Foams of vegetable oils containing long-chain triglycerides

[Display omitted] •Stable edible oil foams without added foaming agent.•Air bubbles coated by crystals of long-chain, unsaturated triglycerides.•Packing density of crystals at air bubble surfaces in oil depends on oil type.•Thermo-responsiveness of oil foams.•Chemical composition of high melting tri...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 583; pp. 522 - 534
Main Authors Liu, Yu, Binks, Bernard P.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.02.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Stable edible oil foams without added foaming agent.•Air bubbles coated by crystals of long-chain, unsaturated triglycerides.•Packing density of crystals at air bubble surfaces in oil depends on oil type.•Thermo-responsiveness of oil foams.•Chemical composition of high melting triglyceride crystals. Can vegetable oils containing long-chain triglycerides be aerated to yield stable oil foams? This is based on the idea that cooling of vegetable oil results in the formation of crystals of certain triglyceride chain lengths and composition dispersed in liquid oil of other chain lengths and composition. Do such oleogels allow the formation of oil foams stabilised by adsorbed crystals? Using two vegetable oils, the temperatures for crystal formation are determined. Crystal dispersions were characterised using rheology and optical microscopy. Oleogels were aerated using a double beater and the effects of temperature and aeration time were investigated. The stability and microstructure of the oil foams were studied visually and using microscopy. A stable oil foam was progressively destabilised on heating. Upon cooling/warming vegetable oils, crystals of high melting triglyceride form in a low melting liquid oil - an oleogel. Such oleogels can be whipped to fabricate oil foams stabilised by fat crystals. Optimum foaming yields an over-run of ~ 40% for peanut oil and ~ 110% for olive oil. Oil foams which do not exhibit drainage, coarsening or coalescence result. We show that high melting triglyceride crystals possess a higher fraction of saturated fatty acids than the original oil. Ultra-stable oil foams can be rendered unstable by heating upon approaching the melting point of the crystals.
AbstractList Can vegetable oils containing long-chain triglycerides be aerated to yield stable oil foams? This is based on the idea that cooling of vegetable oil results in the formation of crystals of certain triglyceride chain lengths and composition dispersed in liquid oil of other chain lengths and composition. Do such oleogels allow the formation of oil foams stabilised by adsorbed crystals?Using two vegetable oils, the temperatures for crystal formation are determined. Crystal dispersions were characterised using rheology and optical microscopy. Oleogels were aerated using a double beater and the effects of temperature and aeration time were investigated. The stability and microstructure of the oil foams were studied visually and using microscopy. A stable oil foam was progressively destabilised on heating.Upon cooling/warming vegetable oils, crystals of high melting triglyceride form in a low melting liquid oil - an oleogel. Such oleogels can be whipped to fabricate oil foams stabilised by fat crystals. Optimum foaming yields an over-run of ~ 40% for peanut oil and ~ 110% for olive oil. Oil foams which do not exhibit drainage, coarsening or coalescence result. We show that high melting triglyceride crystals possess a higher fraction of saturated fatty acids than the original oil. Ultra-stable oil foams can be rendered unstable by heating upon approaching the melting point of the crystals.
Can vegetable oils containing long-chain triglycerides be aerated to yield stable oil foams? This is based on the idea that cooling of vegetable oil results in the formation of crystals of certain triglyceride chain lengths and composition dispersed in liquid oil of other chain lengths and composition. Do such oleogels allow the formation of oil foams stabilised by adsorbed crystals?HYPOTHESISCan vegetable oils containing long-chain triglycerides be aerated to yield stable oil foams? This is based on the idea that cooling of vegetable oil results in the formation of crystals of certain triglyceride chain lengths and composition dispersed in liquid oil of other chain lengths and composition. Do such oleogels allow the formation of oil foams stabilised by adsorbed crystals?Using two vegetable oils, the temperatures for crystal formation are determined. Crystal dispersions were characterised using rheology and optical microscopy. Oleogels were aerated using a double beater and the effects of temperature and aeration time were investigated. The stability and microstructure of the oil foams were studied visually and using microscopy. A stable oil foam was progressively destabilised on heating.EXPERIMENTSUsing two vegetable oils, the temperatures for crystal formation are determined. Crystal dispersions were characterised using rheology and optical microscopy. Oleogels were aerated using a double beater and the effects of temperature and aeration time were investigated. The stability and microstructure of the oil foams were studied visually and using microscopy. A stable oil foam was progressively destabilised on heating.Upon cooling/warming vegetable oils, crystals of high melting triglyceride form in a low melting liquid oil - an oleogel. Such oleogels can be whipped to fabricate oil foams stabilised by fat crystals. Optimum foaming yields an over-run of ~ 40% for peanut oil and ~ 110% for olive oil. Oil foams which do not exhibit drainage, coarsening or coalescence result. We show that high melting triglyceride crystals possess a higher fraction of saturated fatty acids than the original oil. Ultra-stable oil foams can be rendered unstable by heating upon approaching the melting point of the crystals.FINDINGSUpon cooling/warming vegetable oils, crystals of high melting triglyceride form in a low melting liquid oil - an oleogel. Such oleogels can be whipped to fabricate oil foams stabilised by fat crystals. Optimum foaming yields an over-run of ~ 40% for peanut oil and ~ 110% for olive oil. Oil foams which do not exhibit drainage, coarsening or coalescence result. We show that high melting triglyceride crystals possess a higher fraction of saturated fatty acids than the original oil. Ultra-stable oil foams can be rendered unstable by heating upon approaching the melting point of the crystals.
[Display omitted] •Stable edible oil foams without added foaming agent.•Air bubbles coated by crystals of long-chain, unsaturated triglycerides.•Packing density of crystals at air bubble surfaces in oil depends on oil type.•Thermo-responsiveness of oil foams.•Chemical composition of high melting triglyceride crystals. Can vegetable oils containing long-chain triglycerides be aerated to yield stable oil foams? This is based on the idea that cooling of vegetable oil results in the formation of crystals of certain triglyceride chain lengths and composition dispersed in liquid oil of other chain lengths and composition. Do such oleogels allow the formation of oil foams stabilised by adsorbed crystals? Using two vegetable oils, the temperatures for crystal formation are determined. Crystal dispersions were characterised using rheology and optical microscopy. Oleogels were aerated using a double beater and the effects of temperature and aeration time were investigated. The stability and microstructure of the oil foams were studied visually and using microscopy. A stable oil foam was progressively destabilised on heating. Upon cooling/warming vegetable oils, crystals of high melting triglyceride form in a low melting liquid oil - an oleogel. Such oleogels can be whipped to fabricate oil foams stabilised by fat crystals. Optimum foaming yields an over-run of ~ 40% for peanut oil and ~ 110% for olive oil. Oil foams which do not exhibit drainage, coarsening or coalescence result. We show that high melting triglyceride crystals possess a higher fraction of saturated fatty acids than the original oil. Ultra-stable oil foams can be rendered unstable by heating upon approaching the melting point of the crystals.
Author Binks, Bernard P.
Liu, Yu
Author_xml – sequence: 1
  givenname: Yu
  surname: Liu
  fullname: Liu, Yu
– sequence: 2
  givenname: Bernard P.
  surname: Binks
  fullname: Binks, Bernard P.
  email: b.p.binks@hull.ac.uk
BookMark eNqFkE1LAzEQQINUsK3-AU979LLrJJv9CHqRYlUoeOk9ZJPZNWWb1GRb6L93Sz15qKdh4L2BeTMycd4hIfcUMgq0fNxkG21jxoBBBiIDnl-RKQVRpBWFfEKmAIymohLVDZnFuAGgtCjElDwtvdrGxLfJATscVNNj4m0fE-3doKyzrkt677pUf41bMgTb9UeNwRqMt-S6VX3Eu985J-vl63rxnq4-3z4WL6tU87wa0lYwwxtUBS8EUzXkba6EgrZuVE2poTkDw7DiWpTIC6NVCY2mtKWmqaku8zl5OJ_dBf-9xzjIrY0a-1459PsoWcE4E7wU8D_KuRAi50U1ovUZ1cHHGLCV2g5qsOPbQdleUpCnsnIjT2XlqawEIceyo8r-qLtgtyocL0vPZwnHUgeLQUZt0Wk0NqAepPH2kv4DohSUDg
CitedBy_id crossref_primary_10_1021_acs_cgd_0c01361
crossref_primary_10_1016_j_crfs_2024_100690
crossref_primary_10_1016_j_foodchem_2021_129275
crossref_primary_10_1016_j_jcis_2022_01_069
crossref_primary_10_1080_01932691_2023_2301461
crossref_primary_10_3390_su14010290
crossref_primary_10_1016_j_foodres_2023_112650
crossref_primary_10_1016_j_conbuildmat_2024_137536
crossref_primary_10_1016_j_cis_2021_102404
crossref_primary_10_3390_ma16145125
crossref_primary_10_1016_j_jcis_2022_02_034
crossref_primary_10_1080_01932691_2022_2059505
crossref_primary_10_1021_acs_langmuir_1c03318
crossref_primary_10_1021_acs_langmuir_2c02413
crossref_primary_10_1016_j_cis_2024_103234
crossref_primary_10_1111_1541_4337_13284
crossref_primary_10_1016_j_jcis_2021_03_021
crossref_primary_10_1016_j_foodchem_2023_136634
crossref_primary_10_1016_j_foodchem_2022_132776
crossref_primary_10_3390_ma16062224
crossref_primary_10_5650_jos_ess23068
crossref_primary_10_1016_j_foodhyd_2023_109000
crossref_primary_10_1002_aocs_12622
crossref_primary_10_1016_j_foodchem_2024_142152
crossref_primary_10_1021_acs_langmuir_1c00410
crossref_primary_10_1080_10408398_2023_2281622
crossref_primary_10_3390_cosmetics12010015
crossref_primary_10_1016_j_foodchem_2024_142556
crossref_primary_10_1016_j_jcis_2022_11_100
Cites_doi 10.1016/j.cis.2017.02.007
10.1016/j.colsurfa.2010.02.028
10.2116/analsci.21.1457
10.1039/C8FO00536B
10.1080/01932690600992779
10.1039/C2SM27395K
10.1016/j.foodchem.2019.04.080
10.1016/j.cis.2014.04.003
10.1007/s11746-001-0380-2
10.1021/acs.langmuir.7b00860
10.1016/j.cocis.2010.05.011
10.1016/j.foodres.2014.11.044
10.1016/j.cis.2013.10.022
10.1016/j.foodchem.2019.01.134
10.1016/j.foodres.2003.09.006
10.1016/S0927-7757(96)03808-3
10.1021/jf0709909
10.1002/jsfa.1831
10.1002/ejlt.201200259
10.1021/acs.langmuir.0c01195
10.1021/acs.langmuir.7b01024
10.1016/0021-9797(84)90075-4
10.1016/S0924-2244(00)00008-X
10.1007/BF01549743
10.1016/j.foodchem.2003.09.032
10.1002/pca.633
10.1021/acs.langmuir.6b04141
10.1016/0095-8522(52)90054-8
10.1021/acsami.5b02890
10.3389/fchem.2018.00435
10.1039/C6SC00046K
10.1016/j.foodchem.2019.126047
10.1002/ejlt.201600252
10.1039/C7RA00396J
10.1002/adfm.200902007
10.1039/C3SM52748D
10.1073/pnas.1805645115
10.1021/la061204h
10.1039/C0SM01129K
10.1002/pca.634
10.1016/0924-2244(92)90187-2
10.1016/j.cis.2006.06.016
10.1016/j.foodres.2017.02.020
10.1021/acs.cgd.9b01558
10.1016/S0376-7388(03)00168-6
10.1016/j.tifs.2017.08.015
10.1039/c0cp00777c
10.1021/jf049894n
10.1016/j.colsurfa.2009.11.007
10.1016/0095-8522(50)90044-4
10.1007/s13197-017-2942-8
10.1007/s11746-011-1827-7
10.1021/acs.langmuir.5b03660
10.1007/s11746-016-2888-4
10.1039/b710226g
10.1016/j.jcis.2008.08.051
10.1016/j.fbp.2019.11.004
10.1081/FRI-120003418
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright © 2020 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright © 2020 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.jcis.2020.09.043
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1095-7103
EndPage 534
ExternalDocumentID 10_1016_j_jcis_2020_09_043
S0021979720312224
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABNUV
ABXRA
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LG5
LX6
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSQ
SSZ
T5K
TWZ
WH7
XPP
YQT
ZMT
ZU3
~02
~G-
.GJ
29K
6TJ
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CAG
CITATION
COF
D-I
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
H~9
NDZJH
NEJ
R2-
RIG
SCB
SCE
SEW
SSH
VH1
WUQ
ZGI
ZXP
7X8
7S9
L.6
ID FETCH-LOGICAL-c437t-f92d4bea54592a803f3a9a0f8ba811d1320d2e74c96e45dca60bc11f1db81c63
IEDL.DBID .~1
ISSN 0021-9797
1095-7103
IngestDate Thu Jul 10 17:02:50 EDT 2025
Fri Jul 11 00:25:47 EDT 2025
Thu Apr 24 23:02:32 EDT 2025
Tue Jul 01 01:18:57 EDT 2025
Fri Feb 23 02:45:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Long-chain triglycerides
Ultra-stable
Thermo-responsive
Vegetable oil foam
Crystals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-f92d4bea54592a803f3a9a0f8ba811d1320d2e74c96e45dca60bc11f1db81c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://hull-repository.worktribe.com/output/3643933
PQID 2449993457
PQPubID 23479
PageCount 13
ParticipantIDs proquest_miscellaneous_2524294690
proquest_miscellaneous_2449993457
crossref_citationtrail_10_1016_j_jcis_2020_09_043
crossref_primary_10_1016_j_jcis_2020_09_043
elsevier_sciencedirect_doi_10_1016_j_jcis_2020_09_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of colloid and interface science
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Binks (b0030) 2017; 33
Suja, Kar, Cates, Remmert, Savage, Fuller (b0060) 2018; 115
Ojijo, Neeman, Eger, Shimoni (b0285) 2004; 84
Truong, Prakash, Bhandari (b0170) 2019; 285
Binks, Tyowua (b0115) 2013; 9
Fameau, Saint-Jalmes (b0025) 2017; 247
Fujii, Nakamura (b0320) 2017; 33
Heymans, Tavernier, Danthine, Rimaux, van der Meeren, Dewettinck (b0145) 2018; 9
Kovalchuk, Trybala, Starov, Matar, Ivanova (b0035) 2014; 210
Campbell, Mougeot (b0005) 1999; 10
Fitzgerald, Barnes, Smart, Wilson (b0220) 2001; 78
Gautier, Destribats, Perrier-Cornet, Dechézelles, Giermanska, Héroguez, Ravaine, Leal-Calderon, Schmitt (b0315) 2007; 9
Fameau, Lam, Arnould, Gaillard, Velev, Saint-Jalmes (b0160) 2015; 31
Bootello, Garcés, Martínez-Force, Salas (b0225) 2011; 88
Che Man, Tan (b0265) 2002; 13
Garrett (b0010) 1993
Higaki, Koyano, Hachiya, Sato (b0275) 2004; 37
Zaliha, Chong, Cheow, Norizzah, Kellens (b0325) 2004; 86
Goibier, Pillement, Monteil, Faure, Leal-Calderon (b0185) 2019; 293
Murakami, Bismarck (b0095) 2010; 20
Mishima, Suzuki, Sato, Ueno (b0175) 2016; 93
Gunes, Murith, Godefroid, Pelloux, Deyber, Schafer, Breton (b0140) 2017; 33
Barba, Arrighetti, Calligaris (b0255) 2013; 115
Heymans, Tavernier, Dewettinck, van der Meeren (b0130) 2017; 69
Shrestha, Shrestha, Solans, Gonzalez, Aramaki (b0080) 2010; 353
Binks, Garvey, Vieira (b0165) 2016; 7
Mishra, Dufour, Windhab (b0190) 2020; 20
Beltrán, del Rio, Sánchez, Martínez (b0200) 2004; 52
Andrikopoulos (b0260) 2002; 18
Tan, Che Man (b0270) 2002; 13
Murakami, Kobayashi, Okazaki, Bismarck, Yamamoto (b0100) 2018; 6
Marangoni (b0240) 2005
Mishra, Bergfreund, Bertsch, Fischer, Windhab (b0195) 2020; 36
Douaire, di Bari, Norton, Sullo, Lillford, Norton (b0300) 2014; 203
Friberg, Wohn, Greene, van Gilder (b0050) 1984; 101
Binks, Marinopoulos (b0180) 2017; 95
Himawan, Starov, Stapley (b0245) 2006; 122
Devi, Khatkar (b0280) 2018; 55
Fox, Zisman (b0085) 1950; 5
Kurata, Yamaguchi, Nagai (b0205) 2005; 21
Friberg (b0020) 2010; 15
Kunieda, Shrestha, Acharya, Kato, Takase, Gutierrez (b0070) 2007; 28
Binks, Rocher, Kirkland (b0110) 2011; 7
Shrestha, Shrestha, Sharma, Aramaki (b0075) 2008; 328
Saremnejad, Mohebbi, Koocheki (b0150) 2020; 119
de Vries, Gomez, van der Linden, Scholten (b0310) 2017; 7
Macosko (b0215) 1994
Gribnau (b0210) 1992; 3
Valoppi, Calligaris, Marangoni (b0235) 2017; 119
Ross, Nishioka (b0045) 1977; 255
Brun, Delample, Harte, Lecomte, Leal-Calderon (b0135) 2015; 67
Binks, Davies, Fletcher, Sharp (b0055) 2010; 360
European Union Commission. Regulation EEC 2568/91 on the characteristics of olive oil and olive pomace and their analytical methods (1991).
Binks, Johnston, Sekine, Tyowua (b0125) 2015; 7
Shrestha, Aramaki, Kato, Takase, Kunieda (b0065) 2006; 22
Fox, Zisman (b0090) 1952; 7
Bergeron, Hanssen, Shoghl (b0040) 1997; 123–124
Bals, Kulozik (b0290) 2003; 220
Binks, Sekine, Tyowua (b0120) 2014; 10
Inglese, Famiani, Galvano, Servili, Esposto, Urbani (b0305) 2011
Schramm (b0015) 1994
Binks, Rocher (b0105) 2010; 12
Krog, Larsson (b0295) 1992; 94
Chiavaro, Vittadini, Rodriguez-Estrada, Cerretani, Bonoli, Bendini, Lercker (b0250) 2007; 55
Lei, Zhang, Lee, Tan, Lai, Wang, Qiu (b0155) 2020; 312
Truong (10.1016/j.jcis.2020.09.043_b0170) 2019; 285
Binks (10.1016/j.jcis.2020.09.043_b0030) 2017; 33
Friberg (10.1016/j.jcis.2020.09.043_b0050) 1984; 101
Gunes (10.1016/j.jcis.2020.09.043_b0140) 2017; 33
Bootello (10.1016/j.jcis.2020.09.043_b0225) 2011; 88
Shrestha (10.1016/j.jcis.2020.09.043_b0075) 2008; 328
Valoppi (10.1016/j.jcis.2020.09.043_b0235) 2017; 119
Andrikopoulos (10.1016/j.jcis.2020.09.043_b0260) 2002; 18
Mishra (10.1016/j.jcis.2020.09.043_b0195) 2020; 36
Lei (10.1016/j.jcis.2020.09.043_b0155) 2020; 312
Garrett (10.1016/j.jcis.2020.09.043_b0010) 1993
Tan (10.1016/j.jcis.2020.09.043_b0270) 2002; 13
Shrestha (10.1016/j.jcis.2020.09.043_b0065) 2006; 22
Beltrán (10.1016/j.jcis.2020.09.043_b0200) 2004; 52
10.1016/j.jcis.2020.09.043_b0230
Ojijo (10.1016/j.jcis.2020.09.043_b0285) 2004; 84
Brun (10.1016/j.jcis.2020.09.043_b0135) 2015; 67
Binks (10.1016/j.jcis.2020.09.043_b0180) 2017; 95
Mishra (10.1016/j.jcis.2020.09.043_b0190) 2020; 20
Marangoni (10.1016/j.jcis.2020.09.043_b0240) 2005
de Vries (10.1016/j.jcis.2020.09.043_b0310) 2017; 7
Macosko (10.1016/j.jcis.2020.09.043_b0215) 1994
Fujii (10.1016/j.jcis.2020.09.043_b0320) 2017; 33
Binks (10.1016/j.jcis.2020.09.043_b0165) 2016; 7
Fox (10.1016/j.jcis.2020.09.043_b0085) 1950; 5
Fameau (10.1016/j.jcis.2020.09.043_b0160) 2015; 31
Himawan (10.1016/j.jcis.2020.09.043_b0245) 2006; 122
Saremnejad (10.1016/j.jcis.2020.09.043_b0150) 2020; 119
Heymans (10.1016/j.jcis.2020.09.043_b0130) 2017; 69
Fox (10.1016/j.jcis.2020.09.043_b0090) 1952; 7
Gribnau (10.1016/j.jcis.2020.09.043_b0210) 1992; 3
Murakami (10.1016/j.jcis.2020.09.043_b0100) 2018; 6
Binks (10.1016/j.jcis.2020.09.043_b0110) 2011; 7
Ross (10.1016/j.jcis.2020.09.043_b0045) 1977; 255
Binks (10.1016/j.jcis.2020.09.043_b0125) 2015; 7
Kovalchuk (10.1016/j.jcis.2020.09.043_b0035) 2014; 210
Kunieda (10.1016/j.jcis.2020.09.043_b0070) 2007; 28
Zaliha (10.1016/j.jcis.2020.09.043_b0325) 2004; 86
Fitzgerald (10.1016/j.jcis.2020.09.043_b0220) 2001; 78
Devi (10.1016/j.jcis.2020.09.043_b0280) 2018; 55
Binks (10.1016/j.jcis.2020.09.043_b0120) 2014; 10
Chiavaro (10.1016/j.jcis.2020.09.043_b0250) 2007; 55
Kurata (10.1016/j.jcis.2020.09.043_b0205) 2005; 21
Douaire (10.1016/j.jcis.2020.09.043_b0300) 2014; 203
Bals (10.1016/j.jcis.2020.09.043_b0290) 2003; 220
Friberg (10.1016/j.jcis.2020.09.043_b0020) 2010; 15
Suja (10.1016/j.jcis.2020.09.043_b0060) 2018; 115
Binks (10.1016/j.jcis.2020.09.043_b0105) 2010; 12
Che Man (10.1016/j.jcis.2020.09.043_b0265) 2002; 13
Campbell (10.1016/j.jcis.2020.09.043_b0005) 1999; 10
Fameau (10.1016/j.jcis.2020.09.043_b0025) 2017; 247
Binks (10.1016/j.jcis.2020.09.043_b0115) 2013; 9
Goibier (10.1016/j.jcis.2020.09.043_b0185) 2019; 293
Barba (10.1016/j.jcis.2020.09.043_b0255) 2013; 115
Bergeron (10.1016/j.jcis.2020.09.043_b0040) 1997; 123–124
Mishima (10.1016/j.jcis.2020.09.043_b0175) 2016; 93
Inglese (10.1016/j.jcis.2020.09.043_b0305) 2011
Shrestha (10.1016/j.jcis.2020.09.043_b0080) 2010; 353
Higaki (10.1016/j.jcis.2020.09.043_b0275) 2004; 37
Murakami (10.1016/j.jcis.2020.09.043_b0095) 2010; 20
Schramm (10.1016/j.jcis.2020.09.043_b0015) 1994
Heymans (10.1016/j.jcis.2020.09.043_b0145) 2018; 9
Gautier (10.1016/j.jcis.2020.09.043_b0315) 2007; 9
Krog (10.1016/j.jcis.2020.09.043_b0295) 1992; 94
Binks (10.1016/j.jcis.2020.09.043_b0055) 2010; 360
References_xml – volume: 28
  start-page: 133
  year: 2007
  end-page: 142
  ident: b0070
  article-title: Super-stable nonaqueous foams in diglycerol fatty acid esters-nonpolar oil systems
  publication-title: J. Disp. Sci. Technol.
– volume: 115
  start-page: 7919
  year: 2018
  end-page: 7924
  ident: b0060
  article-title: Evaporation-induced foam stabilization in lubricating oils
  publication-title: PNAS
– year: 2005
  ident: b0240
  article-title: Fat Crystal Networks
– year: 1994
  ident: b0215
  article-title: Rheology: principles, measurements, and applications
– volume: 55
  start-page: 10779
  year: 2007
  end-page: 10786
  ident: b0250
  article-title: Monovarietal Extra Virgin Olive Oils: Correlation Between Thermal Properties and Chemical Composition
  publication-title: J. Agric. Food Chem.
– volume: 20
  start-page: 1292
  year: 2020
  end-page: 1301
  ident: b0190
  article-title: Yield Stress Dependent Foaming of Edible Crystal-Melt Suspensions
  publication-title: Cryst. Growth Des.
– volume: 13
  start-page: 129
  year: 2002
  end-page: 141
  ident: b0270
  article-title: Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation
  publication-title: Phytochem. Anal.
– volume: 78
  start-page: 1013
  year: 2001
  end-page: 1020
  ident: b0220
  article-title: Measurement of Particle Size Distribution of Tripalmitin Crystals in a Model Solution Using a Laser Diffraction Method
  publication-title: J. Am. Oil Chem. Soc.
– volume: 9
  start-page: 834
  year: 2013
  end-page: 845
  ident: b0115
  article-title: Influence of the degree of fluorination on the behaviour of silica particles at air-oil surfaces
  publication-title: Soft Matter
– start-page: 405
  year: 1994
  end-page: 420
  ident: b0015
  article-title: Foams: Fundamentals and Applications in the Petroleum Industry
– volume: 3
  start-page: 186
  year: 1992
  end-page: 190
  ident: b0210
  article-title: Determination of solid/liquid ratios of fats and oils by low-resolution pulsed NMR
  publication-title: Trends Food Sci. Technol.
– volume: 119
  start-page: 216
  year: 2020
  end-page: 225
  ident: b0150
  article-title: Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce
  publication-title: Food Bioprod. Process.
– volume: 86
  start-page: 245
  year: 2004
  end-page: 250
  ident: b0325
  article-title: Crystallization properties of palm oil by dry fractionation
  publication-title: Food Chem.
– volume: 31
  start-page: 13501
  year: 2015
  end-page: 13510
  ident: b0160
  article-title: Smart nonaqueous foams from lipid-based oleogel
  publication-title: Langmuir
– volume: 84
  start-page: 1585
  year: 2004
  end-page: 1593
  ident: b0285
  article-title: Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks
  publication-title: J. Sci. Food Agric.
– volume: 15
  start-page: 359
  year: 2010
  end-page: 364
  ident: b0020
  article-title: Foams from non-aqueous systems
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 67
  start-page: 366
  year: 2015
  end-page: 375
  ident: b0135
  article-title: Stabilization of air bubbles in oil by surfactant crystals: a route to produce air-in-oil foams and air-in-oil-in-water emulsions
  publication-title: Food Res. Int.
– volume: 33
  start-page: 7365
  year: 2017
  end-page: 7379
  ident: b0320
  article-title: Stimuli-responsive bubbles and foams stabilized with solid particles
  publication-title: Langmuir
– volume: 7
  start-page: 1800
  year: 2011
  end-page: 1808
  ident: b0110
  article-title: Oil foams stabilized solely by particles
  publication-title: Soft Matter
– volume: 52
  start-page: 3434
  year: 2004
  end-page: 3440
  ident: b0200
  article-title: Influence of Harvest Date and Crop Yield on the Fatty Acid Composition of Virgin Olive Oils from Cv
  publication-title: Picual.
– volume: 9
  start-page: 6455
  year: 2007
  end-page: 6462
  ident: b0315
  article-title: Pickering emulsions with stimulable particles: from highly- to weakly-covered interfaces
  publication-title: Phys. Chem. Chem. Phys.
– volume: 360
  start-page: 198
  year: 2010
  end-page: 204
  ident: b0055
  article-title: Non-aqueous foams in lubricating oil systems
  publication-title: Colloids Surf. A
– volume: 123–124
  start-page: 609
  year: 1997
  end-page: 622
  ident: b0040
  article-title: Thin-film forces in hydrocarbon foam films and their application to gas-blocking foams in enhanced oil recovery
  publication-title: Colloids Surf. A
– volume: 12
  start-page: 9169
  year: 2010
  end-page: 9171
  ident: b0105
  article-title: Stabilisation of liquid-air surfaces by particles of low surface energy
  publication-title: Phys. Chem. Chem. Phys.
– volume: 55
  start-page: 321
  year: 2018
  end-page: 330
  ident: b0280
  article-title: Effects of fatty acids composition and microstructure properties of fats and oils on textural properties of dough and cookie quality
  publication-title: J. Food Sci. Technol.
– volume: 7
  start-page: 14328
  year: 2015
  end-page: 14337
  ident: b0125
  article-title: Particles at oil-air surfaces: Powdered oil, liquid oil marbles, and oil foam
  publication-title: ACS Appl. Mater. Interfaces
– volume: 255
  start-page: 560
  year: 1977
  end-page: 565
  ident: b0045
  article-title: The relation of foam behaviour to phase separations in polymer solutions
  publication-title: Colloid Polym. Sci.
– start-page: 83
  year: 2011
  end-page: 147
  ident: b0305
  article-title: Factors affecting extra-virgin olive oil composition
  publication-title: Horticultural Rev.
– volume: 203
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0300
  article-title: Fat crystallisation at oil–water interfaces
  publication-title: Adv. Colloid Interface Sci.
– volume: 7
  start-page: 109
  year: 1952
  end-page: 121
  ident: b0090
  article-title: The spreading of liquids on low-energy surfaces. II. Modified tetrafluoroethylene polymers
  publication-title: J. Colloid Interface Sci.
– volume: 9
  start-page: 3143
  year: 2018
  end-page: 3154
  ident: b0145
  article-title: Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties
  publication-title: Food & Function
– volume: 33
  start-page: 1563
  year: 2017
  end-page: 1575
  ident: b0140
  article-title: Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization
  publication-title: Langmuir
– volume: 285
  start-page: 86
  year: 2019
  end-page: 93
  ident: b0170
  article-title: Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels
  publication-title: Food Chem.
– volume: 101
  start-page: 593
  year: 1984
  end-page: 595
  ident: b0050
  article-title: A non-aqueous foam with excellent stability
  publication-title: J. Colloid Interf. Sci.
– volume: 6
  start-page: 435
  year: 2018
  ident: b0100
  article-title: Effects of Contact Angle and Flocculation of Particles of Oligomer of Tetrafluoroethylene on Oil Foaming
  publication-title: Front. Chem.
– volume: 94
  start-page: 55
  year: 1992
  end-page: 57
  ident: b0295
  article-title: Crystallization at interfaces in food emulsions – a general phenomenon
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 93
  start-page: 1453
  year: 2016
  end-page: 1466
  ident: b0175
  article-title: Formation and microstructures of whipped oils composed of vegetable oils and high-melting fat crystals
  publication-title: J. Am. Oil Chem. Soc.
– volume: 293
  start-page: 49
  year: 2019
  end-page: 56
  ident: b0185
  article-title: Emulsification of non-aqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids
  publication-title: Food Chem.
– volume: 5
  start-page: 514
  year: 1950
  end-page: 531
  ident: b0085
  article-title: The spreading of liquids on low energy surfaces I. polytetrafluoroethylene
  publication-title: J. Colloid Interf. Sci.
– volume: 10
  start-page: 283
  year: 1999
  end-page: 296
  ident: b0005
  article-title: Creation and characterisation of aerated food products
  publication-title: Trends Food Sci. Technol.
– volume: 7
  start-page: 2621
  year: 2016
  end-page: 2632
  ident: b0165
  article-title: Whipped oil stabilised by surfactant crystals
  publication-title: Chem. Sci.
– volume: 13
  start-page: 142
  year: 2002
  end-page: 151
  ident: b0265
  article-title: Comparative differential scanning calorimetric analysis of vegetable oils: II. Effects of cooling rate variation
  publication-title: Phytochem. Anal.
– volume: 119
  start-page: 1600252
  year: 2017
  ident: b0235
  article-title: Structure and physical properties of oleogels containing peanut oil and saturated fatty alcohols
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 247
  start-page: 454
  year: 2017
  end-page: 464
  ident: b0025
  article-title: Non-aqueous foams: Current understanding on the formation and stability mechanisms
  publication-title: Adv. Colloid Interf. Sci.
– volume: 20
  start-page: 732
  year: 2010
  end-page: 737
  ident: b0095
  article-title: Particle-Stabilized Materials: Dry Oils and (Polymerized) Non-Aqueous Foams
  publication-title: Adv. Funct. Mater.
– volume: 22
  start-page: 8337
  year: 2006
  end-page: 8345
  ident: b0065
  article-title: Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems
  publication-title: Langmuir
– volume: 18
  start-page: 71
  year: 2002
  end-page: 102
  ident: b0260
  article-title: Triglyceride species compositions of common edible vegetable oils and methods used for their identification and quantification
  publication-title: Food Rev. Int.
– volume: 122
  start-page: 3
  year: 2006
  end-page: 33
  ident: b0245
  article-title: Thermodynamic and kinetic aspects of fat crystallization
  publication-title: Adv. Colloid Interf. Sci.
– volume: 115
  start-page: 322
  year: 2013
  end-page: 329
  ident: b0255
  article-title: Crystallization and melting properties of extra virgin olive oil studied by synchrotron XRD and DSC
  publication-title: Eur. J. Lipid Sci. Technol.
– year: 1993
  ident: b0010
  article-title: Defoaming: theory and industrial applications
– volume: 210
  start-page: 65
  year: 2014
  end-page: 71
  ident: b0035
  article-title: Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?
  publication-title: Adv. Colloid Interf. Sci.
– volume: 21
  start-page: 1457
  year: 2005
  end-page: 1465
  ident: b0205
  article-title: Rapid discrimination of fatty acid composition in fats and oils by electrospray ionization mass spectrometry
  publication-title: Anal. Sci.
– volume: 36
  start-page: 7566
  year: 2020
  end-page: 7572
  ident: b0195
  article-title: Crystallization-Induced Network Formation of Tri- and Monopalmitin at the Middle-Chain Triglyceride Oil/Air Interface
  publication-title: Langmuir
– volume: 37
  start-page: 2
  year: 2004
  end-page: 10
  ident: b0275
  article-title: In situ optical observation of microstructure of
  publication-title: Food Res. Int.
– volume: 10
  start-page: 578
  year: 2014
  end-page: 589
  ident: b0120
  article-title: Dry oil powders and oil foams stabilised by fluorinated clay platelet particles
  publication-title: Soft Matter
– reference: European Union Commission. Regulation EEC 2568/91 on the characteristics of olive oil and olive pomace and their analytical methods (1991).
– volume: 328
  start-page: 172
  year: 2008
  end-page: 179
  ident: b0075
  article-title: Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system
  publication-title: J. Colloid Interface Sci.
– volume: 33
  start-page: 6947
  year: 2017
  end-page: 6963
  ident: b0030
  article-title: Colloidal Particles at a Range of Fluid-Fluid Interfaces
  publication-title: Langmuir
– volume: 220
  start-page: 5
  year: 2003
  end-page: 11
  ident: b0290
  article-title: The influence of the pore size, the foaming temperature and the viscosity of the continuous phase on the properties of foams produced by membrane foaming
  publication-title: J. Membr. Sci.
– volume: 69
  start-page: 13
  year: 2017
  end-page: 24
  ident: b0130
  article-title: Crystal stabilization of edible oil foams
  publication-title: Trends Food Sci. Technol.
– volume: 312
  year: 2020
  ident: b0155
  article-title: Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel
  publication-title: Food Chem.
– volume: 7
  start-page: 11803
  year: 2017
  end-page: 11812
  ident: b0310
  article-title: The effect of oil type on network formation by protein aggregates into oleogels
  publication-title: RSC Adv.
– volume: 95
  start-page: 28
  year: 2017
  end-page: 37
  ident: b0180
  article-title: Ultra-stable self-foaming oils
  publication-title: Food Res. Int.
– volume: 88
  start-page: 1511
  year: 2011
  end-page: 1519
  ident: b0225
  article-title: Dry Fractionation and Crystallization Kinetics of High-Oleic High-Stearic Sunflower Oil
  publication-title: J. Am. Oil Chem. Soc.
– volume: 353
  start-page: 157
  year: 2010
  end-page: 165
  ident: b0080
  article-title: Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system
  publication-title: Colloids Surf. A
– volume: 247
  start-page: 454
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0025
  article-title: Non-aqueous foams: Current understanding on the formation and stability mechanisms
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2017.02.007
– volume: 360
  start-page: 198
  year: 2010
  ident: 10.1016/j.jcis.2020.09.043_b0055
  article-title: Non-aqueous foams in lubricating oil systems
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2010.02.028
– volume: 21
  start-page: 1457
  year: 2005
  ident: 10.1016/j.jcis.2020.09.043_b0205
  article-title: Rapid discrimination of fatty acid composition in fats and oils by electrospray ionization mass spectrometry
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.21.1457
– volume: 9
  start-page: 3143
  year: 2018
  ident: 10.1016/j.jcis.2020.09.043_b0145
  article-title: Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties
  publication-title: Food & Function
  doi: 10.1039/C8FO00536B
– volume: 28
  start-page: 133
  year: 2007
  ident: 10.1016/j.jcis.2020.09.043_b0070
  article-title: Super-stable nonaqueous foams in diglycerol fatty acid esters-nonpolar oil systems
  publication-title: J. Disp. Sci. Technol.
  doi: 10.1080/01932690600992779
– volume: 9
  start-page: 834
  year: 2013
  ident: 10.1016/j.jcis.2020.09.043_b0115
  article-title: Influence of the degree of fluorination on the behaviour of silica particles at air-oil surfaces
  publication-title: Soft Matter
  doi: 10.1039/C2SM27395K
– volume: 293
  start-page: 49
  year: 2019
  ident: 10.1016/j.jcis.2020.09.043_b0185
  article-title: Emulsification of non-aqueous foams stabilized by fat crystals: Towards novel air-in-oil-in-water food colloids
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.04.080
– volume: 210
  start-page: 65
  year: 2014
  ident: 10.1016/j.jcis.2020.09.043_b0035
  article-title: Fluoro- vs hydrocarbon surfactants: Why do they differ in wetting performance?
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2014.04.003
– volume: 78
  start-page: 1013
  year: 2001
  ident: 10.1016/j.jcis.2020.09.043_b0220
  article-title: Measurement of Particle Size Distribution of Tripalmitin Crystals in a Model Solution Using a Laser Diffraction Method
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-001-0380-2
– volume: 33
  start-page: 6947
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0030
  article-title: Colloidal Particles at a Range of Fluid-Fluid Interfaces
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b00860
– year: 1993
  ident: 10.1016/j.jcis.2020.09.043_b0010
– volume: 15
  start-page: 359
  year: 2010
  ident: 10.1016/j.jcis.2020.09.043_b0020
  article-title: Foams from non-aqueous systems
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2010.05.011
– volume: 67
  start-page: 366
  year: 2015
  ident: 10.1016/j.jcis.2020.09.043_b0135
  article-title: Stabilization of air bubbles in oil by surfactant crystals: a route to produce air-in-oil foams and air-in-oil-in-water emulsions
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2014.11.044
– volume: 203
  start-page: 1
  year: 2014
  ident: 10.1016/j.jcis.2020.09.043_b0300
  article-title: Fat crystallisation at oil–water interfaces
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2013.10.022
– volume: 285
  start-page: 86
  year: 2019
  ident: 10.1016/j.jcis.2020.09.043_b0170
  article-title: Effects of crystallisation of native phytosterols and monoacylglycerols on foaming properties of whipped oleogels
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.01.134
– volume: 37
  start-page: 2
  year: 2004
  ident: 10.1016/j.jcis.2020.09.043_b0275
  article-title: In situ optical observation of microstructure of β-fat gel made of binary mixtures of high-melting and low-melting fats
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2003.09.006
– volume: 123–124
  start-page: 609
  year: 1997
  ident: 10.1016/j.jcis.2020.09.043_b0040
  article-title: Thin-film forces in hydrocarbon foam films and their application to gas-blocking foams in enhanced oil recovery
  publication-title: Colloids Surf. A
  doi: 10.1016/S0927-7757(96)03808-3
– volume: 55
  start-page: 10779
  year: 2007
  ident: 10.1016/j.jcis.2020.09.043_b0250
  article-title: Monovarietal Extra Virgin Olive Oils: Correlation Between Thermal Properties and Chemical Composition
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf0709909
– volume: 84
  start-page: 1585
  year: 2004
  ident: 10.1016/j.jcis.2020.09.043_b0285
  article-title: Effects of monoglyceride content, cooling rate and shear on the rheological properties of olive oil/monoglyceride gel networks
  publication-title: J. Sci. Food Agric.
  doi: 10.1002/jsfa.1831
– volume: 115
  start-page: 322
  year: 2013
  ident: 10.1016/j.jcis.2020.09.043_b0255
  article-title: Crystallization and melting properties of extra virgin olive oil studied by synchrotron XRD and DSC
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201200259
– start-page: 83
  year: 2011
  ident: 10.1016/j.jcis.2020.09.043_b0305
  article-title: Factors affecting extra-virgin olive oil composition
  publication-title: Horticultural Rev.
– volume: 36
  start-page: 7566
  year: 2020
  ident: 10.1016/j.jcis.2020.09.043_b0195
  article-title: Crystallization-Induced Network Formation of Tri- and Monopalmitin at the Middle-Chain Triglyceride Oil/Air Interface
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.0c01195
– volume: 33
  start-page: 7365
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0320
  article-title: Stimuli-responsive bubbles and foams stabilized with solid particles
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b01024
– volume: 101
  start-page: 593
  year: 1984
  ident: 10.1016/j.jcis.2020.09.043_b0050
  article-title: A non-aqueous foam with excellent stability
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0021-9797(84)90075-4
– volume: 10
  start-page: 283
  year: 1999
  ident: 10.1016/j.jcis.2020.09.043_b0005
  article-title: Creation and characterisation of aerated food products
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/S0924-2244(00)00008-X
– volume: 255
  start-page: 560
  year: 1977
  ident: 10.1016/j.jcis.2020.09.043_b0045
  article-title: The relation of foam behaviour to phase separations in polymer solutions
  publication-title: Colloid Polym. Sci.
  doi: 10.1007/BF01549743
– volume: 86
  start-page: 245
  year: 2004
  ident: 10.1016/j.jcis.2020.09.043_b0325
  article-title: Crystallization properties of palm oil by dry fractionation
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2003.09.032
– volume: 13
  start-page: 129
  year: 2002
  ident: 10.1016/j.jcis.2020.09.043_b0270
  article-title: Comparative differential scanning calorimetric analysis of vegetable oils: I. Effects of heating rate variation
  publication-title: Phytochem. Anal.
  doi: 10.1002/pca.633
– volume: 33
  start-page: 1563
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0140
  article-title: Oleofoams: Properties of Crystal-Coated Bubbles from Whipped Oleogels-Evidence for Pickering Stabilization
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.6b04141
– volume: 7
  start-page: 109
  year: 1952
  ident: 10.1016/j.jcis.2020.09.043_b0090
  article-title: The spreading of liquids on low-energy surfaces. II. Modified tetrafluoroethylene polymers
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/0095-8522(52)90054-8
– volume: 7
  start-page: 14328
  year: 2015
  ident: 10.1016/j.jcis.2020.09.043_b0125
  article-title: Particles at oil-air surfaces: Powdered oil, liquid oil marbles, and oil foam
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b02890
– year: 1994
  ident: 10.1016/j.jcis.2020.09.043_b0215
– volume: 6
  start-page: 435
  year: 2018
  ident: 10.1016/j.jcis.2020.09.043_b0100
  article-title: Effects of Contact Angle and Flocculation of Particles of Oligomer of Tetrafluoroethylene on Oil Foaming
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00435
– volume: 7
  start-page: 2621
  year: 2016
  ident: 10.1016/j.jcis.2020.09.043_b0165
  article-title: Whipped oil stabilised by surfactant crystals
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC00046K
– volume: 312
  year: 2020
  ident: 10.1016/j.jcis.2020.09.043_b0155
  article-title: Non-aqueous foams formed by whipping diacylglycerol stabilized oleogel
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2019.126047
– volume: 119
  start-page: 1600252
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0235
  article-title: Structure and physical properties of oleogels containing peanut oil and saturated fatty alcohols
  publication-title: Eur. J. Lipid Sci. Technol.
  doi: 10.1002/ejlt.201600252
– volume: 7
  start-page: 11803
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0310
  article-title: The effect of oil type on network formation by protein aggregates into oleogels
  publication-title: RSC Adv.
  doi: 10.1039/C7RA00396J
– volume: 20
  start-page: 732
  year: 2010
  ident: 10.1016/j.jcis.2020.09.043_b0095
  article-title: Particle-Stabilized Materials: Dry Oils and (Polymerized) Non-Aqueous Foams
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200902007
– volume: 10
  start-page: 578
  year: 2014
  ident: 10.1016/j.jcis.2020.09.043_b0120
  article-title: Dry oil powders and oil foams stabilised by fluorinated clay platelet particles
  publication-title: Soft Matter
  doi: 10.1039/C3SM52748D
– volume: 115
  start-page: 7919
  year: 2018
  ident: 10.1016/j.jcis.2020.09.043_b0060
  article-title: Evaporation-induced foam stabilization in lubricating oils
  publication-title: PNAS
  doi: 10.1073/pnas.1805645115
– volume: 22
  start-page: 8337
  year: 2006
  ident: 10.1016/j.jcis.2020.09.043_b0065
  article-title: Foaming properties of monoglycerol fatty acid esters in nonpolar oil systems
  publication-title: Langmuir
  doi: 10.1021/la061204h
– volume: 7
  start-page: 1800
  year: 2011
  ident: 10.1016/j.jcis.2020.09.043_b0110
  article-title: Oil foams stabilized solely by particles
  publication-title: Soft Matter
  doi: 10.1039/C0SM01129K
– volume: 13
  start-page: 142
  year: 2002
  ident: 10.1016/j.jcis.2020.09.043_b0265
  article-title: Comparative differential scanning calorimetric analysis of vegetable oils: II. Effects of cooling rate variation
  publication-title: Phytochem. Anal.
  doi: 10.1002/pca.634
– volume: 3
  start-page: 186
  year: 1992
  ident: 10.1016/j.jcis.2020.09.043_b0210
  article-title: Determination of solid/liquid ratios of fats and oils by low-resolution pulsed NMR
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/0924-2244(92)90187-2
– volume: 122
  start-page: 3
  year: 2006
  ident: 10.1016/j.jcis.2020.09.043_b0245
  article-title: Thermodynamic and kinetic aspects of fat crystallization
  publication-title: Adv. Colloid Interf. Sci.
  doi: 10.1016/j.cis.2006.06.016
– volume: 95
  start-page: 28
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0180
  article-title: Ultra-stable self-foaming oils
  publication-title: Food Res. Int.
  doi: 10.1016/j.foodres.2017.02.020
– volume: 20
  start-page: 1292
  year: 2020
  ident: 10.1016/j.jcis.2020.09.043_b0190
  article-title: Yield Stress Dependent Foaming of Edible Crystal-Melt Suspensions
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.9b01558
– volume: 220
  start-page: 5
  year: 2003
  ident: 10.1016/j.jcis.2020.09.043_b0290
  article-title: The influence of the pore size, the foaming temperature and the viscosity of the continuous phase on the properties of foams produced by membrane foaming
  publication-title: J. Membr. Sci.
  doi: 10.1016/S0376-7388(03)00168-6
– volume: 94
  start-page: 55
  year: 1992
  ident: 10.1016/j.jcis.2020.09.043_b0295
  article-title: Crystallization at interfaces in food emulsions – a general phenomenon
  publication-title: Eur. J. Lipid Sci. Technol.
– volume: 69
  start-page: 13
  year: 2017
  ident: 10.1016/j.jcis.2020.09.043_b0130
  article-title: Crystal stabilization of edible oil foams
  publication-title: Trends Food Sci. Technol.
  doi: 10.1016/j.tifs.2017.08.015
– volume: 12
  start-page: 9169
  year: 2010
  ident: 10.1016/j.jcis.2020.09.043_b0105
  article-title: Stabilisation of liquid-air surfaces by particles of low surface energy
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp00777c
– volume: 52
  start-page: 3434
  year: 2004
  ident: 10.1016/j.jcis.2020.09.043_b0200
  article-title: Influence of Harvest Date and Crop Yield on the Fatty Acid Composition of Virgin Olive Oils from Cv
  publication-title: Picual. J. Agric. Food Chem.
  doi: 10.1021/jf049894n
– start-page: 405
  year: 1994
  ident: 10.1016/j.jcis.2020.09.043_b0015
– volume: 353
  start-page: 157
  year: 2010
  ident: 10.1016/j.jcis.2020.09.043_b0080
  article-title: Nonaqueous foam with outstanding stability in diglycerol monomyristate/olive oil system
  publication-title: Colloids Surf. A
  doi: 10.1016/j.colsurfa.2009.11.007
– volume: 5
  start-page: 514
  year: 1950
  ident: 10.1016/j.jcis.2020.09.043_b0085
  article-title: The spreading of liquids on low energy surfaces I. polytetrafluoroethylene
  publication-title: J. Colloid Interf. Sci.
  doi: 10.1016/0095-8522(50)90044-4
– volume: 55
  start-page: 321
  year: 2018
  ident: 10.1016/j.jcis.2020.09.043_b0280
  article-title: Effects of fatty acids composition and microstructure properties of fats and oils on textural properties of dough and cookie quality
  publication-title: J. Food Sci. Technol.
  doi: 10.1007/s13197-017-2942-8
– volume: 88
  start-page: 1511
  year: 2011
  ident: 10.1016/j.jcis.2020.09.043_b0225
  article-title: Dry Fractionation and Crystallization Kinetics of High-Oleic High-Stearic Sunflower Oil
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-011-1827-7
– volume: 31
  start-page: 13501
  year: 2015
  ident: 10.1016/j.jcis.2020.09.043_b0160
  article-title: Smart nonaqueous foams from lipid-based oleogel
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.5b03660
– ident: 10.1016/j.jcis.2020.09.043_b0230
– year: 2005
  ident: 10.1016/j.jcis.2020.09.043_b0240
– volume: 93
  start-page: 1453
  year: 2016
  ident: 10.1016/j.jcis.2020.09.043_b0175
  article-title: Formation and microstructures of whipped oils composed of vegetable oils and high-melting fat crystals
  publication-title: J. Am. Oil Chem. Soc.
  doi: 10.1007/s11746-016-2888-4
– volume: 9
  start-page: 6455
  year: 2007
  ident: 10.1016/j.jcis.2020.09.043_b0315
  article-title: Pickering emulsions with stimulable particles: from highly- to weakly-covered interfaces
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b710226g
– volume: 328
  start-page: 172
  year: 2008
  ident: 10.1016/j.jcis.2020.09.043_b0075
  article-title: Stabilization of nonaqueous foam with lamellar liquid crystal particles in diglycerol monolaurate/olive oil system
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2008.08.051
– volume: 119
  start-page: 216
  year: 2020
  ident: 10.1016/j.jcis.2020.09.043_b0150
  article-title: Practical application of nonaqueous foam in the preparation of a novel aerated reduced-fat sauce
  publication-title: Food Bioprod. Process.
  doi: 10.1016/j.fbp.2019.11.004
– volume: 18
  start-page: 71
  year: 2002
  ident: 10.1016/j.jcis.2020.09.043_b0260
  article-title: Triglyceride species compositions of common edible vegetable oils and methods used for their identification and quantification
  publication-title: Food Rev. Int.
  doi: 10.1081/FRI-120003418
SSID ssj0011559
Score 2.4880574
Snippet [Display omitted] •Stable edible oil foams without added foaming agent.•Air bubbles coated by crystals of long-chain, unsaturated triglycerides.•Packing...
Can vegetable oils containing long-chain triglycerides be aerated to yield stable oil foams? This is based on the idea that cooling of vegetable oil results in...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 522
SubjectTerms aeration
cooling
Crystals
drainage
foams
light microscopy
liquids
Long-chain triglycerides
microstructure
oleogels
olive oil
peanut oil
rheology
temperature
Thermo-responsive
Ultra-stable
vegetable oil
Vegetable oil foam
vegetables
Title Foams of vegetable oils containing long-chain triglycerides
URI https://dx.doi.org/10.1016/j.jcis.2020.09.043
https://www.proquest.com/docview/2449993457
https://www.proquest.com/docview/2524294690
Volume 583
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHtSD6Kr4XCp4k2rTJm2Dp2VxWRU8KXgLaZJqpbbidgUv_nZn-lhUcA8e205omU4nM51vviHkxGpmhKGJC9dDl2lIUOJQGZcLT0M4gaWrGuV7G07u2fUDf-iRUdcLg7DK1vc3Pr321u2Z81ab569Zhj2-8LVFAuuIFHY55ARlLEIrP_ucwzwolt0amAd1UbptnGkwXs86Q8pu36u5Tlnw1-b0y03Xe894g6y3QaMzbJ5rk_Rs0Scro25WW5-sfaMV3CIX41K9TJ0ydd7to62wOcops3zqIC69mQjh5GXx6OonOHIqSNDzDw2LjZ1uk7vx5d1o4rZDElzNgqhyU-EbllgFkZDwVewFaaCE8tI4UTGlBjukjW8jpkVoGTdahV6iKU2pSWKqw2CHLBVlYXeJk8bwtXPfGF9bZiFS0AlSw3CLKWQS8j1CO-VI3RKI4xyLXHZIsWeJCpWoUOkJCQrdI6fzNa8NfcZCad7pXP4wAgn-feG64-4FSVA8ljxUYcsZCDHM6ALGowUyHMIUgb8J9v95_wOy6qN91WDuQ7JUvc3sEcQqVTKojXFAlodXN5PbL5EM58Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6V9qHwgEYBUdhGkHhDUePETmPxVFWrOlr6VKS-WY7tjE5dUtEUif-eu_yYBtL6sMckPiW62Oc733ffAXx2hltpWerj89jnBgOUJNbWFzIw6E5Q6qpC-a7i-Q_-bSM2HZi2tTAEq2xsf23TK2vd3Bk12hztt1uq8cXVNpaUR2S4y_Fn0CN2KtGF3uR6MV_dJxMo81YjPZhPAk3tTA3zujVbYu0Og4rulEeP7U__Wepq-5mdwcvGb_Qm9ae9go7LB9Cftu3aBvDiAbPga_g6K_TdwSsy77e7cSXVR3nFdnfwCJpeN4XwdkV-45ufeOWVGKPv_hgUtu7wBtazq_V07jd9EnzDo3HpZzK0PHUanSEZ6iSIskhLHWRJqhPGLBVJ29CNuZGx48IaHQepYSxjNk2YiaO30M2L3L0DL0twwYvQ2tA47tBZMCmxwwhHUWQaiyGwVjnKNBzi1Mpip1qw2K0ihSpSqAqkQoUO4cu9zL5m0Dg5WrQ6V__MA4Um_qTcp_YHKVQ8ZT107oojDuIU1EVcjE-MEeipSDopeP_E93-E_nz9famW16vFB3ge0lyrsN3n0C1_Hd0Fui5letlMzb-Kv-p1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foams+of+vegetable+oils+containing+long-chain+triglycerides&rft.jtitle=Journal+of+colloid+and+interface+science&rft.au=Liu%2C+Yu&rft.au=Binks%2C+Bernard+P.&rft.date=2021-02-01&rft.issn=0021-9797&rft.volume=583&rft.spage=522&rft.epage=534&rft_id=info:doi/10.1016%2Fj.jcis.2020.09.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jcis_2020_09_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9797&client=summon