1214/06-BA117A
10.1016/j.jclinepi.2005.02.022
ContentType Journal Article
Copyright 2022 World Health Organization; licensed by John Wiley & Sons Ltd. published by John Wiley & Sons Ltd.
2022 World Health Organization; licensed by John Wiley & Sons Ltd. Statistics in Medicine published by John Wiley & Sons Ltd.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 World Health Organization; licensed by John Wiley & Sons Ltd. published by John Wiley & Sons Ltd.
– notice: 2022 World Health Organization; licensed by John Wiley & Sons Ltd. Statistics in Medicine published by John Wiley & Sons Ltd.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
DOI 10.1002/sim.9335
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
DocumentTitleAlternate PETERSON et al
EISSN 1097-0258
EndPage 2496
ExternalDocumentID PMC9303473
35165916
10_1002_sim_9335
SIM9335
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: USAID
– fundername: WHO
– fundername: University of Massachusetts Amherst
– fundername: World Health Organization
  grantid: 001
– fundername: ;
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
5PM
ID FETCH-LOGICAL-c4385-f8eebbfc059cccd9b48806f19e0f7e63e1ecbe8241c16202b43d64cc561edc503
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Aug 21 18:09:45 EDT 2025
Fri Jul 11 09:33:52 EDT 2025
Sun Jul 13 05:16:48 EDT 2025
Mon Jul 21 05:45:49 EDT 2025
Tue Jul 01 03:28:17 EDT 2025
Thu Apr 24 23:08:43 EDT 2025
Wed Jan 22 16:23:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Keywords Bayesian hierarchical models
maternal mortality
misclassification
Language English
License Attribution
2022 World Health Organization; licensed by John Wiley & Sons Ltd. Statistics in Medicine published by John Wiley & Sons Ltd.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4385-f8eebbfc059cccd9b48806f19e0f7e63e1ecbe8241c16202b43d64cc561edc503
Notes Funding information
WHO, USAID, University of Massachusetts Amherst
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
License: CC BY IGO. The views expressed in this article are those of the authors and do not necessarily reflect the views of the WHO, UNICEF, UNFPA, the World Bank Group, or the United National Population Division.
Funding information WHO, USAID, University of Massachusetts Amherst
ORCID 0000-0002-7606-8445
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9335
PMID 35165916
PQID 2677359585
PQPubID 48361
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9303473
proquest_miscellaneous_2629059301
proquest_journals_2677359585
pubmed_primary_35165916
crossref_primary_10_1002_sim_9335
crossref_citationtrail_10_1002_sim_9335
wiley_primary_10_1002_sim_9335_SIM9335
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 June 2022
PublicationDateYYYYMMDD 2022-06-30
PublicationDate_xml – month: 06
  year: 2022
  text: 30 June 2022
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
– name: Hoboken
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2016; 387
1992; 7
2012; 3
2006; 1
2017; 11
2015; 386
2005; 58
2006; 59
Wilmoth J (e_1_2_8_3_1) 2012; 3
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_12_1
References_xml – volume: 58
  start-page: 982
  issue: 10
  year: 2005
  end-page: 990
  article-title: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
  publication-title: J Clin Epidemiol
– volume: 7
  start-page: 457
  issue: 4
  year: 1992
  end-page: 472
  article-title: Inference from iterative simulation using multiple sequences
  publication-title: Stat Sci
– volume: 1
  start-page: 515
  issue: 3
  year: 2006
  end-page: 534
  article-title: Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
  publication-title: Bayesian Anal
– volume: 387
  start-page: 462
  issue: 10017
  year: 2016
  end-page: 474
  article-title: Global, regional, and national levels and trends in maternal mortality between 1990 and 2015, with scenario‐based projections to 2030: a systematic analysis by the UN Interagency group for maternal mortality estimation
  publication-title: Lancet
– volume: 386
  start-page: 1395
  issue: 10001
  year: 2015
  end-page: 1406
  article-title: A global assessment of civil registration and vital statistics systems: monitoring data quality and progress
  publication-title: Lancet
– volume: 11
  issue: 3
  year: 2017
  article-title: A Bayesian approach to the global estimation of maternal mortality
  publication-title: Ann Appl Stat
– volume: 59
  start-page: 1331
  issue: 12
  year: 2006
  end-page: 1333
  article-title: Bivariate meta‐analysis of sensitivity and specificity with sparse data: a generalized linear mixed model approach
  publication-title: J Clin Epidemiol
– volume: 3
  start-page: 2151
  issue: 2
  year: 2012
  end-page: 7509
  article-title: A new method for deriving global estimates of maternal mortality
  publication-title: Stat Polit Policy
– ident: e_1_2_8_2_1
– ident: e_1_2_8_10_1
– ident: e_1_2_8_5_1
  doi: 10.1016/S0140-6736(15)00838-7
– ident: e_1_2_8_7_1
  doi: 10.1016/j.jclinepi.2006.06.011
– ident: e_1_2_8_14_1
– ident: e_1_2_8_16_1
  doi: 10.1214/ss/1177011136
– ident: e_1_2_8_8_1
– ident: e_1_2_8_11_1
  doi: 10.1016/S0140-6736(15)60171-4
– ident: e_1_2_8_15_1
– ident: e_1_2_8_12_1
– ident: e_1_2_8_9_1
  doi: 10.1214/16-AOAS1014
– ident: e_1_2_8_13_1
  doi: 10.1214/06-BA117A
– volume: 3
  start-page: 2151
  issue: 2
  year: 2012
  ident: e_1_2_8_3_1
  article-title: A new method for deriving global estimates of maternal mortality
  publication-title: Stat Polit Policy
– ident: e_1_2_8_6_1
  doi: 10.1016/j.jclinepi.2005.02.022
– ident: e_1_2_8_4_1
SSID ssj0011527
Score 2.4186573
Snippet Civil registration vital statistics (CRVS) systems provide data on maternal mortality that can be used for monitoring trends and to inform policies and...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2483
SubjectTerms Bayes Theorem
Bayesian hierarchical models
Bias
Female
Humans
Maternal Mortality
misclassification
Missing data
Sensitivity and Specificity
Vital Statistics
Title Estimating misclassification errors in the reporting of maternal mortality in national civil registration vital statistics systems: A Bayesian hierarchical bivariate random walk model to estimate sensitivity and specificity for multiple countries and years with missing data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9335
https://www.ncbi.nlm.nih.gov/pubmed/35165916
https://www.proquest.com/docview/2677359585
https://www.proquest.com/docview/2629059301
https://pubmed.ncbi.nlm.nih.gov/PMC9303473
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwEDawBzQJASsMAmM6JARP6WLHSRreBmwaSEUImDSJhyh2HIjWJqhpi8av585OAmUgIZ6aKpfYlu-cz-e77xh7gnpjglJKn2M3fZmX0s-VMH4ehfj5K0qtrDNn-jY-OZVvzqKzLqqScmEcP8TgcCPLsOs1GXiu2oOfpKFtNR_jbpzyy3kYE23-q_cDcxTvq7XSCWWc8KjnnQ3EQf_g5pfoEry8HCX5K3q1n5_jW-xT33EXdXI-Xi3VWH__jdPx_0Z2m93sUCkcOjXaYVdNPWLXp925-4jdcN49cElLI7ZNGNVRPN-5snOEFwR868-AWqMJj1MAkp1zMItFs2ihqgGhJrgjCpJsSsBnLAM1zO0eAPcDJNa7J0FX62oGVDmi5_aFNZU4gXZoHBwRdfscDuFFfmEoIxSourc9H0H1A1Wtc7SxJTad10Uzh2_57Bxs_R9YNmBc1w20FMjvKmkACgJloNIg6D_ieugDL8EW1yD_ghW7wIWiBXJm09DJ7wIUc3uXnR4ffXx54nelJnwtw0nklxNjlCo1gk2tdZEqWtfikqeoyImJQ8ONVmaCcEfzWARCybCIpdaIPlFBoiDcZVt1U5v7DNAqyjyNVCLCErEqV3kpTJTGBTdEPik99qxXu0x3POxUDmSWOQZpkeH8ZzT_Hns8SH513CN_kNnrNTfrVp82E3GSUML1hF4x3CYNoIi62jQrkhEplXMMuMfuOUUfGgkjHke4b_BYsmECgwBxkm_eqasvlpscXxjKJPTYU6vhf-139uH1lH4f_KvgQ7YtKPPEhmrusa3lYmUeIR5cqn12Tch3-9b-fwDgkmnJ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwEDZjSGwSQqz8Cgw4JARPYYljJw08DbSpg3VCYpP2FsWOwyLaBDVd0f577uwkUA0knpoql9iRP8dfznffMfYKcWOCUgg_xG76Ii-Fnytu_FxGuPwVpVbWmTM9iSdn4tO5PN9g7_tcGKcPMTjcaGbY9zVNcHJI7_1WDW2r-Vv8HJc32S2BtJzi-bj4Mmwh9PVaaY8yTkLZK88GfK-_cn0tukYwr8dJ_slf7QJ0eI_d7Zgj7Luh3mEbph6x29Nub3zE7jgPHLjEohHbJh7pZJjv39g5wAMip_U3wJHVxJkpSMiOC5jFolm0UNWAdBDcNgJZNiXgNVYlGuaWpyNnJ7PehQi6WlUzoOoOvf4urKgMCbRD4-DEott3sA8f8itDWZtAFbjtHgZCBFS1wi92bAhw4SyaOfzMZ9_B1uiBZQPGdd1AS8H2rtoFoCFQlig9BP1H7g19cCTYAhjkA7BmVziZWyCHMz06-UaA4mIfsLPDg9OPE78rB-FrEY2lX46NUarUSAi11kWq6N0Tl2GKYEtMHJnQaGXGSEl0GPOAKxEVsdAaGSIOoQyih2yzbmrzmAEit8xTqRIelcgnQ5WX3Mg0LkJDApHCY296YGS600qnkh2zzKk88wwhlBGEPPZysPzh9EH-YrPbYyvr3hBtxuMkoaToMd1iOE0IoKi32jSXZMNTKrkYhB575KA4NBLJMJbI7T2WrIF0MCDd8PUzdXVh9cPxhpFIIo-9tnD-Z7-zr0dT-n3yv4Yv2NbkdHqcHR-dfH7KtjllitjQyl22uVxcmmfI35bquZ2nvwC3g0yB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwEDcwpGkSAla-AgMOCcFTunw4ScPbgFUb0AkBkybxEMWODdHaZGraovHXc2cngTKQEE9JlEtsy2f75_Pd7xh7inqjPM2562M1XZ5r7uYiUG4ehbj8FVoKY8yZHMUHx_zNSXTSelVSLIzlh-gNbjQyzHxNA_ys0Ls_SUObcjbE3Xh0hV3lMQIJAkQfeuoov0vXSkeUceJHHfGsF-x2X64vRRfw5UU3yV_hq1l_xjfY567m1u3kdLhciKH8_hup4_817Sa73sJS2LN6tM0uq2rANiftwfuAXbPmPbBRSwO2RSDVcjzfurS9jzeEfKsvgGojCZCTB5LpdFDzeT1voKwAsSbYMwqSrDXgN4aCGmZmE4AbAhLr7JMgy1U5BUod0ZH7wopynEDTFw6Wibp5AXvwMj9XFBIKlN7bHJCg_oEoVzkOsgUWnVdFPYNv-fQUTAIgWNSgbNUVNOTJb1NpAAoChaBSI-gZgT10npdgsmuQgcGIneNM0QBZs6npZHgBcrq9zY7H-59eHbhtrglX8nAUuXqklBBaItqUUhapoIkt1n6KmpyoOFS-kkKNEO9IPw68QPCwiLmUCD9RQSIvvMM2qrpS9xjgsNB5GokkCDWCVV_kOlBRGhe-IvZJ7rDnndplsiVip3wg08xSSAcZ9n9G_e-wJ73kmSUf-YPMTqe5WTv9NFkQJwlFXI_oF_1r0gByqatUvSSZIKV8jp7vsLtW0ftCwsiPI9w4OCxZGwK9AJGSr7-pyq-GnBx_GPIkdNgzo-F_rXf28XBC1_v_KviYbb5_Pc7eHR69fcC2AopCMW6bO2xjMV-qh4gNF-KRmQR-ACc_a8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimating+misclassification+errors+in+the+reporting+of+maternal+mortality+in+national+civil+registration+vital+statistics+systems%3A+A+Bayesian+hierarchical+bivariate+random+walk+model+to+estimate+sensitivity+and+specificity+for+multiple+countries+and+years+with+missing+data&rft.jtitle=Statistics+in+medicine&rft.au=Peterson%2C+Emily&rft.au=Chou%2C+Doris&rft.au=Moller%2C+Ann%E2%80%90Beth&rft.au=Gemmill%2C+Alison&rft.date=2022-06-30&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=41&rft.issue=14&rft.spage=2483&rft.epage=2496&rft_id=info:doi/10.1002%2Fsim.9335&rft_id=info%3Apmid%2F35165916&rft.externalDocID=PMC9303473
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon