Statistical models for longitudinal biomarkers of disease onset

We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fu...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 19; no. 4; pp. 617 - 637
Main Authors Slate, Elizabeth H., Turnbull, Bruce W.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 29.02.2000
Wiley
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
DOI10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R

Cover

Abstract We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley & Sons, Ltd.
AbstractList We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data.We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data.
We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data.
We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The biomarker readings are subject to error. We survey some of the existing literature and concentrate on two recently proposed models. The first is a fully Bayesian hierarchical structure for a mixed effects segmented regression model. Posterior estimates of the changepoint (onset time) distribution are obtained by Gibbs sampling. The second is a hidden changepoint model in which the onset time distribution is estimated by maximum likelihood using the EM algorithm. Both methods lead to a dynamic index that represents a strength of evidence that onset has occurred by the current time in an individual subject. The methods are applied to some large data sets concerning prostate specific antigen (PSA) as a serial marker for prostate cancer. Rules based on the indices are compared to standard diagnostic criteria through the use of ROC curves adapted for longitudinal data. Copyright © 2000 John Wiley & Sons, Ltd.
Author Turnbull, Bruce W.
Slate, Elizabeth H.
Author_xml – sequence: 1
  givenname: Elizabeth H.
  surname: Slate
  fullname: Slate, Elizabeth H.
  email: slate@orie.cornell.edu
  organization: School of Operations Research and Industrial Engineering and Department of Statistical Science, 206 Rhodes Hall, Cornell University, Ithaca, NY 14853-3801, U.S.A
– sequence: 2
  givenname: Bruce W.
  surname: Turnbull
  fullname: Turnbull, Bruce W.
  organization: School of Operations Research and Industrial Engineering and Department of Statistical Science, 206 Rhodes Hall, Cornell University, Ithaca, NY 14853-3801, U.S.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1318969$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/10694740$$D View this record in MEDLINE/PubMed
BookMark eNqFkV1v0zAUhi00xLrCX0C5QGi7SDn-SBwXBEyBlUqDohUE4ubIcewpkMYjTgX797hKN5BAwhe2dPz6sY-fI3LQ-c4S8pLCjAKwJ8frZbk8oaBkCiwrjhnEwZg6oWounuVUzueny1fpevmW5_Ccz2BWrp6y9OIOmdweOiATYFKmuaTZITkK4SsApRmT98ghhVwJKWBCXqwHPTRhaIxuk42vbRsS5_uk9d1lM2zrpov1qvEb3X-zfUi8S-omWB1s4rtgh_vkrtNtsA_265R8PHv9oXyTnq8Wy_L0PDWCF5BKkZlKWK54xbRhmVUOtKniDM7wWmW54nlFjRHUGQairnKnXV0oLeOOlXxKHo_cq95_39ow4KYJxrat7qzfBpSgBKUgYvDhPritNrbGq76Jb7_Gm5Zj4NE-oENs2vW6M034neO0UPHOKfk8xkzvQ-it-4OEO0mIO0m4-2_c_TfeSEKqUGCUhBgl4SgJOQKWK2R4EdFfRvSPprXXf3H_i_0ndV-J8HSER6n25y086sNccpnhp3cLfH8mFywXBRb8F5gZs0Y
Cites_doi 10.1111/j.2517-6161.1982.tb01203.x
10.1109/TPAMI.1984.4767596
10.2307/2986119
10.2307/2530374
10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
10.1007/BF00128468
10.2307/2530699
10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
10.1002/0471725315
10.2307/2529876
10.2307/2347570
10.1056/NEJM199104253241702
10.1093/jnci/87.5.354
10.1093/biomet/84.1.45
10.1080/01621459.1994.10476806
10.1016/0021-9681(80)90074-0
10.1093/biomet/62.2.407
10.1093/biomet/70.1.111
10.1007/978-1-4684-0192-9
10.1001/jama.1997.03540420052029
10.1002/sim.4780130520
10.1093/biomet/42.3-4.523
10.1002/sim.4780111408
10.2307/2532087
10.1093/biomet/57.1.1
10.1001/jama.1996.03540240035027
10.1093/biomet/56.3.495
10.2307/2533439
10.1001/jama.1993.03510080052031
10.1111/j.2517-6161.1977.tb01600.x
10.1093/biomet/80.1.153
10.2307/2531144
10.1001/jama.1992.03480160073037
10.1080/01621459.1995.10476485
10.1080/01621459.1992.10475258
10.2307/2986089
10.1007/BF00128469
10.1200/JCO.1996.14.11.2889
10.1080/01621459.1991.10475130
10.2307/2533281
10.1080/01621459.1995.10476487
10.2307/2531905
10.1002/(SICI)1097-0258(19981130)17:22<2563::AID-SIM952>3.0.CO;2-O
10.2307/2530523
10.1002/(SICI)1097-0258(19970715)16:13<1515::AID-SIM572>3.0.CO;2-1
10.2307/2987598
10.1080/01621459.1988.10478639
10.1080/01621459.1990.10476213
ContentType Journal Article
Conference Proceeding
Copyright Copyright © 2000 John Wiley & Sons, Ltd.
2000 INIST-CNRS
Copyright 2000 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2000 John Wiley & Sons, Ltd.
– notice: 2000 INIST-CNRS
– notice: Copyright 2000 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R
DatabaseName Istex
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 637
ExternalDocumentID 10694740
1318969
10_1002__SICI_1097_0258_20000229_19_4_617__AID_SIM360_3_0_CO_2_R
SIM360
ark_67375_WNG_PF7G2648_8
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  funderid: DMS 9505065
– fundername: National Institutes of Health
  funderid: R01 CA66218; R01 CA61120; R01 CA79080
– fundername: Mathematical Research Institute Oberwolfach
– fundername: NCI NIH HHS
  grantid: R01 CA79080
– fundername: NCI NIH HHS
  grantid: R01 CA66218
– fundername: NCI NIH HHS
  grantid: R01 CA61120
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
EX3
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WOW
WQJ
WXSBR
WYISQ
XBAML
XG1
XV2
YHZ
ZGI
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
WUP
WWH
AAYXX
CITATION
ABEML
ACSCC
AGHNM
DUUFO
EBD
EMOBN
HF~
IQODW
M67
RIWAO
RJQFR
RYL
SAMSI
SV3
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73
IEDL.DBID DR2
ISSN 0277-6715
IngestDate Fri Jul 11 05:04:14 EDT 2025
Mon Aug 18 09:42:56 EDT 2025
Wed Apr 02 07:25:31 EDT 2025
Tue Jul 01 04:32:45 EDT 2025
Wed Jan 22 16:25:54 EST 2025
Tue Sep 09 05:32:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Disease development
Bayes estimation
Human
Urinary system disease
Prostate disease
Biological marker
Change point
Malignant tumor
Hierarchized structure
Prostate specific antigen
Onset time
Regression model
Statistical model
Receiver operating characteristic curves
Longitudinal distribution
Maximum likelihood
Male genital diseases
Prostate
Monitoring
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
Copyright 2000 John Wiley & Sons, Ltd.
LinkModel DirectLink
MeetingName Selected papers from the Oberwolfach Conference on Medical Statistics: Mathematical Models for Diagnosis and Prognosis
MergedId FETCHMERGED-LOGICAL-c4380-745cb4e393b2ac25e9f0acb9f00fc3d956936b1cc41fc204db6fafd89a7693e73
Notes National Institutes of Health - No. R01 CA66218; No. R01 CA61120; No. R01 CA79080
National Science Foundation - No. DMS 9505065
ark:/67375/WNG-PF7G2648-8
ArticleID:SIM360
istex:1388A3997163FAB54C8E1DA69053E9E434551EB6
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 10694740
PQID 70941104
PQPubID 23479
PageCount 21
ParticipantIDs proquest_miscellaneous_70941104
pubmed_primary_10694740
pascalfrancis_primary_1318969
crossref_primary_10_1002__SICI_1097_0258_20000229_19_4_617__AID_SIM360_3_0_CO_2_R
wiley_primary_10_1002_SICI_1097_0258_20000229_19_4_617_AID_SIM360_3_0_CO_2_R_SIM360
istex_primary_ark_67375_WNG_PF7G2648_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 29 February 2000
PublicationDateYYYYMMDD 2000-02-29
PublicationDate_xml – month: 02
  year: 2000
  text: 29 February 2000
  day: 29
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Elmont, NY
– name: Chichester
– name: England
PublicationTitle Statistics in medicine
PublicationTitleAlternate Statist. Med
PublicationYear 2000
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE. The analysis of failure times in the presence of competing risks. Biometrics 1978; 34:541-554.
Jewell NP, Nielsen JP. A framework for consistent prediction rules based on markers. Biometrika 1993; 80:153-164.
Slate EH, Clark LC. Using PSA to detect prostate cancer onset: an application of Bayesian retrospective and prospective changepoint identification. Case Studies in Bayesian Statistics IV 1998; 511-534.
Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL, Park HK, Sanders BB, Smith CL, Taylor JR and the Nutritional Prevention of Cancer Study Group. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized clinical trial. Journal of the American Medical Association 1996; 276(24): 1957-1963.
Lange N, Carlin BP, Gelfand AE. Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers (with discussion). Journal of the American Statistical Association 1992; 87:615-632.
Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring: modeling the censoring process. Biometrics 1988; 44:175-188.
Oesterling JE, Jacobsen SJ, Chute CG, Guess HA, Girman CJ, Panser LA, Lieber MM. Serum prostate-specific antigen in a community-based population of healthy men. Journal of the American Medical Association 1993; 270(5):660-664.
Tsiatis AA, De Gruttola V, Wulfsohn M. Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 1995; 90:27-37.
MacDonald IL, Zucchini W. Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman and Hall: New York, 1997.
Stephens DA. Bayesian retrospective multiple-changepoint identification. Applied Statistics 1994; 43:159-178.
Schluchter MD. Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine 1992; 11:1861-1870.
Page ES. A test for a change in a parameter occurring at an unknown point. Biometrika 1955; 42:523-527.
Gail MH. Evaluating serial cancer marker studies in patients at risk of recurrent disease. Biometrics 1981; 37:927-936 (correction: 42, 229).
Shi M, Taylor JMG, Munoz A. Models for residual time to AIDS. Lifetime Data Analysis 1996; 2:31-49.
De Gruttola V, Tu XM. Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 1994; 50:1003-1014.
Tanner MA. Tools for Statistical Inference: Methods for the Exploration of Posterior Distribution and Likelihood Functions, 2nd edn, Springer-Verlag: New York, 1993.
Morrell CH, Pearson JD, Carter HB, Brant LJ. Estimating unknown transition times using a piecewise nonlinear mixed-effects model in men with prostate cancer. Journal of the American Statistical Association 1995; 90:45-53.
Orchard T, Woodbury MA. A missing information principle: theory and applications. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics 1972; 1:697-715.
Hinkley DV. Inference about the intersection in two-phase regression. Biometrika 1969; 56:495-504.
Taylor JMG, Cumberland WG, Sy JP. A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 1994; 89:727-736.
Day R, Bryant J, Lefkopoulou M. Adaptation of bivariate frailty models for prediction, with application to biological markers as prognostic indicators. Biometrika 1997; 84:45-56.
McLaughlin PW, Sandler HM, Jiroutek MR. Prostate-specific antigen following prostate radiotherapy: how low can you go?Journal of Clinical Oncology 1996; 14(11):2889-2892.
Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics 1990; 46:673-687.
Pawitan Y, Self S. Modeling disease marker processes in AIDS. Journal of the American Statistical Association 1993; 88:719-726.
Tate H. A Bayesian approach to the analysis of serial tumour-marker data. Statistician 1983; 32:116.
Carter HB, Pearson JD, Metter EJ, Brant LJ, Chan DW, Andres R, Fozard JL, Walsh PC. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. Journal of the American Medical Association 1992; 267(16):2215-2220.
Lindstrom MJ, Bates DM. Newton-Raphson and EM algorithm for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association 1988; 83:1014-1022.
Press SJ. Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. Robert E. Krieger Publishing: New York, 1982.
Myers LE, Paulson DF, Berry WR, Cox EB, Laszlo J, Stanley W. A time-dependent statistical model which relates current clinical states to prognosis: application to advanced prostatic cancer. Journal of Chronic Diseases 1980; 33:491-499.
Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.
Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6:721-741.
Hinkley DV. Inference about the change-point in a sequence of random variables. Biometrika 1970; 57:1-17.
Cleveland WS, Devlin SJ. Locally-weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 1988; 83:596-610.
Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85:398-409.
Hsieh FY, Crowley J, Tormey DC. Some test statistics for use in multistate survival analysis. Biometrika 1983; 70:111-119.
Smith AFM. A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika 1975; 62:407-416.
Jewell NP, Kalbfleisch JD. Marker processes in survival analysis. Lifetime Data Analysis 1996; 2:15-29.
Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 1997; 16:239-257.
Kay R. A Markov model for analysing cancer markers and disease states in survival studies. Biometrics 1986; 42:855-865.
Pearson JD, Morrell CH, Landis PK, Carter HB, Brant LJ. Mixed-effects regression models for studying the natural history of prostate disease. Statistics in Medicine 1994; 13:587-601.
Carlin BP, Gelfand AE, Smith AFM. Hierarchical Bayesian analysis of changepoint problems. Applied Statistics 1992; 41:389-405.
Lin DY, Fleming TR, De Gruttola V. Estimating proportion of treatment effect explained by a surrogate marker. Statistics in Medicine 1997; 16:1515-1527.
Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Association Series B 1977; 39:1-22.
Emir B, Wieand S, Su JQ, Cha S, Analysis of repeated markers used to predict progression of cancer, Statistics in Medicine 1998; 17:2563-2578.
Gulyas SW, Slate EH, Turnbull BW. Fitting latent changepoint models for serial biomarkers using the EM algorithm. Computing Science and Statistics 1997; 29:253-258.
Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. Wiley: New York, 1980.
Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, Petros JA, Andriole GL. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New England Journal of Medicine 1991; 324(17):1156-1161.
Meng XL, Rubin DB. Using EM to obtain asymptotic variance-covariance matrices. Journal of the American Statistical Association 1991; 86:899-909.
Satten GA, Longini IA. Markov chains with measurement error: estimating the 'true' course of a marker of the preogression of human immunodeficiency virus disease (with discussion). Applied Statistics 1996; 45:275-309.
Whittemore AS, Lele C, Friedman GC, Stamey T, Vogelman JJ, Orentreich N. Prostate-specific antigen as predictor of prostate cancer in black men and white men. Journal of the National Cancer Institute 1995; 87(5): 354-360.
Gulyas SW, Slate EH, Turnbull BW. Latent changepoint process models for longitudinal biomarkers of disease. Proceedings of the Biometrics Section 1997; 249-252.
Louis TA. Finding observed information using the EM algorithm. Journal of the Royal Statistical Society Series B 1982; 44:98-130.
Carter HB, Epstein JI, Chan DW, Fozard JL, Pearson JD. Recommended prostate-specific antigen testing intervals for the detection of cureable prostate cancer. Journal of the American Medical Association 1997; 277(18):1456-1460.
Murtaugh PA. ROC curves with multiple marker measurements. Biometrics 1995; 51:1514-1522.
Catalona WJ, Smith DS, Ratliff TL, Basler JW. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. Journal of the American Medical Association 1993; 270(8):948-954.
Cronin KA, Slate EH, Turnbull BW, Wells MT. Using the Gibbs sampler to detect changepoints: application to PSA as a longitudinal marker for prostate cancer. Computing Science and Statistics 1994; 26:314-318.
Hogan JW, Laird NM. Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 1997; 16:259-272.
Klein JP, Klotz JH, Grever MR. A biological marker model for predicting disease transitions. Biometrics 1984; 40:927-936.
Seber GAF, Wild CJ. Nonlinear Regression. Wiley: New York, 1989.
1997; 84
1978; 34
1997; 277
1994; 26
1955; 42
1992; 11
1990; 85
1998; 17
1990; 46
1986; 42
1977; 39
1991; 86
1980; 33
1988; 44
1981; 37
1997; 16
1993; 80
1988; 83
1982
1980
1992; 87
1996; 2
1989
1992; 41
1984; 40
1995; 51
1982; 38
1995; 90
1993; 88
1992; 267
1994; 89
1969; 56
1998
1983; 32
1997
1997; 29
1995
1993
1983; 70
1996; 14
1972; 1
1994; 43
1970; 57
1984; 6
1995; 87
1982; 44
1993; 270
1994; 13
1996; 276
1994; 50
1975; 62
1991; 324
1996; 45
Lindstrom (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB43|cit43) 1988; 83
Gelfand (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB52|cit52) 1990; 85
Page (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB26|cit26) 1955; 42
Pearson (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB38|cit38) 1994; 13
Schluchter (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB12|cit12) 1992; 11
Laird (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB16|cit16) 1982; 38
Hogan (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB13|cit13) 1997; 16
Lin (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB6|cit6) 1997; 16
Lindstrom (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB44|cit44) 1990; 46
Morrell (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB46|cit46) 1995; 90
Carter (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB2|cit2) 1992; 267
Clark (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB39|cit39) 1996; 276
Catalona (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB33|cit33) 1991; 324
Whittemore (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB36|cit36) 1995; 87
Klein (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB21|cit21) 1984; 40
MacDonald (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB32|cit32) 1997
Slate (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB42|cit42) 1997
Hsieh (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB22|cit22) 1983; 70
Kay (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB24|cit24) 1986; 42
Satten (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB25|cit25) 1996; 45
Hinkley (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB28|cit28) 1970; 57
Cleveland (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB40|cit40) 1988; 83
Jewell (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB8|cit8) 1993; 80
Tate (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB1|cit1) 1983; 32
Slate (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB49|cit49) 1998
Shi (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB19|cit19) 1996; 2
Smith (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB29|cit29) 1975; 62
Meng (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB61|cit61) 1991; 86
Stephens (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB31|cit31) 1994; 43
Dempster (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB58|cit58) 1977; 39
McLaughlin (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB41|cit41) 1996; 14
Myers (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB23|cit23) 1980; 33
Prentice (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB4|cit4) 1978; 34
Emir (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB54|cit54) 1998; 17
Murtaugh (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB55|cit55) 1995; 51
Gulyas (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB57|cit57) 1997
Gail (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB5|cit5) 1981; 37
Tsiatis (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB9|cit9) 1995; 90
Lange (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB47|cit47) 1992; 87
Tanner (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB62|cit62) 1993
Carlin (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB30|cit30) 1992; 41
10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB35|cit35
Catalona (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB34|cit34) 1993; 270
Geman (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB51|cit51) 1984; 6
10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB53|cit53
Jewell (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB18|cit18) 1996; 2
Oesterling (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB37|cit37) 1993; 270
Hogan (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB14|cit14) 1997; 16
Carter (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB3|cit3) 1997; 277
Pawitan (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB15|cit15) 1993; 88
Louis (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB60|cit60) 1982; 44
Seber (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB45|cit45) 1989
Orchard (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB59|cit59) 1972; 1
Taylor (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB17|cit17) 1994; 89
Kalbfleisch (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB7|cit7) 1980
Day (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB20|cit20) 1997; 84
10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB63|cit63
Gulyas (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB56|cit56) 1997; 29
De Gruttola (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB10|cit10) 1994; 50
Press (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB50|cit50) 1982
Cronin (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB48|cit48) 1994; 26
Hinkley (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB27|cit27) 1969; 56
Wu (10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB11|cit11) 1988; 44
References_xml – reference: MacDonald IL, Zucchini W. Hidden Markov and Other Models for Discrete-Valued Time Series. Chapman and Hall: New York, 1997.
– reference: Hsieh FY, Crowley J, Tormey DC. Some test statistics for use in multistate survival analysis. Biometrika 1983; 70:111-119.
– reference: Lindstrom MJ, Bates DM. Newton-Raphson and EM algorithm for linear mixed-effects models for repeated-measures data. Journal of the American Statistical Association 1988; 83:1014-1022.
– reference: Cleveland WS, Devlin SJ. Locally-weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association 1988; 83:596-610.
– reference: Hogan JW, Laird NM. Model-based approaches to analysing incomplete longitudinal and failure time data. Statistics in Medicine 1997; 16:259-272.
– reference: Murtaugh PA. ROC curves with multiple marker measurements. Biometrics 1995; 51:1514-1522.
– reference: Day R, Bryant J, Lefkopoulou M. Adaptation of bivariate frailty models for prediction, with application to biological markers as prognostic indicators. Biometrika 1997; 84:45-56.
– reference: Gelfand AE, Smith AFM. Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 1990; 85:398-409.
– reference: Gulyas SW, Slate EH, Turnbull BW. Latent changepoint process models for longitudinal biomarkers of disease. Proceedings of the Biometrics Section 1997; 249-252.
– reference: Hinkley DV. Inference about the intersection in two-phase regression. Biometrika 1969; 56:495-504.
– reference: Satten GA, Longini IA. Markov chains with measurement error: estimating the 'true' course of a marker of the preogression of human immunodeficiency virus disease (with discussion). Applied Statistics 1996; 45:275-309.
– reference: Myers LE, Paulson DF, Berry WR, Cox EB, Laszlo J, Stanley W. A time-dependent statistical model which relates current clinical states to prognosis: application to advanced prostatic cancer. Journal of Chronic Diseases 1980; 33:491-499.
– reference: Tanner MA. Tools for Statistical Inference: Methods for the Exploration of Posterior Distribution and Likelihood Functions, 2nd edn, Springer-Verlag: New York, 1993.
– reference: Cronin KA, Slate EH, Turnbull BW, Wells MT. Using the Gibbs sampler to detect changepoints: application to PSA as a longitudinal marker for prostate cancer. Computing Science and Statistics 1994; 26:314-318.
– reference: Taylor JMG, Cumberland WG, Sy JP. A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 1994; 89:727-736.
– reference: Prentice RL, Kalbfleisch JD, Peterson AV, Flournoy N, Farewell VT, Breslow NE. The analysis of failure times in the presence of competing risks. Biometrics 1978; 34:541-554.
– reference: De Gruttola V, Tu XM. Modelling progression of CD4-lymphocyte count and its relationship to survival time. Biometrics 1994; 50:1003-1014.
– reference: Smith AFM. A Bayesian approach to inference about a change-point in a sequence of random variables. Biometrika 1975; 62:407-416.
– reference: Whittemore AS, Lele C, Friedman GC, Stamey T, Vogelman JJ, Orentreich N. Prostate-specific antigen as predictor of prostate cancer in black men and white men. Journal of the National Cancer Institute 1995; 87(5): 354-360.
– reference: Orchard T, Woodbury MA. A missing information principle: theory and applications. Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics 1972; 1:697-715.
– reference: Kay R. A Markov model for analysing cancer markers and disease states in survival studies. Biometrics 1986; 42:855-865.
– reference: Jewell NP, Nielsen JP. A framework for consistent prediction rules based on markers. Biometrika 1993; 80:153-164.
– reference: Oesterling JE, Jacobsen SJ, Chute CG, Guess HA, Girman CJ, Panser LA, Lieber MM. Serum prostate-specific antigen in a community-based population of healthy men. Journal of the American Medical Association 1993; 270(5):660-664.
– reference: Pawitan Y, Self S. Modeling disease marker processes in AIDS. Journal of the American Statistical Association 1993; 88:719-726.
– reference: Press SJ. Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference. Robert E. Krieger Publishing: New York, 1982.
– reference: Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics 1982; 38:963-974.
– reference: Carlin BP, Gelfand AE, Smith AFM. Hierarchical Bayesian analysis of changepoint problems. Applied Statistics 1992; 41:389-405.
– reference: Lange N, Carlin BP, Gelfand AE. Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers (with discussion). Journal of the American Statistical Association 1992; 87:615-632.
– reference: Pearson JD, Morrell CH, Landis PK, Carter HB, Brant LJ. Mixed-effects regression models for studying the natural history of prostate disease. Statistics in Medicine 1994; 13:587-601.
– reference: Hogan JW, Laird NM. Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 1997; 16:239-257.
– reference: Hinkley DV. Inference about the change-point in a sequence of random variables. Biometrika 1970; 57:1-17.
– reference: McLaughlin PW, Sandler HM, Jiroutek MR. Prostate-specific antigen following prostate radiotherapy: how low can you go?Journal of Clinical Oncology 1996; 14(11):2889-2892.
– reference: Morrell CH, Pearson JD, Carter HB, Brant LJ. Estimating unknown transition times using a piecewise nonlinear mixed-effects model in men with prostate cancer. Journal of the American Statistical Association 1995; 90:45-53.
– reference: Jewell NP, Kalbfleisch JD. Marker processes in survival analysis. Lifetime Data Analysis 1996; 2:15-29.
– reference: Carter HB, Epstein JI, Chan DW, Fozard JL, Pearson JD. Recommended prostate-specific antigen testing intervals for the detection of cureable prostate cancer. Journal of the American Medical Association 1997; 277(18):1456-1460.
– reference: Schluchter MD. Methods for the analysis of informatively censored longitudinal data. Statistics in Medicine 1992; 11:1861-1870.
– reference: Lin DY, Fleming TR, De Gruttola V. Estimating proportion of treatment effect explained by a surrogate marker. Statistics in Medicine 1997; 16:1515-1527.
– reference: Shi M, Taylor JMG, Munoz A. Models for residual time to AIDS. Lifetime Data Analysis 1996; 2:31-49.
– reference: Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984; 6:721-741.
– reference: Gail MH. Evaluating serial cancer marker studies in patients at risk of recurrent disease. Biometrics 1981; 37:927-936 (correction: 42, 229).
– reference: Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL, Park HK, Sanders BB, Smith CL, Taylor JR and the Nutritional Prevention of Cancer Study Group. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized clinical trial. Journal of the American Medical Association 1996; 276(24): 1957-1963.
– reference: Tate H. A Bayesian approach to the analysis of serial tumour-marker data. Statistician 1983; 32:116.
– reference: Meng XL, Rubin DB. Using EM to obtain asymptotic variance-covariance matrices. Journal of the American Statistical Association 1991; 86:899-909.
– reference: Carter HB, Pearson JD, Metter EJ, Brant LJ, Chan DW, Andres R, Fozard JL, Walsh PC. Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease. Journal of the American Medical Association 1992; 267(16):2215-2220.
– reference: Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Association Series B 1977; 39:1-22.
– reference: Page ES. A test for a change in a parameter occurring at an unknown point. Biometrika 1955; 42:523-527.
– reference: Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, Petros JA, Andriole GL. Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. New England Journal of Medicine 1991; 324(17):1156-1161.
– reference: Catalona WJ, Smith DS, Ratliff TL, Basler JW. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. Journal of the American Medical Association 1993; 270(8):948-954.
– reference: Emir B, Wieand S, Su JQ, Cha S, Analysis of repeated markers used to predict progression of cancer, Statistics in Medicine 1998; 17:2563-2578.
– reference: Slate EH, Clark LC. Using PSA to detect prostate cancer onset: an application of Bayesian retrospective and prospective changepoint identification. Case Studies in Bayesian Statistics IV 1998; 511-534.
– reference: Tsiatis AA, De Gruttola V, Wulfsohn M. Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. Journal of the American Statistical Association 1995; 90:27-37.
– reference: Wu MC, Carroll RJ. Estimation and comparison of changes in the presence of informative right censoring: modeling the censoring process. Biometrics 1988; 44:175-188.
– reference: Seber GAF, Wild CJ. Nonlinear Regression. Wiley: New York, 1989.
– reference: Gulyas SW, Slate EH, Turnbull BW. Fitting latent changepoint models for serial biomarkers using the EM algorithm. Computing Science and Statistics 1997; 29:253-258.
– reference: Klein JP, Klotz JH, Grever MR. A biological marker model for predicting disease transitions. Biometrics 1984; 40:927-936.
– reference: Stephens DA. Bayesian retrospective multiple-changepoint identification. Applied Statistics 1994; 43:159-178.
– reference: Louis TA. Finding observed information using the EM algorithm. Journal of the Royal Statistical Society Series B 1982; 44:98-130.
– reference: Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. Wiley: New York, 1980.
– reference: Lindstrom MJ, Bates DM. Nonlinear mixed effects models for repeated measures data. Biometrics 1990; 46:673-687.
– volume: 42
  start-page: 855
  year: 1986
  end-page: 865
  article-title: A Markov model for analysing cancer markers and disease states in survival studies
  publication-title: Biometrics
– volume: 276
  start-page: 1957
  issue: 24
  year: 1996
  end-page: 1963
  article-title: Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized clinical trial
  publication-title: Journal of the American Medical Association
– volume: 46
  start-page: 673
  year: 1990
  end-page: 687
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
– volume: 85
  start-page: 398
  year: 1990
  end-page: 409
  article-title: Sampling‐based approaches to calculating marginal densities
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 1861
  year: 1992
  end-page: 1870
  article-title: Methods for the analysis of informatively censored longitudinal data
  publication-title: Statistics in Medicine
– volume: 16
  start-page: 259
  year: 1997
  end-page: 272
  article-title: Model‐based approaches to analysing incomplete longitudinal and failure time data
  publication-title: Statistics in Medicine
– volume: 277
  start-page: 1456
  issue: 18
  year: 1997
  end-page: 1460
  article-title: Recommended prostate‐specific antigen testing intervals for the detection of cureable prostate cancer
  publication-title: Journal of the American Medical Association
– volume: 16
  start-page: 239
  year: 1997
  end-page: 257
  article-title: Mixture models for the joint distribution of repeated measures and event times
  publication-title: Statistics in Medicine
– year: 1989
– volume: 17
  start-page: 2563
  year: 1998
  end-page: 2578
  article-title: Analysis of repeated markers used to predict progression of cancer
  publication-title: Statistics in Medicine
– volume: 50
  start-page: 1003
  year: 1994
  end-page: 1014
  article-title: Modelling progression of CD4‐lymphocyte count and its relationship to survival time
  publication-title: Biometrics
– volume: 62
  start-page: 407
  year: 1975
  end-page: 416
  article-title: A Bayesian approach to inference about a change‐point in a sequence of random variables
  publication-title: Biometrika
– volume: 13
  start-page: 587
  year: 1994
  end-page: 601
  article-title: Mixed‐effects regression models for studying the natural history of prostate disease
  publication-title: Statistics in Medicine
– volume: 267
  start-page: 2215
  issue: 16
  year: 1992
  end-page: 2220
  article-title: Longitudinal evaluation of prostate‐specific antigen levels in men with and without prostate disease
  publication-title: Journal of the American Medical Association
– volume: 16
  start-page: 1515
  year: 1997
  end-page: 1527
  article-title: Estimating proportion of treatment effect explained by a surrogate marker
  publication-title: Statistics in Medicine
– volume: 56
  start-page: 495
  year: 1969
  end-page: 504
  article-title: Inference about the intersection in two‐phase regression
  publication-title: Biometrika
– year: 1998
– volume: 37
  start-page: 927
  year: 1981
  end-page: 936
  article-title: Evaluating serial cancer marker studies in patients at risk of recurrent disease
  publication-title: Biometrics
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Association Series B
– volume: 89
  start-page: 727
  year: 1994
  end-page: 736
  article-title: A stochastic model for analysis of longitudinal AIDS data
  publication-title: Journal of the American Statistical Association
– year: 1982
– volume: 45
  start-page: 275
  year: 1996
  end-page: 309
  article-title: Markov chains with measurement error: estimating the ‘true’ course of a marker of the preogression of human immunodeficiency virus disease (with discussion)
  publication-title: Applied Statistics
– volume: 2
  start-page: 15
  year: 1996
  end-page: 29
  article-title: Marker processes in survival analysis
  publication-title: Lifetime Data Analysis
– year: 1997
– start-page: 511
  year: 1998
  end-page: 534
  article-title: Using PSA to detect prostate cancer onset: an application of Bayesian retrospective and prospective changepoint identification
  publication-title: Case Studies in Bayesian Statistics IV
– volume: 42
  start-page: 523
  year: 1955
  end-page: 527
  article-title: A test for a change in a parameter occurring at an unknown point
  publication-title: Biometrika
– volume: 87
  start-page: 615
  year: 1992
  end-page: 632
  article-title: Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T‐cell numbers (with discussion)
  publication-title: Journal of the American Statistical Association
– start-page: 249
  year: 1997
  end-page: 252
  article-title: Latent changepoint process models for longitudinal biomarkers of disease
  publication-title: Proceedings of the Biometrics Section
– volume: 324
  start-page: 1156
  issue: 17
  year: 1991
  end-page: 1161
  article-title: Measurement of prostate‐specific antigen in serum as a screening test for prostate cancer
  publication-title: New England Journal of Medicine
– year: 1993
– volume: 44
  start-page: 98
  year: 1982
  end-page: 130
  article-title: Finding observed information using the EM algorithm
  publication-title: Journal of the Royal Statistical Society Series B
– volume: 6
  start-page: 721
  year: 1984
  end-page: 741
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 32
  start-page: 116
  year: 1983
  article-title: A Bayesian approach to the analysis of serial tumour‐marker data
  publication-title: Statistician
– volume: 70
  start-page: 111
  year: 1983
  end-page: 119
  article-title: Some test statistics for use in multistate survival analysis
  publication-title: Biometrika
– volume: 29
  start-page: 253
  year: 1997
  end-page: 258
  article-title: Fitting latent changepoint models for serial biomarkers using the EM algorithm
  publication-title: Computing Science and Statistics
– volume: 33
  start-page: 491
  year: 1980
  end-page: 499
  article-title: A time‐dependent statistical model which relates current clinical states to prognosis: application to advanced prostatic cancer
  publication-title: Journal of Chronic Diseases
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  article-title: Random‐effects models for longitudinal data
  publication-title: Biometrics
– volume: 34
  start-page: 541
  year: 1978
  end-page: 554
  article-title: The analysis of failure times in the presence of competing risks
  publication-title: Biometrics
– volume: 26
  start-page: 314
  year: 1994
  end-page: 318
  article-title: Using the Gibbs sampler to detect changepoints: application to PSA as a longitudinal marker for prostate cancer
  publication-title: Computing Science and Statistics
– volume: 87
  start-page: 354
  issue: 5
  year: 1995
  end-page: 360
  article-title: Prostate‐specific antigen as predictor of prostate cancer in black men and white men
  publication-title: Journal of the National Cancer Institute
– volume: 90
  start-page: 27
  year: 1995
  end-page: 37
  article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS
  publication-title: Journal of the American Statistical Association
– volume: 14
  start-page: 2889
  issue: 11
  year: 1996
  end-page: 2892
  article-title: Prostate‐specific antigen following prostate radiotherapy: how low can you go?
  publication-title: Journal of Clinical Oncology
– volume: 41
  start-page: 389
  year: 1992
  end-page: 405
  article-title: Hierarchical Bayesian analysis of changepoint problems
  publication-title: Applied Statistics
– volume: 51
  start-page: 1514
  year: 1995
  end-page: 1522
  article-title: ROC curves with multiple marker measurements
  publication-title: Biometrics
– volume: 40
  start-page: 927
  year: 1984
  end-page: 936
  article-title: A biological marker model for predicting disease transitions
  publication-title: Biometrics
– volume: 88
  start-page: 719
  year: 1993
  end-page: 726
  article-title: Modeling disease marker processes in AIDS
  publication-title: Journal of the American Statistical Association
– volume: 1
  start-page: 697
  year: 1972
  end-page: 715
  article-title: A missing information principle: theory and applications
  publication-title: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics
– volume: 90
  start-page: 45
  year: 1995
  end-page: 53
  article-title: Estimating unknown transition times using a piecewise nonlinear mixed‐effects model in men with prostate cancer
  publication-title: Journal of the American Statistical Association
– volume: 83
  start-page: 1014
  year: 1988
  end-page: 1022
  article-title: Newton‐Raphson and EM algorithm for linear mixed‐effects models for repeated‐measures data
  publication-title: Journal of the American Statistical Association
– volume: 2
  start-page: 31
  year: 1996
  end-page: 49
  article-title: Models for residual time to AIDS
  publication-title: Lifetime Data Analysis
– volume: 57
  start-page: 1
  year: 1970
  end-page: 17
  article-title: Inference about the change‐point in a sequence of random variables
  publication-title: Biometrika
– volume: 80
  start-page: 153
  year: 1993
  end-page: 164
  article-title: A framework for consistent prediction rules based on markers
  publication-title: Biometrika
– start-page: 444
  year: 1997
  end-page: 456
– volume: 44
  start-page: 175
  year: 1988
  end-page: 188
  article-title: Estimation and comparison of changes in the presence of informative right censoring: modeling the censoring process
  publication-title: Biometrics
– year: 1980
– volume: 270
  start-page: 948
  issue: 8
  year: 1993
  end-page: 954
  article-title: Detection of organ‐confined prostate cancer is increased through prostate‐specific antigen‐based screening
  publication-title: Journal of the American Medical Association
– volume: 83
  start-page: 596
  year: 1988
  end-page: 610
  article-title: Locally‐weighted regression: an approach to regression analysis by local fitting
  publication-title: Journal of the American Statistical Association
– year: 1995
– volume: 84
  start-page: 45
  year: 1997
  end-page: 56
  article-title: Adaptation of bivariate frailty models for prediction, with application to biological markers as prognostic indicators
  publication-title: Biometrika
– volume: 86
  start-page: 899
  year: 1991
  end-page: 909
  article-title: Using EM to obtain asymptotic variance‐covariance matrices
  publication-title: Journal of the American Statistical Association
– volume: 270
  start-page: 660
  issue: 5
  year: 1993
  end-page: 664
  article-title: Serum prostate‐specific antigen in a community‐based population of healthy men
  publication-title: Journal of the American Medical Association
– volume: 43
  start-page: 159
  year: 1994
  end-page: 178
  article-title: Bayesian retrospective multiple‐changepoint identification
  publication-title: Applied Statistics
– volume: 44
  start-page: 98
  year: 1982
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB60|cit60
  article-title: Finding observed information using the EM algorithm
  publication-title: Journal of the Royal Statistical Society Series B
  doi: 10.1111/j.2517-6161.1982.tb01203.x
– volume: 83
  start-page: 1014
  year: 1988
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB43|cit43
  article-title: Newton-Raphson and EM algorithm for linear mixed-effects models for repeated-measures data
  publication-title: Journal of the American Statistical Association
– ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB63|cit63
– volume: 6
  start-page: 721
  year: 1984
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB51|cit51
  article-title: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.1984.4767596
– volume: 43
  start-page: 159
  year: 1994
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB31|cit31
  article-title: Bayesian retrospective multiple-changepoint identification
  publication-title: Applied Statistics
  doi: 10.2307/2986119
– volume: 34
  start-page: 541
  year: 1978
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB4|cit4
  article-title: The analysis of failure times in the presence of competing risks
  publication-title: Biometrics
  doi: 10.2307/2530374
– volume: 16
  start-page: 239
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB13|cit13
  article-title: Mixture models for the joint distribution of repeated measures and event times
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<239::AID-SIM483>3.0.CO;2-X
– volume: 2
  start-page: 15
  year: 1996
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB18|cit18
  article-title: Marker processes in survival analysis
  publication-title: Lifetime Data Analysis
  doi: 10.1007/BF00128468
– volume: 42
  start-page: 855
  year: 1986
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB24|cit24
  article-title: A Markov model for analysing cancer markers and disease states in survival studies
  publication-title: Biometrics
  doi: 10.2307/2530699
– volume: 29
  start-page: 253
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB56|cit56
  article-title: Fitting latent changepoint models for serial biomarkers using the EM algorithm
  publication-title: Computing Science and Statistics
– volume: 16
  start-page: 259
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB14|cit14
  article-title: Model-based approaches to analysing incomplete longitudinal and failure time data
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
– volume-title: Nonlinear Regression
  year: 1989
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB45|cit45
  doi: 10.1002/0471725315
– volume-title: Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of Inference
  year: 1982
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB50|cit50
– volume: 38
  start-page: 963
  year: 1982
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB16|cit16
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 41
  start-page: 389
  year: 1992
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB30|cit30
  article-title: Hierarchical Bayesian analysis of changepoint problems
  publication-title: Applied Statistics
  doi: 10.2307/2347570
– volume: 324
  start-page: 1156
  issue: 17
  year: 1991
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB33|cit33
  article-title: Measurement of prostate-specific antigen in serum as a screening test for prostate cancer
  publication-title: New England Journal of Medicine
  doi: 10.1056/NEJM199104253241702
– volume: 87
  start-page: 354
  issue: 5
  year: 1995
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB36|cit36
  article-title: Prostate-specific antigen as predictor of prostate cancer in black men and white men
  publication-title: Journal of the National Cancer Institute
  doi: 10.1093/jnci/87.5.354
– volume-title: The Statistical Analysis of Failure Time Data
  year: 1980
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB7|cit7
– volume: 84
  start-page: 45
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB20|cit20
  article-title: Adaptation of bivariate frailty models for prediction, with application to biological markers as prognostic indicators
  publication-title: Biometrika
  doi: 10.1093/biomet/84.1.45
– ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB53|cit53
– volume: 89
  start-page: 727
  year: 1994
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB17|cit17
  article-title: A stochastic model for analysis of longitudinal AIDS data
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1994.10476806
– volume: 33
  start-page: 491
  year: 1980
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB23|cit23
  article-title: A time-dependent statistical model which relates current clinical states to prognosis: application to advanced prostatic cancer
  publication-title: Journal of Chronic Diseases
  doi: 10.1016/0021-9681(80)90074-0
– volume: 62
  start-page: 407
  year: 1975
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB29|cit29
  article-title: A Bayesian approach to inference about a change-point in a sequence of random variables
  publication-title: Biometrika
  doi: 10.1093/biomet/62.2.407
– volume: 70
  start-page: 111
  year: 1983
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB22|cit22
  article-title: Some test statistics for use in multistate survival analysis
  publication-title: Biometrika
  doi: 10.1093/biomet/70.1.111
– volume: 1
  start-page: 697
  year: 1972
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB59|cit59
  article-title: A missing information principle: theory and applications
  publication-title: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics
– volume-title: Tools for Statistical Inference: Methods for the Exploration of Posterior Distribution and Likelihood Functions
  year: 1993
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB62|cit62
  doi: 10.1007/978-1-4684-0192-9
– volume: 277
  start-page: 1456
  issue: 18
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB3|cit3
  article-title: Recommended prostate-specific antigen testing intervals for the detection of cureable prostate cancer
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.1997.03540420052029
– volume: 13
  start-page: 587
  year: 1994
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB38|cit38
  article-title: Mixed-effects regression models for studying the natural history of prostate disease
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780130520
– volume: 88
  start-page: 719
  year: 1993
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB15|cit15
  article-title: Modeling disease marker processes in AIDS
  publication-title: Journal of the American Statistical Association
– volume: 42
  start-page: 523
  year: 1955
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB26|cit26
  article-title: A test for a change in a parameter occurring at an unknown point
  publication-title: Biometrika
  doi: 10.1093/biomet/42.3-4.523
– volume: 11
  start-page: 1861
  year: 1992
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB12|cit12
  article-title: Methods for the analysis of informatively censored longitudinal data
  publication-title: Statistics in Medicine
  doi: 10.1002/sim.4780111408
– volume: 46
  start-page: 673
  year: 1990
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB44|cit44
  article-title: Nonlinear mixed effects models for repeated measures data
  publication-title: Biometrics
  doi: 10.2307/2532087
– volume: 57
  start-page: 1
  year: 1970
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB28|cit28
  article-title: Inference about the change-point in a sequence of random variables
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.1
– volume: 276
  start-page: 1957
  issue: 24
  year: 1996
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB39|cit39
  article-title: Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin: A randomized clinical trial
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.1996.03540240035027
– volume: 56
  start-page: 495
  year: 1969
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB27|cit27
  article-title: Inference about the intersection in two-phase regression
  publication-title: Biometrika
  doi: 10.1093/biomet/56.3.495
– volume: 50
  start-page: 1003
  year: 1994
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB10|cit10
  article-title: Modelling progression of CD4-lymphocyte count and its relationship to survival time
  publication-title: Biometrics
  doi: 10.2307/2533439
– volume: 270
  start-page: 660
  issue: 5
  year: 1993
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB37|cit37
  article-title: Serum prostate-specific antigen in a community-based population of healthy men
  publication-title: Journal of the American Medical Association
– volume: 270
  start-page: 948
  issue: 8
  year: 1993
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB34|cit34
  article-title: Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.1993.03510080052031
– volume: 39
  start-page: 1
  year: 1977
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB58|cit58
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: Journal of the Royal Statistical Association Series B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 80
  start-page: 153
  year: 1993
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB8|cit8
  article-title: A framework for consistent prediction rules based on markers
  publication-title: Biometrika
  doi: 10.1093/biomet/80.1.153
– volume: 40
  start-page: 927
  year: 1984
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB21|cit21
  article-title: A biological marker model for predicting disease transitions
  publication-title: Biometrics
  doi: 10.2307/2531144
– volume: 26
  start-page: 314
  year: 1994
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB48|cit48
  article-title: Using the Gibbs sampler to detect changepoints: application to PSA as a longitudinal marker for prostate cancer
  publication-title: Computing Science and Statistics
– start-page: 444
  volume-title: Case Studies in Bayesian Statistics III
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB42|cit42
– start-page: 249
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB57|cit57
  article-title: Latent changepoint process models for longitudinal biomarkers of disease
  publication-title: Proceedings of the Biometrics Section
– volume: 267
  start-page: 2215
  issue: 16
  year: 1992
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB2|cit2
  article-title: Longitudinal evaluation of prostate-specific antigen levels in men with and without prostate disease
  publication-title: Journal of the American Medical Association
  doi: 10.1001/jama.1992.03480160073037
– volume-title: Hidden Markov and Other Models for Discrete-Valued Time Series
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB32|cit32
– volume: 90
  start-page: 27
  year: 1995
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB9|cit9
  article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476485
– volume: 87
  start-page: 615
  year: 1992
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB47|cit47
  article-title: Hierarchical Bayes models for the progression of HIV infection using longitudinal CD4 T-cell numbers (with discussion)
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1992.10475258
– volume: 45
  start-page: 275
  year: 1996
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB25|cit25
  article-title: Markov chains with measurement error: estimating the ‘true’ course of a marker of the preogression of human immunodeficiency virus disease (with discussion)
  publication-title: Applied Statistics
  doi: 10.2307/2986089
– volume: 2
  start-page: 31
  year: 1996
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB19|cit19
  article-title: Models for residual time to AIDS
  publication-title: Lifetime Data Analysis
  doi: 10.1007/BF00128469
– volume: 14
  start-page: 2889
  issue: 11
  year: 1996
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB41|cit41
  article-title: Prostate-specific antigen following prostate radiotherapy: how low can you go?
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.1996.14.11.2889
– volume: 86
  start-page: 899
  year: 1991
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB61|cit61
  article-title: Using EM to obtain asymptotic variance-covariance matrices
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1991.10475130
– volume: 51
  start-page: 1514
  year: 1995
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB55|cit55
  article-title: ROC curves with multiple marker measurements
  publication-title: Biometrics
  doi: 10.2307/2533281
– volume: 90
  start-page: 45
  year: 1995
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB46|cit46
  article-title: Estimating unknown transition times using a piecewise nonlinear mixed-effects model in men with prostate cancer
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476487
– volume: 44
  start-page: 175
  year: 1988
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB11|cit11
  article-title: Estimation and comparison of changes in the presence of informative right censoring: modeling the censoring process
  publication-title: Biometrics
  doi: 10.2307/2531905
– volume: 17
  start-page: 2563
  year: 1998
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB54|cit54
  article-title: Analysis of repeated markers used to predict progression of cancer
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19981130)17:22<2563::AID-SIM952>3.0.CO;2-O
– volume: 37
  start-page: 927
  year: 1981
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB5|cit5
  article-title: Evaluating serial cancer marker studies in patients at risk of recurrent disease
  publication-title: Biometrics
  doi: 10.2307/2530523
– ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB35|cit35
– start-page: 511
  year: 1998
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB49|cit49
  article-title: Using PSA to detect prostate cancer onset: an application of Bayesian retrospective and prospective changepoint identification
  publication-title: Case Studies in Bayesian Statistics IV
– volume: 16
  start-page: 1515
  year: 1997
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB6|cit6
  article-title: Estimating proportion of treatment effect explained by a surrogate marker
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19970715)16:13<1515::AID-SIM572>3.0.CO;2-1
– volume: 32
  start-page: 116
  year: 1983
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB1|cit1
  article-title: A Bayesian approach to the analysis of serial tumour-marker data
  publication-title: Statistician
  doi: 10.2307/2987598
– volume: 83
  start-page: 596
  year: 1988
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB40|cit40
  article-title: Locally-weighted regression: an approach to regression analysis by local fitting
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1988.10478639
– volume: 85
  start-page: 398
  year: 1990
  ident: 10.1002/(SICI)1097-0258(20000229)19:4<617::AID-SIM360>3.0.CO;2-R-BIB52|cit52
  article-title: Sampling-based approaches to calculating marginal densities
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1990.10476213
SSID ssj0011527
Score 1.8843722
Snippet We consider the analysis of serial biomarkers to screen and monitor individuals in a given population for onset of a specific disease of interest. The...
SourceID proquest
pubmed
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 617
SubjectTerms Algorithms
Bayes Theorem
Biological and medical sciences
Biomarkers
Computerized, statistical medical data processing and models in biomedicine
Humans
Longitudinal Studies
Male
Medical sciences
Medical statistics
Models, Statistical
Prostate-Specific Antigen
Prostatic Neoplasms - diagnosis
ROC Curve
Title Statistical models for longitudinal biomarkers of disease onset
URI https://api.istex.fr/ark:/67375/WNG-PF7G2648-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2F%28SICI%291097-0258%2820000229%2919%3A4%3C617%3A%3AAID-SIM360%3E3.0.CO%3B2-R
https://www.ncbi.nlm.nih.gov/pubmed/10694740
https://www.proquest.com/docview/70941104
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3db9MwELemIU2TEB_lK8AgDxRtD-mS2HHighCjW7cidYOWib2dYsd5AbVobSXEA_8K_yp3cdJSmMQTQqqq1g---Hy2fxff_Y6xZzlPrS5MHiiBvonIpAyU1DrIRGxUWEQmk5Q7PDyVJ-fi7UVyscG-N7kwjh9i-cKNVka1X9MCz_Vsf0UaigBsPOgN0GGmS9QAz-4MmyjzBI8lRc0KJ1m0eQ8PafyFn4PBYTAeDLkM2_yId8JO76zN38TBCLfwiEui3j8cLdmnoqbiK91yyjRKttjrWvz-LoneWwrebcTuRaorXqLAbncl7JUT9QIFrZ1-12giv1I0Zj7DCSldJY2roO46cq6Ovv5N9qNRmot4-dRZzHXHfPuNT_L_afUWu1Gjav_ALYPbbMNOWmxrWMcNtNh193bSd0lXLbZNGNtRVN9Bf6X5g11UlYFmPkJ5__OUajktCqob5hNNAUUyXc78aenX11o-haLP77Lz_tGH3klQ15UIDPHrB6lIjBaWK67j3MSJVWWYG43fYWl4gR6j4lJHxoioNHEoKFMxL4tM5VQ40qb8HtucTCf2AfO1KWyBBmJLYREKWV1yXUal0hZhkMxTj71v5hu-OPoQcETRMQApuo4AQDVDo2SIFAhA9QKgasGpFjiE0DuDGEYee14ZzrJDHD2F56UJfDw9hnf99JjCFiHz2M6aZa2eADdyJZXHnjaWBrip0E1RPrHTxQxSdPoRFwqP3XcG-MvDSyVSEXpsXJnRH6P666CuHFPd8vCf9PqIbTsChTiI1WO2Ob9c2B2EknP9pFrwPwGVJE7u
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3db9MwED-NTRqTEB_lK8BYHijaHtIlsZvEBSFGt66FtYN2E3uzYsd5AbVobSXEC_8Kfyp3cdJSmMQTQoqq1A---Hz2_c6-D4BnKYuNynTqCY62CU-iyBORUl7CQy38LNBJRLHD_UHUPedvL5oXa_C9ioWx-SEWB260Mor9mhY4HUjvL7OGIgIb9do9tJjpFtVD5Z1gE4WeoF4S1CxwlnmdtVFL4xs-B71Db9Trs8ivsyPW8Bvt0zp7E3rDa7DBEauQ9XY4XOSfCqqar3TPGcVBcxNel_T3d4n23oLybkV3LxAt_hIptlpLaq8srRdIaUX_bdBUfiV_zHSKU5LbWhpXgd1V7Fwov84t-FGxzfq8fGrMZ6qhv_2WUfI_8vU23CyBtXtgV8IdWDPjGmz2S9eBGtywB5SujbuqwRbBbJul-i6aLNUf7KIoDjR1Ec27nydUzmmeUekwlzIVkDPT5dSd5G55s-WSN_rsHpx3js7aXa8sLeFpSrHvxbypFTdMMBWmOmwakfupVvjr55plaDQKFqlAax7kOvQ5BSumeZaIlGpHmpjdh_XxZGwegqt0ZjKUEJNzg2jIqJypPMiFMoiEojR24EM14fKLzSAiba7oUEpidOkEgGyWFZNlICSXyF4pkbXSslYy6cv2qQzl0IHnheQsOsTRk4de3JQfB8fyfSc-Js9FmTiwvSJayy_AvVxEwoGdStQk7it0WZSOzWQ-lTHa_QgNuQMPrAT-8vGR4DH3HRgVcvTHqP46qCvHVLY8-ie97sD17ln_RJ70Bu8ew5bNpxB6oXgC67PLudlGZDlTT4vV_xO281MN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwxV3db9MwELfGJlWTEB_lK8BYHijaHtIlsevEBSFGt24F2m0tE3uzYsd-AbXT2kqIB_4V_lXu4qSlMIknhFRVrR988fls_y6--x0hzzOaGJXrLBAMfBOWch4IrlSQsliLMI90yjF3uD_gx-fs3UXrYo18r3JhHD_E4oUbroxiv8YFfpnbvSVpKACwUa_TA4cZL1EDOLtTaMLMEziWBDYLmGTWoB04pOEXfPZ7B8Go16c8bNBD2gybnZMGfRsHwxtkg3EAIwiqhgv6qagq-YrXnDyJWjXyppS_t4OydxeSdyq5u5Fos1cgsd1eSnvtZL0ESSvH3wbO5FcMx8ymMCPWldK4DuuuQufi7OveJj8qrbmQl8_N-Uw19bffCCX_n1rvkFslrPb33Tq4S9bMuE5q_TJwoE5uuteTvsu6qpNNBNmOo_oeOCzVH-iiKA009QHL-18mWMxpnmPhMB95CjCU6WrqT6xf3mv5GIs-u0_Ou4cfO8dBWVgi0EiwHySspRUzVFAVZzpuGWHDTCv4Dq2mObiMgnIVac0iq-OQYapiZvNUZFg50iT0AVkfT8bmEfGVzk0OBmIsM4CFjLJU2cgKZQAH8SzxyFk13_LS8YdIxxQdS4mKLkMAQM2yUrKMhGQS1CslqFY61UoqQ9k5kbEceuRFYTiLDmH0GJ-XtOSnwZE87SZHGLcoU49srVjW8glgJxdceGS7sjQJuwpeFWVjM5lPZQJePwBD5pGHzgB_eXguWMJCj4wKM_pjVH8d1LVjKlse_5Net0nt9KArP_QG75-QTUemEAexeErWZ1dzswWwcqaeFWv_J0CMUbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Statistics+in+medicine&rft.atitle=Statistical+models+for+longitudinal+biomarkers+of+disease+onset&rft.au=SLATE%2C+E.+H&rft.au=TURNBULL%2C+B.+W&rft.date=2000-02-29&rft.pub=Wiley&rft.issn=0277-6715&rft.volume=19&rft.issue=4&rft.spage=617&rft.epage=637&rft_id=info:doi/10.1002%2F%28SICI%291097-0258%2820000229%2919%3A4%3C617%3A%3AAID-SIM360%3E3.0.CO%3B2-R&rft.externalDBID=n%2Fa&rft.externalDocID=1318969
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon