Target of rapamycin FATC domain as a general membrane anchor: The FKBP‐12 like domain of FKBP38 as a case study

Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, w...

Full description

Saved in:
Bibliographic Details
Published inProtein science Vol. 27; no. 2; pp. 546 - 560
Main Authors De Cicco, Maristella, Milroy, Lech‐G., Dames, Sonja A.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2018
John Wiley and Sons Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water‐soluble and binds to different membrane mimetics would find broad application. The 33‐residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506‐binding region of the protein FKBP38 (FKBP38‐BD) and used 1H–15N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C‐terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6–8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2). The high water‐solubility of y1fatc enables its use for titration experiments against a membrane‐localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C‐terminal 17–11 residues of the 33‐residue long domain by 1D 1H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15N‐labeled target protein for NMR studies.
AbstractList Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water‐soluble and binds to different membrane mimetics would find broad application. The 33‐residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506‐binding region of the protein FKBP38 (FKBP38‐BD) and used 1 H– 15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C‐terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6–8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl 2 and CaCl 2 ). The high water‐solubility of y1fatc enables its use for titration experiments against a membrane‐localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C‐terminal 17–11 residues of the 33‐residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N‐labeled target protein for NMR studies.
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used 1 H-15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2 ). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N-labeled target protein for NMR studies.
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used 1H-15N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D 1H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15N-labeled target protein for NMR studies.
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water-soluble and binds to different membrane mimetics would find broad application. The 33-residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506-binding region of the protein FKBP38 (FKBP38-BD) and used H- N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C-terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6-8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl and CaCl ). The high water-solubility of y1fatc enables its use for titration experiments against a membrane-localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C-terminal 17-11 residues of the 33-residue long domain by 1D H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to N-labeled target protein for NMR studies.
Abstract Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water‐soluble and binds to different membrane mimetics would find broad application. The 33‐residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506‐binding region of the protein FKBP38 (FKBP38‐BD) and used 1 H– 15 N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C‐terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6–8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl 2 and CaCl 2 ). The high water‐solubility of y1fatc enables its use for titration experiments against a membrane‐localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C‐terminal 17–11 residues of the 33‐residue long domain by 1D 1 H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15 N‐labeled target protein for NMR studies.
Author Dames, Sonja A.
Milroy, Lech‐G.
De Cicco, Maristella
AuthorAffiliation 3 Institute of Structural Biology, Helmholtz Zentrum München Neuherberg Germany
1 Department of Chemistry Technische Universität München, Biomolecular NMR Spectroscopy Garching Germany
2 Department of Biomedical Technology Laboratory of Chemical Biology, Technische Universiteit Eindhoven Eindhoven The Netherlands
AuthorAffiliation_xml – name: 3 Institute of Structural Biology, Helmholtz Zentrum München Neuherberg Germany
– name: 2 Department of Biomedical Technology Laboratory of Chemical Biology, Technische Universiteit Eindhoven Eindhoven The Netherlands
– name: 1 Department of Chemistry Technische Universität München, Biomolecular NMR Spectroscopy Garching Germany
Author_xml – sequence: 1
  givenname: Maristella
  surname: De Cicco
  fullname: De Cicco, Maristella
  organization: Technische Universität München, Biomolecular NMR Spectroscopy
– sequence: 2
  givenname: Lech‐G.
  surname: Milroy
  fullname: Milroy, Lech‐G.
  organization: Laboratory of Chemical Biology, Technische Universiteit Eindhoven
– sequence: 3
  givenname: Sonja A.
  surname: Dames
  fullname: Dames, Sonja A.
  email: sonja.dames@tum.de
  organization: Institute of Structural Biology, Helmholtz Zentrum München
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29024217$$D View this record in MEDLINE/PubMed
BookMark eNp1kd1qFDEUx4NU7LYKPoEEvPFmaj5m8uGFUJeuioUWWcG7kMme7E6dSbbJjrJ3fQSf0Scx67alCl4l4fzy45zzP0IHIQZA6DklJ5QQ9nqd4gnnjD5CE1oLXSktvh6gCdGCVooLdYiOcr4ihNSU8SfokGnCakblBF3PbVrCBkePk13bYeu6gGen8ylexMGWu83Y4iUESLbHAwxtsgGwDW4V0xs8XwGefXp3-evmJ2W4777B3b8i3BW42huczYDzZlxsn6LH3vYZnt2ex-jL7Gw-_VCdX7z_OD09r1zNFa28F55IqRxjyjnlpfSC-7phDVNK1d7z1jvC66ZVjlgBreUAjVxoLonzYPkxerv3rsd2gIWDsCkjmHXqBpu2JtrO_F0J3cos43fTSNlQoYrg1a0gxesR8sYMXXbQ92UBccyG6kIKLYku6Mt_0Ks4plDGK5TSlDHePBC6FHNO4O-bocTscizvaHY5FvTFw-bvwbvgClDtgR9dD9v_iszl54s_wt9plKg5
CitedBy_id crossref_primary_10_1074_jbc_RA119_007653
crossref_primary_10_1093_hmg_ddaa211
crossref_primary_10_1002_jmv_25327
crossref_primary_10_1002_dvg_23459
Cites_doi 10.1016/j.bbalip.2009.02.009
10.1038/sj.emboj.7600739
10.1038/ncb894
10.1074/jbc.M109.058404
10.3390/membranes5040553
10.1021/jp001268f
10.1074/jbc.M109.092353
10.1021/bi0608414
10.1016/j.bbamem.2011.03.016
10.1074/jbc.M111.225052
10.1021/bi3002133
10.1021/jp501533d
10.1091/mbc.E02-09-0609
10.1073/pnas.1218301110
10.1074/jbc.M305912200
10.1194/jlr.D005397
10.1074/jbc.M007296200
10.1007/s11010-007-9603-6
10.1016/j.ceb.2011.09.003
10.1021/bi052052c
10.18632/aging.100040
10.1016/j.cell.2011.02.014
10.1021/bi952300c
10.1074/jbc.M202625200
10.1021/bi000919v
10.1126/stke.2003.173.pe10
10.1007/978-1-59745-196-3_17
10.1016/j.febslet.2014.03.031
10.1242/jcs.089110
10.1242/jcs.114454
10.1091/mbc.e08-10-1001
10.1126/science.1066015
10.1126/science.1147379
10.1002/cbic.201000532
10.1159/000123041
10.1021/ja312508w
10.1016/j.cell.2012.03.017
10.1074/jbc.M501116200
10.1016/S0968-0004(00)01563-2
10.1021/cb5007097
10.1007/BF00197809
10.1038/nrm2330
10.1021/jp4089113
10.1006/bbrc.1997.7878
10.1126/science.270.5233.50
10.1021/jp0516801
10.1110/ps.072996707
10.1021/bi00438a031
10.1016/j.cell.2010.02.024
10.1091/mbc.E02-10-0639
10.1038/35080071
10.1002/pro.2127
10.1111/j.1467-789X.2012.01038.x
10.1074/jbc.M802356200
10.1016/j.molcel.2008.09.010
10.1021/ja310901f
10.1002/0471140864.ps1501s03
10.1074/jbc.M113.467233
ContentType Journal Article
Copyright 2017 The Protein Society
2017 The Protein Society.
2018 The Protein Society
Copyright_xml – notice: 2017 The Protein Society
– notice: 2017 The Protein Society.
– notice: 2018 The Protein Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
DOI 10.1002/pro.3321
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Biotechnology Research Abstracts
Immunology Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Genetics Abstracts
Virology and AIDS Abstracts
Biotechnology Research Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Genetics Abstracts
MEDLINE
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
DocumentTitleAlternate TOR FATC Domain as a General Membrane Anchor
EISSN 1469-896X
EndPage 560
ExternalDocumentID 10_1002_pro_3321
29024217
PRO3321
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  funderid: Gravity program 024.001.035
– fundername: Helmholtz‐Gemeinschaft
  funderid: portfolio theme ‘metabolic dysfunction and common disease
– fundername: Deutsche Forschungsgemeinschaft
  funderid: DA1195/3‐2
– fundername: Helmholtz‐Gemeinschaft
  grantid: portfolio theme ‘metabolic dysfunction and common disease
– fundername: Deutsche Forschungsgemeinschaft
  grantid: DA1195/3‐2
– fundername: Nederlandse Organisatie voor Wetenschappelijk Onderzoek
  grantid: Gravity program 024.001.035
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABLJU
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HGLYW
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OIG
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QO
7T5
7TM
7U9
8FD
FR3
H94
K9.
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c4381-ff6f0778c228cc8f77f63f452528884ff3bfc0345b8c0a6eba3ee57d9370cfea3
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 21:07:14 EDT 2024
Fri Aug 16 23:50:44 EDT 2024
Fri Sep 13 10:10:58 EDT 2024
Fri Aug 23 01:55:13 EDT 2024
Tue Aug 27 13:43:11 EDT 2024
Sat Aug 24 00:48:27 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords protein-membrane interactions
protein membrane anchoring
membrane mimetic
NMR spectroscopy
protein-lipid interactions
Language English
License 2017 The Protein Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4381-ff6f0778c228cc8f77f63f452528884ff3bfc0345b8c0a6eba3ee57d9370cfea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/pro.3321
PMID 29024217
PQID 1989122358
PQPubID 1016442
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5775168
proquest_miscellaneous_1957769709
proquest_journals_1989122358
crossref_primary_10_1002_pro_3321
pubmed_primary_29024217
wiley_primary_10_1002_pro_3321_PRO3321
PublicationCentury 2000
PublicationDate February 2018
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Bethesda
– name: Hoboken
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
John Wiley and Sons Inc
Publisher_xml – name: Wiley Subscription Services, Inc
– name: John Wiley and Sons Inc
References 2010; 11
2002; 277
2008; 9
2013; 288
2008; 307
2003; 14
2010; 141
2008; 32
2012; 13
1996; 35
2005; 24
2012; 51
2011; 124
2001; 294
2001
2000
2005; 109
2003; 5
2011; 23
2013; 110
2009; 1791
2012; 21
2011; 286
2014; 118
2015; 5
2009; 20
2000; 25
2003; 2003
2011; 1808
2008; 16
2015; 10
2010; 285
2009; 498
2000; 275
2015; 128
2012; 149
1995; 6
1995; 270
2008; 283
1989; 28
2007; 16
2005; 280
2004; 279
2000; 39
2004; 278
2006; 45
2000; 104
1997; 241
2013; 135
2001; 2
2009; 1
2007; 318
2010; 51
2014; 588
2011; 144
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Johnson BA (e_1_2_9_61_1) 2004; 278
Cicco M (e_1_2_9_29_1) 2015; 5
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
Chan WW (e_1_2_9_59_1) 2000
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – volume: 39
  start-page: 11024
  year: 2000
  end-page: 11033
  article-title: NMR studies of the anti‐apoptotic protein Bcl‐xL in micelles
  publication-title: Biochemistry
– volume: 141
  start-page: 290
  year: 2010
  end-page: 303
  article-title: Ragulator‐Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
  publication-title: Cell
– volume: 270
  start-page: 50
  year: 1995
  end-page: 51
  article-title: PIK‐related kinases: DNA repair, recombination, and cell cycle checkpoints
  publication-title: Science
– volume: 21
  start-page: 1566
  year: 2012
  end-page: 1570
  article-title: A fast and simple method for probing the interaction of peptides and proteins with lipids and membrane‐mimetics using GB1 fusion proteins and NMR spectroscopy
  publication-title: Protein Sci
– volume: 32
  start-page: 140
  year: 2008
  end-page: 149
  article-title: Syndecan‐4 regulates subcellular localization of mTOR Complex2 and Akt activation in a PKCalpha‐dependent manner in endothelial cells
  publication-title: Mol Cell
– volume: 275
  start-page: 37011
  year: 2000
  end-page: 37020
  article-title: HEAT repeats mediate plasma membrane localization of Tor2p in yeast
  publication-title: J Biol Chem
– volume: 24
  start-page: 2688
  year: 2005
  end-page: 2699
  article-title: Bcl‐2 regulator FKBP38 is activated by Ca2+/calmodulin
  publication-title: EMBO J
– year: 2001
– volume: 1808
  start-page: 1957
  year: 2011
  end-page: 1974
  article-title: Choosing membrane mimetics for NMR structural studies of transmembrane proteins
  publication-title: Biochim Biophys Acta
– volume: 25
  start-page: 225
  year: 2000
  end-page: 227
  article-title: FAT: a novel domain in PIK‐related kinases
  publication-title: Trends Biochem Sci
– volume: 51
  start-page: 4909
  year: 2012
  end-page: 4921
  article-title: The FKBP‐rapamycin binding domain of human TOR undergoes strong conformational changes in the presence of membrane mimetics with and without the regulator phosphatidic acid
  publication-title: Biochemistry
– volume: 2
  start-page: 504
  year: 2001
  end-page: 513
  article-title: How proteins move lipids and lipids move proteins
  publication-title: Nat Rev Mol Cell Biol
– volume: 128
  start-page: 1065
  year: 2015
  end-page: 1070
  article-title: Membrane curvature at a glance
  publication-title: J Cell Sci
– volume: 318
  start-page: 977
  year: 2007
  end-page: 980
  article-title: Rheb activates mTOR by antagonizing its endogenous inhibitor, FKBP38
  publication-title: Science
– volume: 45
  start-page: 2339
  year: 2006
  end-page: 2349
  article-title: Biochemical indication for myristoylation‐dependent conformational changes in HIV‐1 Nef
  publication-title: Biochemistry
– volume: 307
  start-page: 249
  year: 2008
  end-page: 264
  article-title: Production of active eukaryotic proteins through bacterial expression systems: a review of the existing biotechnology strategies
  publication-title: Mol Cell Biochem
– volume: 588
  start-page: 1755
  year: 2014
  end-page: 1766
  article-title: Characterization of residue‐dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy
  publication-title: FEBS Lett
– volume: 498
  start-page: 265
  year: 2009
  end-page: 271
  article-title: High‐throughput expression and detergent screening of integral membrane proteins
  publication-title: Methods Mol Biol
– volume: 104
  start-page: 6380
  year: 2000
  end-page: 6388
  article-title: Molecular dynamics simulations of dodecylphosphocholine micelles at three different aggregate sizes: micellar structure and chain relaxation
  publication-title: J Phys Chem B
– volume: 118
  start-page: 1481
  year: 2014
  end-page: 1492
  article-title: Partitioning of amino acids into a model membrane: capturing the interface
  publication-title: J Phys Chem B
– volume: 6
  start-page: 277
  year: 1995
  end-page: 293
  article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes
  publication-title: J Biomol NMR
– volume: 124
  start-page: 3381
  year: 2011
  end-page: 3392
  article-title: Protein localization in disease and therapy
  publication-title: J Cell Sci
– volume: 288
  start-page: 20046
  year: 2013
  end-page: 20063
  article-title: NMR‐ and circular dichroism‐monitored lipid binding studies suggest a general role for the FATC domain as membrane anchor of phosphatidylinositol 3‐kinase‐related kinases (PIKK)
  publication-title: J Biol Chem
– volume: 1791
  start-page: 949
  year: 2009
  end-page: 955
  article-title: Phosphatidic acid signaling to mTOR: signals for the survival of human cancer cells
  publication-title: Biochim Biophys Acta
– volume: 294
  start-page: 1942
  year: 2001
  end-page: 1945
  article-title: Phosphatidic acid‐mediated mitogenic activation of mTOR signaling
  publication-title: Science
– volume: 10
  start-page: 475
  year: 2015
  end-page: 484
  article-title: Subtype‐specific modulation of estrogen receptor‐coactivator interaction by phosphorylation
  publication-title: ACS Chem Biol
– volume: 283
  start-page: 25963
  year: 2008
  end-page: 25970
  article-title: The switch I region of Rheb is critical for its interaction with FKBP38
  publication-title: J Biol Chem
– volume: 16
  start-page: 318
  year: 2008
  end-page: 325
  article-title: FKBP family proteins: immunophilins with versatile biological functions
  publication-title: Neurosignals
– volume: 20
  start-page: 1565
  year: 2009
  end-page: 1575
  article-title: TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
  publication-title: Mol Biol Cell
– volume: 51
  start-page: 2454
  year: 2010
  end-page: 2459
  article-title: Purification of the CaaX‐modified, dynamin‐related large GTPase hGBP1 by coexpression with farnesyltransferase
  publication-title: J Lipid Res
– volume: 13
  start-page: 58
  year: 2012
  end-page: 68
  article-title: mTOR signalling: the molecular interface connecting metabolic stress, aging and cardiovascular diseases
  publication-title: Obes Rev
– volume: 11
  start-page: 2251
  year: 2010
  end-page: 2254
  article-title: Synthesis and crystal structure of a phosphorylated estrogen receptor ligand binding domain
  publication-title: Chembiochem
– volume: 109
  start-page: 15098
  year: 2005
  end-page: 15106
  article-title: Implicit solvent simulations of DPC micelle formation
  publication-title: J Phys Chem B
– volume: 9
  start-page: 112
  year: 2008
  end-page: 124
  article-title: Membrane lipids: where they are and how they behave
  publication-title: Nat Rev Mol Cell Biol
– volume: 135
  start-page: 1919
  year: 2013
  end-page: 1925
  article-title: Optimized phospholipid bilayer nanodiscs facilitate high‐resolution structure determination of membrane proteins
  publication-title: J Am Chem Soc
– volume: 14
  start-page: 1882
  year: 2003
  end-page: 1899
  article-title: Membrane targeting of Rab GTPases is influenced by the prenylation motif
  publication-title: Mol Biol Cell
– volume: 241
  start-page: 704
  year: 1997
  end-page: 709
  article-title: Expression, enzyme activity, and subcellular localization of mammalian target of rapamycin in insulin‐responsive cells
  publication-title: Biochem Biophys Res Commun
– volume: 149
  start-page: 274
  year: 2012
  end-page: 293
  article-title: mTOR signaling in growth control and disease
  publication-title: Cell
– volume: 279
  start-page: 772
  year: 2004
  end-page: 778
  article-title: FKBP12‐rapamycin‐associated protein or mammalian target of rapamycin (FRAP/mTOR) localization in the endoplasmic reticulum and the Golgi apparatus
  publication-title: J Biol Chem
– volume: 45
  start-page: 11713
  year: 2006
  end-page: 11726
  article-title: Interactions of tryptophan, tryptophan peptides, and tryptophan alkyl esters at curved membrane interfaces
  publication-title: Biochemistry
– volume: 118
  start-page: 4817
  year: 2014
  end-page: 4831
  article-title: Characterization of the immersion properties of the peripheral membrane anchor of the FATC domain of the kinase “target of rapamycin” by NMR, oriented CD spectroscopy, and MD simulations
  publication-title: J Phys Chem B
– volume: 277
  start-page: 28127
  year: 2002
  end-page: 28134
  article-title: Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture
  publication-title: J Biol Chem
– year: 2000
– volume: 135
  start-page: 3367
  year: 2013
  end-page: 3370
  article-title: Membrane‐dependent modulation of the mTOR activator Rheb: NMR observations of a GTPase tethered to a lipid‐bilayer nanodisc
  publication-title: J Am Chem Soc
– volume: 1
  start-page: 357
  year: 2009
  end-page: 362
  article-title: Growth and aging: a common molecular mechanism
  publication-title: Aging
– volume: 5
  start-page: 553
  year: 2015
  end-page: 575
  article-title: Regulation of the target of rapamycin and other phosphatidylinositol 3‐kinase‐related kinases by membrane targeting
  publication-title: Membranes
– volume: 285
  start-page: 8621
  year: 2010
  end-page: 8627
  article-title: Rheb GTPase controls apoptosis by regulating interaction of FKBP38 with Bcl‐2 and Bcl‐XL
  publication-title: J Biol Chem
– volume: 2003
  start-page: pe10
  year: 2003
  article-title: Cellular distribution of Bcl‐2 family proteins
  publication-title: Sci STKE
– volume: 35
  start-page: 1803
  year: 1996
  end-page: 1809
  article-title: Direct determination of the membrane affinities of individual amino acids
  publication-title: Biochemistry
– volume: 144
  start-page: 757
  year: 2011
  end-page: 768
  article-title: Activation of mTORC2 by association with the ribosome
  publication-title: Cell
– volume: 278
  start-page: 313
  year: 2004
  end-page: 352
  article-title: Using NMRView to visualize and analyze the NMR spectra of macromolecules
  publication-title: Methods Mol Biol
– volume: 110
  start-page: 5927
  year: 2013
  end-page: 5932
  article-title: Spatial partitioning improves the reliability of biochemical signaling
  publication-title: Proc Natl Acad Sci USA
– volume: 5
  start-page: 28
  year: 2003
  end-page: 37
  article-title: Inherent calcineurin inhibitor FKBP38 targets Bcl‐2 to mitochondria and inhibits apoptosis
  publication-title: Nat Cell Biol
– volume: 16
  start-page: 2153
  year: 2007
  end-page: 2165
  article-title: Structural biology of transmembrane domains: efficient production and characterization of transmembrane peptides by NMR
  publication-title: Protein Sci
– volume: 280
  start-page: 20558
  year: 2005
  end-page: 20564
  article-title: The solution structure of the FATC domain of the protein kinase target of rapamycin suggests a role for redox‐dependent structural and cellular stability
  publication-title: J Biol Chem
– volume: 285
  start-page: 7766
  year: 2010
  end-page: 7775
  article-title: Structural basis for the association of the redox‐sensitive target of rapamycin FATC domain with membrane‐mimetic micelles
  publication-title: J Biol Chem
– volume: 14
  start-page: 1204
  year: 2003
  end-page: 1220
  article-title: Tor kinases are in distinct membrane‐associated protein complexes in
  publication-title: Mol Biol Cell
– volume: 286
  start-page: 36907
  year: 2011
  end-page: 36920
  article-title: Structure, dynamics, lipid binding, and physiological relevance of the putative GTPase‐binding domain of C
  publication-title: J Biol Chem
– volume: 23
  start-page: 744
  year: 2011
  end-page: 755
  article-title: mTOR signaling in disease
  publication-title: Curr Opin Cell Biol
– volume: 28
  start-page: 5113
  year: 1989
  end-page: 5120
  article-title: Interfacial properties and critical micelle concentration of lysophospholipids
  publication-title: Biochemistry
– ident: e_1_2_9_28_1
  doi: 10.1016/j.bbalip.2009.02.009
– ident: e_1_2_9_37_1
  doi: 10.1038/sj.emboj.7600739
– ident: e_1_2_9_33_1
  doi: 10.1038/ncb894
– ident: e_1_2_9_9_1
  doi: 10.1074/jbc.M109.058404
– volume: 5
  start-page: 553
  year: 2015
  ident: e_1_2_9_29_1
  article-title: Regulation of the target of rapamycin and other phosphatidylinositol 3‐kinase‐related kinases by membrane targeting
  publication-title: Membranes
  doi: 10.3390/membranes5040553
  contributor:
    fullname: Cicco M
– ident: e_1_2_9_41_1
  doi: 10.1021/jp001268f
– volume-title: Fmoc Solid Phase Peptide Synthesis: A Practical Approach
  year: 2000
  ident: e_1_2_9_59_1
  contributor:
    fullname: Chan WW
– ident: e_1_2_9_36_1
  doi: 10.1074/jbc.M109.092353
– ident: e_1_2_9_53_1
  doi: 10.1021/bi0608414
– ident: e_1_2_9_42_1
  doi: 10.1016/j.bbamem.2011.03.016
– ident: e_1_2_9_49_1
  doi: 10.1074/jbc.M111.225052
– ident: e_1_2_9_48_1
  doi: 10.1021/bi3002133
– ident: e_1_2_9_13_1
  doi: 10.1021/jp501533d
– ident: e_1_2_9_25_1
  doi: 10.1091/mbc.E02-09-0609
– ident: e_1_2_9_6_1
  doi: 10.1073/pnas.1218301110
– ident: e_1_2_9_19_1
  doi: 10.1074/jbc.M305912200
– ident: e_1_2_9_8_1
  doi: 10.1194/jlr.D005397
– ident: e_1_2_9_20_1
  doi: 10.1074/jbc.M007296200
– ident: e_1_2_9_44_1
  doi: 10.1007/s11010-007-9603-6
– ident: e_1_2_9_17_1
  doi: 10.1016/j.ceb.2011.09.003
– ident: e_1_2_9_52_1
  doi: 10.1021/bi052052c
– ident: e_1_2_9_15_1
  doi: 10.18632/aging.100040
– ident: e_1_2_9_22_1
  doi: 10.1016/j.cell.2011.02.014
– ident: e_1_2_9_54_1
  doi: 10.1021/bi952300c
– ident: e_1_2_9_23_1
  doi: 10.1074/jbc.M202625200
– ident: e_1_2_9_47_1
  doi: 10.1021/bi000919v
– ident: e_1_2_9_39_1
  doi: 10.1126/stke.2003.173.pe10
– ident: e_1_2_9_45_1
  doi: 10.1007/978-1-59745-196-3_17
– ident: e_1_2_9_12_1
  doi: 10.1016/j.febslet.2014.03.031
– ident: e_1_2_9_2_1
  doi: 10.1242/jcs.089110
– ident: e_1_2_9_5_1
  doi: 10.1242/jcs.114454
– ident: e_1_2_9_18_1
  doi: 10.1091/mbc.e08-10-1001
– ident: e_1_2_9_27_1
  doi: 10.1126/science.1066015
– ident: e_1_2_9_34_1
  doi: 10.1126/science.1147379
– ident: e_1_2_9_56_1
  doi: 10.1002/cbic.201000532
– ident: e_1_2_9_38_1
  doi: 10.1159/000123041
– ident: e_1_2_9_7_1
  doi: 10.1021/ja312508w
– ident: e_1_2_9_16_1
  doi: 10.1016/j.cell.2012.03.017
– volume: 278
  start-page: 313
  year: 2004
  ident: e_1_2_9_61_1
  article-title: Using NMRView to visualize and analyze the NMR spectra of macromolecules
  publication-title: Methods Mol Biol
  contributor:
    fullname: Johnson BA
– ident: e_1_2_9_30_1
  doi: 10.1074/jbc.M501116200
– ident: e_1_2_9_32_1
  doi: 10.1016/S0968-0004(00)01563-2
– ident: e_1_2_9_57_1
  doi: 10.1021/cb5007097
– ident: e_1_2_9_60_1
  doi: 10.1007/BF00197809
– ident: e_1_2_9_3_1
  doi: 10.1038/nrm2330
– ident: e_1_2_9_55_1
  doi: 10.1021/jp4089113
– ident: e_1_2_9_26_1
  doi: 10.1006/bbrc.1997.7878
– ident: e_1_2_9_31_1
  doi: 10.1126/science.270.5233.50
– ident: e_1_2_9_40_1
  doi: 10.1021/jp0516801
– ident: e_1_2_9_43_1
  doi: 10.1110/ps.072996707
– ident: e_1_2_9_50_1
  doi: 10.1021/bi00438a031
– ident: e_1_2_9_21_1
  doi: 10.1016/j.cell.2010.02.024
– ident: e_1_2_9_51_1
  doi: 10.1091/mbc.E02-10-0639
– ident: e_1_2_9_4_1
  doi: 10.1038/35080071
– ident: e_1_2_9_10_1
  doi: 10.1002/pro.2127
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1467-789X.2012.01038.x
– ident: e_1_2_9_35_1
  doi: 10.1074/jbc.M802356200
– ident: e_1_2_9_24_1
  doi: 10.1016/j.molcel.2008.09.010
– ident: e_1_2_9_46_1
  doi: 10.1021/ja310901f
– ident: e_1_2_9_58_1
  doi: 10.1002/0471140864.ps1501s03
– ident: e_1_2_9_11_1
  doi: 10.1074/jbc.M113.467233
SSID ssj0004123
Score 2.3006444
Snippet Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins...
Abstract Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 546
SubjectTerms Anchoring
Calcium chloride
Case studies
Cell Membrane - metabolism
Chemical synthesis
Circular Dichroism
Data processing
Humans
Liposomes
Liposomes - metabolism
Localization
Magnetic resonance spectroscopy
membrane mimetic
Membranes
Methods and Applications
Micelles
Models, Molecular
Molecular Dynamics Simulation
Mutation
NMR spectroscopy
Nuclear Magnetic Resonance, Biomolecular
Peptides
pH effects
Phosphatidylinositol 3-Kinases - chemistry
Phosphatidylinositol 3-Kinases - genetics
Phosphatidylinositol 3-Kinases - metabolism
Protein Conformation
Protein Domains
protein membrane anchoring
Proteins
protein–lipid interactions
protein–membrane interactions
Rapamycin
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Reducing agents
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Salts
Signaling
Sodium chloride
Spectrum analysis
Tacrolimus Binding Proteins - chemistry
Tacrolimus Binding Proteins - genetics
Tacrolimus Binding Proteins - metabolism
Tacrolimus-binding protein
Titration
TOR protein
Yeast
Title Target of rapamycin FATC domain as a general membrane anchor: The FKBP‐12 like domain of FKBP38 as a case study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpro.3321
https://www.ncbi.nlm.nih.gov/pubmed/29024217
https://www.proquest.com/docview/1989122358/abstract/
https://search.proquest.com/docview/1957769709
https://pubmed.ncbi.nlm.nih.gov/PMC5775168
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4Bl_ZStdBHWoqMVHHLbmInttPbdtUVD9GuqkXiFtleG1YlCeVx4Naf0N_YX9Kxs16BUC-ckmgc2_JM5Jn4m28APmnjbCFKkdLc0rSwukorh7aMoURFM11Kanxy8vE3vn9SHJ6Wp2tQxlyYANo3ejFoL5pBuzgP2MrLxgwjTmw4PR6XQpQ5l8N1WBeMxRA9JkPmtK8fz_NUMi4j42xGfXLbgDHqq8PQym9OoUzZve3okY_5GCp534UNe9DkJbxYOo9k1E_yFazZdhO2Ri0Gzs0d2SMBzhn-k2_Cs3Es5bYFv2YB7006R3zB8-bOLFoyGc3GZN41Cu_VNVHkrGegJo1tMIRuLUGDOO-uPhM0JTI5-jL9-_tPTsnF4qeN72GHXsBk34PBLZEEwtrXcDL5Ohvvp8taC6nxJF-pc9xlQkhDqTRGOiEcZ84felKMkQvnmHYmY0WppckUt1oxa0sxR-8mQ3Ur9gY22q6174DMhRBKUpQW6IxlQgmdG8VVXmDooosigd245PVlT6lR9-TJFJ-72msoge2oi3r5UV3XHt6VU5_bi12sxLiU_owDl6W79W3QOHglsiqBt73qVoNEnScgHih11cBTbT-UoAUGyu2lxSWwF9T_33nX0x_f_fX9k4f4AM_RJ5M9MHwbNm6ubu1H9Htu9A56_AdHO8Ha_wFZVQGB
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcigXCi2UlAJGQr1lN3F-7HBbVqwW2i0rtEW9RbbXpqs2SWl3D-XEI_CMPAljZ71qqTjAKYnGsRPPWJ5JvvkG4I1URqcsYyGNNQ1TLYuwMGjLGEoUNJIZp8omJ4-O8uFx-vEkO1mDzOfCONC-krNOfV516tmpw1ZeVKrrcWLd8aifMZbFOe_eg_u4XinzQbpPh4xpW0E-j0Oe5NxzzkbUprd1koTa-jC0sNuTK1R2Y0O642XeBUvedGLdLjTYhC_--VvwyVlnMZcd9f0Pasd_fsFH8HDpl5JeK34Ma7regu1ejTF5dU32iUOKuk_wW7DR91XituHbxEHJSWOIraVeXatZTQa9SZ9Mm0rgubgignxtya1JpSuMzmtN0NZOm8u3BK2UDA7ejX_9-BlTcj470_4-7NAKEt72oHC3JY4L9wkcD95P-sNwWcYhVJY_LDQmNxFjXFHKleKGMZMnxv5PpRh-p8Yk0qgoSTPJVSRyLUWidcam6DhFaEkieQrrdVPrZ0CmjDHBKUpT9PMiJpiMlchFnGJUJNM0gNdel-VFy9ZRtrzMFK-b0qo-gD2v5HK5Xq9KixyLqU0bxi5WYpxK-_sEp6VZ2DaolrxgURHATmsTq0G8MQXAblnLqoFl8b4tQd07Nu-lrgPYd3b11-cux58_2ePufw_xCjaGk9Fhefjh6OA5PEDXj7f48z1Yn18u9At0r-bypVtMvwGi-iKH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkYALj5ZHoICRUG_ZTZyHHW7LQlQoLSu0lSouke216apNsrS7h3LiJ_Ab-SWMnfVqS8WlpyQax449Y3km_vwNwBupjE5ZxkIaaxqmWhZhYdCWMZQoaCQzTpU9nLx_kO8epp-OsqO1VF8OtK_ktNec1r1meuywlbNa9T1OrD_aH2aMZXHO-7OJ6d-EWzhnaeEDdX8kMqZdFvk8DnmSc887G1F7xK2XJNTmiKGFXaJcsrK1RemKp3kVMLnuyLqVqLwP33wfOgDKSW8xlz318x96x2t18gHcW_qnZNAVeQg3dLMJW4MGY_P6guwQhxh1v-I34c7QZ4vbgh9jByknrSE2p3p9oaYNKQfjIZm0tcB7cU4E-d6RXJNa1xilN5qgzR23Z28JWisp996N_vz6HVNyOj3R_j2s0AoS3tWgcNUljhP3ERyWH8bD3XCZziFUlkcsNCY3EWNcUcqV4oYxkyfG7qtSDMNTYxJpVJSkmeQqErmWItE6YxN0oCK0KJE8ho2mbfRTIBPGmOAUpSn6exETTMZK5CJOMTqSaRrAa6_PataxdlQdPzPF57ay6g9g2yu6Ws7b88oiyGJqjw9jFSsxDqXdRsFhaRe2DKomL1hUBPCks4tVI96gAmCXLGZVwLJ5X5ag_h2r91LfAew42_rvd1ejr1_s9dm1m3gFt0fvy-rzx4O953AXPUDewdC3YWN-ttAv0Muay5duPv0FyHYlBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Target+of+rapamycin+FATC+domain+as+a+general+membrane+anchor%3A+The+FKBP%E2%80%9012+like+domain+of+FKBP38+as+a+case+study&rft.jtitle=Protein+science&rft.au=De+Cicco%2C+Maristella&rft.au=Milroy%2C+Lech%E2%80%90G.&rft.au=Dames%2C+Sonja+A.&rft.date=2018-02-01&rft.pub=John+Wiley+and+Sons+Inc&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=27&rft.issue=2&rft.spage=546&rft.epage=560&rft_id=info:doi/10.1002%2Fpro.3321&rft_id=info%3Apmid%2F29024217&rft.externalDBID=PMC5775168
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon