Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions

Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the cr...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 56; no. 18; pp. 4982 - 4986
Main Authors Huang, Ning, Wang, Ping, Addicoat, Matthew A., Heine, Thomas, Jiang, Donglin
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 24.04.2017
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA‐stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs. A scaffold for ionic interfaces: Covalent organic frameworks were synthesized. They bear ionic interfaces that are well aligned and spatially confined on the one‐dimensional channel walls. The ionic interfaces exert profound effects on the frameworks and trigger unusual electrostatic functions, such as the adsorption of CO2 and the selective removal of anionic pollutants.
AbstractList Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs.Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs.
Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA‐stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs. A scaffold for ionic interfaces: Covalent organic frameworks were synthesized. They bear ionic interfaces that are well aligned and spatially confined on the one‐dimensional channel walls. The ionic interfaces exert profound effects on the frameworks and trigger unusual electrostatic functions, such as the adsorption of CO2 and the selective removal of anionic pollutants.
Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA‐stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO 2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs.
Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs.
Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs.
Author Heine, Thomas
Huang, Ning
Wang, Ping
Addicoat, Matthew A.
Jiang, Donglin
Author_xml – sequence: 1
  givenname: Ning
  surname: Huang
  fullname: Huang, Ning
  organization: School of Materials Science, Japan Advanced Institute of Science and Technology
– sequence: 2
  givenname: Ping
  surname: Wang
  fullname: Wang, Ping
  organization: SOKENDAI
– sequence: 3
  givenname: Matthew A.
  surname: Addicoat
  fullname: Addicoat, Matthew A.
  organization: Universität Leipzig
– sequence: 4
  givenname: Thomas
  surname: Heine
  fullname: Heine, Thomas
  organization: Universität Leipzig
– sequence: 5
  givenname: Donglin
  orcidid: 0000-0002-3785-1330
  surname: Jiang
  fullname: Jiang, Donglin
  email: djiang@jaist.ac.jp
  organization: School of Materials Science, Japan Advanced Institute of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28370738$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1v1DAQhi1URD_gyhFZ4sIlSxw7sZfbarulK1X0QsXRmp1MlhSvXeykVe_8cBxtW6RKwFw8mnneGWveY3bggyfG3opyJsqy-gi-p1lVikaIWlUv2JGoK1FIreVBzpWUhTa1OGTHKV1n3piyecUOKyN1qaU5Yr_WwffIl-EWHPmBX8YtTIWzCDu6C_FH-sRPKfVbz0PHgS-_Q9xSy9d-oNgBEl-43MyV4Lk4nfrek-PfwLnEwWdySPzKj2kEx1eOcIghDTBMO0aPQx98es1eduASvXl4T9jV2err8ry4uPy8Xi4uClTSVIWAOapGbAR2XY3QVnXdNco07UarmjqUCAil0Y2UiITYIGxkLY3Q0BoglCfsw37uTQw_R0qD3fUJyTnwFMZkhTFKNFoJndH3z9DrMEaff2fFvKy11HOj_kmZHPVcKpOpdw_UuNlRa29iv4N4bx9dyIDaA5hvkyJ1FvvpRMEPEXpnRWkns-1ktn0yO8tmz2SPk_8qmO8Fd72j-__QdvFlvfqj_Q2yf7wX
CODEN ACIEAY
CitedBy_id crossref_primary_10_1002_cjoc_201800142
crossref_primary_10_1007_s10118_020_2436_4
crossref_primary_10_1021_acs_nanolett_9b04421
crossref_primary_10_1016_j_jhazmat_2021_125302
crossref_primary_10_1021_acsami_1c14420
crossref_primary_10_1021_acs_jpcc_0c07062
crossref_primary_10_1021_acs_jpclett_1c00243
crossref_primary_10_1016_j_elecom_2020_106781
crossref_primary_10_1039_D3RA02202A
crossref_primary_10_1039_D1TB00041A
crossref_primary_10_3390_bios13060636
crossref_primary_10_1021_acsanm_2c04848
crossref_primary_10_1039_C8TA09145E
crossref_primary_10_1016_j_cej_2019_122765
crossref_primary_10_1002_anie_202415381
crossref_primary_10_1016_j_apcatb_2022_121335
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1039_D1EW00408E
crossref_primary_10_1002_adfm_201705553
crossref_primary_10_1002_anie_201801352
crossref_primary_10_1021_acsami_0c06022
crossref_primary_10_1016_j_chroma_2025_465827
crossref_primary_10_1021_acs_accounts_0c00386
crossref_primary_10_1021_acsapm_0c00425
crossref_primary_10_1002_anie_201905563
crossref_primary_10_1039_C9NR07525A
crossref_primary_10_1016_j_cej_2022_134785
crossref_primary_10_1016_j_enchem_2022_100079
crossref_primary_10_1016_j_chempr_2020_08_024
crossref_primary_10_1021_jacs_1c06238
crossref_primary_10_1021_acsami_0c06267
crossref_primary_10_1039_D0NA00537A
crossref_primary_10_1002_marc_202100590
crossref_primary_10_1021_jacs_9b02448
crossref_primary_10_1002_chem_201903011
crossref_primary_10_1038_s43586_022_00181_z
crossref_primary_10_1002_anie_202100717
crossref_primary_10_1021_acs_nanolett_4c06572
crossref_primary_10_1021_acsomega_0c04904
crossref_primary_10_1039_D1TA05428G
crossref_primary_10_1002_marc_202200715
crossref_primary_10_1021_acsami_2c18226
crossref_primary_10_1016_j_enchem_2023_100101
crossref_primary_10_1002_ange_202404886
crossref_primary_10_1039_D1CS00889G
crossref_primary_10_3390_catal11040423
crossref_primary_10_1002_ange_202010306
crossref_primary_10_1002_anie_202210447
crossref_primary_10_1039_C9CC05051E
crossref_primary_10_1002_ange_201912363
crossref_primary_10_1002_anie_202010306
crossref_primary_10_1021_acs_chemmater_8b00117
crossref_primary_10_1039_D3CC05238A
crossref_primary_10_12677_aac_2025_151009
crossref_primary_10_1038_s42004_019_0207_3
crossref_primary_10_1016_j_ccr_2024_216003
crossref_primary_10_1016_j_chemosphere_2021_129640
crossref_primary_10_1039_D1NR00172H
crossref_primary_10_1002_ange_202104375
crossref_primary_10_1021_acs_est_8b04215
crossref_primary_10_1246_bcsj_20200391
crossref_primary_10_1038_s44160_022_00071_y
crossref_primary_10_1016_j_mtchem_2022_101225
crossref_primary_10_1016_j_indcrop_2020_112155
crossref_primary_10_1016_j_chempr_2020_08_005
crossref_primary_10_1021_jacs_4c17548
crossref_primary_10_1002_ange_201904291
crossref_primary_10_1016_j_cej_2024_150098
crossref_primary_10_1016_j_progpolymsci_2017_11_005
crossref_primary_10_1002_ange_202108522
crossref_primary_10_1021_accountsmr_2c00108
crossref_primary_10_1021_jacs_0c07206
crossref_primary_10_1002_anie_202104375
crossref_primary_10_1021_jacs_2c10509
crossref_primary_10_3390_nano8010015
crossref_primary_10_1016_j_seppur_2024_126846
crossref_primary_10_1002_cplu_202200324
crossref_primary_10_1002_adfm_202214887
crossref_primary_10_1021_acsmaterialslett_0c00485
crossref_primary_10_1016_j_progpolymsci_2020_101288
crossref_primary_10_1002_smtd_202100036
crossref_primary_10_1002_anie_202315456
crossref_primary_10_1016_j_rser_2025_115589
crossref_primary_10_1039_D1PY01121A
crossref_primary_10_1002_smll_202006112
crossref_primary_10_1002_ange_201801352
crossref_primary_10_1016_j_cclet_2022_06_007
crossref_primary_10_1016_j_jhazmat_2020_122496
crossref_primary_10_1002_macp_201900553
crossref_primary_10_1002_anie_201710190
crossref_primary_10_1016_j_memsci_2023_121610
crossref_primary_10_1021_acsami_4c11328
crossref_primary_10_1021_acssuschemeng_9b00155
crossref_primary_10_1039_C8CC06972G
crossref_primary_10_1021_acs_macromol_2c01127
crossref_primary_10_1021_jacs_3c08541
crossref_primary_10_1002_smll_202003970
crossref_primary_10_1039_C8CE00041G
crossref_primary_10_1002_anie_202204938
crossref_primary_10_1016_j_ccst_2025_100370
crossref_primary_10_1016_j_checat_2022_05_002
crossref_primary_10_1039_D1SC03680G
crossref_primary_10_1021_acsami_0c18105
crossref_primary_10_1039_D0TA01037E
crossref_primary_10_1016_j_trac_2022_116829
crossref_primary_10_1039_C9GC01993F
crossref_primary_10_1002_ange_201710190
crossref_primary_10_1016_j_apcatb_2019_117935
crossref_primary_10_1016_j_eurpolymj_2020_109764
crossref_primary_10_1016_j_seppur_2024_127467
crossref_primary_10_1039_D1CC00322D
crossref_primary_10_1002_anie_202108522
crossref_primary_10_1002_chem_202000722
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1002_adma_202002366
crossref_primary_10_1016_j_memsci_2020_118784
crossref_primary_10_1016_j_jece_2024_113944
crossref_primary_10_1002_ange_202204938
crossref_primary_10_1021_acsami_0c12317
crossref_primary_10_3390_nano12203615
crossref_primary_10_1021_acs_organomet_9b00318
crossref_primary_10_1021_jacs_7b12350
crossref_primary_10_1016_j_chemosphere_2021_132795
crossref_primary_10_1021_jacs_8b01774
crossref_primary_10_1039_D0TC00942C
crossref_primary_10_1002_ange_202100717
crossref_primary_10_1016_j_polymer_2020_122796
crossref_primary_10_1002_ange_202411806
crossref_primary_10_1002_chem_201800548
crossref_primary_10_1039_C7CC08630J
crossref_primary_10_1016_j_cclet_2019_12_039
crossref_primary_10_1021_acssuschemeng_8b05373
crossref_primary_10_1002_anie_201912363
crossref_primary_10_1016_S1872_2067_19_63487_X
crossref_primary_10_1021_acs_chemmater_9b00919
crossref_primary_10_1016_j_cej_2017_10_160
crossref_primary_10_1016_j_cej_2023_148359
crossref_primary_10_1002_ange_202415381
crossref_primary_10_1002_ange_201905563
crossref_primary_10_1021_acs_chemrev_0c01184
crossref_primary_10_3390_catal11091133
crossref_primary_10_1002_sstr_202100061
crossref_primary_10_1002_ange_202315456
crossref_primary_10_1016_j_ccr_2022_214431
crossref_primary_10_1016_j_cej_2022_141008
crossref_primary_10_1016_j_molliq_2022_119706
crossref_primary_10_1002_smll_202202928
crossref_primary_10_1021_acs_est_8b06244
crossref_primary_10_1021_acsami_0c21374
crossref_primary_10_1021_jacs_7b11283
crossref_primary_10_1021_acs_chemmater_0c02913
crossref_primary_10_1016_j_polymer_2020_123307
crossref_primary_10_1002_advs_201801410
crossref_primary_10_1016_j_ccr_2017_11_013
crossref_primary_10_1039_D0QM00276C
crossref_primary_10_1002_anie_201904291
crossref_primary_10_1021_acsapm_0c01010
crossref_primary_10_1016_j_mattod_2022_02_001
crossref_primary_10_1016_j_seppur_2020_117986
crossref_primary_10_1002_anie_202404886
crossref_primary_10_3389_fenrg_2019_00077
crossref_primary_10_1016_j_memsci_2019_117677
crossref_primary_10_1038_s41467_024_53945_4
crossref_primary_10_1039_D2RE00290F
crossref_primary_10_1021_accountsmr_2c00130
crossref_primary_10_1016_j_cej_2021_130509
crossref_primary_10_1016_j_apcatb_2021_120719
crossref_primary_10_1016_j_seppur_2022_122243
crossref_primary_10_1021_acsami_8b02676
crossref_primary_10_1016_j_mattod_2023_05_023
crossref_primary_10_1039_C9RA10035K
crossref_primary_10_1039_D2CS00465H
crossref_primary_10_1016_j_seppur_2021_119238
crossref_primary_10_1039_C8SC02456A
crossref_primary_10_1039_C8SC04255A
crossref_primary_10_1039_D0CC00454E
crossref_primary_10_1002_pol_20210940
crossref_primary_10_1016_j_ensm_2018_01_018
crossref_primary_10_1002_marc_202000003
crossref_primary_10_1016_j_jtice_2020_02_008
crossref_primary_10_1016_j_aca_2019_11_058
crossref_primary_10_1021_acs_iecr_9b02872
crossref_primary_10_1039_C9PY00366E
crossref_primary_10_1002_adma_201801991
crossref_primary_10_1016_j_molliq_2019_02_113
crossref_primary_10_1016_j_foodchem_2022_132396
crossref_primary_10_1039_D2EN01049F
crossref_primary_10_3390_molecules27196204
crossref_primary_10_1002_smll_202207313
crossref_primary_10_1016_j_chemosphere_2020_126736
crossref_primary_10_1016_j_aca_2024_343343
crossref_primary_10_1039_C9QM00781D
crossref_primary_10_2139_ssrn_3973722
crossref_primary_10_1007_s10934_020_01017_5
crossref_primary_10_1002_pol_20230164
crossref_primary_10_1021_jacs_0c11313
crossref_primary_10_1002_ange_202210447
crossref_primary_10_1016_j_cej_2020_128034
crossref_primary_10_1021_acs_orglett_0c03007
crossref_primary_10_1039_C9SC00172G
crossref_primary_10_1007_s40242_022_1447_9
crossref_primary_10_1021_acs_chemrev_8b00056
crossref_primary_10_1021_acsaem_8b01381
crossref_primary_10_1016_S1872_2067_18_63065_7
crossref_primary_10_1039_C8TA04178D
crossref_primary_10_1002_chem_201806400
crossref_primary_10_1146_annurev_chembioeng_112019_084830
crossref_primary_10_1002_smll_202107108
crossref_primary_10_1039_D3CS01163A
crossref_primary_10_1016_j_cej_2020_127095
crossref_primary_10_1016_j_seppur_2022_122704
crossref_primary_10_1002_sstr_202000021
crossref_primary_10_1021_acsapm_2c01436
crossref_primary_10_1039_D1QM00416F
crossref_primary_10_1002_ijch_201800153
crossref_primary_10_1021_acs_chemmater_8b02560
crossref_primary_10_1021_acs_inorgchem_7b02983
crossref_primary_10_1016_j_polymer_2017_05_071
crossref_primary_10_1016_j_seppur_2020_117787
crossref_primary_10_1038_s41557_019_0238_5
crossref_primary_10_1002_anie_202411806
crossref_primary_10_1038_s41467_019_12596_6
crossref_primary_10_1016_j_chroma_2020_461821
crossref_primary_10_1002_asia_202101011
crossref_primary_10_1038_s41467_022_31393_2
crossref_primary_10_1021_jacs_2c07733
Cites_doi 10.1021/ja9015765
10.1002/adma.201505004
10.1021/ja103016y
10.1039/C6PY00281A
10.1002/anie.201411262
10.1039/C4TA07112C
10.1021/jacs.5b04300
10.1038/natrevmats.2016.68
10.1002/chem.201203753
10.1039/C3TA13589F
10.1021/jacs.6b01244
10.1002/ange.201411262
10.1021/jacs.5b13490
10.1039/C2CE26487K
10.1016/j.jhazmat.2010.09.035
10.1002/anie.201509014
10.1021/acs.accounts.5b00369
10.1038/nchem.2444
10.1002/anie.201503902
10.1021/jacs.6b02700
10.1021/acscentsci.6b00220
10.1021/ja308278w
10.1016/j.jhazmat.2010.05.047
10.1038/ncomms9508
10.1016/j.apsusc.2013.05.052
10.1126/science.aal1585
10.1039/c2cs35157a
10.1038/ncomms12325
10.1021/am301053m
10.1002/ange.201503902
10.1021/jacs.6b06546
10.1002/ange.201509014
10.1021/jacs.5b09487
10.1021/acs.chemmater.5b02151
ContentType Journal Article
Copyright 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
– notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID AAYXX
CITATION
NPM
7TM
K9.
7X8
DOI 10.1002/anie.201611542
DatabaseName CrossRef
PubMed
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 4986
ExternalDocumentID 4321765281
28370738
10_1002_anie_201611542
ANIE201611542
Genre shortCommunication
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AETEA
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGYGG
AHBTC
AHMBA
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
NPM
7TM
K9.
7X8
ID FETCH-LOGICAL-c4382-1a9c461b1cff5cad255f6486db745efc3caca087633ccecc6cab353817ad8aec3
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Fri Jul 11 13:41:57 EDT 2025
Fri Jul 25 10:35:05 EDT 2025
Sun Jul 13 05:36:14 EDT 2025
Mon Jul 21 05:38:35 EDT 2025
Thu Apr 24 23:00:07 EDT 2025
Tue Jul 01 03:27:29 EDT 2025
Wed Aug 20 07:26:12 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords carbon dioxide
covalent organic frameworks
ionic interfaces
porous materials
anionic pollutants
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4382-1a9c461b1cff5cad255f6486db745efc3caca087633ccecc6cab353817ad8aec3
Notes These authors contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-3785-1330
PMID 28370738
PQID 1888859348
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_1884167417
proquest_journals_1905737984
proquest_journals_1888859348
pubmed_primary_28370738
crossref_citationtrail_10_1002_anie_201611542
crossref_primary_10_1002_anie_201611542
wiley_primary_10_1002_anie_201611542_ANIE201611542
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 24, 2017
PublicationDateYYYYMMDD 2017-04-24
PublicationDate_xml – month: 04
  year: 2017
  text: April 24, 2017
  day: 24
PublicationDecade 2010
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationTitleAlternate Angew Chem Int Ed Engl
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 6
2015; 3
2010; 181
2009; 131
2013; 280
2017; 355
2013; 19
2015; 48
2016; 7
2013; 15
2016; 1
2016 2016; 55 128
2015; 27
2016; 2
2012; 134
2014; 2
2015; 137
2010; 132
2015 2015; 54 127
2016; 138
2011; 185
2016; 28
2012; 4
2016; 8
2012; 41
e_1_2_2_3_2
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_23_2
e_1_2_2_5_2
e_1_2_2_6_1
e_1_2_2_21_2
e_1_2_2_22_1
e_1_2_2_20_2
e_1_2_2_1_1
e_1_2_2_2_2
e_1_2_2_29_2
e_1_2_2_7_2
e_1_2_2_8_2
e_1_2_2_28_2
e_1_2_2_26_2
e_1_2_2_27_1
e_1_2_2_9_2
e_1_2_2_24_3
e_1_2_2_25_2
e_1_2_2_36_2
e_1_2_2_11_3
e_1_2_2_12_2
e_1_2_2_13_1
e_1_2_2_37_2
e_1_2_2_11_2
e_1_2_2_38_2
e_1_2_2_10_2
e_1_2_2_18_3
e_1_2_2_19_2
e_1_2_2_30_2
e_1_2_2_18_2
e_1_2_2_31_2
e_1_2_2_32_1
e_1_2_2_16_2
e_1_2_2_17_1
e_1_2_2_33_2
e_1_2_2_15_2
e_1_2_2_34_2
e_1_2_2_14_2
e_1_2_2_35_2
References_xml – volume: 7
  start-page: 3392
  year: 2016
  end-page: 3397
  publication-title: Polym. Chem.
– volume: 185
  start-page: 507
  year: 2011
  end-page: 511
  publication-title: J. Hazard. Mater.
– volume: 138
  start-page: 5797
  year: 2016
  end-page: 5800
  publication-title: J. Am. Chem. Soc.
– volume: 131
  start-page: 8875
  year: 2009
  end-page: 8883
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 8508
  year: 2015
  publication-title: Nat. Commun.
– volume: 2
  start-page: 667
  year: 2016
  end-page: 673
  publication-title: ACS Cent. Sci.
– volume: 137
  start-page: 13772
  year: 2015
  end-page: 13775
  publication-title: J. Am. Chem. Soc.
– volume: 137
  start-page: 7079
  year: 2015
  end-page: 7082
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  publication-title: Chem. Soc. Rev.
– volume: 181
  start-page: 535
  year: 2010
  end-page: 542
  publication-title: J. Hazard. Mater.
– volume: 134
  start-page: 19524
  year: 2012
  end-page: 19527
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 7874
  year: 2015
  end-page: 7881
  publication-title: Chem. Mater.
– volume: 2
  start-page: 193
  year: 2014
  end-page: 203
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 12325
  year: 2016
  publication-title: Nat. Commun.
– volume: 138
  start-page: 10120
  year: 2016
  end-page: 10123
  publication-title: J. Am. Chem. Soc.
– volume: 132
  start-page: 9262
  year: 2010
  end-page: 9264
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 5897
  year: 2016
  end-page: 5903
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 2986 3029
  year: 2015 2015
  end-page: 2990 3033
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 19
  start-page: 3324
  year: 2013
  end-page: 3328
  publication-title: Chem. Eur. J.
– volume: 8
  start-page: 310
  year: 2016
  end-page: 316
  publication-title: Nat. Chem.
– volume: 3
  start-page: 5674
  year: 2015
  end-page: 5682
  publication-title: J. Mater. Chem. A
– volume: 48
  start-page: 3053
  year: 2015
  end-page: 3063
  publication-title: Acc. Chem. Res.
– volume: 4
  start-page: 5749
  year: 2012
  end-page: 5760
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 2855
  year: 2016
  end-page: 2873
  publication-title: Adv. Mater.
– volume: 55 128
  start-page: 1737 1769
  year: 2016 2016
  end-page: 1741 1773
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 54 127
  start-page: 8704 8828
  year: 2015 2015
  end-page: 8707 8831
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 280
  start-page: 726
  year: 2013
  end-page: 736
  publication-title: Appl. Surf. Sci.
– volume: 1
  start-page: 16068
  year: 2016
  publication-title: Nat. Rev. Mater.
– volume: 15
  start-page: 1524
  year: 2013
  end-page: 1527
  publication-title: CrystEngComm
– volume: 355
  start-page: 923
  year: 2017
  publication-title: Science
– volume: 138
  start-page: 4710
  year: 2016
  end-page: 4713
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_28_2
  doi: 10.1021/ja9015765
– ident: e_1_2_2_23_2
  doi: 10.1002/adma.201505004
– ident: e_1_2_2_1_1
– ident: e_1_2_2_21_2
  doi: 10.1021/ja103016y
– ident: e_1_2_2_32_1
– ident: e_1_2_2_20_2
  doi: 10.1039/C6PY00281A
– ident: e_1_2_2_24_2
  doi: 10.1002/anie.201411262
– ident: e_1_2_2_34_2
  doi: 10.1039/C4TA07112C
– ident: e_1_2_2_25_2
  doi: 10.1021/jacs.5b04300
– ident: e_1_2_2_27_1
– ident: e_1_2_2_4_2
  doi: 10.1038/natrevmats.2016.68
– ident: e_1_2_2_29_2
  doi: 10.1002/chem.201203753
– ident: e_1_2_2_36_2
  doi: 10.1039/C3TA13589F
– ident: e_1_2_2_15_2
  doi: 10.1021/jacs.6b01244
– ident: e_1_2_2_24_3
  doi: 10.1002/ange.201411262
– ident: e_1_2_2_19_2
  doi: 10.1021/jacs.5b13490
– ident: e_1_2_2_30_2
  doi: 10.1039/C2CE26487K
– ident: e_1_2_2_38_2
  doi: 10.1016/j.jhazmat.2010.09.035
– ident: e_1_2_2_18_2
  doi: 10.1002/anie.201509014
– ident: e_1_2_2_3_2
  doi: 10.1021/acs.accounts.5b00369
– ident: e_1_2_2_7_2
  doi: 10.1038/nchem.2444
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.201503902
– ident: e_1_2_2_9_2
  doi: 10.1021/jacs.6b02700
– ident: e_1_2_2_8_2
  doi: 10.1021/acscentsci.6b00220
– ident: e_1_2_2_31_2
  doi: 10.1021/ja308278w
– ident: e_1_2_2_37_2
  doi: 10.1016/j.jhazmat.2010.05.047
– ident: e_1_2_2_12_2
  doi: 10.1038/ncomms9508
– ident: e_1_2_2_17_1
– ident: e_1_2_2_33_2
  doi: 10.1016/j.apsusc.2013.05.052
– ident: e_1_2_2_5_2
  doi: 10.1126/science.aal1585
– ident: e_1_2_2_22_1
– ident: e_1_2_2_2_2
  doi: 10.1039/c2cs35157a
– ident: e_1_2_2_13_1
– ident: e_1_2_2_14_2
  doi: 10.1038/ncomms12325
– ident: e_1_2_2_6_1
– ident: e_1_2_2_35_2
  doi: 10.1021/am301053m
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.201503902
– ident: e_1_2_2_16_2
  doi: 10.1021/jacs.6b06546
– ident: e_1_2_2_18_3
  doi: 10.1002/ange.201509014
– ident: e_1_2_2_10_2
  doi: 10.1021/jacs.5b09487
– ident: e_1_2_2_26_2
  doi: 10.1021/acs.chemmater.5b02151
SSID ssj0028806
Score 2.613568
Snippet Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as...
Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4982
SubjectTerms anionic pollutants
Carbon dioxide
Cations
Covalence
covalent organic frameworks
Crystal structure
Design
Electric dipoles
Ion exchange
ionic interfaces
Pollutants
Polymers
Porous materials
Selectivity
Structure-function relationships
Walls
Title Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201611542
https://www.ncbi.nlm.nih.gov/pubmed/28370738
https://www.proquest.com/docview/1888859348
https://www.proquest.com/docview/1905737984
https://www.proquest.com/docview/1884167417
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_VgoyEhInNxu7MRxuK22u2qR6AGxUm_RZOJwoEoqsrlw7g_vjL0JLA8hQU5J_Ihjz3jG9sw3QrxJMANjHa1U3dwpRuBSJBSssphA7p32TQjn8-Hcnm7S9xfZxQ9e_BEfYtpwY84I8zUzOFT98XfQUPbAZtMsy4AyPAmzwRZrRR8n_ChNxBndi4xRHIV-RG2c6-P94vtS6RdVc19zDaJnfU_A2OhocfLlaNhWR_jtJzzH__mr--LuTi-Vi0hID8Qt3z4Ut5djOLhH4vqMQXTlsiPSJEEloxMnyvVo3dW_kyfBHER2jQTJ5_iffS3DlmMD6OXikhLpTdfK5ITT2cRG8k5-L6GlnNtebtqhH6gdqxidh92d-BskfAN_PBab9erT8lTtQjgo5BNGlUCBqU2qBJsmQ6hpAdPY1Nm6ytPMN2gQEAIqnkEkarIIlckYNRBqBx7NE3HQdq1_JqRuClIPKzQ1aRSWT4NB2wKKzFlwdDMTahzCEnf45hxm47KMyMy65L4tp76dibdT_quI7PHHnIcjRZQ7Du_LxNGVFSZ1v08uGGkyL1w6E6-nZBoyPo-B1ndDqCJlJ5Akn4mnkdCmlgRQotxQ5TqQy1-aWC7Oz1bT0_N_KfRC3NGsssxTpdNDcbD9OviXpHBtq1eBqW4AHGQgZQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQLpTyXFjASEie3G9txHG6r7a52od0D6krcImfi9ECVILK59MwP74yzCVooQoKckvgRx57xjO2Zbxh7F0HslLG4UrVjKwiBS6BQMMJA5BJvpS9DOJ-LlVms9ccvcW9NSL4wHT7EsOFGnBHma2Jw2pA-_YkaSi7YZJtlCFEGZ-H7FNY7rKo-DwhSEsmzczBSSlAc-h63cSxPd8vvyqXflM1d3TUIn_kBy_tmdzYnX0_aTX4CN78gOv7Xfz1iD7eqKZ90tHTI7vnqMduf9hHhnrAfS8LR5dMaqRNlFe_8OIHPewOv5gM_CxYhvC6543SUf-ULHnYdSweeT64xEd_UFY_OKJ2sbDht5jfcVZhz0_B11TYttmPWBeghjyf6BsrfwCJP2Xo-u5wuxDaKgwA6ZBSRS0GbKI-gLGNwBa5hSqOtKfJEx74EBQ5cAMZTAEhQBlyuYgIOdIV1HtQztlfVlX_BuCxT1BBzUAUqFYYOhJ00qUtja5zFmxET_RhmsIU4p0gb11kHziwz6tts6NsRez_k_9aBe_wx53FPEtmWyZsssnjFqdL27uSUwCaT1OoRezsk45DRkYyrfN2GKjT5gUTJiD3vKG1oScAlShRWLgO9_KWJ2WS1nA1PL_-l0Bu2v7i8OM_Ol6tPR-yBJA1mrIXUx2xv8731r1D_2uSvA4fdAhoHJIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwGXljdLCxgJiZPbje04Tm-rfajLY4UQK_UWOY7NgSqpms2FMz-cGXsTWB5CgpyS-BHHnvGM7ZlvCHmZ2NQIpWGlqseaIQIXA6GgmLKJyZzmzodwPu9W6nwtX1-kFz948Ud8iGHDDTkjzNfI4FeVP_0OGooe2GiapRBQBibhfanGGul69mEAkOJAndG_SAiGYeh72MYxP90tvyuWftE1d1XXIHsWh8T0rY4mJ59Puk15Yr_8BOj4P791hxxsFVM6iZR0l9xw9T1ya9rHg7tPvi4RRZdOG6BNkFQ0enFauujNu9ozOgv2ILTx1FA8yP_kKhr2HL2xjk4uIRHeNDVNZpiONjYUt_JbamrIuWnpuu7aDtoxj-F50N8JvwHSNzDIA7JezD9Oz9k2hgOzeMTIEpNbqZIysd6n1lSwgvFKalWVmUydt8IaawIsnrAWyElZU4oUYQNNpY2z4iHZq5vaPSaU-xz0w9KKClQKhcfBhqvc5KlWRsPNiLB-CAu7BTjHOBuXRYRm5gX2bTH07Yi8GvJfRWiPP-Y87imi2LJ4WyQarjQXUv8-OUeoySzXckReDMkwZHggY2rXdKEKiV4gSTYijyKhDS0JqESZgMp5IJe_NLGYrJbz4enJvxR6Tm6-ny2Kt8vVmyNym6P6MpaMy2Oyt7nu3FNQvjbls8Bf3wCj4SM4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Covalent+Organic+Frameworks%3A+Design+of+a+Charged+Interface+Aligned+on+1D+Channel+Walls+and+Its+Unusual+Electrostatic+Functions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Ning&rft.au=Wang%2C+Ping&rft.au=Addicoat%2C+Matthew+A&rft.au=Heine%2C+Thomas&rft.date=2017-04-24&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=18&rft.spage=4982&rft_id=info:doi/10.1002%2Fanie.201611542&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon