A requirement for septins and the autophagy receptor p62 in the proliferation of intracellular Shigella
Shigella flexneri, a Gram‐negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells, Shigella escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Sept...
Saved in:
Published in | Cytoskeleton (Hoboken, N.J.) Vol. 76; no. 1; pp. 163 - 172 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2019
John Wiley and Sons Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3584 1949-3592 1949-3592 |
DOI | 10.1002/cm.21453 |
Cover
Abstract | Shigella flexneri, a Gram‐negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells, Shigella escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Septins, a poorly understood component of the cytoskeleton, can entrap cytosolic Shigella targeted to autophagy in cage‐like structures to restrict bacterial proliferation. Although bacterial entrapment by septin caging has been the subject of intense investigation, the role of septins and the autophagy machinery in the proliferation of noncaged Shigella is mostly unknown. Here, we found that intracellular Shigella fail to efficiently proliferate in SEPT2‐, SEPT7‐, or p62/SQSTM1‐depleted cells. Consistent with a failure to proliferate, single cell analysis of bacteria not entrapped in septin cages showed that the number of metabolically active Shigella in septin‐ or p62‐depleted cells is reduced. Targeted metabolomic analysis revealed that host cell glycolysis is dysregulated in septin‐depleted cells, suggesting a key role for septins in modulation of glycolysis. Together, these results suggest that septins and the autophagy machinery may regulate metabolic pathways that promote the proliferation of intracellular Shigella not entrapped in septin cages. |
---|---|
AbstractList | Shigella flexneri
, a Gram‐negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells,
Shigella
escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Septins, a poorly understood component of the cytoskeleton, can entrap cytosolic
Shigella
targeted to autophagy in cage‐like structures to restrict bacterial proliferation. Although bacterial entrapment by septin caging has been the subject of intense investigation, the role of septins and the autophagy machinery in the proliferation of noncaged
Shigella
is mostly unknown. Here, we found that intracellular
Shigella
fail to efficiently proliferate in SEPT2‐, SEPT7‐, or p62/SQSTM1‐depleted cells. Consistent with a failure to proliferate, single cell analysis of bacteria not entrapped in septin cages showed that the number of metabolically active
Shigella
in septin‐ or p62‐depleted cells is reduced. Targeted metabolomic analysis revealed that host cell glycolysis is dysregulated in septin‐depleted cells, suggesting a key role for septins in modulation of glycolysis. Together, these results suggest that septins and the autophagy machinery may regulate metabolic pathways that promote the proliferation of intracellular
Shigella
not entrapped in septin cages. Shigella flexneri, a Gram‐negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells, Shigella escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Septins, a poorly understood component of the cytoskeleton, can entrap cytosolic Shigella targeted to autophagy in cage‐like structures to restrict bacterial proliferation. Although bacterial entrapment by septin caging has been the subject of intense investigation, the role of septins and the autophagy machinery in the proliferation of noncaged Shigella is mostly unknown. Here, we found that intracellular Shigella fail to efficiently proliferate in SEPT2‐, SEPT7‐, or p62/SQSTM1‐depleted cells. Consistent with a failure to proliferate, single cell analysis of bacteria not entrapped in septin cages showed that the number of metabolically active Shigella in septin‐ or p62‐depleted cells is reduced. Targeted metabolomic analysis revealed that host cell glycolysis is dysregulated in septin‐depleted cells, suggesting a key role for septins in modulation of glycolysis. Together, these results suggest that septins and the autophagy machinery may regulate metabolic pathways that promote the proliferation of intracellular Shigella not entrapped in septin cages. Shigella flexneri, a Gram-negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells, Shigella escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Septins, a poorly understood component of the cytoskeleton, can entrap cytosolic Shigella targeted to autophagy in cage-like structures to restrict bacterial proliferation. Although bacterial entrapment by septin caging has been the subject of intense investigation, the role of septins and the autophagy machinery in the proliferation of noncaged Shigella is mostly unknown. Here, we found that intracellular Shigella fail to efficiently proliferate in SEPT2-, SEPT7-, or p62/SQSTM1-depleted cells. Consistent with a failure to proliferate, single cell analysis of bacteria not entrapped in septin cages showed that the number of metabolically active Shigella in septin- or p62-depleted cells is reduced. Targeted metabolomic analysis revealed that host cell glycolysis is dysregulated in septin-depleted cells, suggesting a key role for septins in modulation of glycolysis. Together, these results suggest that septins and the autophagy machinery may regulate metabolic pathways that promote the proliferation of intracellular Shigella not entrapped in septin cages.Shigella flexneri, a Gram-negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial cells, Shigella escape from the phagosome to the cytosol, where they reroute host cell glycolysis to obtain nutrients for proliferation. Septins, a poorly understood component of the cytoskeleton, can entrap cytosolic Shigella targeted to autophagy in cage-like structures to restrict bacterial proliferation. Although bacterial entrapment by septin caging has been the subject of intense investigation, the role of septins and the autophagy machinery in the proliferation of noncaged Shigella is mostly unknown. Here, we found that intracellular Shigella fail to efficiently proliferate in SEPT2-, SEPT7-, or p62/SQSTM1-depleted cells. Consistent with a failure to proliferate, single cell analysis of bacteria not entrapped in septin cages showed that the number of metabolically active Shigella in septin- or p62-depleted cells is reduced. Targeted metabolomic analysis revealed that host cell glycolysis is dysregulated in septin-depleted cells, suggesting a key role for septins in modulation of glycolysis. Together, these results suggest that septins and the autophagy machinery may regulate metabolic pathways that promote the proliferation of intracellular Shigella not entrapped in septin cages. |
Author | Lobato‐Márquez, Damián Krokowski, Sina Sirianni, Andrea Larrouy‐Maumus, Gerald Mostowy, Serge |
AuthorAffiliation | 3 MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences Imperial College London London United Kingdom 1 MRC Centre for Molecular Bacteriology and Infection, Department of Medicine Section of Microbiology, Imperial College London London United Kingdom 2 Department of Immunology and Infection London School of Hygiene and Tropical Medicine, Keppel Street London United Kingdom |
AuthorAffiliation_xml | – name: 1 MRC Centre for Molecular Bacteriology and Infection, Department of Medicine Section of Microbiology, Imperial College London London United Kingdom – name: 3 MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences Imperial College London London United Kingdom – name: 2 Department of Immunology and Infection London School of Hygiene and Tropical Medicine, Keppel Street London United Kingdom |
Author_xml | – sequence: 1 givenname: Damián orcidid: 0000-0002-0044-7588 surname: Lobato‐Márquez fullname: Lobato‐Márquez, Damián organization: London School of Hygiene and Tropical Medicine, Keppel Street – sequence: 2 givenname: Sina surname: Krokowski fullname: Krokowski, Sina organization: London School of Hygiene and Tropical Medicine, Keppel Street – sequence: 3 givenname: Andrea surname: Sirianni fullname: Sirianni, Andrea organization: Section of Microbiology, Imperial College London – sequence: 4 givenname: Gerald surname: Larrouy‐Maumus fullname: Larrouy‐Maumus, Gerald email: g.larrouy-maumus@imperial.ac.uk organization: Imperial College London – sequence: 5 givenname: Serge orcidid: 0000-0002-7286-6503 surname: Mostowy fullname: Mostowy, Serge email: s.mostowy@imperial.ac.uk organization: London School of Hygiene and Tropical Medicine, Keppel Street |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29752866$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kcuO1DAQRS00iHmAxBegSGzYpLHLie1skEYtXtIgFsDacpJyt0eJnbETUP897u6Z5iFYueR7fOuW65Kc-eCRkOeMrhil8LobV8Cqmj8iF6ypmpLXDZydalWdk8uUbikVDaf8CTmHRtaghLggm-si4t3iIo7o58KGWCScZudTYXxfzFsszDKHaWs2u0x2WcvIJKBw_qBOMQzOYjSzC74INt_P0XQ4DMtgYvFl6za5Nk_JY2uGhM_uzyvy7d3br-sP5c3n9x_X1zdlV3HFy1ZZ6KCXIJEh1lZxaqHtq0YpK0VLa8EaQGaxYlIAayUF2dfQc7Cyb2rOr8ibo--0tCP2He7TDHqKbjRxp4Nx-k_Fu63ehO9a1NlZVNng1b1BDHcLplmPLu3HMR7DkjRQrkBKBfteL_9Cb8MSfR5PAzBRUaGaPfXi90SnKA87yMDqCHQxpBTR6s7Nh-_MAd2gGdX7Jetu1Icl_4p4evDg-Q-0PKI_3IC7_3J6_enI_wQs9rTv |
CitedBy_id | crossref_primary_10_1091_mbc_E22_11_0520 crossref_primary_10_18632_oncotarget_26836 crossref_primary_10_1242_jcs_226266 crossref_primary_10_1080_15548627_2022_2107309 crossref_primary_10_1371_journal_ppat_1009326 crossref_primary_10_1093_cercor_bhz292 crossref_primary_10_1016_j_ajpath_2020_09_007 crossref_primary_10_1002_cm_21519 crossref_primary_10_1051_medsci_2022189 crossref_primary_10_3389_fcimb_2023_1180708 crossref_primary_10_3389_fphar_2022_903438 crossref_primary_10_1002_cm_21696 crossref_primary_10_1111_cmi_13173 crossref_primary_10_1016_j_ejcb_2024_151416 crossref_primary_10_1080_00207454_2022_2100773 |
Cites_doi | 10.1091/mbc.E02-01-0042 10.3389/fcimb.2017.00064 10.1038/nrm3284 10.1016/j.molcel.2012.08.033 10.1016/j.chom.2011.12.002 10.1073/pnas.1406694111 10.1126/science.1106036 10.1074/jbc.M900231200 10.1038/embor.2011.193 10.1016/j.chom.2017.09.007 10.1038/nrmicro2351 10.1242/jcs.209098 10.1371/journal.pone.0013799 10.1016/bs.mcb.2016.03.018 10.1128/mBio.01979-17 10.1083/jcb.201006031 10.1038/227680a0 10.1126/science.1227026 10.1128/IAI.01575-13 10.1038/nature24467 10.1083/jcb.200710039 10.3389/fcimb.2013.00024 10.1016/j.bbamem.2012.06.007 10.1023/B:MCBI.0000009855.14648.2c 10.1038/nrmicro2112 10.1038/nature12229 10.15252/embr.201541612 10.1016/j.cell.2015.12.042 10.1074/jbc.272.41.25542 10.1038/nature06052 10.1038/scientificamerican0815-88 10.1529/biophysj.105.070052 10.1016/S0021-9258(18)82068-3 10.1128/JB.182.18.5225-5230.2000 10.1016/j.chom.2010.10.009 10.1042/bj2640671 10.1016/0014-4827(71)90223-0 10.3389/fcell.2016.00127 10.15252/embr.201541832 10.1016/j.cmet.2018.02.018 10.1128/mBio.00865-14 10.1093/jac/dkr341 10.1016/0065-2571(86)90020-8 10.1371/journal.ppat.1004866 10.1126/science.123.3191.309 10.4161/gmic.19325 10.1093/jn/128.8.1262 10.1097/MOG.0000000000000136 10.1111/febs.12387 10.1007/s00125-016-4155-5 10.1371/journal.pone.0004196 |
ContentType | Journal Article |
Copyright | 2018 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2018 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. – notice: 2019 Wiley Periodicals, Inc. |
DBID | 24P AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 8FD FR3 K9. P64 RC3 7X8 5PM |
DOI | 10.1002/cm.21453 |
DatabaseName | Wiley Online Library Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Genetics Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Lobato‐Márquez et al |
EISSN | 1949-3592 |
EndPage | 172 |
ExternalDocumentID | PMC6519264 29752866 10_1002_cm_21453 CM21453 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust Research Career Development Fellowship funderid: WT097411MA – fundername: Lister Institute of Preventive Medicine – fundername: Wellcome Trust Senior Research Fellowship funderid: 206444/Z/17/Z – fundername: eMdical Research Council funderid: MR/J006874/1 – fundername: Marie Skłodowska‐Curie funderid: H2020‐MSCA‐IF‐2016‐752022 – fundername: Medical Research Council grantid: MR/P028225/1 – fundername: Wellcome Trust – fundername: Wellcome Trust grantid: 206444/Z/17/Z – fundername: Wellcome Trust grantid: WT097411MA – fundername: Medical Research Council grantid: MR/J006874/1 – fundername: Wellcome Trust Research Career Development Fellowship grantid: WT097411MA – fundername: Marie Skłodowska‐Curie grantid: H2020‐MSCA‐IF‐2016‐752022 – fundername: Wellcome Trust Senior Research Fellowship grantid: 206444/Z/17/Z – fundername: eMdical Research Council grantid: MR/J006874/1 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ J0M JPC LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 SUPJJ SV3 UB1 V2E W8V W99 WBKPD WIH WIK WNSPC WOHZO WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 1OB 7QP 8FD FR3 K9. P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c4383-b8f2c2d727e1ee5f830f2bd4988f76b056192e1fe417621b7027d52d32f7d9533 |
IEDL.DBID | DR2 |
ISSN | 1949-3584 1949-3592 |
IngestDate | Thu Aug 21 18:40:33 EDT 2025 Thu Sep 04 23:23:50 EDT 2025 Wed Aug 13 04:35:53 EDT 2025 Mon Jul 21 06:03:13 EDT 2025 Thu Apr 24 23:10:48 EDT 2025 Tue Jul 01 00:51:47 EDT 2025 Wed Jan 22 17:05:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | metabolism septin autophagy cytoskeleton Shigella |
Language | English |
License | Attribution 2018 The Authors. Cytoskeleton Published by Wiley Periodicals, Inc. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4383-b8f2c2d727e1ee5f830f2bd4988f76b056192e1fe417621b7027d52d32f7d9533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Co‐senior author. Funding information Marie Skłodowska‐Curie Grant, H2020‐MSCA‐IF‐2016‐752022; Medical Research Council, MR/J006874/1; Wellcome Trust Senior Research Fellowship, Grant Number: 206444/Z/17/Z; Wellcome Trust Research Career Development Fellowship, Grant Number: WT097411MA; and the Lister Institute of Preventive Medicine |
ORCID | 0000-0002-7286-6503 0000-0002-0044-7588 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcm.21453 |
PMID | 29752866 |
PQID | 2216406893 |
PQPubID | 2034590 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6519264 proquest_miscellaneous_2038277823 proquest_journals_2216406893 pubmed_primary_29752866 crossref_citationtrail_10_1002_cm_21453 crossref_primary_10_1002_cm_21453 wiley_primary_10_1002_cm_21453_CM21453 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Cytoskeleton (Hoboken, N.J.) |
PublicationTitleAlternate | Cytoskeleton (Hoboken) |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc John Wiley and Sons Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: John Wiley and Sons Inc |
References | 2017; 7 2017; 8 2013; 3 1997; 272 2015; 31 2002; 13 2011; 12 2013; 280 2017; 551 2012; 13 2012; 11 2018; 131 2014; 5 2018; 4 1989; 264 2005; 307 2011; 66 2012; 1818 2009; 284 1998; 128 2010; 191 2010; 5 2012; 338 2010; 8 2006; 90 2007; 449 2017; 60 2017; 22 2015; 11 1971; 69 1993; 268 2014; 111 2004; 256–257 2016; 17 1970; 227 2014; 82 2016; 164 2018; 27 2016; 4 2008; 180 2012; 3 2015; 313 2017; 17 1986; 25 2000; 182 2013; 499 2017 2010; 131 2016 2009; 7 2012; 48 2016; 136 2009; 4 1956; 123 e_1_2_5_27_1 e_1_2_5_25_1 e_1_2_5_48_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_29_1 GBD Diarrhoeal Diseases Collaborators, GBDDC (e_1_2_5_11_1) 2017; 17 e_1_2_5_42_1 e_1_2_5_40_1 Kotloff K. L. (e_1_2_5_16_1) 2017 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_17_1 e_1_2_5_9_1 e_1_2_5_34_1 e_1_2_5_57_1 e_1_2_5_7_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_55_1 e_1_2_5_5_1 e_1_2_5_3_1 Spiliotis E. T. (e_1_2_5_45_1) 2010; 131 e_1_2_5_30_1 e_1_2_5_53_1 e_1_2_5_51_1 e_1_2_5_28_1 e_1_2_5_49_1 e_1_2_5_26_1 e_1_2_5_47_1 e_1_2_5_24_1 e_1_2_5_22_1 Picking W. D. (e_1_2_5_36_1) 2016 e_1_2_5_43_1 Chung H. (e_1_2_5_6_1) 2018; 4 e_1_2_5_20_1 e_1_2_5_41_1 Lehotzky A. (e_1_2_5_19_1) 1993; 268 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_37_1 e_1_2_5_58_1 e_1_2_5_8_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_56_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_54_1 e_1_2_5_4_1 e_1_2_5_2_1 e_1_2_5_18_1 e_1_2_5_31_1 e_1_2_5_52_1 e_1_2_5_50_1 |
References_xml | – volume: 11 start-page: e1004866 issue: 6 year: 2015 article-title: Host delivery of favorite meals for intracellular pathogens publication-title: PLoS Pathogens – volume: 227 start-page: 680 issue: 5259 year: 1970 end-page: 685 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature – year: 2017 article-title: Shigellosis publication-title: Lancet. – volume: 31 start-page: 30 issue: 1 year: 2015 end-page: 37 article-title: Update on molecular epidemiology of infection publication-title: Current Opinion in Gastroenterology – volume: 4 start-page: 127 year: 2016 article-title: Septins and bacterial infection publication-title: Frontiers in Cell & Developmental Biology – volume: 27 start-page: 886 issue: 4 year: 2018 end-page: 897 article-title: Mitochondria restrict growth of the intracellular parasite by limiting its uptake of fatty acids publication-title: Cell Metabolism – volume: 48 start-page: 612 issue: 4 year: 2012 end-page: 626 article-title: The Warburg effect dictates the mechanism of butyrate‐mediated histone acetylation and cell proliferation publication-title: Molecular Cell – volume: 131 issue: 4 year: 2018 article-title: Septins are involved at the early stages of macroautophagy in publication-title: Journal of Cell Science – volume: 307 start-page: 727 issue: 5710 year: 2005 end-page: 731 article-title: Escape of intracellular from autophagy publication-title: Science – volume: 264 start-page: 671 issue: 3 year: 1989 end-page: 677 article-title: Antigenic probes locate binding sites for the glycolytic enzymes glyceraldehyde‐3‐phosphate dehydrogenase, aldolase and phosphofructokinase on the actin monomer in microfilaments publication-title: Biochemical Journal – volume: 313 start-page: 88 issue: 2 year: 2015 article-title: Drug‐resistant stomach bug publication-title: Scientific American – volume: 60 start-page: 324 issue: 2 year: 2017 end-page: 335 article-title: The cytoskeletal protein septin 11 is associated with human obesity and is involved in adipocyte lipid storage and metabolism publication-title: Diabetologia – volume: 7 start-page: 333 issue: 5 year: 2009 end-page: 340 article-title: Life on the inside: The intracellular lifestyle of cytosolic bacteria publication-title: Nature Reviews Microbiology – volume: 5 start-page: e00865 issue: 2 year: 2014 end-page: 14 article-title: Autophagy facilitates replication in HeLa cells publication-title: mBio – volume: 164 start-page: 433 issue: 3 year: 2016 end-page: 446 article-title: Phosphoinositide 3‐kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton publication-title: Cell – volume: 284 start-page: 11613 issue: 17 year: 2009 end-page: 11621 article-title: Septin 11 restricts InlB‐mediated invasion by publication-title: Journal of Biological Chemistry – volume: 8 start-page: 433 issue: 5 year: 2010 end-page: 444 article-title: Entrapment of intracytosolic bacteria by septin cage‐like structures publication-title: Cell Host & Microbe – volume: 90 start-page: 1371 issue: 4 year: 2006 end-page: 1384 article-title: Glycolytic enzyme interactions with yeast and skeletal muscle F‐actin publication-title: Biophysical Journal – volume: 8 start-page: e01979 issue: 6 year: 2017 end-page: 17 article-title: Detection of cytosolic via a C‐terminal triple‐arginine motif of GBP1 inhibits actin‐based motility publication-title: mBio – volume: 69 start-page: 265 issue: 2 year: 1971 end-page: 276 article-title: Genetic control of the cell division cycle in yeast IV. Genes controlling bud emergence and cytokinesis publication-title: Experimental Cell Research – volume: 17 start-page: 909 issue: 9 year: 2017 end-page: 948 article-title: Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the Global Burden of Disease Study 2015 publication-title: Frontiers in Medicine – volume: 128 start-page: 1262 issue: 8 year: 1998 end-page: 1269 article-title: Energy metabolism of rat colonocytes changes during the tumorigenic process and is dependent on diet and carcinogen publication-title: Journal of Nutrition – volume: 182 start-page: 5225 issue: 18 year: 2000 end-page: 5230 article-title: Characterization of DNA lesions generated within J774 macrophages publication-title: Journal of Bacteriology – volume: 13 start-page: 3532 issue: 10 year: 2002 end-page: 3545 article-title: The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis publication-title: Molecular Biology of the Cell – volume: 499 start-page: 238 issue: 7457 year: 2013 end-page: 242 article-title: An siRNA screen for NFAT activation identifies septins as coordinators of store‐operated Ca entry publication-title: Nature – volume: 4 start-page: e4196 issue: 1 year: 2009 article-title: Septins regulate bacterial entry into host cells publication-title: PloS One – volume: 82 start-page: 2746 issue: 7 year: 2014 end-page: 2755 article-title: Role of intracellular carbon metabolism pathways in virulence publication-title: Infection & Immunity – volume: 111 start-page: 9929 issue: 27 year: 2014 end-page: 9934 article-title: reroutes host cell central metabolism to obtain high‐flux nutrient supply for vigorous intracellular growth publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 131 start-page: NA year: 2010 article-title: Spatial effects‐site‐specific regulation of actin and microtubule organization by septin GTPases publication-title: Journal of Cell Science – volume: 1818 start-page: 2687 issue: 11 year: 2012 end-page: 2706 article-title: Membrane transport metabolons publication-title: Biochimica Et Biophysica Acta – volume: 25 start-page: 297 year: 1986 end-page: 305 article-title: Interaction of actin with the enzymes of carbohydrate metabolism publication-title: Advances in Enzyme Regulation – volume: 338 start-page: 1072 issue: 6110 year: 2012 end-page: 1076 article-title: The effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation publication-title: Science – volume: 268 start-page: 10888 issue: 15 year: 1993 end-page: 10894 article-title: Interaction of phosphofructokinase with tubulin and microtubules. Quantitative evaluation of the mutual effects publication-title: Journal of Biological Chemistry – volume: 272 start-page: 25542 issue: 41 year: 1997 end-page: 25546 article-title: Alternative binding of two sequential glycolytic enzymes to microtubules. Molecular studies in the phosphofructokinase/aldolase/microtubule system publication-title: Journal of Biological Chemistry – volume: 7 start-page: 64 year: 2017 article-title: How do the virulence factors of work together to cause disease? publication-title: Frontiers in Cellular & Infection Microbiology – volume: 551 start-page: 378 issue: 7680 year: 2017 end-page: 383 article-title: Ubiquitination and degradation of GBPs by a effector to suppress host defence publication-title: Nature – volume: 4 issue: 4 year: 2018 article-title: Out of Asia: The independent rise and global spread of fluoroquinolone‐resistant publication-title: Microbial Genomics – volume: 123 start-page: 309 issue: 3191 year: 1956 end-page: 314 article-title: On the origin of cancer cells publication-title: Science – volume: 8 start-page: 401 issue: 6 year: 2010 end-page: 412 article-title: Carbon metabolism of intracellular bacterial pathogens and possible links to virulence publication-title: Nature Reviews Microbiology – volume: 3 start-page: 24 year: 2013 article-title: Metabolic host responses to infection by intracellular bacterial pathogens publication-title: Frontiers in Cellular & Infection Microbiology – volume: 12 start-page: 1118 issue: 11 year: 2011 end-page: 1126 article-title: The emerging functions of septins in metazoans publication-title: EMBO Reports – volume: 66 start-page: 2527 issue: 11 year: 2011 end-page: 2535 article-title: Wide dissemination of multidrug‐resistant isolates in China publication-title: Journal of Antimicrobial Chemotherapy – year: 2016 – volume: 5 start-page: e13799 issue: 11 year: 2010 article-title: A draft of the human septin interactome publication-title: PloS One – volume: 17 start-page: 858 issue: 6 year: 2016 end-page: 873 article-title: A role for septin 2 in Drp1‐mediated mitochondrial fission publication-title: EMBO Reports – volume: 3 start-page: 104 issue: 2 year: 2012 end-page: 120 article-title: : A model of virulence regulation publication-title: Gut Microbes – volume: 191 start-page: 741 issue: 4 year: 2010 end-page: 749 article-title: Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission publication-title: Journal of Cell Biology – volume: 13 start-page: 183 issue: 3 year: 2012 end-page: 194 article-title: Septins: The fourth component of the cytoskeleton publication-title: Nature Reviews Molecular Cell Biology – volume: 180 start-page: 295 issue: 2 year: 2008 end-page: 303 article-title: Epithelial polarity requires septin coupling of vesicle transport to polyglutamylated microtubules publication-title: Journal of Cell Biology – volume: 280 start-page: 3887 issue: 16 year: 2013 end-page: 3905 article-title: A glycolytic metabolon in is stabilized by F‐actin publication-title: FEBS Journal – volume: 256–257 start-page: 5 issue: 1–2 year: 2004 end-page: 12 article-title: On the origin of intracellular compartmentation and organized metabolic systems publication-title: Molecular & Cellular Biochemistry – volume: 136 start-page: 117 year: 2016 end-page: 134 article-title: Investigation of septins using infection by bacterial pathogens publication-title: Methods in Cell Biology – volume: 449 start-page: 311 issue: 7160 year: 2007 end-page: 315 article-title: Structural insight into filament formation by mammalian septins publication-title: Nature – volume: 17 start-page: 1029 issue: 7 year: 2016 end-page: 1043 article-title: Mitochondria mediate septin cage assembly to promote autophagy of publication-title: EMBO Reports – volume: 22 start-page: 507 issue: 4 year: 2017 end-page: 518 article-title: GBPs inhibit motility of but are targeted for degradation by the bacterial ubiquitin ligase IpaH9.8 publication-title: Cell Host & Microbe – volume: 11 start-page: 33 issue: 1 year: 2012 end-page: 45 article-title: Selective subversion of autophagy complexes facilitates completion of the intracellular cycle publication-title: Cell Host & Microbe – year: 2017 – ident: e_1_2_5_48_1 doi: 10.1091/mbc.E02-01-0042 – ident: e_1_2_5_23_1 doi: 10.3389/fcimb.2017.00064 – ident: e_1_2_5_27_1 doi: 10.1038/nrm3284 – ident: e_1_2_5_7_1 doi: 10.1016/j.molcel.2012.08.033 – ident: e_1_2_5_47_1 doi: 10.1016/j.chom.2011.12.002 – ident: e_1_2_5_15_1 doi: 10.1073/pnas.1406694111 – ident: e_1_2_5_32_1 doi: 10.1126/science.1106036 – ident: e_1_2_5_28_1 doi: 10.1074/jbc.M900231200 – volume-title: Shigella: Molecular and cellular biology year: 2016 ident: e_1_2_5_36_1 – volume: 17 start-page: 909 issue: 9 year: 2017 ident: e_1_2_5_11_1 article-title: Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: A systematic analysis for the Global Burden of Disease Study 2015 publication-title: Frontiers in Medicine – ident: e_1_2_5_40_1 doi: 10.1038/embor.2011.193 – ident: e_1_2_5_53_1 doi: 10.1016/j.chom.2017.09.007 – ident: e_1_2_5_8_1 doi: 10.1038/nrmicro2351 – ident: e_1_2_5_4_1 doi: 10.1242/jcs.209098 – volume: 4 issue: 4 year: 2018 ident: e_1_2_5_6_1 article-title: Out of Asia: The independent rise and global spread of fluoroquinolone‐resistant Shigella publication-title: Microbial Genomics – ident: e_1_2_5_31_1 doi: 10.1371/journal.pone.0013799 – ident: e_1_2_5_17_1 doi: 10.1016/bs.mcb.2016.03.018 – ident: e_1_2_5_37_1 doi: 10.1128/mBio.01979-17 – ident: e_1_2_5_10_1 doi: 10.1083/jcb.201006031 – ident: e_1_2_5_18_1 doi: 10.1038/227680a0 – ident: e_1_2_5_5_1 doi: 10.1126/science.1227026 – ident: e_1_2_5_52_1 doi: 10.1128/IAI.01575-13 – ident: e_1_2_5_20_1 doi: 10.1038/nature24467 – ident: e_1_2_5_46_1 doi: 10.1083/jcb.200710039 – ident: e_1_2_5_9_1 doi: 10.3389/fcimb.2013.00024 – ident: e_1_2_5_25_1 doi: 10.1016/j.bbamem.2012.06.007 – ident: e_1_2_5_33_1 doi: 10.1023/B:MCBI.0000009855.14648.2c – ident: e_1_2_5_39_1 doi: 10.1038/nrmicro2112 – ident: e_1_2_5_42_1 doi: 10.1038/nature12229 – ident: e_1_2_5_34_1 doi: 10.15252/embr.201541612 – ident: e_1_2_5_14_1 doi: 10.1016/j.cell.2015.12.042 – ident: e_1_2_5_50_1 doi: 10.1074/jbc.272.41.25542 – year: 2017 ident: e_1_2_5_16_1 article-title: Shigellosis publication-title: Lancet. – ident: e_1_2_5_43_1 doi: 10.1038/nature06052 – ident: e_1_2_5_12_1 doi: 10.1038/scientificamerican0815-88 – ident: e_1_2_5_51_1 doi: 10.1529/biophysj.105.070052 – volume: 268 start-page: 10888 issue: 15 year: 1993 ident: e_1_2_5_19_1 article-title: Interaction of phosphofructokinase with tubulin and microtubules. Quantitative evaluation of the mutual effects publication-title: Journal of Biological Chemistry doi: 10.1016/S0021-9258(18)82068-3 – ident: e_1_2_5_41_1 doi: 10.1128/JB.182.18.5225-5230.2000 – ident: e_1_2_5_30_1 doi: 10.1016/j.chom.2010.10.009 – ident: e_1_2_5_24_1 doi: 10.1042/bj2640671 – ident: e_1_2_5_13_1 doi: 10.1016/0014-4827(71)90223-0 – ident: e_1_2_5_49_1 doi: 10.3389/fcell.2016.00127 – ident: e_1_2_5_44_1 doi: 10.15252/embr.201541832 – ident: e_1_2_5_35_1 doi: 10.1016/j.cmet.2018.02.018 – ident: e_1_2_5_56_1 doi: 10.1128/mBio.00865-14 – volume: 131 start-page: NA year: 2010 ident: e_1_2_5_45_1 article-title: Spatial effects‐site‐specific regulation of actin and microtubule organization by septin GTPases publication-title: Journal of Cell Science – ident: e_1_2_5_57_1 doi: 10.1093/jac/dkr341 – ident: e_1_2_5_38_1 doi: 10.1016/0065-2571(86)90020-8 – ident: e_1_2_5_2_1 doi: 10.1371/journal.ppat.1004866 – ident: e_1_2_5_55_1 – ident: e_1_2_5_54_1 doi: 10.1126/science.123.3191.309 – ident: e_1_2_5_22_1 doi: 10.4161/gmic.19325 – ident: e_1_2_5_58_1 doi: 10.1093/jn/128.8.1262 – ident: e_1_2_5_21_1 doi: 10.1097/MOG.0000000000000136 – ident: e_1_2_5_3_1 doi: 10.1111/febs.12387 – ident: e_1_2_5_26_1 doi: 10.1007/s00125-016-4155-5 – ident: e_1_2_5_29_1 doi: 10.1371/journal.pone.0004196 |
SSID | ssj0069303 |
Score | 2.3054774 |
Snippet | Shigella flexneri, a Gram‐negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial... Shigella flexneri , a Gram‐negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial... Shigella flexneri, a Gram-negative enteroinvasive pathogen, causes inflammatory destruction of the human intestinal epithelium. During infection of epithelial... |
SourceID | pubmedcentral proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 163 |
SubjectTerms | Autophagy Autophagy - genetics Autophagy - physiology Cell Proliferation - genetics Cell Proliferation - physiology Cytoskeleton Cytosol Epithelial cells Epithelium Glycolysis HeLa Cells Humans Inflammation Intestine Intracellular Metabolic pathways metabolism Metabolomics Nutrients Pathogens Phagocytosis Septin Septins - genetics Septins - metabolism Shigella Shigella - pathogenicity Short Report |
Title | A requirement for septins and the autophagy receptor p62 in the proliferation of intracellular Shigella |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcm.21453 https://www.ncbi.nlm.nih.gov/pubmed/29752866 https://www.proquest.com/docview/2216406893 https://www.proquest.com/docview/2038277823 https://pubmed.ncbi.nlm.nih.gov/PMC6519264 |
Volume | 76 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgEhIXvqELbWUkBKdsk4ljJ8eqpaqQihBQqRKHyI7t7aptdtXdPbS_vjN2ElgKEuIUKZ582J6Jn53nN4y9K6SxMnV5UhkBiWhclZSllkkmJXijNboE_dE9_iyPTsSn0-K0Y1XSXpioDzEsuFFkhO81Bbg2i92foqHN5ZhUtknoM8slyeYffB2UoyjBX-DWV6JKchxke93ZFHb7C9dHojvw8i5L8lf0Goafw8fsR__ikXVyPl4tzbi5-U3T8f9q9oQ96lAp34tu9JTdc-0z9iDmqbx-ziZ7_MoRZTisJXLEuXxBbJh2wXVrOWJIrlekUKAn12hJTBk0mUvg0zaUzik3kHfR2_jM43msLP00IBYs_3Y2nRAL6wU7Ofz4ff8o6TI0JA1JnCam9NCARQzkMucKX-apB2NFVZZeSUOzkwpc5p3I8KObGYWTYFuAzcErS8TWl2yjnbVuk3ELyhROee8diAakVnnZ2FyZSmorpB2xD31v1U0nX05ZNC7qKLwMdXNZh2YbsbeD5TxKdvzBZqvv8LoL2kUNgHPHVCKCw1sMxRhu1By6dbMV2qR5CQphFdq8iv4xPIQ2KUMp5YipNc8ZDEjKe72knZ4FSW-JQBqh6Yi9D47x1_eu94_D8fW_Gr5hDxHiVXHRaIttLK9Wbhth1NLssPsgvuyEsLkFsIgafA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VIgSXim-2FDASglNoMnFsR5yqimqBboVEK_UWxbG9XYlmV93uof-eGWcTWBUkTpHiSWJ5_PE8eX4D8K5Q1qnU50lpJSay8WViTK2STCkMtq6pS_Af3cmJGp_Jr-fF-RZ86s_CdPoQQ8CNR0acr3mAc0B6_7dqaHP5kWW28ztwVxIsZz4fyu_9NMwp_iK7vpRlktMy2yvPprjfP7m5Ft0CmLd5kn_i17gAHT2EnTVyFAedqx_Blm8fw70ul-TNE5geiCvPtN4Y7xOERcWSGSvtUtStE4TzRL1iFYF6ekOWzGYhk4VCMWtj6YLz9wTf9QgxD3SfqsOBfWaqih8XsykzpZ7C2dHn08Nxss6ikDQsQ5pYE7BBRzjFZ94XweRpQOtkaUzQyvIOokSfBS8zmhgzq2mj6gp0OQbtmHz6DLbbeetfgHCobeF1CMGjbFDVOjeNy7UtVe2kciP40Ldn1awlxjnTxc-qE0fGqrmsYsuP4O1guehkNf5is9e7pFoPrGWFSPu7VBHKolcMxTQkuDnq1s9XZJPmBjVBH7J53nlw-AgfJEaj1Aj0hm8HA5bb3ixpZxdRdlsR2CX4OIL3sRf8s97V4SRed__X8A3cH59OjqvjLyffXsIDgmRlF-TZg-3rq5V_RbDn2r6O3fsXanH9cw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMSl5VW60IKREJyyTRzHdo5V21V5tEJApUocIj-3K2h21d09lF_PjPOApSAhTpHiycP2TPzZ-fwNIS8LYZxIfZ6UhrOEW18mSmmRZEKwYLQGl8A_uscn4uiUvz0rzlpWJe6FafQh-gU3jIz4vcYAn7mw-1M01F4MUWU7v0lucQFAAgHRx146CjP8RXJ9ycskh1G2E55N2W535epQdA1fXqdJ_gpf4_gz2iBfujdvaCdfh8uFGdrvv4k6_l_V7pH1FpbSvcaP7pMbvn5AbjeJKq8ekvEevfTIGY6LiRSALp0jHaaeU107CiCS6iVKFOjxFVgiVQZMZoLRSR1LZ5gcKPjG3eg0wHmoLP41QBos_XQ-GSMN6xE5HR1-3j9K2hQNiUWN08SowCxzAIJ85n0RVJ4GZhwvlQpSGJyelMxnwfMMvrqZkTALdgVzOQvSIbN1k6zV09pvEeqYNIWXIQTPuGVCy1xZl0tTCu24cAPyuuutyrb65ZhG41vVKC-zyl5UsdkG5EVvOWs0O_5gs911eNVG7bxiDCaPqQAIB7foiyHesDl07adLsElzxSTgKrB53PhH_xDcpcyUEAMiVzynN0At79WSenIeNb0FIGnApgPyKjrGX9-72j-Oxyf_avic3PlwMKrevzl595TcBbhXNgtI22Rtcbn0OwCpFuZZjJ0fN3Uccw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+requirement+for+septins+and+the+autophagy+receptor+p62+in+the+proliferation+of+intracellular+Shigella&rft.jtitle=Cytoskeleton+%28Hoboken%2C+N.J.%29&rft.au=Lobato%E2%80%90M%C3%A1rquez%2C+Dami%C3%A1n&rft.au=Krokowski%2C+Sina&rft.au=Sirianni%2C+Andrea&rft.au=Larrouy%E2%80%90Maumus%2C+Gerald&rft.date=2019-01-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=1949-3584&rft.eissn=1949-3592&rft.volume=76&rft.issue=1&rft.spage=163&rft.epage=172&rft_id=info:doi/10.1002%2Fcm.21453&rft_id=info%3Apmid%2F29752866&rft.externalDocID=PMC6519264 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3584&client=summon |