Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine
With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Onl...
Saved in:
Published in | Journal of environmental planning and management Vol. 66; no. 3; pp. 665 - 697 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Routledge
23.02.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran. |
---|---|
AbstractList | With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran. |
Author | Lakes, Tobia Omarzadeh, Davoud Kazemi Garajeh, Mohammad Blaschke, Thomas Feizizadeh, Bakhtiar |
Author_xml | – sequence: 1 givenname: Bakhtiar orcidid: 0000-0002-3367-2925 surname: Feizizadeh fullname: Feizizadeh, Bakhtiar organization: Department of Geography, Humboldt-Universitaet zu Berlin – sequence: 2 givenname: Davoud orcidid: 0000-0002-7904-6903 surname: Omarzadeh fullname: Omarzadeh, Davoud organization: Faculty of Planning and Environmental Sciences, Department of Remote Sensing and GIS – sequence: 3 givenname: Mohammad orcidid: 0000-0002-7195-2813 surname: Kazemi Garajeh fullname: Kazemi Garajeh, Mohammad organization: Faculty of Planning and Environmental Sciences, Department of Remote Sensing and GIS – sequence: 4 givenname: Tobia orcidid: 0000-0001-8443-7899 surname: Lakes fullname: Lakes, Tobia organization: Department of Geography, Humboldt-Universitaet zu Berlin – sequence: 5 givenname: Thomas orcidid: 0000-0002-1860-8458 surname: Blaschke fullname: Blaschke, Thomas organization: Department of Geoinformatics, University of Salzburg |
BookMark | eNqFkUGLFDEQhYOs4OzoTxACXrz0biXd6UnwoizjKqx40XOoTiezWTLJmGRW5t-bZtbLHpRABVLfq8rjXZKLmKIl5C2DKwYSrkGNA4hRXnHgrBVgPdu8ICvWj9CBEOqCrBamW6BX5LKUBwAQPRtXJH1Dc--jpcFijj7u6IwVuzn7RxspHg45NcAW6lKmAeNMj8Vem_RoM9239qJYXmu2rWLEcCq-NGhp3Ka0C5ZuMdd7uo27tuc1eekwFPvm6V6Tn5-3P26-dHffb7_efLrrzNBvaucQN1KB4YxzNaBsvxfGAUzTABNa6eQkhVJqnO3sJAjGmYV5NFxNbmaO92vy_jy3Gfh1tKXqvS_GhmbBpmPRXDKmZK_aWZN3z9CHdMzNSaM2Ixs4MDE0Spwpk1Mp2Tp9yH6P-aQZ6CUG_TcGvcSgn2Joug_PdMZXrD7FmtGH_6o_ntU-tgD2-DvlMOuKp5CyyxiNL7r_94g_28KivQ |
CitedBy_id | crossref_primary_10_1007_s11869_023_01416_y crossref_primary_10_1080_13658816_2024_2401914 crossref_primary_10_29128_geomatik_1363873 crossref_primary_10_1007_s10661_023_11280_z crossref_primary_10_1007_s12040_024_02305_3 crossref_primary_10_1007_s12145_024_01644_5 crossref_primary_10_1080_15481603_2021_2000350 crossref_primary_10_2298_GSGD2302145L crossref_primary_10_1051_e3sconf_202341803006 crossref_primary_10_3390_rs14143407 crossref_primary_10_1007_s12145_024_01517_x crossref_primary_10_1080_23311932_2024_2448597 crossref_primary_10_29407_intensif_v6i1_17083 crossref_primary_10_3390_app12020593 crossref_primary_10_3390_rs14133041 crossref_primary_10_3390_rs15235520 crossref_primary_10_1016_j_heliyon_2023_e21245 crossref_primary_10_3390_land14020313 crossref_primary_10_26833_ijeg_1118542 crossref_primary_10_3390_s22124506 crossref_primary_10_1007_s41651_023_00142_4 crossref_primary_10_3390_app14083484 crossref_primary_10_24018_ejai_2024_3_3_40 crossref_primary_10_1007_s12040_023_02099_w crossref_primary_10_1016_j_agwat_2024_109175 crossref_primary_10_1038_s41598_023_28244_5 crossref_primary_10_3390_rs14112516 crossref_primary_10_1007_s41651_025_00218_3 crossref_primary_10_3389_frsen_2024_1374862 crossref_primary_10_3390_rs14143253 crossref_primary_10_1016_j_rineng_2024_102854 crossref_primary_10_1016_j_jag_2023_103637 crossref_primary_10_3390_su152416593 crossref_primary_10_1007_s10661_023_12289_0 crossref_primary_10_1088_1748_9326_ad9491 crossref_primary_10_1109_JSTARS_2022_3185185 crossref_primary_10_1007_s12145_024_01589_9 crossref_primary_10_1016_j_jenvman_2024_122619 crossref_primary_10_1007_s41976_024_00137_9 crossref_primary_10_1007_s41976_025_00197_5 crossref_primary_10_1038_s41598_024_53604_0 crossref_primary_10_1007_s10980_024_01914_z crossref_primary_10_1007_s12145_024_01586_y crossref_primary_10_31548_forest_1_2023_72 crossref_primary_10_3390_land12040804 crossref_primary_10_1007_s40808_023_01895_z crossref_primary_10_1080_10106049_2024_2329665 crossref_primary_10_1080_1747423X_2023_2218372 crossref_primary_10_1109_JSTARS_2023_3348874 crossref_primary_10_3390_rs16081449 crossref_primary_10_1016_j_ejrs_2024_03_003 crossref_primary_10_29130_dubited_1462304 crossref_primary_10_1007_s10661_024_13178_w crossref_primary_10_1007_s12518_024_00549_8 crossref_primary_10_1016_j_pce_2024_103796 crossref_primary_10_1016_j_gecco_2024_e03010 crossref_primary_10_1038_s41598_024_83211_y crossref_primary_10_1109_ACCESS_2023_3325281 crossref_primary_10_1080_07038992_2022_2072277 crossref_primary_10_3390_pollutants4010001 crossref_primary_10_47818_DRArch_2022_v3i2055 crossref_primary_10_1007_s10661_024_12819_4 crossref_primary_10_1080_15481603_2023_2233756 crossref_primary_10_1016_j_jaridenv_2022_104721 crossref_primary_10_1016_j_ejrh_2022_101072 crossref_primary_10_1080_19376812_2024_2424378 crossref_primary_10_3390_rs16152773 crossref_primary_10_1007_s10708_025_11305_9 crossref_primary_10_1007_s10661_022_10837_8 crossref_primary_10_1007_s11356_024_33094_3 crossref_primary_10_1016_j_asr_2024_09_039 crossref_primary_10_3390_su16114738 crossref_primary_10_1080_1573062X_2025_2451891 crossref_primary_10_1007_s13201_022_01599_2 crossref_primary_10_1016_j_srs_2022_100039 crossref_primary_10_3390_hydrology11120209 crossref_primary_10_1007_s12145_025_01757_5 crossref_primary_10_1016_j_jastp_2025_106483 crossref_primary_10_3390_app15063155 crossref_primary_10_3390_geosciences14060152 crossref_primary_10_1080_19475705_2023_2290350 crossref_primary_10_1007_s00367_024_00793_2 crossref_primary_10_1016_j_clwat_2025_100070 crossref_primary_10_1007_s10661_024_13118_8 crossref_primary_10_1007_s12665_023_10901_7 crossref_primary_10_1016_j_rsase_2024_101367 crossref_primary_10_3390_land14030564 crossref_primary_10_3390_pollutants3020019 |
Cites_doi | 10.1016/j.fiae.2015.03.002 10.1016/j.jag.2019.04.001 10.1016/j.isprsjprs.2013.03.006 10.1007/s13762-012-0143-6 10.5220/0007675300330040 10.1002/wrcr.20078 10.1016/j.catena.2020.104751 10.1016/j.envsoft.2014.10.007 10.1016/j.catena.2019.104150 10.5194/isprs-archives-XLII-3-1467-2018 10.1016/j.geoderma.2017.03.013 10.1088/1755-1315/98/1/012042 10.1016/j.geomorph.2014.04.006 10.1016/j.cageo.2013.11.009 10.3390/su122410413 10.1007/s11284-006-0048-2 10.1038/nmeth.4370 10.1109/IGARSS.2015.7326032 10.1016/j.apgeog.2011.10.010 10.1016/j.isprsjprs.2020.06.022 10.1080/07038992.2019.1704622 10.3390/rs13010010 10.1016/j.scitotenv.2016.10.176 10.1016/S0034-4257(01)00295-4 10.1016/j.isprsjprs.2015.03.002 10.1016/j.rse.2012.09.005 10.1016/j.isprsjprs.2018.12.011 10.1007/s12517-017-3012-2 10.1016/j.envsoft.2020.104694 10.1016/j.compag.2016.08.008 10.1016/j.rse.2013.09.025 10.3390/rs11212583 10.1080/10106049.2018.1425738 10.1016/j.cola.2019.100908 10.1007/s10661-015-4684-2 10.1002/ldr.3312 10.1016/j.rse.2017.10.005 10.1007/s40333-015-0057-5 10.1016/j.isprsjprs.2009.06.004 10.1016/S0169-2046(04)00083-0 10.4236/jgis.2012.43027 10.1016/j.apgeog.2014.12.012 10.1007/s12518-021-00393-0 10.1016/j.patrec.2005.08.011 10.1080/10106049.2020.1810327 10.3390/rs12030346 10.4236/ijg.2017.84033 10.1016/j.catena.2014.10.017 10.1109/LGRS.2017.2763979 10.1016/j.ecoinf.2020.101059 10.1016/j.compag.2019.104989 10.1080/14724049.2019.1597876 10.1016/j.rse.2011.05.013 10.1016/j.rse.2010.10.016 10.3390/rs11243015 10.1016/j.advwatres.2020.103562 10.1111/tgis.12688 10.1016/j.landurbplan.2009.10.006 10.1016/j.scs.2020.102584 10.1016/j.rse.2017.02.021 10.1016/j.scitotenv.2019.136092 10.1016/j.geomorph.2017.06.002 10.1007/s11269-011-9909-8 10.1002/ldr.1137 10.1016/j.catena.2021.105585 10.1016/j.isprsjprs.2011.11.002 10.3390/ijerph17082749 10.1016/j.apgeog.2017.02.006 10.1016/j.geomorph.2017.09.006 10.1016/j.isprsjprs.2020.01.001 10.29252/jgit.4.2.83 10.1002/ldr.2507 10.1016/j.envpol.2020.114635 10.1080/09640568.2018.1427561 10.1007/s11004-011-9379-9 10.1109/JSTARS.2016.2560141 10.1007/s00704-012-0651-9 10.1007/s10064-010-0303-1 10.1080/13658816.2013.869821 10.1016/j.rse.2019.03.009 10.1080/09640568.2020.1775561 10.1016/j.catena.2019.104394 10.1007/s12145-021-00644-z 10.1016/j.catena.2020.105073 10.1007/978-1-4757-2440-0 10.1046/j.0016-8025.2001.00808.x 10.1016/j.proenv.2010.10.006 10.1080/04353676.2020.1832753 10.1080/13658816.2017.1324976 10.1016/j.rsase.2020.100287 10.1016/j.cageo.2020.104470 10.1007/s12665-020-08953-0 10.1080/09640568.2016.1269643 10.1016/j.gsf.2020.05.010 10.1016/j.apgeog.2011.08.013 10.1109/IGARSS.2003.1295258 10.1016/j.envres.2009.12.007 10.1016/j.rse.2020.111943 10.1016/j.ecolind.2020.106173 10.1016/j.landusepol.2018.10.036 10.1016/j.rse.2011.08.024 10.1016/j.compenvurbsys.2012.06.003 10.1109/JSTARS.2014.2350036 10.3390/agronomy9050239 10.18869/acadpub.ijae.6.2.27 10.1016/j.cageo.2013.10.008 10.3390/rs9010095 10.3390/s19224893 10.1080/09640568.2019.1594726 10.1111/insr.12016 |
ContentType | Journal Article |
Copyright | 2021 Newcastle University 2021 2021 Newcastle University |
Copyright_xml | – notice: 2021 Newcastle University 2021 – notice: 2021 Newcastle University |
DBID | AAYXX CITATION 7ST 7TA 7TQ 7U7 8BJ 8FD C1K DHY DON FQK FR3 JBE JG9 KR7 SOI 7S9 L.6 |
DOI | 10.1080/09640568.2021.2001317 |
DatabaseName | CrossRef Environment Abstracts Materials Business File PAIS Index Toxicology Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database Environmental Sciences and Pollution Management PAIS International PAIS International (Ovid) International Bibliography of the Social Sciences Engineering Research Database International Bibliography of the Social Sciences Materials Research Database Civil Engineering Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts International Bibliography of the Social Sciences (IBSS) Technology Research Database Toxicology Abstracts PAIS International Engineering Research Database Environment Abstracts Materials Business File Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Architecture Law Environmental Sciences |
EISSN | 1360-0559 |
EndPage | 697 |
ExternalDocumentID | 10_1080_09640568_2021_2001317 2001317 |
Genre | Research Article |
GeographicLocations | Iran |
GeographicLocations_xml | – name: Iran |
GroupedDBID | -~X .7I .QK 0BK 0R~ 29K 4.4 4P2 53G 5GY 5VS 7WY 8FL AABXT AAGZJ AAHBH AAIKC AAMFJ AAMIU AAMNW AAPUL AATTQ AAZMC ABCCY ABFIM ABJNI ABLIJ ABPEM ABTAI ABXUL ABXYU ABZLS ACGFS ACGOD ACHQT ACIWK ACPRK ACTIO ACTOA ADAHI ADCVX ADKVQ ADLRE ADXPE AECIN AEGXH AEISY AEKEX AEOZL AEPSL AEYOC AEZRU AFRAH AGDLA AGMYJ AGRBW AHDZW AIJEM AJWEG AKBVH ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 D-I DGFLZ DKSSO DU5 EBS ECR EDH EOH E~B E~C G-F GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ I-F IPNFZ J.O K60 K6~ KYCEM LJTGL M4Z ML. MS~ NA5 NY- O9- P2P RIG RNANH ROSJB RSYQP S-F STATR TBQAZ TDBHL TEG TFH TFL TFW TNTFI TRJHH TUROJ U5U UT5 UT9 VAE ~01 ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AEFOU AFRVT AIYEW ALSLI AMPGV CITATION 7ST 7TA 7TQ 7U7 8BJ 8FD C1K DHY DON FQK FR3 JBE JG9 KR7 SOI TASJS 7S9 L.6 |
ID | FETCH-LOGICAL-c437t-faa7890c212294a89645cf00bb40bae8f8b859996dedf805121e0d6c29bfd1f23 |
ISSN | 0964-0568 1360-0559 |
IngestDate | Wed Jul 02 04:31:40 EDT 2025 Wed Aug 13 08:09:58 EDT 2025 Tue Jul 01 02:02:50 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Wed Dec 25 09:05:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-faa7890c212294a89645cf00bb40bae8f8b859996dedf805121e0d6c29bfd1f23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7195-2813 0000-0001-8443-7899 0000-0002-7904-6903 0000-0002-1860-8458 0000-0002-3367-2925 |
PQID | 2761420154 |
PQPubID | 33087 |
PageCount | 33 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_09640568_2021_2001317 crossref_primary_10_1080_09640568_2021_2001317 crossref_citationtrail_10_1080_09640568_2021_2001317 proquest_journals_2761420154 proquest_miscellaneous_2811983939 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-23 |
PublicationDateYYYYMMDD | 2023-02-23 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-23 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | Journal of environmental planning and management |
PublicationYear | 2023 |
Publisher | Routledge Taylor & Francis Ltd |
Publisher_xml | – name: Routledge – name: Taylor & Francis Ltd |
References | CIT0071 CIT0074 Ran X. Li. (CIT0088) 2008 CIT0073 CIT0076 CIT0078 CIT0111 CIT0077 CIT0110 Aronoff S. (CIT0008) 1985; 51 CIT0070 Bai S. B. (CIT0009) 2008; 10 CIT0113 CIT0079 CIT0112 CIT0115 CIT0114 CIT0117 CIT0116 CIT0119 CIT0118 CIT0083 CIT0085 CIT0084 CIT0087 CIT0120 CIT0086 CIT0001 CIT0089 CIT0121 CIT0081 CIT0080 Mirzayi Hasanlo A. (CIT0067) 2020; 46 CIT0003 CIT0002 CIT0005 CIT0004 CIT0007 CIT0006 CIT0094 CIT0093 CIT0096 CIT0095 CIT0010 CIT0098 CIT0097 CIT0012 CIT0011 CIT0099 CIT0092 CIT0091 Pedregosa Fabian (CIT0082) 2011; 12 CIT0014 CIT0013 CIT0016 CIT0015 CIT0018 CIT0017 CIT0019 CIT0021 CIT0020 CIT0023 CIT0022 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 CIT0030 CIT0032 CIT0031 CIT0034 CIT0033 Leh M. (CIT0060) 2013; 24 CIT0036 CIT0035 CIT0038 CIT0037 CIT0039 CIT0041 CIT0040 CIT0043 CIT0042 CIT0045 CIT0044 CIT0047 CIT0200 CIT0046 CIT0049 CIT0048 CIT0050 CIT0051 Riggan N. D. (CIT0090) 2009; 63 CIT0054 CIT0053 CIT0056 CIT0055 Nascetti A. (CIT0075) 2017; 42 CIT0058 CIT0057 CIT0059 CIT0061 CIT0063 CIT0062 CIT0065 CIT0064 CIT0100 CIT0066 Nabi Zadeh Balkhanlou A. (CIT0072) 2020; 4 CIT0109 CIT0069 CIT0102 CIT0068 CIT0101 CIT0104 CIT0103 CIT0106 CIT0105 CIT0108 CIT0107 |
References_xml | – ident: CIT0025 doi: 10.1016/j.fiae.2015.03.002 – ident: CIT0119 doi: 10.1016/j.jag.2019.04.001 – ident: CIT0054 doi: 10.1016/j.isprsjprs.2013.03.006 – ident: CIT0100 doi: 10.1007/s13762-012-0143-6 – ident: CIT0042 doi: 10.5220/0007675300330040 – ident: CIT0111 doi: 10.1002/wrcr.20078 – ident: CIT0083 doi: 10.1016/j.catena.2020.104751 – ident: CIT0110 doi: 10.1016/j.envsoft.2014.10.007 – ident: CIT0079 doi: 10.1016/j.catena.2019.104150 – ident: CIT0089 doi: 10.5194/isprs-archives-XLII-3-1467-2018 – volume: 42 year: 2017 ident: CIT0075 publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences – ident: CIT0109 doi: 10.1016/j.geoderma.2017.03.013 – ident: CIT0029 doi: 10.1088/1755-1315/98/1/012042 – ident: CIT0097 doi: 10.1016/j.geomorph.2014.04.006 – volume: 51 start-page: 99 year: 1985 ident: CIT0008 publication-title: Photogrammetric Engineering and Remote Sensing – ident: CIT0033 doi: 10.1016/j.cageo.2013.11.009 – ident: CIT0069 doi: 10.3390/su122410413 – ident: CIT0120 doi: 10.1007/s11284-006-0048-2 – ident: CIT0058 doi: 10.1038/nmeth.4370 – ident: CIT0107 – ident: CIT0048 doi: 10.1109/IGARSS.2015.7326032 – ident: CIT0005 doi: 10.1016/j.apgeog.2011.10.010 – ident: CIT0084 doi: 10.1016/j.isprsjprs.2020.06.022 – ident: CIT0036 doi: 10.1080/07038992.2019.1704622 – ident: CIT0099 doi: 10.3390/rs13010010 – ident: CIT0087 doi: 10.1016/j.scitotenv.2016.10.176 – ident: CIT0040 doi: 10.1016/S0034-4257(01)00295-4 – ident: CIT0024 doi: 10.1016/j.isprsjprs.2015.03.002 – start-page: 240 volume-title: Proceedings of the International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences year: 2008 ident: CIT0088 – ident: CIT0020 doi: 10.1016/j.rse.2012.09.005 – ident: CIT0057 doi: 10.1016/j.isprsjprs.2018.12.011 – ident: CIT0073 doi: 10.1007/s12517-017-3012-2 – ident: CIT0118 doi: 10.1016/j.envsoft.2020.104694 – ident: CIT0113 doi: 10.1016/j.compag.2016.08.008 – ident: CIT0041 doi: 10.1016/j.rse.2013.09.025 – ident: CIT0074 doi: 10.3390/rs11212583 – ident: CIT0019 doi: 10.1080/10106049.2018.1425738 – volume: 46 start-page: 537 issue: 3 year: 2020 ident: CIT0067 publication-title: Journal of the Earth and Space Physics – ident: CIT0062 doi: 10.1016/j.cola.2019.100908 – volume: 10 year: 2008 ident: CIT0009 publication-title: Geophysical Research Abstracts – ident: CIT0068 doi: 10.1007/s10661-015-4684-2 – ident: CIT0077 doi: 10.1002/ldr.3312 – ident: CIT0012 doi: 10.1016/j.rse.2017.10.005 – ident: CIT0066 doi: 10.1007/s40333-015-0057-5 – ident: CIT0116 – ident: CIT0015 doi: 10.1016/j.isprsjprs.2009.06.004 – ident: CIT0081 doi: 10.1016/S0169-2046(04)00083-0 – ident: CIT0006 doi: 10.4236/jgis.2012.43027 – ident: CIT0023 doi: 10.1016/j.apgeog.2014.12.012 – ident: CIT0105 doi: 10.1007/s12518-021-00393-0 – ident: CIT0044 doi: 10.1016/j.patrec.2005.08.011 – ident: CIT0070 doi: 10.1080/10106049.2020.1810327 – ident: CIT0085 doi: 10.3390/rs12030346 – ident: CIT0092 doi: 10.4236/ijg.2017.84033 – ident: CIT0101 doi: 10.1016/j.catena.2014.10.017 – ident: CIT0030 doi: 10.1109/LGRS.2017.2763979 – ident: CIT0016 doi: 10.1016/j.ecoinf.2020.101059 – ident: CIT0117 doi: 10.1016/j.compag.2019.104989 – ident: CIT0043 doi: 10.1080/14724049.2019.1597876 – volume: 4 start-page: 205 issue: 7 year: 2020 ident: CIT0072 publication-title: Journal of the Geographical Engineering of Territory – ident: CIT0098 doi: 10.1016/j.rse.2011.05.013 – ident: CIT0027 doi: 10.1016/j.rse.2010.10.016 – ident: CIT0007 doi: 10.3390/rs11243015 – ident: CIT0056 doi: 10.1016/j.advwatres.2020.103562 – ident: CIT0003 doi: 10.1111/tgis.12688 – ident: CIT0061 doi: 10.1016/j.landurbplan.2009.10.006 – ident: CIT0034 doi: 10.1016/j.scs.2020.102584 – ident: CIT0053 doi: 10.1016/j.rse.2017.02.021 – ident: CIT0112 doi: 10.1016/j.scitotenv.2019.136092 – ident: CIT0039 doi: 10.1016/j.geomorph.2017.06.002 – ident: CIT0047 doi: 10.1007/s11269-011-9909-8 – volume: 24 start-page: 409 issue: 5 year: 2013 ident: CIT0060 publication-title: Land Degradation & Development doi: 10.1002/ldr.1137 – ident: CIT0038 doi: 10.1016/j.catena.2021.105585 – ident: CIT0091 doi: 10.1016/j.isprsjprs.2011.11.002 – ident: CIT0076 doi: 10.3390/ijerph17082749 – ident: CIT0078 doi: 10.1016/j.apgeog.2017.02.006 – ident: CIT0086 doi: 10.1016/j.geomorph.2017.09.006 – ident: CIT0114 doi: 10.1016/j.isprsjprs.2020.01.001 – ident: CIT0018 doi: 10.29252/jgit.4.2.83 – ident: CIT0106 doi: 10.1002/ldr.2507 – ident: CIT0017 doi: 10.1016/j.envpol.2020.114635 – ident: CIT0096 doi: 10.1080/09640568.2018.1427561 – ident: CIT0010 doi: 10.1007/s11004-011-9379-9 – ident: CIT0059 doi: 10.1109/JSTARS.2016.2560141 – volume: 63 start-page: 145 issue: 1 year: 2009 ident: CIT0090 publication-title: Journal of the Arkansas Academy of Science – ident: CIT0022 doi: 10.1007/s00704-012-0651-9 – ident: CIT0050 doi: 10.1007/s10064-010-0303-1 – ident: CIT0032 doi: 10.1080/13658816.2013.869821 – volume: 12 start-page: 2825 year: 2011 ident: CIT0082 publication-title: The Journal of Machine Learning Research – ident: CIT0121 doi: 10.1016/j.rse.2019.03.009 – ident: CIT0035 doi: 10.1080/09640568.2020.1775561 – ident: CIT0063 doi: 10.1016/j.catena.2019.104394 – ident: CIT0001 doi: 10.1007/s12145-021-00644-z – ident: CIT0037 doi: 10.1016/j.catena.2020.105073 – ident: CIT0108 doi: 10.1007/978-1-4757-2440-0 – ident: CIT0071 doi: 10.1046/j.0016-8025.2001.00808.x – ident: CIT0004 doi: 10.1016/j.proenv.2010.10.006 – ident: CIT0095 doi: 10.1080/04353676.2020.1832753 – ident: CIT0064 doi: 10.1080/13658816.2017.1324976 – ident: CIT0094 doi: 10.1016/j.rsase.2020.100287 – ident: CIT0028 doi: 10.1016/j.cageo.2020.104470 – ident: CIT0026 doi: 10.1007/s12665-020-08953-0 – ident: CIT0031 doi: 10.1080/09640568.2016.1269643 – ident: CIT0115 doi: 10.1016/j.gsf.2020.05.010 – ident: CIT0102 doi: 10.1016/j.apgeog.2011.08.013 – ident: CIT0013 doi: 10.1109/IGARSS.2003.1295258 – ident: CIT0051 doi: 10.1016/j.envres.2009.12.007 – ident: CIT0103 doi: 10.1016/j.rse.2020.111943 – ident: CIT0045 doi: 10.1016/j.ecolind.2020.106173 – ident: CIT0049 doi: 10.1016/j.landusepol.2018.10.036 – ident: CIT0046 doi: 10.1016/j.rse.2011.08.024 – ident: CIT0080 doi: 10.1016/j.compenvurbsys.2012.06.003 – ident: CIT0014 doi: 10.1109/JSTARS.2014.2350036 – ident: CIT0104 doi: 10.3390/agronomy9050239 – ident: CIT0011 doi: 10.18869/acadpub.ijae.6.2.27 – ident: CIT0021 doi: 10.1016/j.cageo.2013.10.008 – ident: CIT0055 doi: 10.3390/rs9010095 – ident: CIT0093 doi: 10.3390/s19224893 – ident: CIT0002 doi: 10.1080/09640568.2019.1594726 – ident: CIT0200 – ident: CIT0065 doi: 10.1111/insr.12016 |
SSID | ssj0005316 |
Score | 2.6213722 |
Snippet | With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 665 |
SubjectTerms | Algorithms Analysis Automation Change detection Classification Cloud computing Cognitive style comparative approach Google Earth Engine Data data collection Daylight saving Decision analysis Decision makers Decision making Decision trees Earth Environmental protection Internet Iran Land cover Land use land use/cover mapping Landsat Landsat satellites Learning algorithms Machine learning Mapping Regression analysis Reliability Reliability analysis Remote monitoring Remote sensing Satellite imagery Satellites Spatial analysis spatial uncertainty analysis Support vector machines Time series time series analysis Trend analysis Uncertainty Uncertainty analysis Urmia lake basin |
Title | Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine |
URI | https://www.tandfonline.com/doi/abs/10.1080/09640568.2021.2001317 https://www.proquest.com/docview/2761420154 https://www.proquest.com/docview/2811983939 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLW67gUhIShMlA1kJN6qVEmc5uOxYu0qtMJLJyZeIidx1m5LU3XJkPrT-HXcaztpSofGx0sVxUkc5ZxeX9v3nkvIB54IOzEDDggEqeF4wjS46aHkvgPDS2LasVTXn352JxfOp8vBZav1oxG1VBZRP948mFfyL6jCOcAVs2T_Atn6oXACjgFf-AWE4fePMJ7KSEhRlX646mG8p5Gs0YLVauFCKi7gwmTSK7GM4jjGsM1exlerKkOxwMhYONICJaVcQDjL86tb0Rtx3NlRuoW_cWUb2XKY2KXrIMknZ3vhNWOx2Cw2gN5c7XfczMHI1CHCXzK-rhtP-X1eJvWYwDciW_TO-Jpfq_ZpPudZxusrzvmNsnqzPFrw5oKGzWSCOKspuBsJpdcqXccAT00ZaqEsNXNxF1_LiWtTrgq4aMqyhl12VUEKPcS7KiR4b_TQ4ZbQG3bWh5eTKwgWU-mlvwhz65YDcmjDFMVuk8Ph5PTb122AEZOFd-uXr_LHUNn9oS52PKMd3dw9P0E6P7Pn5JmGmg4VBV-Qllh2yNNhYxOqQ45GTRZQPWjcdcjBOf_-kuSarLQiK22QlW7JSuGFKJKVlpgwilSlmqoUz0qq0oqqVFKVKqpSSVWqqPqKXIxHs48TQ1f7MGKHeYWRco5J2TH4UnbgcB8-0SBOTTOKHDPiwk_9yB_g9DwRSerDWGJbwkzc2A6iNLFSmx2R9jJfiteEekEQpyibkgaxwwPf574nfMbgMjf2rbRLnOpLh7GWwseKLLehVSnmaoBCBCjUAHVJv75tpbRgHrshaMIYFnIRLlUVc0L2yL0nFeahNjl3oe2BN23jtKdL3tfNMCDgLh9firyEa3zLCmDaw4I3_9H9MXmy_W-ekHaxLsVbcL-L6J3m-U985de6 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NeGBC2kY3RBkbnrTXdImdNvYjmsoy1vIwFYk3y3HsThprJpoKib-eu8SBsgnxwFuU-JL4193Z_u47gM-mdLyMlcEeUD5KMxdHJs6Icj9F81LG3Dbs-tOzUX6enl4ML9ZiYQhWSWto3xJFNLqaJjdtRneQuC_odqOfMSJkFm_WeAlawQ3YGqpU4AJsa_bzNM_vgR6iSYBKQhFJdXE8j73ogYV6wF_6n75ujNDJa7Dd77fYk9-DVV0M7M0_zI7Pq98beBV8VHbcDqpdeOEWPdg5Xjty6MHe-D5CDssGFbHswcbEXL-FatqANB0LWSnmjKCoUXlFypV1ROZuybDajMCVbEXhgYQnZX8McUbMGd2tCbKLVy1zCiOU_px9q6r5pWNjHPW_WEuo-A7OT8azr3kUcjtEFvuojrwxFIJr0XJylRqJNR5aH8dFkcaFcdLLQg5pMVa60kvUHDxxcTmyXBW-TDwXe7C5qBZuH1imlPVEkuGVTY2S0sjMSSGw2MjKxPch7fpT20B8Tvk3LnXS8aOG9tbU3jq0dx8Gd2J_W-aPpwTU-mDRdbPl4tv8KFo8IXvYjSwdlMhS8wx9J05Obh8-3T3G6U9nOmbhqhWWkUmi0MkV6uAZnz-C7Xw2nejJ97Mf7-ElPhJN2L44hM36auU-oONVFx_DzLoF5SweuQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xTUJo0oDCRNkAI_GakthpYj9Oo6WMbUJok3izHH8UidFMa6pJ_PW7S5x9gNAe9hYlviR2znfn-He_A_hgnOcuVQa_gApJXvo0MWlJlPs5uheXctuy6x8dF7PT_ODHuEcTLiOsktbQoSOKaG01Te5zF3pE3EeMujHMKAiYxdslXoZOcA02CvRHqOQbJ98PZrMbnIdo65-SUEJSfRrP_250x0HdoS_9x1y3Pmj6FKr-7Tvoya_RqqlG9s9fxI4P6t4z2IoRKtvrVOo5PPKLAWzu3dpwGMD25CY_DttGA7EcwNqhuXwB9VEL0fQs1qSYMwKiJu6CTCvracz9kmGvGUEr2YqSAwlNyn4bYoyYMzrbEGAXjzreFEYY_Tn7XNfzM88mqPM_WUen-BJOp5OT_VkSKzskNhdlkwRjKAHXot_kKjcSezy2IU2rKk8r42WQlRzTUsx5FyTaDZ751BWWqyq4LHCxDeuLeuFfASuVsoEoMoKyuVFSGll6KQQ2K6zMwhDy_nNqG2nPqfrGmc56dtQ43prGW8fxHsLoWuy84_24T0Dd1hXdtD9cQlcdRYt7ZHd7xdLRhCw1LzFy4hTiDuH99WWc_LSjYxa-XmEbmWUKQ1yhXj_g8e_g8bdPU3345fjrDjzBK6LN2Re7sN5crPwbjLqa6m2cV1c34x1d |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+data-driven+approaches+for+land+use%2Fcover+mapping+and+trend+analysis+using+Google+Earth+Engine&rft.jtitle=Journal+of+environmental+planning+and+management&rft.au=Feizizadeh%2C+Bakhtiar&rft.au=Omarzadeh%2C+Davoud&rft.au=Kazemi+Garajeh%2C+Mohammad&rft.au=Lakes%2C+Tobia&rft.date=2023-02-23&rft.pub=Routledge&rft.issn=0964-0568&rft.eissn=1360-0559&rft.volume=66&rft.issue=3&rft.spage=665&rft.epage=697&rft_id=info:doi/10.1080%2F09640568.2021.2001317&rft.externalDocID=2001317 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-0568&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-0568&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-0568&client=summon |