Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine

With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Onl...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental planning and management Vol. 66; no. 3; pp. 665 - 697
Main Authors Feizizadeh, Bakhtiar, Omarzadeh, Davoud, Kazemi Garajeh, Mohammad, Lakes, Tobia, Blaschke, Thomas
Format Journal Article
LanguageEnglish
Published Abingdon Routledge 23.02.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran.
AbstractList With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as progress in semi-automated and automated classification techniques enable the (semi-) automated remote monitoring and analysis of large areas. Online platforms such as Google Earth Engine (GEE) bring data-driven techniques to the desktops of researchers while changing workflows and making excessive data downloads redundant. We present a study that utilizes machine learning algorithms on the GEE cloud computing platform for land use/land cover (LULC) mapping and change detection analysis using a Landsat satellite image time series. We applied different machine learning techniques to data from an environmentally sensitive area in Northern Iran. We tested their efficiency for LULC mapping and change detection analysis using the support vector machine (SVM), random forest (RF) and classification and regression tree (CART). We obtained LULC maps for the years 2000, 2005, 2010, 2015 and 2020. Training data was collected from field operations and historical datasets, and the respective LULC maps were validated using ground control points. In addition, we validated the reliability of the results through a spatial uncertainty analysis using Dempster-Shafer Theory (DST). The resulting accuracies of the classification outcomes varied significantly. SVM performed best with accuracies of 90.25%, 91.84%, 89.02%, 93.35% and 95.65% for 2000, 2005, 2010, 2015 and 2020, respectively. The spatial uncertainty analysis also validated the efficiency of SVM compared to RF and CART. The results confirm the potential of machine learning techniques for time series LULC mapping on the GEE platform while lowering the barriers to analyzing large amounts of satellite data. The results are also critical for decision-makers and authorities for analyzing the LULC changes and developing the respective environmental protection and polices in Northern Iran.
Author Lakes, Tobia
Omarzadeh, Davoud
Kazemi Garajeh, Mohammad
Blaschke, Thomas
Feizizadeh, Bakhtiar
Author_xml – sequence: 1
  givenname: Bakhtiar
  orcidid: 0000-0002-3367-2925
  surname: Feizizadeh
  fullname: Feizizadeh, Bakhtiar
  organization: Department of Geography, Humboldt-Universitaet zu Berlin
– sequence: 2
  givenname: Davoud
  orcidid: 0000-0002-7904-6903
  surname: Omarzadeh
  fullname: Omarzadeh, Davoud
  organization: Faculty of Planning and Environmental Sciences, Department of Remote Sensing and GIS
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0002-7195-2813
  surname: Kazemi Garajeh
  fullname: Kazemi Garajeh, Mohammad
  organization: Faculty of Planning and Environmental Sciences, Department of Remote Sensing and GIS
– sequence: 4
  givenname: Tobia
  orcidid: 0000-0001-8443-7899
  surname: Lakes
  fullname: Lakes, Tobia
  organization: Department of Geography, Humboldt-Universitaet zu Berlin
– sequence: 5
  givenname: Thomas
  orcidid: 0000-0002-1860-8458
  surname: Blaschke
  fullname: Blaschke, Thomas
  organization: Department of Geoinformatics, University of Salzburg
BookMark eNqFkUGLFDEQhYOs4OzoTxACXrz0biXd6UnwoizjKqx40XOoTiezWTLJmGRW5t-bZtbLHpRABVLfq8rjXZKLmKIl5C2DKwYSrkGNA4hRXnHgrBVgPdu8ICvWj9CBEOqCrBamW6BX5LKUBwAQPRtXJH1Dc--jpcFijj7u6IwVuzn7RxspHg45NcAW6lKmAeNMj8Vem_RoM9239qJYXmu2rWLEcCq-NGhp3Ka0C5ZuMdd7uo27tuc1eekwFPvm6V6Tn5-3P26-dHffb7_efLrrzNBvaucQN1KB4YxzNaBsvxfGAUzTABNa6eQkhVJqnO3sJAjGmYV5NFxNbmaO92vy_jy3Gfh1tKXqvS_GhmbBpmPRXDKmZK_aWZN3z9CHdMzNSaM2Ixs4MDE0Spwpk1Mp2Tp9yH6P-aQZ6CUG_TcGvcSgn2Joug_PdMZXrD7FmtGH_6o_ntU-tgD2-DvlMOuKp5CyyxiNL7r_94g_28KivQ
CitedBy_id crossref_primary_10_1007_s11869_023_01416_y
crossref_primary_10_1080_13658816_2024_2401914
crossref_primary_10_29128_geomatik_1363873
crossref_primary_10_1007_s10661_023_11280_z
crossref_primary_10_1007_s12040_024_02305_3
crossref_primary_10_1007_s12145_024_01644_5
crossref_primary_10_1080_15481603_2021_2000350
crossref_primary_10_2298_GSGD2302145L
crossref_primary_10_1051_e3sconf_202341803006
crossref_primary_10_3390_rs14143407
crossref_primary_10_1007_s12145_024_01517_x
crossref_primary_10_1080_23311932_2024_2448597
crossref_primary_10_29407_intensif_v6i1_17083
crossref_primary_10_3390_app12020593
crossref_primary_10_3390_rs14133041
crossref_primary_10_3390_rs15235520
crossref_primary_10_1016_j_heliyon_2023_e21245
crossref_primary_10_3390_land14020313
crossref_primary_10_26833_ijeg_1118542
crossref_primary_10_3390_s22124506
crossref_primary_10_1007_s41651_023_00142_4
crossref_primary_10_3390_app14083484
crossref_primary_10_24018_ejai_2024_3_3_40
crossref_primary_10_1007_s12040_023_02099_w
crossref_primary_10_1016_j_agwat_2024_109175
crossref_primary_10_1038_s41598_023_28244_5
crossref_primary_10_3390_rs14112516
crossref_primary_10_1007_s41651_025_00218_3
crossref_primary_10_3389_frsen_2024_1374862
crossref_primary_10_3390_rs14143253
crossref_primary_10_1016_j_rineng_2024_102854
crossref_primary_10_1016_j_jag_2023_103637
crossref_primary_10_3390_su152416593
crossref_primary_10_1007_s10661_023_12289_0
crossref_primary_10_1088_1748_9326_ad9491
crossref_primary_10_1109_JSTARS_2022_3185185
crossref_primary_10_1007_s12145_024_01589_9
crossref_primary_10_1016_j_jenvman_2024_122619
crossref_primary_10_1007_s41976_024_00137_9
crossref_primary_10_1007_s41976_025_00197_5
crossref_primary_10_1038_s41598_024_53604_0
crossref_primary_10_1007_s10980_024_01914_z
crossref_primary_10_1007_s12145_024_01586_y
crossref_primary_10_31548_forest_1_2023_72
crossref_primary_10_3390_land12040804
crossref_primary_10_1007_s40808_023_01895_z
crossref_primary_10_1080_10106049_2024_2329665
crossref_primary_10_1080_1747423X_2023_2218372
crossref_primary_10_1109_JSTARS_2023_3348874
crossref_primary_10_3390_rs16081449
crossref_primary_10_1016_j_ejrs_2024_03_003
crossref_primary_10_29130_dubited_1462304
crossref_primary_10_1007_s10661_024_13178_w
crossref_primary_10_1007_s12518_024_00549_8
crossref_primary_10_1016_j_pce_2024_103796
crossref_primary_10_1016_j_gecco_2024_e03010
crossref_primary_10_1038_s41598_024_83211_y
crossref_primary_10_1109_ACCESS_2023_3325281
crossref_primary_10_1080_07038992_2022_2072277
crossref_primary_10_3390_pollutants4010001
crossref_primary_10_47818_DRArch_2022_v3i2055
crossref_primary_10_1007_s10661_024_12819_4
crossref_primary_10_1080_15481603_2023_2233756
crossref_primary_10_1016_j_jaridenv_2022_104721
crossref_primary_10_1016_j_ejrh_2022_101072
crossref_primary_10_1080_19376812_2024_2424378
crossref_primary_10_3390_rs16152773
crossref_primary_10_1007_s10708_025_11305_9
crossref_primary_10_1007_s10661_022_10837_8
crossref_primary_10_1007_s11356_024_33094_3
crossref_primary_10_1016_j_asr_2024_09_039
crossref_primary_10_3390_su16114738
crossref_primary_10_1080_1573062X_2025_2451891
crossref_primary_10_1007_s13201_022_01599_2
crossref_primary_10_1016_j_srs_2022_100039
crossref_primary_10_3390_hydrology11120209
crossref_primary_10_1007_s12145_025_01757_5
crossref_primary_10_1016_j_jastp_2025_106483
crossref_primary_10_3390_app15063155
crossref_primary_10_3390_geosciences14060152
crossref_primary_10_1080_19475705_2023_2290350
crossref_primary_10_1007_s00367_024_00793_2
crossref_primary_10_1016_j_clwat_2025_100070
crossref_primary_10_1007_s10661_024_13118_8
crossref_primary_10_1007_s12665_023_10901_7
crossref_primary_10_1016_j_rsase_2024_101367
crossref_primary_10_3390_land14030564
crossref_primary_10_3390_pollutants3020019
Cites_doi 10.1016/j.fiae.2015.03.002
10.1016/j.jag.2019.04.001
10.1016/j.isprsjprs.2013.03.006
10.1007/s13762-012-0143-6
10.5220/0007675300330040
10.1002/wrcr.20078
10.1016/j.catena.2020.104751
10.1016/j.envsoft.2014.10.007
10.1016/j.catena.2019.104150
10.5194/isprs-archives-XLII-3-1467-2018
10.1016/j.geoderma.2017.03.013
10.1088/1755-1315/98/1/012042
10.1016/j.geomorph.2014.04.006
10.1016/j.cageo.2013.11.009
10.3390/su122410413
10.1007/s11284-006-0048-2
10.1038/nmeth.4370
10.1109/IGARSS.2015.7326032
10.1016/j.apgeog.2011.10.010
10.1016/j.isprsjprs.2020.06.022
10.1080/07038992.2019.1704622
10.3390/rs13010010
10.1016/j.scitotenv.2016.10.176
10.1016/S0034-4257(01)00295-4
10.1016/j.isprsjprs.2015.03.002
10.1016/j.rse.2012.09.005
10.1016/j.isprsjprs.2018.12.011
10.1007/s12517-017-3012-2
10.1016/j.envsoft.2020.104694
10.1016/j.compag.2016.08.008
10.1016/j.rse.2013.09.025
10.3390/rs11212583
10.1080/10106049.2018.1425738
10.1016/j.cola.2019.100908
10.1007/s10661-015-4684-2
10.1002/ldr.3312
10.1016/j.rse.2017.10.005
10.1007/s40333-015-0057-5
10.1016/j.isprsjprs.2009.06.004
10.1016/S0169-2046(04)00083-0
10.4236/jgis.2012.43027
10.1016/j.apgeog.2014.12.012
10.1007/s12518-021-00393-0
10.1016/j.patrec.2005.08.011
10.1080/10106049.2020.1810327
10.3390/rs12030346
10.4236/ijg.2017.84033
10.1016/j.catena.2014.10.017
10.1109/LGRS.2017.2763979
10.1016/j.ecoinf.2020.101059
10.1016/j.compag.2019.104989
10.1080/14724049.2019.1597876
10.1016/j.rse.2011.05.013
10.1016/j.rse.2010.10.016
10.3390/rs11243015
10.1016/j.advwatres.2020.103562
10.1111/tgis.12688
10.1016/j.landurbplan.2009.10.006
10.1016/j.scs.2020.102584
10.1016/j.rse.2017.02.021
10.1016/j.scitotenv.2019.136092
10.1016/j.geomorph.2017.06.002
10.1007/s11269-011-9909-8
10.1002/ldr.1137
10.1016/j.catena.2021.105585
10.1016/j.isprsjprs.2011.11.002
10.3390/ijerph17082749
10.1016/j.apgeog.2017.02.006
10.1016/j.geomorph.2017.09.006
10.1016/j.isprsjprs.2020.01.001
10.29252/jgit.4.2.83
10.1002/ldr.2507
10.1016/j.envpol.2020.114635
10.1080/09640568.2018.1427561
10.1007/s11004-011-9379-9
10.1109/JSTARS.2016.2560141
10.1007/s00704-012-0651-9
10.1007/s10064-010-0303-1
10.1080/13658816.2013.869821
10.1016/j.rse.2019.03.009
10.1080/09640568.2020.1775561
10.1016/j.catena.2019.104394
10.1007/s12145-021-00644-z
10.1016/j.catena.2020.105073
10.1007/978-1-4757-2440-0
10.1046/j.0016-8025.2001.00808.x
10.1016/j.proenv.2010.10.006
10.1080/04353676.2020.1832753
10.1080/13658816.2017.1324976
10.1016/j.rsase.2020.100287
10.1016/j.cageo.2020.104470
10.1007/s12665-020-08953-0
10.1080/09640568.2016.1269643
10.1016/j.gsf.2020.05.010
10.1016/j.apgeog.2011.08.013
10.1109/IGARSS.2003.1295258
10.1016/j.envres.2009.12.007
10.1016/j.rse.2020.111943
10.1016/j.ecolind.2020.106173
10.1016/j.landusepol.2018.10.036
10.1016/j.rse.2011.08.024
10.1016/j.compenvurbsys.2012.06.003
10.1109/JSTARS.2014.2350036
10.3390/agronomy9050239
10.18869/acadpub.ijae.6.2.27
10.1016/j.cageo.2013.10.008
10.3390/rs9010095
10.3390/s19224893
10.1080/09640568.2019.1594726
10.1111/insr.12016
ContentType Journal Article
Copyright 2021 Newcastle University 2021
2021 Newcastle University
Copyright_xml – notice: 2021 Newcastle University 2021
– notice: 2021 Newcastle University
DBID AAYXX
CITATION
7ST
7TA
7TQ
7U7
8BJ
8FD
C1K
DHY
DON
FQK
FR3
JBE
JG9
KR7
SOI
7S9
L.6
DOI 10.1080/09640568.2021.2001317
DatabaseName CrossRef
Environment Abstracts
Materials Business File
PAIS Index
Toxicology Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Environmental Sciences and Pollution Management
PAIS International
PAIS International (Ovid)
International Bibliography of the Social Sciences
Engineering Research Database
International Bibliography of the Social Sciences
Materials Research Database
Civil Engineering Abstracts
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
International Bibliography of the Social Sciences (IBSS)
Technology Research Database
Toxicology Abstracts
PAIS International
Engineering Research Database
Environment Abstracts
Materials Business File
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Architecture
Law
Environmental Sciences
EISSN 1360-0559
EndPage 697
ExternalDocumentID 10_1080_09640568_2021_2001317
2001317
Genre Research Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID -~X
.7I
.QK
0BK
0R~
29K
4.4
4P2
53G
5GY
5VS
7WY
8FL
AABXT
AAGZJ
AAHBH
AAIKC
AAMFJ
AAMIU
AAMNW
AAPUL
AATTQ
AAZMC
ABCCY
ABFIM
ABJNI
ABLIJ
ABPEM
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACIWK
ACPRK
ACTIO
ACTOA
ADAHI
ADCVX
ADKVQ
ADLRE
ADXPE
AECIN
AEGXH
AEISY
AEKEX
AEOZL
AEPSL
AEYOC
AEZRU
AFRAH
AGDLA
AGMYJ
AGRBW
AHDZW
AIJEM
AJWEG
AKBVH
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
D-I
DGFLZ
DKSSO
DU5
EBS
ECR
EDH
EOH
E~B
E~C
G-F
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
I-F
IPNFZ
J.O
K60
K6~
KYCEM
LJTGL
M4Z
ML.
MS~
NA5
NY-
O9-
P2P
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TBQAZ
TDBHL
TEG
TFH
TFL
TFW
TNTFI
TRJHH
TUROJ
U5U
UT5
UT9
VAE
~01
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AEFOU
AFRVT
AIYEW
ALSLI
AMPGV
CITATION
7ST
7TA
7TQ
7U7
8BJ
8FD
C1K
DHY
DON
FQK
FR3
JBE
JG9
KR7
SOI
TASJS
7S9
L.6
ID FETCH-LOGICAL-c437t-faa7890c212294a89645cf00bb40bae8f8b859996dedf805121e0d6c29bfd1f23
ISSN 0964-0568
1360-0559
IngestDate Wed Jul 02 04:31:40 EDT 2025
Wed Aug 13 08:09:58 EDT 2025
Tue Jul 01 02:02:50 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Wed Dec 25 09:05:05 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-faa7890c212294a89645cf00bb40bae8f8b859996dedf805121e0d6c29bfd1f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7195-2813
0000-0001-8443-7899
0000-0002-7904-6903
0000-0002-1860-8458
0000-0002-3367-2925
PQID 2761420154
PQPubID 33087
PageCount 33
ParticipantIDs informaworld_taylorfrancis_310_1080_09640568_2021_2001317
crossref_primary_10_1080_09640568_2021_2001317
crossref_citationtrail_10_1080_09640568_2021_2001317
proquest_journals_2761420154
proquest_miscellaneous_2811983939
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-23
PublicationDateYYYYMMDD 2023-02-23
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-23
  day: 23
PublicationDecade 2020
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Journal of environmental planning and management
PublicationYear 2023
Publisher Routledge
Taylor & Francis Ltd
Publisher_xml – name: Routledge
– name: Taylor & Francis Ltd
References CIT0071
CIT0074
Ran X. Li. (CIT0088) 2008
CIT0073
CIT0076
CIT0078
CIT0111
CIT0077
CIT0110
Aronoff S. (CIT0008) 1985; 51
CIT0070
Bai S. B. (CIT0009) 2008; 10
CIT0113
CIT0079
CIT0112
CIT0115
CIT0114
CIT0117
CIT0116
CIT0119
CIT0118
CIT0083
CIT0085
CIT0084
CIT0087
CIT0120
CIT0086
CIT0001
CIT0089
CIT0121
CIT0081
CIT0080
Mirzayi Hasanlo A. (CIT0067) 2020; 46
CIT0003
CIT0002
CIT0005
CIT0004
CIT0007
CIT0006
CIT0094
CIT0093
CIT0096
CIT0095
CIT0010
CIT0098
CIT0097
CIT0012
CIT0011
CIT0099
CIT0092
CIT0091
Pedregosa Fabian (CIT0082) 2011; 12
CIT0014
CIT0013
CIT0016
CIT0015
CIT0018
CIT0017
CIT0019
CIT0021
CIT0020
CIT0023
CIT0022
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
CIT0030
CIT0032
CIT0031
CIT0034
CIT0033
Leh M. (CIT0060) 2013; 24
CIT0036
CIT0035
CIT0038
CIT0037
CIT0039
CIT0041
CIT0040
CIT0043
CIT0042
CIT0045
CIT0044
CIT0047
CIT0200
CIT0046
CIT0049
CIT0048
CIT0050
CIT0051
Riggan N. D. (CIT0090) 2009; 63
CIT0054
CIT0053
CIT0056
CIT0055
Nascetti A. (CIT0075) 2017; 42
CIT0058
CIT0057
CIT0059
CIT0061
CIT0063
CIT0062
CIT0065
CIT0064
CIT0100
CIT0066
Nabi Zadeh Balkhanlou A. (CIT0072) 2020; 4
CIT0109
CIT0069
CIT0102
CIT0068
CIT0101
CIT0104
CIT0103
CIT0106
CIT0105
CIT0108
CIT0107
References_xml – ident: CIT0025
  doi: 10.1016/j.fiae.2015.03.002
– ident: CIT0119
  doi: 10.1016/j.jag.2019.04.001
– ident: CIT0054
  doi: 10.1016/j.isprsjprs.2013.03.006
– ident: CIT0100
  doi: 10.1007/s13762-012-0143-6
– ident: CIT0042
  doi: 10.5220/0007675300330040
– ident: CIT0111
  doi: 10.1002/wrcr.20078
– ident: CIT0083
  doi: 10.1016/j.catena.2020.104751
– ident: CIT0110
  doi: 10.1016/j.envsoft.2014.10.007
– ident: CIT0079
  doi: 10.1016/j.catena.2019.104150
– ident: CIT0089
  doi: 10.5194/isprs-archives-XLII-3-1467-2018
– volume: 42
  year: 2017
  ident: CIT0075
  publication-title: International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences
– ident: CIT0109
  doi: 10.1016/j.geoderma.2017.03.013
– ident: CIT0029
  doi: 10.1088/1755-1315/98/1/012042
– ident: CIT0097
  doi: 10.1016/j.geomorph.2014.04.006
– volume: 51
  start-page: 99
  year: 1985
  ident: CIT0008
  publication-title: Photogrammetric Engineering and Remote Sensing
– ident: CIT0033
  doi: 10.1016/j.cageo.2013.11.009
– ident: CIT0069
  doi: 10.3390/su122410413
– ident: CIT0120
  doi: 10.1007/s11284-006-0048-2
– ident: CIT0058
  doi: 10.1038/nmeth.4370
– ident: CIT0107
– ident: CIT0048
  doi: 10.1109/IGARSS.2015.7326032
– ident: CIT0005
  doi: 10.1016/j.apgeog.2011.10.010
– ident: CIT0084
  doi: 10.1016/j.isprsjprs.2020.06.022
– ident: CIT0036
  doi: 10.1080/07038992.2019.1704622
– ident: CIT0099
  doi: 10.3390/rs13010010
– ident: CIT0087
  doi: 10.1016/j.scitotenv.2016.10.176
– ident: CIT0040
  doi: 10.1016/S0034-4257(01)00295-4
– ident: CIT0024
  doi: 10.1016/j.isprsjprs.2015.03.002
– start-page: 240
  volume-title: Proceedings of the International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences
  year: 2008
  ident: CIT0088
– ident: CIT0020
  doi: 10.1016/j.rse.2012.09.005
– ident: CIT0057
  doi: 10.1016/j.isprsjprs.2018.12.011
– ident: CIT0073
  doi: 10.1007/s12517-017-3012-2
– ident: CIT0118
  doi: 10.1016/j.envsoft.2020.104694
– ident: CIT0113
  doi: 10.1016/j.compag.2016.08.008
– ident: CIT0041
  doi: 10.1016/j.rse.2013.09.025
– ident: CIT0074
  doi: 10.3390/rs11212583
– ident: CIT0019
  doi: 10.1080/10106049.2018.1425738
– volume: 46
  start-page: 537
  issue: 3
  year: 2020
  ident: CIT0067
  publication-title: Journal of the Earth and Space Physics
– ident: CIT0062
  doi: 10.1016/j.cola.2019.100908
– volume: 10
  year: 2008
  ident: CIT0009
  publication-title: Geophysical Research Abstracts
– ident: CIT0068
  doi: 10.1007/s10661-015-4684-2
– ident: CIT0077
  doi: 10.1002/ldr.3312
– ident: CIT0012
  doi: 10.1016/j.rse.2017.10.005
– ident: CIT0066
  doi: 10.1007/s40333-015-0057-5
– ident: CIT0116
– ident: CIT0015
  doi: 10.1016/j.isprsjprs.2009.06.004
– ident: CIT0081
  doi: 10.1016/S0169-2046(04)00083-0
– ident: CIT0006
  doi: 10.4236/jgis.2012.43027
– ident: CIT0023
  doi: 10.1016/j.apgeog.2014.12.012
– ident: CIT0105
  doi: 10.1007/s12518-021-00393-0
– ident: CIT0044
  doi: 10.1016/j.patrec.2005.08.011
– ident: CIT0070
  doi: 10.1080/10106049.2020.1810327
– ident: CIT0085
  doi: 10.3390/rs12030346
– ident: CIT0092
  doi: 10.4236/ijg.2017.84033
– ident: CIT0101
  doi: 10.1016/j.catena.2014.10.017
– ident: CIT0030
  doi: 10.1109/LGRS.2017.2763979
– ident: CIT0016
  doi: 10.1016/j.ecoinf.2020.101059
– ident: CIT0117
  doi: 10.1016/j.compag.2019.104989
– ident: CIT0043
  doi: 10.1080/14724049.2019.1597876
– volume: 4
  start-page: 205
  issue: 7
  year: 2020
  ident: CIT0072
  publication-title: Journal of the Geographical Engineering of Territory
– ident: CIT0098
  doi: 10.1016/j.rse.2011.05.013
– ident: CIT0027
  doi: 10.1016/j.rse.2010.10.016
– ident: CIT0007
  doi: 10.3390/rs11243015
– ident: CIT0056
  doi: 10.1016/j.advwatres.2020.103562
– ident: CIT0003
  doi: 10.1111/tgis.12688
– ident: CIT0061
  doi: 10.1016/j.landurbplan.2009.10.006
– ident: CIT0034
  doi: 10.1016/j.scs.2020.102584
– ident: CIT0053
  doi: 10.1016/j.rse.2017.02.021
– ident: CIT0112
  doi: 10.1016/j.scitotenv.2019.136092
– ident: CIT0039
  doi: 10.1016/j.geomorph.2017.06.002
– ident: CIT0047
  doi: 10.1007/s11269-011-9909-8
– volume: 24
  start-page: 409
  issue: 5
  year: 2013
  ident: CIT0060
  publication-title: Land Degradation & Development
  doi: 10.1002/ldr.1137
– ident: CIT0038
  doi: 10.1016/j.catena.2021.105585
– ident: CIT0091
  doi: 10.1016/j.isprsjprs.2011.11.002
– ident: CIT0076
  doi: 10.3390/ijerph17082749
– ident: CIT0078
  doi: 10.1016/j.apgeog.2017.02.006
– ident: CIT0086
  doi: 10.1016/j.geomorph.2017.09.006
– ident: CIT0114
  doi: 10.1016/j.isprsjprs.2020.01.001
– ident: CIT0018
  doi: 10.29252/jgit.4.2.83
– ident: CIT0106
  doi: 10.1002/ldr.2507
– ident: CIT0017
  doi: 10.1016/j.envpol.2020.114635
– ident: CIT0096
  doi: 10.1080/09640568.2018.1427561
– ident: CIT0010
  doi: 10.1007/s11004-011-9379-9
– ident: CIT0059
  doi: 10.1109/JSTARS.2016.2560141
– volume: 63
  start-page: 145
  issue: 1
  year: 2009
  ident: CIT0090
  publication-title: Journal of the Arkansas Academy of Science
– ident: CIT0022
  doi: 10.1007/s00704-012-0651-9
– ident: CIT0050
  doi: 10.1007/s10064-010-0303-1
– ident: CIT0032
  doi: 10.1080/13658816.2013.869821
– volume: 12
  start-page: 2825
  year: 2011
  ident: CIT0082
  publication-title: The Journal of Machine Learning Research
– ident: CIT0121
  doi: 10.1016/j.rse.2019.03.009
– ident: CIT0035
  doi: 10.1080/09640568.2020.1775561
– ident: CIT0063
  doi: 10.1016/j.catena.2019.104394
– ident: CIT0001
  doi: 10.1007/s12145-021-00644-z
– ident: CIT0037
  doi: 10.1016/j.catena.2020.105073
– ident: CIT0108
  doi: 10.1007/978-1-4757-2440-0
– ident: CIT0071
  doi: 10.1046/j.0016-8025.2001.00808.x
– ident: CIT0004
  doi: 10.1016/j.proenv.2010.10.006
– ident: CIT0095
  doi: 10.1080/04353676.2020.1832753
– ident: CIT0064
  doi: 10.1080/13658816.2017.1324976
– ident: CIT0094
  doi: 10.1016/j.rsase.2020.100287
– ident: CIT0028
  doi: 10.1016/j.cageo.2020.104470
– ident: CIT0026
  doi: 10.1007/s12665-020-08953-0
– ident: CIT0031
  doi: 10.1080/09640568.2016.1269643
– ident: CIT0115
  doi: 10.1016/j.gsf.2020.05.010
– ident: CIT0102
  doi: 10.1016/j.apgeog.2011.08.013
– ident: CIT0013
  doi: 10.1109/IGARSS.2003.1295258
– ident: CIT0051
  doi: 10.1016/j.envres.2009.12.007
– ident: CIT0103
  doi: 10.1016/j.rse.2020.111943
– ident: CIT0045
  doi: 10.1016/j.ecolind.2020.106173
– ident: CIT0049
  doi: 10.1016/j.landusepol.2018.10.036
– ident: CIT0046
  doi: 10.1016/j.rse.2011.08.024
– ident: CIT0080
  doi: 10.1016/j.compenvurbsys.2012.06.003
– ident: CIT0014
  doi: 10.1109/JSTARS.2014.2350036
– ident: CIT0104
  doi: 10.3390/agronomy9050239
– ident: CIT0011
  doi: 10.18869/acadpub.ijae.6.2.27
– ident: CIT0021
  doi: 10.1016/j.cageo.2013.10.008
– ident: CIT0055
  doi: 10.3390/rs9010095
– ident: CIT0093
  doi: 10.3390/s19224893
– ident: CIT0002
  doi: 10.1080/09640568.2019.1594726
– ident: CIT0200
– ident: CIT0065
  doi: 10.1111/insr.12016
SSID ssj0005316
Score 2.6213722
Snippet With the recent advances in earth observation technologies, the increasing availability of data from more and more different satellite sensors as well as...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 665
SubjectTerms Algorithms
Analysis
Automation
Change detection
Classification
Cloud computing
Cognitive style
comparative approach Google Earth Engine
Data
data collection
Daylight saving
Decision analysis
Decision makers
Decision making
Decision trees
Earth
Environmental protection
Internet
Iran
Land cover
Land use
land use/cover mapping
Landsat
Landsat satellites
Learning algorithms
Machine learning
Mapping
Regression analysis
Reliability
Reliability analysis
Remote monitoring
Remote sensing
Satellite imagery
Satellites
Spatial analysis
spatial uncertainty analysis
Support vector machines
Time series
time series analysis
Trend analysis
Uncertainty
Uncertainty analysis
Urmia lake basin
Title Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine
URI https://www.tandfonline.com/doi/abs/10.1080/09640568.2021.2001317
https://www.proquest.com/docview/2761420154
https://www.proquest.com/docview/2811983939
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFLW67gUhIShMlA1kJN6qVEmc5uOxYu0qtMJLJyZeIidx1m5LU3XJkPrT-HXcaztpSofGx0sVxUkc5ZxeX9v3nkvIB54IOzEDDggEqeF4wjS46aHkvgPDS2LasVTXn352JxfOp8vBZav1oxG1VBZRP948mFfyL6jCOcAVs2T_Atn6oXACjgFf-AWE4fePMJ7KSEhRlX646mG8p5Gs0YLVauFCKi7gwmTSK7GM4jjGsM1exlerKkOxwMhYONICJaVcQDjL86tb0Rtx3NlRuoW_cWUb2XKY2KXrIMknZ3vhNWOx2Cw2gN5c7XfczMHI1CHCXzK-rhtP-X1eJvWYwDciW_TO-Jpfq_ZpPudZxusrzvmNsnqzPFrw5oKGzWSCOKspuBsJpdcqXccAT00ZaqEsNXNxF1_LiWtTrgq4aMqyhl12VUEKPcS7KiR4b_TQ4ZbQG3bWh5eTKwgWU-mlvwhz65YDcmjDFMVuk8Ph5PTb122AEZOFd-uXr_LHUNn9oS52PKMd3dw9P0E6P7Pn5JmGmg4VBV-Qllh2yNNhYxOqQ45GTRZQPWjcdcjBOf_-kuSarLQiK22QlW7JSuGFKJKVlpgwilSlmqoUz0qq0oqqVFKVKqpSSVWqqPqKXIxHs48TQ1f7MGKHeYWRco5J2TH4UnbgcB8-0SBOTTOKHDPiwk_9yB_g9DwRSerDWGJbwkzc2A6iNLFSmx2R9jJfiteEekEQpyibkgaxwwPf574nfMbgMjf2rbRLnOpLh7GWwseKLLehVSnmaoBCBCjUAHVJv75tpbRgHrshaMIYFnIRLlUVc0L2yL0nFeahNjl3oe2BN23jtKdL3tfNMCDgLh9firyEa3zLCmDaw4I3_9H9MXmy_W-ekHaxLsVbcL-L6J3m-U985de6
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4NeGBC2kY3RBkbnrTXdImdNvYjmsoy1vIwFYk3y3HsThprJpoKib-eu8SBsgnxwFuU-JL4193Z_u47gM-mdLyMlcEeUD5KMxdHJs6Icj9F81LG3Dbs-tOzUX6enl4ML9ZiYQhWSWto3xJFNLqaJjdtRneQuC_odqOfMSJkFm_WeAlawQ3YGqpU4AJsa_bzNM_vgR6iSYBKQhFJdXE8j73ogYV6wF_6n75ujNDJa7Dd77fYk9-DVV0M7M0_zI7Pq98beBV8VHbcDqpdeOEWPdg5Xjty6MHe-D5CDssGFbHswcbEXL-FatqANB0LWSnmjKCoUXlFypV1ROZuybDajMCVbEXhgYQnZX8McUbMGd2tCbKLVy1zCiOU_px9q6r5pWNjHPW_WEuo-A7OT8azr3kUcjtEFvuojrwxFIJr0XJylRqJNR5aH8dFkcaFcdLLQg5pMVa60kvUHDxxcTmyXBW-TDwXe7C5qBZuH1imlPVEkuGVTY2S0sjMSSGw2MjKxPch7fpT20B8Tvk3LnXS8aOG9tbU3jq0dx8Gd2J_W-aPpwTU-mDRdbPl4tv8KFo8IXvYjSwdlMhS8wx9J05Obh8-3T3G6U9nOmbhqhWWkUmi0MkV6uAZnz-C7Xw2nejJ97Mf7-ElPhJN2L44hM36auU-oONVFx_DzLoF5SweuQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xTUJo0oDCRNkAI_GakthpYj9Oo6WMbUJok3izHH8UidFMa6pJ_PW7S5x9gNAe9hYlviR2znfn-He_A_hgnOcuVQa_gApJXvo0MWlJlPs5uheXctuy6x8dF7PT_ODHuEcTLiOsktbQoSOKaG01Te5zF3pE3EeMujHMKAiYxdslXoZOcA02CvRHqOQbJ98PZrMbnIdo65-SUEJSfRrP_250x0HdoS_9x1y3Pmj6FKr-7Tvoya_RqqlG9s9fxI4P6t4z2IoRKtvrVOo5PPKLAWzu3dpwGMD25CY_DttGA7EcwNqhuXwB9VEL0fQs1qSYMwKiJu6CTCvracz9kmGvGUEr2YqSAwlNyn4bYoyYMzrbEGAXjzreFEYY_Tn7XNfzM88mqPM_WUen-BJOp5OT_VkSKzskNhdlkwRjKAHXot_kKjcSezy2IU2rKk8r42WQlRzTUsx5FyTaDZ751BWWqyq4LHCxDeuLeuFfASuVsoEoMoKyuVFSGll6KQQ2K6zMwhDy_nNqG2nPqfrGmc56dtQ43prGW8fxHsLoWuy84_24T0Dd1hXdtD9cQlcdRYt7ZHd7xdLRhCw1LzFy4hTiDuH99WWc_LSjYxa-XmEbmWUKQ1yhXj_g8e_g8bdPU3345fjrDjzBK6LN2Re7sN5crPwbjLqa6m2cV1c34x1d
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+data-driven+approaches+for+land+use%2Fcover+mapping+and+trend+analysis+using+Google+Earth+Engine&rft.jtitle=Journal+of+environmental+planning+and+management&rft.au=Feizizadeh%2C+Bakhtiar&rft.au=Omarzadeh%2C+Davoud&rft.au=Kazemi+Garajeh%2C+Mohammad&rft.au=Lakes%2C+Tobia&rft.date=2023-02-23&rft.pub=Routledge&rft.issn=0964-0568&rft.eissn=1360-0559&rft.volume=66&rft.issue=3&rft.spage=665&rft.epage=697&rft_id=info:doi/10.1080%2F09640568.2021.2001317&rft.externalDocID=2001317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0964-0568&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0964-0568&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0964-0568&client=summon