Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions
Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the cr...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 56; no. 18; pp. 4982 - 4986 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
24.04.2017
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA‐stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs.
A scaffold for ionic interfaces: Covalent organic frameworks were synthesized. They bear ionic interfaces that are well aligned and spatially confined on the one‐dimensional channel walls. The ionic interfaces exert profound effects on the frameworks and trigger unusual electrostatic functions, such as the adsorption of CO2 and the selective removal of anionic pollutants. |
---|---|
AbstractList | Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs.Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs. Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA‐stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs. A scaffold for ionic interfaces: Covalent organic frameworks were synthesized. They bear ionic interfaces that are well aligned and spatially confined on the one‐dimensional channel walls. The ionic interfaces exert profound effects on the frameworks and trigger unusual electrostatic functions, such as the adsorption of CO2 and the selective removal of anionic pollutants. Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA‐stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO 2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs. Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs. Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as neutral porous materials. Here, we report the construction of ionic crystalline porous COFs with positively charged walls that enable the creation of well aligned yet spatially confined ionic interface. The unconventional reversed AA-stacking mode alternately orientates the cationic centers to both sides of the walls; the ionic interface endows COFs with unusual electrostatic functions. Because all of the walls are decorated with electric dipoles, the uptake of CO2 is enhanced by three fold compared to the neutral analog. By virtue of sufficient open space between cations, the ionic interface exhibits exceptional accessibility, efficiency, and selectivity in ion exchange to trap anionic pollutants. These findings suggest that construction of the ionic interface of COFs offers a new way to structural and functional designs. |
Author | Heine, Thomas Huang, Ning Wang, Ping Addicoat, Matthew A. Jiang, Donglin |
Author_xml | – sequence: 1 givenname: Ning surname: Huang fullname: Huang, Ning organization: School of Materials Science, Japan Advanced Institute of Science and Technology – sequence: 2 givenname: Ping surname: Wang fullname: Wang, Ping organization: SOKENDAI – sequence: 3 givenname: Matthew A. surname: Addicoat fullname: Addicoat, Matthew A. organization: Universität Leipzig – sequence: 4 givenname: Thomas surname: Heine fullname: Heine, Thomas organization: Universität Leipzig – sequence: 5 givenname: Donglin orcidid: 0000-0002-3785-1330 surname: Jiang fullname: Jiang, Donglin email: djiang@jaist.ac.jp organization: School of Materials Science, Japan Advanced Institute of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28370738$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1v1DAQhi1URD_gyhFZ4sIlSxw7sZfbarulK1X0QsXRmp1MlhSvXeykVe_8cBxtW6RKwFw8mnneGWveY3bggyfG3opyJsqy-gi-p1lVikaIWlUv2JGoK1FIreVBzpWUhTa1OGTHKV1n3piyecUOKyN1qaU5Yr_WwffIl-EWHPmBX8YtTIWzCDu6C_FH-sRPKfVbz0PHgS-_Q9xSy9d-oNgBEl-43MyV4Lk4nfrek-PfwLnEwWdySPzKj2kEx1eOcIghDTBMO0aPQx98es1eduASvXl4T9jV2err8ry4uPy8Xi4uClTSVIWAOapGbAR2XY3QVnXdNco07UarmjqUCAil0Y2UiITYIGxkLY3Q0BoglCfsw37uTQw_R0qD3fUJyTnwFMZkhTFKNFoJndH3z9DrMEaff2fFvKy11HOj_kmZHPVcKpOpdw_UuNlRa29iv4N4bx9dyIDaA5hvkyJ1FvvpRMEPEXpnRWkns-1ktn0yO8tmz2SPk_8qmO8Fd72j-__QdvFlvfqj_Q2yf7wX |
CODEN | ACIEAY |
CitedBy_id | crossref_primary_10_1002_cjoc_201800142 crossref_primary_10_1007_s10118_020_2436_4 crossref_primary_10_1021_acs_nanolett_9b04421 crossref_primary_10_1016_j_jhazmat_2021_125302 crossref_primary_10_1021_acsami_1c14420 crossref_primary_10_1021_acs_jpcc_0c07062 crossref_primary_10_1021_acs_jpclett_1c00243 crossref_primary_10_1016_j_elecom_2020_106781 crossref_primary_10_1039_D3RA02202A crossref_primary_10_1039_D1TB00041A crossref_primary_10_3390_bios13060636 crossref_primary_10_1021_acsanm_2c04848 crossref_primary_10_1039_C8TA09145E crossref_primary_10_1016_j_cej_2019_122765 crossref_primary_10_1002_anie_202415381 crossref_primary_10_1016_j_apcatb_2022_121335 crossref_primary_10_1002_adma_202105647 crossref_primary_10_1039_D1EW00408E crossref_primary_10_1002_adfm_201705553 crossref_primary_10_1002_anie_201801352 crossref_primary_10_1021_acsami_0c06022 crossref_primary_10_1016_j_chroma_2025_465827 crossref_primary_10_1021_acs_accounts_0c00386 crossref_primary_10_1021_acsapm_0c00425 crossref_primary_10_1002_anie_201905563 crossref_primary_10_1039_C9NR07525A crossref_primary_10_1016_j_cej_2022_134785 crossref_primary_10_1016_j_enchem_2022_100079 crossref_primary_10_1016_j_chempr_2020_08_024 crossref_primary_10_1021_jacs_1c06238 crossref_primary_10_1021_acsami_0c06267 crossref_primary_10_1039_D0NA00537A crossref_primary_10_1002_marc_202100590 crossref_primary_10_1021_jacs_9b02448 crossref_primary_10_1002_chem_201903011 crossref_primary_10_1038_s43586_022_00181_z crossref_primary_10_1002_anie_202100717 crossref_primary_10_1021_acs_nanolett_4c06572 crossref_primary_10_1021_acsomega_0c04904 crossref_primary_10_1039_D1TA05428G crossref_primary_10_1002_marc_202200715 crossref_primary_10_1021_acsami_2c18226 crossref_primary_10_1016_j_enchem_2023_100101 crossref_primary_10_1002_ange_202404886 crossref_primary_10_1039_D1CS00889G crossref_primary_10_3390_catal11040423 crossref_primary_10_1002_ange_202010306 crossref_primary_10_1002_anie_202210447 crossref_primary_10_1039_C9CC05051E crossref_primary_10_1002_ange_201912363 crossref_primary_10_1002_anie_202010306 crossref_primary_10_1021_acs_chemmater_8b00117 crossref_primary_10_1039_D3CC05238A crossref_primary_10_12677_aac_2025_151009 crossref_primary_10_1038_s42004_019_0207_3 crossref_primary_10_1016_j_ccr_2024_216003 crossref_primary_10_1016_j_chemosphere_2021_129640 crossref_primary_10_1039_D1NR00172H crossref_primary_10_1002_ange_202104375 crossref_primary_10_1021_acs_est_8b04215 crossref_primary_10_1246_bcsj_20200391 crossref_primary_10_1038_s44160_022_00071_y crossref_primary_10_1016_j_mtchem_2022_101225 crossref_primary_10_1016_j_indcrop_2020_112155 crossref_primary_10_1016_j_chempr_2020_08_005 crossref_primary_10_1021_jacs_4c17548 crossref_primary_10_1002_ange_201904291 crossref_primary_10_1016_j_cej_2024_150098 crossref_primary_10_1016_j_progpolymsci_2017_11_005 crossref_primary_10_1002_ange_202108522 crossref_primary_10_1021_accountsmr_2c00108 crossref_primary_10_1021_jacs_0c07206 crossref_primary_10_1002_anie_202104375 crossref_primary_10_1021_jacs_2c10509 crossref_primary_10_3390_nano8010015 crossref_primary_10_1016_j_seppur_2024_126846 crossref_primary_10_1002_cplu_202200324 crossref_primary_10_1002_adfm_202214887 crossref_primary_10_1021_acsmaterialslett_0c00485 crossref_primary_10_1016_j_progpolymsci_2020_101288 crossref_primary_10_1002_smtd_202100036 crossref_primary_10_1002_anie_202315456 crossref_primary_10_1016_j_rser_2025_115589 crossref_primary_10_1039_D1PY01121A crossref_primary_10_1002_smll_202006112 crossref_primary_10_1002_ange_201801352 crossref_primary_10_1016_j_cclet_2022_06_007 crossref_primary_10_1016_j_jhazmat_2020_122496 crossref_primary_10_1002_macp_201900553 crossref_primary_10_1002_anie_201710190 crossref_primary_10_1016_j_memsci_2023_121610 crossref_primary_10_1021_acsami_4c11328 crossref_primary_10_1021_acssuschemeng_9b00155 crossref_primary_10_1039_C8CC06972G crossref_primary_10_1021_acs_macromol_2c01127 crossref_primary_10_1021_jacs_3c08541 crossref_primary_10_1002_smll_202003970 crossref_primary_10_1039_C8CE00041G crossref_primary_10_1002_anie_202204938 crossref_primary_10_1016_j_ccst_2025_100370 crossref_primary_10_1016_j_checat_2022_05_002 crossref_primary_10_1039_D1SC03680G crossref_primary_10_1021_acsami_0c18105 crossref_primary_10_1039_D0TA01037E crossref_primary_10_1016_j_trac_2022_116829 crossref_primary_10_1039_C9GC01993F crossref_primary_10_1002_ange_201710190 crossref_primary_10_1016_j_apcatb_2019_117935 crossref_primary_10_1016_j_eurpolymj_2020_109764 crossref_primary_10_1016_j_seppur_2024_127467 crossref_primary_10_1039_D1CC00322D crossref_primary_10_1002_anie_202108522 crossref_primary_10_1002_chem_202000722 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1002_adma_202002366 crossref_primary_10_1016_j_memsci_2020_118784 crossref_primary_10_1016_j_jece_2024_113944 crossref_primary_10_1002_ange_202204938 crossref_primary_10_1021_acsami_0c12317 crossref_primary_10_3390_nano12203615 crossref_primary_10_1021_acs_organomet_9b00318 crossref_primary_10_1021_jacs_7b12350 crossref_primary_10_1016_j_chemosphere_2021_132795 crossref_primary_10_1021_jacs_8b01774 crossref_primary_10_1039_D0TC00942C crossref_primary_10_1002_ange_202100717 crossref_primary_10_1016_j_polymer_2020_122796 crossref_primary_10_1002_ange_202411806 crossref_primary_10_1002_chem_201800548 crossref_primary_10_1039_C7CC08630J crossref_primary_10_1016_j_cclet_2019_12_039 crossref_primary_10_1021_acssuschemeng_8b05373 crossref_primary_10_1002_anie_201912363 crossref_primary_10_1016_S1872_2067_19_63487_X crossref_primary_10_1021_acs_chemmater_9b00919 crossref_primary_10_1016_j_cej_2017_10_160 crossref_primary_10_1016_j_cej_2023_148359 crossref_primary_10_1002_ange_202415381 crossref_primary_10_1002_ange_201905563 crossref_primary_10_1021_acs_chemrev_0c01184 crossref_primary_10_3390_catal11091133 crossref_primary_10_1002_sstr_202100061 crossref_primary_10_1002_ange_202315456 crossref_primary_10_1016_j_ccr_2022_214431 crossref_primary_10_1016_j_cej_2022_141008 crossref_primary_10_1016_j_molliq_2022_119706 crossref_primary_10_1002_smll_202202928 crossref_primary_10_1021_acs_est_8b06244 crossref_primary_10_1021_acsami_0c21374 crossref_primary_10_1021_jacs_7b11283 crossref_primary_10_1021_acs_chemmater_0c02913 crossref_primary_10_1016_j_polymer_2020_123307 crossref_primary_10_1002_advs_201801410 crossref_primary_10_1016_j_ccr_2017_11_013 crossref_primary_10_1039_D0QM00276C crossref_primary_10_1002_anie_201904291 crossref_primary_10_1021_acsapm_0c01010 crossref_primary_10_1016_j_mattod_2022_02_001 crossref_primary_10_1016_j_seppur_2020_117986 crossref_primary_10_1002_anie_202404886 crossref_primary_10_3389_fenrg_2019_00077 crossref_primary_10_1016_j_memsci_2019_117677 crossref_primary_10_1038_s41467_024_53945_4 crossref_primary_10_1039_D2RE00290F crossref_primary_10_1021_accountsmr_2c00130 crossref_primary_10_1016_j_cej_2021_130509 crossref_primary_10_1016_j_apcatb_2021_120719 crossref_primary_10_1016_j_seppur_2022_122243 crossref_primary_10_1021_acsami_8b02676 crossref_primary_10_1016_j_mattod_2023_05_023 crossref_primary_10_1039_C9RA10035K crossref_primary_10_1039_D2CS00465H crossref_primary_10_1016_j_seppur_2021_119238 crossref_primary_10_1039_C8SC02456A crossref_primary_10_1039_C8SC04255A crossref_primary_10_1039_D0CC00454E crossref_primary_10_1002_pol_20210940 crossref_primary_10_1016_j_ensm_2018_01_018 crossref_primary_10_1002_marc_202000003 crossref_primary_10_1016_j_jtice_2020_02_008 crossref_primary_10_1016_j_aca_2019_11_058 crossref_primary_10_1021_acs_iecr_9b02872 crossref_primary_10_1039_C9PY00366E crossref_primary_10_1002_adma_201801991 crossref_primary_10_1016_j_molliq_2019_02_113 crossref_primary_10_1016_j_foodchem_2022_132396 crossref_primary_10_1039_D2EN01049F crossref_primary_10_3390_molecules27196204 crossref_primary_10_1002_smll_202207313 crossref_primary_10_1016_j_chemosphere_2020_126736 crossref_primary_10_1016_j_aca_2024_343343 crossref_primary_10_1039_C9QM00781D crossref_primary_10_2139_ssrn_3973722 crossref_primary_10_1007_s10934_020_01017_5 crossref_primary_10_1002_pol_20230164 crossref_primary_10_1021_jacs_0c11313 crossref_primary_10_1002_ange_202210447 crossref_primary_10_1016_j_cej_2020_128034 crossref_primary_10_1021_acs_orglett_0c03007 crossref_primary_10_1039_C9SC00172G crossref_primary_10_1007_s40242_022_1447_9 crossref_primary_10_1021_acs_chemrev_8b00056 crossref_primary_10_1021_acsaem_8b01381 crossref_primary_10_1016_S1872_2067_18_63065_7 crossref_primary_10_1039_C8TA04178D crossref_primary_10_1002_chem_201806400 crossref_primary_10_1146_annurev_chembioeng_112019_084830 crossref_primary_10_1002_smll_202107108 crossref_primary_10_1039_D3CS01163A crossref_primary_10_1016_j_cej_2020_127095 crossref_primary_10_1016_j_seppur_2022_122704 crossref_primary_10_1002_sstr_202000021 crossref_primary_10_1021_acsapm_2c01436 crossref_primary_10_1039_D1QM00416F crossref_primary_10_1002_ijch_201800153 crossref_primary_10_1021_acs_chemmater_8b02560 crossref_primary_10_1021_acs_inorgchem_7b02983 crossref_primary_10_1016_j_polymer_2017_05_071 crossref_primary_10_1016_j_seppur_2020_117787 crossref_primary_10_1038_s41557_019_0238_5 crossref_primary_10_1002_anie_202411806 crossref_primary_10_1038_s41467_019_12596_6 crossref_primary_10_1016_j_chroma_2020_461821 crossref_primary_10_1002_asia_202101011 crossref_primary_10_1038_s41467_022_31393_2 crossref_primary_10_1021_jacs_2c07733 |
Cites_doi | 10.1021/ja9015765 10.1002/adma.201505004 10.1021/ja103016y 10.1039/C6PY00281A 10.1002/anie.201411262 10.1039/C4TA07112C 10.1021/jacs.5b04300 10.1038/natrevmats.2016.68 10.1002/chem.201203753 10.1039/C3TA13589F 10.1021/jacs.6b01244 10.1002/ange.201411262 10.1021/jacs.5b13490 10.1039/C2CE26487K 10.1016/j.jhazmat.2010.09.035 10.1002/anie.201509014 10.1021/acs.accounts.5b00369 10.1038/nchem.2444 10.1002/anie.201503902 10.1021/jacs.6b02700 10.1021/acscentsci.6b00220 10.1021/ja308278w 10.1016/j.jhazmat.2010.05.047 10.1038/ncomms9508 10.1016/j.apsusc.2013.05.052 10.1126/science.aal1585 10.1039/c2cs35157a 10.1038/ncomms12325 10.1021/am301053m 10.1002/ange.201503902 10.1021/jacs.6b06546 10.1002/ange.201509014 10.1021/jacs.5b09487 10.1021/acs.chemmater.5b02151 |
ContentType | Journal Article |
Copyright | 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. – notice: 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 |
DOI | 10.1002/anie.201611542 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 4986 |
ExternalDocumentID | 4321765281 28370738 10_1002_anie_201611542 ANIE201611542 |
Genre | shortCommunication Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7TM K9. 7X8 |
ID | FETCH-LOGICAL-c4382-1a9c461b1cff5cad255f6486db745efc3caca087633ccecc6cab353817ad8aec3 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Jul 11 13:41:57 EDT 2025 Fri Jul 25 10:35:05 EDT 2025 Sun Jul 13 05:36:14 EDT 2025 Mon Jul 21 05:38:35 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Tue Jul 01 03:27:29 EDT 2025 Wed Aug 20 07:26:12 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | carbon dioxide covalent organic frameworks ionic interfaces porous materials anionic pollutants |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4382-1a9c461b1cff5cad255f6486db745efc3caca087633ccecc6cab353817ad8aec3 |
Notes | These authors contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-3785-1330 |
PMID | 28370738 |
PQID | 1888859348 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1884167417 proquest_journals_1905737984 proquest_journals_1888859348 pubmed_primary_28370738 crossref_citationtrail_10_1002_anie_201611542 crossref_primary_10_1002_anie_201611542 wiley_primary_10_1002_anie_201611542_ANIE201611542 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 24, 2017 |
PublicationDateYYYYMMDD | 2017-04-24 |
PublicationDate_xml | – month: 04 year: 2017 text: April 24, 2017 day: 24 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 6 2015; 3 2010; 181 2009; 131 2013; 280 2017; 355 2013; 19 2015; 48 2016; 7 2013; 15 2016; 1 2016 2016; 55 128 2015; 27 2016; 2 2012; 134 2014; 2 2015; 137 2010; 132 2015 2015; 54 127 2016; 138 2011; 185 2016; 28 2012; 4 2016; 8 2012; 41 e_1_2_2_3_2 e_1_2_2_24_2 e_1_2_2_4_2 e_1_2_2_23_2 e_1_2_2_5_2 e_1_2_2_6_1 e_1_2_2_21_2 e_1_2_2_22_1 e_1_2_2_20_2 e_1_2_2_1_1 e_1_2_2_2_2 e_1_2_2_29_2 e_1_2_2_7_2 e_1_2_2_8_2 e_1_2_2_28_2 e_1_2_2_26_2 e_1_2_2_27_1 e_1_2_2_9_2 e_1_2_2_24_3 e_1_2_2_25_2 e_1_2_2_36_2 e_1_2_2_11_3 e_1_2_2_12_2 e_1_2_2_13_1 e_1_2_2_37_2 e_1_2_2_11_2 e_1_2_2_38_2 e_1_2_2_10_2 e_1_2_2_18_3 e_1_2_2_19_2 e_1_2_2_30_2 e_1_2_2_18_2 e_1_2_2_31_2 e_1_2_2_32_1 e_1_2_2_16_2 e_1_2_2_17_1 e_1_2_2_33_2 e_1_2_2_15_2 e_1_2_2_34_2 e_1_2_2_14_2 e_1_2_2_35_2 |
References_xml | – volume: 7 start-page: 3392 year: 2016 end-page: 3397 publication-title: Polym. Chem. – volume: 185 start-page: 507 year: 2011 end-page: 511 publication-title: J. Hazard. Mater. – volume: 138 start-page: 5797 year: 2016 end-page: 5800 publication-title: J. Am. Chem. Soc. – volume: 131 start-page: 8875 year: 2009 end-page: 8883 publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 8508 year: 2015 publication-title: Nat. Commun. – volume: 2 start-page: 667 year: 2016 end-page: 673 publication-title: ACS Cent. Sci. – volume: 137 start-page: 13772 year: 2015 end-page: 13775 publication-title: J. Am. Chem. Soc. – volume: 137 start-page: 7079 year: 2015 end-page: 7082 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 6010 year: 2012 end-page: 6022 publication-title: Chem. Soc. Rev. – volume: 181 start-page: 535 year: 2010 end-page: 542 publication-title: J. Hazard. Mater. – volume: 134 start-page: 19524 year: 2012 end-page: 19527 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 7874 year: 2015 end-page: 7881 publication-title: Chem. Mater. – volume: 2 start-page: 193 year: 2014 end-page: 203 publication-title: J. Mater. Chem. A – volume: 7 start-page: 12325 year: 2016 publication-title: Nat. Commun. – volume: 138 start-page: 10120 year: 2016 end-page: 10123 publication-title: J. Am. Chem. Soc. – volume: 132 start-page: 9262 year: 2010 end-page: 9264 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 5897 year: 2016 end-page: 5903 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 2986 3029 year: 2015 2015 end-page: 2990 3033 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 19 start-page: 3324 year: 2013 end-page: 3328 publication-title: Chem. Eur. J. – volume: 8 start-page: 310 year: 2016 end-page: 316 publication-title: Nat. Chem. – volume: 3 start-page: 5674 year: 2015 end-page: 5682 publication-title: J. Mater. Chem. A – volume: 48 start-page: 3053 year: 2015 end-page: 3063 publication-title: Acc. Chem. Res. – volume: 4 start-page: 5749 year: 2012 end-page: 5760 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 2855 year: 2016 end-page: 2873 publication-title: Adv. Mater. – volume: 55 128 start-page: 1737 1769 year: 2016 2016 end-page: 1741 1773 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 54 127 start-page: 8704 8828 year: 2015 2015 end-page: 8707 8831 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 280 start-page: 726 year: 2013 end-page: 736 publication-title: Appl. Surf. Sci. – volume: 1 start-page: 16068 year: 2016 publication-title: Nat. Rev. Mater. – volume: 15 start-page: 1524 year: 2013 end-page: 1527 publication-title: CrystEngComm – volume: 355 start-page: 923 year: 2017 publication-title: Science – volume: 138 start-page: 4710 year: 2016 end-page: 4713 publication-title: J. Am. Chem. Soc. – ident: e_1_2_2_28_2 doi: 10.1021/ja9015765 – ident: e_1_2_2_23_2 doi: 10.1002/adma.201505004 – ident: e_1_2_2_1_1 – ident: e_1_2_2_21_2 doi: 10.1021/ja103016y – ident: e_1_2_2_32_1 – ident: e_1_2_2_20_2 doi: 10.1039/C6PY00281A – ident: e_1_2_2_24_2 doi: 10.1002/anie.201411262 – ident: e_1_2_2_34_2 doi: 10.1039/C4TA07112C – ident: e_1_2_2_25_2 doi: 10.1021/jacs.5b04300 – ident: e_1_2_2_27_1 – ident: e_1_2_2_4_2 doi: 10.1038/natrevmats.2016.68 – ident: e_1_2_2_29_2 doi: 10.1002/chem.201203753 – ident: e_1_2_2_36_2 doi: 10.1039/C3TA13589F – ident: e_1_2_2_15_2 doi: 10.1021/jacs.6b01244 – ident: e_1_2_2_24_3 doi: 10.1002/ange.201411262 – ident: e_1_2_2_19_2 doi: 10.1021/jacs.5b13490 – ident: e_1_2_2_30_2 doi: 10.1039/C2CE26487K – ident: e_1_2_2_38_2 doi: 10.1016/j.jhazmat.2010.09.035 – ident: e_1_2_2_18_2 doi: 10.1002/anie.201509014 – ident: e_1_2_2_3_2 doi: 10.1021/acs.accounts.5b00369 – ident: e_1_2_2_7_2 doi: 10.1038/nchem.2444 – ident: e_1_2_2_11_2 doi: 10.1002/anie.201503902 – ident: e_1_2_2_9_2 doi: 10.1021/jacs.6b02700 – ident: e_1_2_2_8_2 doi: 10.1021/acscentsci.6b00220 – ident: e_1_2_2_31_2 doi: 10.1021/ja308278w – ident: e_1_2_2_37_2 doi: 10.1016/j.jhazmat.2010.05.047 – ident: e_1_2_2_12_2 doi: 10.1038/ncomms9508 – ident: e_1_2_2_17_1 – ident: e_1_2_2_33_2 doi: 10.1016/j.apsusc.2013.05.052 – ident: e_1_2_2_5_2 doi: 10.1126/science.aal1585 – ident: e_1_2_2_22_1 – ident: e_1_2_2_2_2 doi: 10.1039/c2cs35157a – ident: e_1_2_2_13_1 – ident: e_1_2_2_14_2 doi: 10.1038/ncomms12325 – ident: e_1_2_2_6_1 – ident: e_1_2_2_35_2 doi: 10.1021/am301053m – ident: e_1_2_2_11_3 doi: 10.1002/ange.201503902 – ident: e_1_2_2_16_2 doi: 10.1021/jacs.6b06546 – ident: e_1_2_2_18_3 doi: 10.1002/ange.201509014 – ident: e_1_2_2_10_2 doi: 10.1021/jacs.5b09487 – ident: e_1_2_2_26_2 doi: 10.1021/acs.chemmater.5b02151 |
SSID | ssj0028806 |
Score | 2.613568 |
Snippet | Covalent organic frameworks (COFs) have emerged as a tailor‐made platform for designing layered two‐dimensional polymers. However, most of them are obtained as... Covalent organic frameworks (COFs) have emerged as a tailor-made platform for designing layered two-dimensional polymers. However, most of them are obtained as... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4982 |
SubjectTerms | anionic pollutants Carbon dioxide Cations Covalence covalent organic frameworks Crystal structure Design Electric dipoles Ion exchange ionic interfaces Pollutants Polymers Porous materials Selectivity Structure-function relationships Walls |
Title | Ionic Covalent Organic Frameworks: Design of a Charged Interface Aligned on 1D Channel Walls and Its Unusual Electrostatic Functions |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201611542 https://www.ncbi.nlm.nih.gov/pubmed/28370738 https://www.proquest.com/docview/1888859348 https://www.proquest.com/docview/1905737984 https://www.proquest.com/docview/1884167417 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQL3Dh_VgoyEhInNxu7MRxuK22u2qR6AGxUm_RZOJwoEoqsrlw7g_vjL0JLA8hQU5J_Ihjz3jG9sw3QrxJMANjHa1U3dwpRuBSJBSssphA7p32TQjn8-Hcnm7S9xfZxQ9e_BEfYtpwY84I8zUzOFT98XfQUPbAZtMsy4AyPAmzwRZrRR8n_ChNxBndi4xRHIV-RG2c6-P94vtS6RdVc19zDaJnfU_A2OhocfLlaNhWR_jtJzzH__mr--LuTi-Vi0hID8Qt3z4Ut5djOLhH4vqMQXTlsiPSJEEloxMnyvVo3dW_kyfBHER2jQTJ5_iffS3DlmMD6OXikhLpTdfK5ITT2cRG8k5-L6GlnNtebtqhH6gdqxidh92d-BskfAN_PBab9erT8lTtQjgo5BNGlUCBqU2qBJsmQ6hpAdPY1Nm6ytPMN2gQEAIqnkEkarIIlckYNRBqBx7NE3HQdq1_JqRuClIPKzQ1aRSWT4NB2wKKzFlwdDMTahzCEnf45hxm47KMyMy65L4tp76dibdT_quI7PHHnIcjRZQ7Du_LxNGVFSZ1v08uGGkyL1w6E6-nZBoyPo-B1ndDqCJlJ5Akn4mnkdCmlgRQotxQ5TqQy1-aWC7Oz1bT0_N_KfRC3NGsssxTpdNDcbD9OviXpHBtq1eBqW4AHGQgZQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQOZQLpTyXFjASEie3G9txHG6r7a52od0D6krcImfi9ECVILK59MwP74yzCVooQoKckvgRx57xjO2Zbxh7F0HslLG4UrVjKwiBS6BQMMJA5BJvpS9DOJ-LlVms9ccvcW9NSL4wHT7EsOFGnBHma2Jw2pA-_YkaSi7YZJtlCFEGZ-H7FNY7rKo-DwhSEsmzczBSSlAc-h63cSxPd8vvyqXflM1d3TUIn_kBy_tmdzYnX0_aTX4CN78gOv7Xfz1iD7eqKZ90tHTI7vnqMduf9hHhnrAfS8LR5dMaqRNlFe_8OIHPewOv5gM_CxYhvC6543SUf-ULHnYdSweeT64xEd_UFY_OKJ2sbDht5jfcVZhz0_B11TYttmPWBeghjyf6BsrfwCJP2Xo-u5wuxDaKgwA6ZBSRS0GbKI-gLGNwBa5hSqOtKfJEx74EBQ5cAMZTAEhQBlyuYgIOdIV1HtQztlfVlX_BuCxT1BBzUAUqFYYOhJ00qUtja5zFmxET_RhmsIU4p0gb11kHziwz6tts6NsRez_k_9aBe_wx53FPEtmWyZsssnjFqdL27uSUwCaT1OoRezsk45DRkYyrfN2GKjT5gUTJiD3vKG1oScAlShRWLgO9_KWJ2WS1nA1PL_-l0Bu2v7i8OM_Ol6tPR-yBJA1mrIXUx2xv8731r1D_2uSvA4fdAhoHJIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQKwGXljdLCxgJiZPbje04Tm-rfajLY4UQK_UWOY7NgSqpms2FMz-cGXsTWB5CgpyS-BHHnvGM7ZlvCHmZ2NQIpWGlqseaIQIXA6GgmLKJyZzmzodwPu9W6nwtX1-kFz948Ud8iGHDDTkjzNfI4FeVP_0OGooe2GiapRBQBibhfanGGul69mEAkOJAndG_SAiGYeh72MYxP90tvyuWftE1d1XXIHsWh8T0rY4mJ59Puk15Yr_8BOj4P791hxxsFVM6iZR0l9xw9T1ya9rHg7tPvi4RRZdOG6BNkFQ0enFauujNu9ozOgv2ILTx1FA8yP_kKhr2HL2xjk4uIRHeNDVNZpiONjYUt_JbamrIuWnpuu7aDtoxj-F50N8JvwHSNzDIA7JezD9Oz9k2hgOzeMTIEpNbqZIysd6n1lSwgvFKalWVmUydt8IaawIsnrAWyElZU4oUYQNNpY2z4iHZq5vaPSaU-xz0w9KKClQKhcfBhqvc5KlWRsPNiLB-CAu7BTjHOBuXRYRm5gX2bTH07Yi8GvJfRWiPP-Y87imi2LJ4WyQarjQXUv8-OUeoySzXckReDMkwZHggY2rXdKEKiV4gSTYijyKhDS0JqESZgMp5IJe_NLGYrJbz4enJvxR6Tm6-ny2Kt8vVmyNym6P6MpaMy2Oyt7nu3FNQvjbls8Bf3wCj4SM4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ionic+Covalent+Organic+Frameworks%3A+Design+of+a+Charged+Interface+Aligned+on+1D+Channel+Walls+and+Its+Unusual+Electrostatic+Functions&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Huang%2C+Ning&rft.au=Wang%2C+Ping&rft.au=Addicoat%2C+Matthew+A&rft.au=Heine%2C+Thomas&rft.date=2017-04-24&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=56&rft.issue=18&rft.spage=4982&rft_id=info:doi/10.1002%2Fanie.201611542&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |