In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity
[Display omitted] •Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of PL intensity and lifetime on individual TMC particle was detected before and after NiS photodeposition.•The interfacial electron injection k...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 254; pp. 594 - 600 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.10.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of PL intensity and lifetime on individual TMC particle was detected before and after NiS photodeposition.•The interfacial electron injection kinetics from TMC to NiS in individual TMC/NiS particle was investigated.•TMC/NiS heterostructure exhibited 71 folds enhanced H2 evolution compared with TMC.
For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance because they play significant roles on unveiling the precise information of structure-activity relationships and closely relate to the photocatalytic activities of those semiconductors on targeted functions. Here, photodeposition process of NiS nanoparticles on single TiO2 mesocrystal (TMC) as co-catalyst is in situ monitored by PL images and spectra using a confocal single-particle PL microscopy, which provides straightforward results on understanding the photoexcited electrons transfer in both individual TMC and TMC/NiS nanoparticles. Through the changes in PL intensity and decay lifetime, preferential trapping site for NiS nanoparticles on TMC is identified and efficient electron interfacial migration from TMC to NiS nanoparticles is demonstrated, which lead to an almost 71 folds enhancement on the photocatalytic H2 evolution under 365-nm photoirradiation compared to pure TMC particles. |
---|---|
AbstractList | For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance because they play significant roles on unveiling the precise information of structure-activity relationships and closely relate to the photocatalytic activities of those semiconductors on targeted functions. Here, photodeposition process of NiS nanoparticles on single TiO2 mesocrystal (TMC) as co-catalyst is in situ monitored by PL images and spectra using a confocal single-particle PL microscopy, which provides straightforward results on understanding the photoexcited electrons transfer in both individual TMC and TMC/NiS nanoparticles. Through the changes in PL intensity and decay lifetime, preferential trapping site for NiS nanoparticles on TMC is identified and efficient electron interfacial migration from TMC to NiS nanoparticles is demonstrated, which lead to an almost 71 folds enhancement on the photocatalytic H2 evolution under 365-nm photoirradiation compared to pure TMC particles. [Display omitted] •Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of PL intensity and lifetime on individual TMC particle was detected before and after NiS photodeposition.•The interfacial electron injection kinetics from TMC to NiS in individual TMC/NiS particle was investigated.•TMC/NiS heterostructure exhibited 71 folds enhanced H2 evolution compared with TMC. For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance because they play significant roles on unveiling the precise information of structure-activity relationships and closely relate to the photocatalytic activities of those semiconductors on targeted functions. Here, photodeposition process of NiS nanoparticles on single TiO2 mesocrystal (TMC) as co-catalyst is in situ monitored by PL images and spectra using a confocal single-particle PL microscopy, which provides straightforward results on understanding the photoexcited electrons transfer in both individual TMC and TMC/NiS nanoparticles. Through the changes in PL intensity and decay lifetime, preferential trapping site for NiS nanoparticles on TMC is identified and efficient electron interfacial migration from TMC to NiS nanoparticles is demonstrated, which lead to an almost 71 folds enhancement on the photocatalytic H2 evolution under 365-nm photoirradiation compared to pure TMC particles. |
Author | Fujitsuka, Mamoru Shi, Xiaowei Kim, Sooyeon Majima, Tetsuro |
Author_xml | – sequence: 1 givenname: Xiaowei surname: Shi fullname: Shi, Xiaowei organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan – sequence: 2 givenname: Sooyeon surname: Kim fullname: Kim, Sooyeon organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan – sequence: 3 givenname: Mamoru surname: Fujitsuka fullname: Fujitsuka, Mamoru organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan – sequence: 4 givenname: Tetsuro orcidid: 0000-0003-1805-1677 surname: Majima fullname: Majima, Tetsuro email: majima@sanken.osaka-u.ac.jp organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan |
BookMark | eNqFkE1v1DAQhi1UJLaFf8DBEucEfyflgIQqPipV9MDeLWcy2fUqtYPtXSl_gN-Nt8uJA5zm8j7vzDzX5CrEgIS85azljJv3h9Yt4MrQCsZvW6ZbJvkLsuF9JxvZ9_KKbNitMI2UnXxFrnM-MMaEFP2G_LoPNPtypHHImE6u-BhonOh3_4MGF-LiUvEwY6YjLrEmfdjReGbCbka69Y-CPmGOkNZc3EynmCiGvQuAI132scR6mJvXWkL365jiDgPFU5yPz5scFH_yZX1NXk5uzvjmz7wh2y-ft3ffmofHr_d3nx4aULIrzSRQT0KpQZrBDZ1WPVMMmQPRQ2dGbQAM9NyAVoJhb5xRoLQcuFJ6mEDekHeX2iXFn0fMxR7iMYW60Qqhma51ytTUh0sKUsw54WTBl2czJTk_W87sWbs92It2e9ZumbZVe4XVX_CS_JNL6_-wjxcM6_cnj8lm8Hi26BNCsWP0_y74DcRuo7g |
CitedBy_id | crossref_primary_10_1002_slct_202004735 crossref_primary_10_1016_j_mssp_2022_106775 crossref_primary_10_1002_smll_202307057 crossref_primary_10_1016_j_ijhydene_2020_07_086 crossref_primary_10_1016_j_scitotenv_2021_145874 crossref_primary_10_1002_pssa_202100767 crossref_primary_10_1016_S1872_2067_23_64444_4 crossref_primary_10_1021_acscatal_1c00983 crossref_primary_10_1016_j_cclet_2022_07_026 crossref_primary_10_1039_D2RA02236B crossref_primary_10_1016_j_carbon_2024_119451 crossref_primary_10_1039_D1NJ00608H crossref_primary_10_1016_j_apcatb_2022_122028 crossref_primary_10_1002_smtd_202300627 crossref_primary_10_1016_j_apsusc_2021_152083 crossref_primary_10_1021_acsanm_9b02412 crossref_primary_10_1080_01614940_2024_2446475 crossref_primary_10_1016_j_ijhydene_2024_02_011 crossref_primary_10_1039_D2GC04535D crossref_primary_10_1016_j_ijhydene_2021_11_171 crossref_primary_10_1021_acscatal_2c02447 crossref_primary_10_1016_j_apcatb_2021_119994 crossref_primary_10_1016_j_cattod_2021_07_004 crossref_primary_10_1016_j_cej_2021_130372 crossref_primary_10_1007_s11426_024_2199_7 crossref_primary_10_1016_j_electacta_2021_138951 crossref_primary_10_1039_D2NJ00395C crossref_primary_10_1002_aenm_202200298 crossref_primary_10_1002_sstr_202100229 crossref_primary_10_1039_D2NJ03338K crossref_primary_10_1039_D2TA01758J crossref_primary_10_1016_j_apcatb_2020_118616 crossref_primary_10_1016_j_apcatb_2021_119947 crossref_primary_10_1007_s10311_021_01269_w crossref_primary_10_2139_ssrn_4103322 crossref_primary_10_1016_S1872_2067_22_64105_6 crossref_primary_10_1039_D2QI02081E crossref_primary_10_1016_S1872_2067_20_63633_6 crossref_primary_10_1016_j_jcis_2024_04_223 crossref_primary_10_1016_j_cclet_2024_110415 crossref_primary_10_1016_j_apcatb_2024_123974 crossref_primary_10_1016_j_foodchem_2021_129768 crossref_primary_10_1021_acscatal_4c02269 crossref_primary_10_1021_acsnano_4c10702 crossref_primary_10_1002_adma_202309199 crossref_primary_10_1016_j_molstruc_2021_131493 crossref_primary_10_1002_smll_202400617 crossref_primary_10_1016_j_cej_2020_124496 crossref_primary_10_1016_j_seppur_2022_121564 crossref_primary_10_1002_adma_202209141 crossref_primary_10_1016_j_cej_2020_126359 crossref_primary_10_1016_j_jelechem_2022_117082 crossref_primary_10_1016_j_cej_2025_159946 crossref_primary_10_1016_j_apsusc_2021_150676 crossref_primary_10_1021_acsanm_3c03418 crossref_primary_10_1016_j_renene_2020_12_102 crossref_primary_10_1007_s10854_024_12020_w crossref_primary_10_1039_D2NJ02309A |
Cites_doi | 10.1021/jz3005128 10.1021/jp061693u 10.1016/j.solmat.2017.04.031 10.1021/ja201415j 10.1039/C3CS60245A 10.1021/acsnano.6b07581 10.1021/jp309683f 10.1002/ange.201301473 10.1039/C8CS00320C 10.1039/C5TA04573H 10.1021/ja070099a 10.1021/ja0504690 10.1021/ja3037146 10.1021/la025775v 10.1039/b919698f 10.1021/ja204838s 10.1002/aenm.201300995 10.1002/anie.201600918 10.1039/c2cp42484c 10.1021/jp5000232 10.1007/s12274-016-1391-4 10.1016/j.apcatb.2017.11.083 10.1021/ja5044787 10.1039/c0cc01562h 10.1021/jacs.8b04039 10.1039/C7TA01888F 10.1002/smll.201703277 10.1038/nchem.1478 10.1021/acs.chemrev.6b00673 10.1021/ja410994f 10.1021/acsami.8b03250 10.1021/acscatal.7b04228 10.1021/ar000110a 10.1039/C3CS60425J 10.1002/anie.200800528 10.1021/acs.nanolett.7b02799 10.1021/acsami.7b08548 10.1021/acsami.6b13984 10.1002/aenm.201502555 10.1039/C3CS60215J 10.1021/nl202587b 10.1021/ja4092616 10.1016/j.apcatb.2018.12.056 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Oct 5, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Oct 5, 2019 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2019.05.031 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 600 |
ExternalDocumentID | 10_1016_j_apcatb_2019_05_031 S0926337319304618 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c437t-f2e5f244b36bab7548040e0ac28c76d56cc6c816c5420e86a64c453b1445bfc3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 11:22:12 EDT 2025 Thu Apr 24 23:01:27 EDT 2025 Tue Jul 01 04:34:55 EDT 2025 Sat Mar 02 16:00:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Heterostructure Photodeposition In situ Hydrogen evolution Photoluminescence |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-f2e5f244b36bab7548040e0ac28c76d56cc6c816c5420e86a64c453b1445bfc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1805-1677 |
PQID | 2250580446 |
PQPubID | 2045281 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2250580446 crossref_citationtrail_10_1016_j_apcatb_2019_05_031 crossref_primary_10_1016_j_apcatb_2019_05_031 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_05_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-10-05 |
PublicationDateYYYYMMDD | 2019-10-05 |
PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Robel, Kuno, Kamat (bib0195) 2007; 129 D’Arienzo, Carbajo, Bahamonde, Crippa, Polizzi, Scotti, Wahba, Morazzoni (bib0060) 2011; 133 Chen, Zhou, Andoy, Han, Choudhary, Zou, Chen, Shen (bib0030) 2014; 43 Xia, Liu, Xu, Wang, Liao, Huang, Ye, He, Wong, Qiu (bib0215) 2019; 245 Xue, Li, An, Yang, Wei, Yang (bib0095) 2018; 8 Buurmans, Weckhuysen (bib0005) 2012; 4 Lou, Kim, Zhang, Shi, Fujitsuka, Majima (bib0190) 2017; 11 Janssen, De Cremer, Neely, Kubarev, Van Loon, Martens, De Vos, Roeffaers, Hofkens (bib0035) 2014; 43 Hesari, Mao, Chen (bib0070) 2018; 140 Yuan, Wen, Zhong, Li, Fang, Zhang, Liu (bib0110) 2015; 3 Hinnemann, Moses, Bonde, Jørgensen, Nielsen, Horch, Chorkendorff, Nørskov (bib0085) 2005; 127 Bian, Tachikawa, Zhang, Fujitsuka, Majima (bib0055) 2014; 136 Zhang, Yu, Zhang, Li, Gong (bib0090) 2011; 11 Weckhuysen (bib0020) 2005; 36 Yu, Low, Xiao, Zhou, Jaroniec (bib0065) 2014; 136 Zhang, Wang, Wang, Zhong, Xu (bib0105) 2010; 46 Chai, Peng, Mao, Li, Zan (bib0160) 2012; 14 Bian, Tachikawa, Majima (bib0045) 2012; 3 Li, Yang, Wu, Wang, Li, Feng, Deng, Zhang, Zhao (bib0135) 2012; 134 Shi, Fujitsuka, Lou, Zhang, Majima (bib0150) 2017; 5 Ran, Zhang, Yu, Jaroniec, Qiao (bib0075) 2014; 43 Bian, Tachikawa, Kim, Choi, Majima (bib0050) 2012; 116 Demortière, Schaller, Li, Chattopadhyay, Krylova, Shibata, dos Santos Claro, Rowland, Miller, Cook, Lee, Shevchenko (bib0080) 2014; 136 Zhang, Huang, Zhang, Gu, Fan, Liu (bib0115) 2016; 3 Zhai, Xie, Fan, Zhang, Wang, Deng, Wang (bib0145) 2013; 125 Chen, Fan, Dittrich, Li (bib0040) 2018; 47 Luo, Zhang, Liu, Zhang, Deng, Xu, Hu, Wang (bib0170) 2017; 9 Zhao, Zhang, Cui, Dong, Wang, Jiang, Wu, Zhao (bib0100) 2018; 225 Yu, Ho, Yu, Hark, Iu (bib0155) 2003; 19 Tachikawa, Yamashita, Majima (bib0175) 2011; 133 Adachi, Sakamoto, Jiu, Ogata, Isoda (bib0205) 2006; 110 Tachikawa, Majima (bib0025) 2010; 39 Zhu, Pang, Dittrich, Gao, Nie, Cui, Chen, An, Fan, Li (bib0225) 2017; 17 Chen, Dong, Chen, Zhao, Cheng, Ma, Lee, Zhang, Kang, Ha, Xu, Fang (bib0010) 2017; 117 Chen, Sun, Fan, Zhang, Fang (bib0165) 2014; 118 Zhang, Wang, Chang, Zhang, Gong (bib0140) 2016; 55 Crooks, Zhao, Sun, Chechik, Yeung (bib0015) 2001; 34 Li, Xue, Tian, Song, Zhang, Wang, Cui (bib0185) 2017; 168 Shi, Fujitsuka, Kim, Majima (bib0210) 2018; 14 Hu, He, Xia, Huang, Xu, Li, He, Yang, Shu, Wong (bib0220) 2018; 10 Elbanna, Fujitsuka, Majima (bib0120) 2017; 9 Chang, Hai, Ye (bib0125) 2016; 6 Xie, Fu, Jing, Luan, Feng, Fu (bib0130) 2014; 4 Tachikawa, Ishigaki, Li, Fujitsuka, Majima (bib0180) 2008; 47 Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib0200) 2017; 10 Weckhuysen (10.1016/j.apcatb.2019.05.031_bib0020) 2005; 36 Xia (10.1016/j.apcatb.2019.05.031_bib0215) 2019; 245 Lou (10.1016/j.apcatb.2019.05.031_bib0190) 2017; 11 Li (10.1016/j.apcatb.2019.05.031_bib0185) 2017; 168 Ong (10.1016/j.apcatb.2019.05.031_bib0200) 2017; 10 Shi (10.1016/j.apcatb.2019.05.031_bib0150) 2017; 5 Zhao (10.1016/j.apcatb.2019.05.031_bib0100) 2018; 225 Li (10.1016/j.apcatb.2019.05.031_bib0135) 2012; 134 Zhu (10.1016/j.apcatb.2019.05.031_bib0225) 2017; 17 Tachikawa (10.1016/j.apcatb.2019.05.031_bib0025) 2010; 39 Chen (10.1016/j.apcatb.2019.05.031_bib0165) 2014; 118 Elbanna (10.1016/j.apcatb.2019.05.031_bib0120) 2017; 9 Luo (10.1016/j.apcatb.2019.05.031_bib0170) 2017; 9 Zhang (10.1016/j.apcatb.2019.05.031_bib0090) 2011; 11 Xue (10.1016/j.apcatb.2019.05.031_bib0095) 2018; 8 D’Arienzo (10.1016/j.apcatb.2019.05.031_bib0060) 2011; 133 Zhang (10.1016/j.apcatb.2019.05.031_bib0105) 2010; 46 Hinnemann (10.1016/j.apcatb.2019.05.031_bib0085) 2005; 127 Ran (10.1016/j.apcatb.2019.05.031_bib0075) 2014; 43 Chen (10.1016/j.apcatb.2019.05.031_bib0030) 2014; 43 Demortière (10.1016/j.apcatb.2019.05.031_bib0080) 2014; 136 Yuan (10.1016/j.apcatb.2019.05.031_bib0110) 2015; 3 Yu (10.1016/j.apcatb.2019.05.031_bib0065) 2014; 136 Crooks (10.1016/j.apcatb.2019.05.031_bib0015) 2001; 34 Bian (10.1016/j.apcatb.2019.05.031_bib0045) 2012; 3 Buurmans (10.1016/j.apcatb.2019.05.031_bib0005) 2012; 4 Bian (10.1016/j.apcatb.2019.05.031_bib0050) 2012; 116 Tachikawa (10.1016/j.apcatb.2019.05.031_bib0180) 2008; 47 Zhang (10.1016/j.apcatb.2019.05.031_bib0140) 2016; 55 Zhai (10.1016/j.apcatb.2019.05.031_bib0145) 2013; 125 Bian (10.1016/j.apcatb.2019.05.031_bib0055) 2014; 136 Robel (10.1016/j.apcatb.2019.05.031_bib0195) 2007; 129 Adachi (10.1016/j.apcatb.2019.05.031_bib0205) 2006; 110 Chang (10.1016/j.apcatb.2019.05.031_bib0125) 2016; 6 Chen (10.1016/j.apcatb.2019.05.031_bib0040) 2018; 47 Yu (10.1016/j.apcatb.2019.05.031_bib0155) 2003; 19 Hesari (10.1016/j.apcatb.2019.05.031_bib0070) 2018; 140 Shi (10.1016/j.apcatb.2019.05.031_bib0210) 2018; 14 Xie (10.1016/j.apcatb.2019.05.031_bib0130) 2014; 4 Janssen (10.1016/j.apcatb.2019.05.031_bib0035) 2014; 43 Hu (10.1016/j.apcatb.2019.05.031_bib0220) 2018; 10 Chen (10.1016/j.apcatb.2019.05.031_bib0010) 2017; 117 Chai (10.1016/j.apcatb.2019.05.031_bib0160) 2012; 14 Zhang (10.1016/j.apcatb.2019.05.031_bib0115) 2016; 3 Tachikawa (10.1016/j.apcatb.2019.05.031_bib0175) 2011; 133 |
References_xml | – volume: 36 year: 2005 ident: bib0020 publication-title: ChemInform – volume: 10 start-page: 18693 year: 2018 end-page: 18708 ident: bib0220 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1502555 year: 2016 ident: bib0125 publication-title: Adv. Energy Mater. – volume: 14 start-page: 16745 year: 2012 end-page: 16752 ident: bib0160 publication-title: Phys. Chem. Chem. Phys. – volume: 9 start-page: 34844 year: 2017 end-page: 34854 ident: bib0120 publication-title: ACS Appl. Mater. Interfaces – volume: 43 start-page: 1107 year: 2014 end-page: 1117 ident: bib0030 publication-title: Chem. Soc. Rev. – volume: 117 start-page: 7510 year: 2017 end-page: 7537 ident: bib0010 publication-title: Chem. Rev. – volume: 134 start-page: 11864 year: 2012 end-page: 11867 ident: bib0135 publication-title: J. Am. Chem. Soc. – volume: 5 start-page: 9671 year: 2017 end-page: 9681 ident: bib0150 publication-title: J. Mater. Chem. A – volume: 8 start-page: 1532 year: 2018 end-page: 1545 ident: bib0095 publication-title: ACS Catal. – volume: 47 start-page: 5348 year: 2008 end-page: 5352 ident: bib0180 publication-title: Angew. Chem. Int. Ed. – volume: 118 start-page: 7801 year: 2014 end-page: 7807 ident: bib0165 publication-title: J. Phys. Chem. C – volume: 39 start-page: 4802 year: 2010 end-page: 4819 ident: bib0025 publication-title: Chem. Soc. Rev. – volume: 140 start-page: 6729 year: 2018 end-page: 6740 ident: bib0070 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 458 year: 2014 end-page: 465 ident: bib0055 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 8839 year: 2014 end-page: 8842 ident: bib0065 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 25444 year: 2012 end-page: 25453 ident: bib0050 publication-title: J. Phys. Chem. C – volume: 3 start-page: 1500467 year: 2016 ident: bib0115 publication-title: Adv. Energy Mater. – volume: 11 start-page: 4774 year: 2011 end-page: 4779 ident: bib0090 publication-title: Nano Lett. – volume: 127 start-page: 5308 year: 2005 end-page: 5309 ident: bib0085 publication-title: J. Am. Chem. Soc. – volume: 125 start-page: 5888 year: 2013 end-page: 5891 ident: bib0145 publication-title: Angew. Chem. Int. Ed. – volume: 34 start-page: 181 year: 2001 end-page: 190 ident: bib0015 publication-title: Acc. Chem. Res. – volume: 17 start-page: 6735 year: 2017 end-page: 6741 ident: bib0225 publication-title: Nano Lett. – volume: 129 start-page: 4136 year: 2007 end-page: 4137 ident: bib0195 publication-title: J. Am. Chem. Soc. – volume: 136 start-page: 2342 year: 2014 end-page: 2350 ident: bib0080 publication-title: J. Am. Chem. Soc. – volume: 168 start-page: 100 year: 2017 end-page: 111 ident: bib0185 publication-title: Sol. Energy Mater. Sol. Cells. – volume: 46 start-page: 7631 year: 2010 end-page: 7633 ident: bib0105 publication-title: Chem. Commun. – volume: 55 start-page: 5851 year: 2016 end-page: 5855 ident: bib0140 publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 968 year: 2017 end-page: 974 ident: bib0190 publication-title: ACS Nano – volume: 110 start-page: 13872 year: 2006 end-page: 13880 ident: bib0205 publication-title: J. Phys. Chem. B – volume: 225 start-page: 284 year: 2018 end-page: 290 ident: bib0100 publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 2500 year: 2017 end-page: 2508 ident: bib0170 publication-title: ACS Appl. Mater. Interfaces – volume: 133 start-page: 17652 year: 2011 end-page: 17661 ident: bib0060 publication-title: J. Am. Chem. Soc. – volume: 19 start-page: 3889 year: 2003 end-page: 3896 ident: bib0155 publication-title: Langmuir – volume: 133 start-page: 7197 year: 2011 end-page: 7204 ident: bib0175 publication-title: J. Am. Chem. Soc. – volume: 245 start-page: 177 year: 2019 end-page: 189 ident: bib0215 publication-title: Appl. Catal. B: Environ. – volume: 10 start-page: 1673 year: 2017 end-page: 1696 ident: bib0200 publication-title: Nano Res. – volume: 3 start-page: 18244 year: 2015 end-page: 18255 ident: bib0110 publication-title: J. Mater. Chem. A – volume: 43 start-page: 990 year: 2014 end-page: 1006 ident: bib0035 publication-title: Chem. Soc. Rev. – volume: 3 start-page: 1422 year: 2012 end-page: 1427 ident: bib0045 publication-title: J. Phys. Chem. Lett. – volume: 14 start-page: 1703277 year: 2018 ident: bib0210 publication-title: Small – volume: 47 start-page: 8238 year: 2018 end-page: 8262 ident: bib0040 publication-title: Chem. Soc. Rev. – volume: 4 start-page: 873 year: 2012 ident: bib0005 publication-title: Nat. Chem. – volume: 43 start-page: 7787 year: 2014 end-page: 7812 ident: bib0075 publication-title: Chem. Soc. Rev. – volume: 4 year: 2014 ident: bib0130 publication-title: Adv. Energy Mater. – volume: 3 start-page: 1422 year: 2012 ident: 10.1016/j.apcatb.2019.05.031_bib0045 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3005128 – volume: 110 start-page: 13872 year: 2006 ident: 10.1016/j.apcatb.2019.05.031_bib0205 publication-title: J. Phys. Chem. B doi: 10.1021/jp061693u – volume: 36 year: 2005 ident: 10.1016/j.apcatb.2019.05.031_bib0020 publication-title: ChemInform – volume: 168 start-page: 100 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0185 publication-title: Sol. Energy Mater. Sol. Cells. doi: 10.1016/j.solmat.2017.04.031 – volume: 133 start-page: 7197 year: 2011 ident: 10.1016/j.apcatb.2019.05.031_bib0175 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja201415j – volume: 43 start-page: 990 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0035 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60245A – volume: 11 start-page: 968 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0190 publication-title: ACS Nano doi: 10.1021/acsnano.6b07581 – volume: 116 start-page: 25444 year: 2012 ident: 10.1016/j.apcatb.2019.05.031_bib0050 publication-title: J. Phys. Chem. C doi: 10.1021/jp309683f – volume: 125 start-page: 5888 year: 2013 ident: 10.1016/j.apcatb.2019.05.031_bib0145 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201301473 – volume: 47 start-page: 8238 year: 2018 ident: 10.1016/j.apcatb.2019.05.031_bib0040 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00320C – volume: 3 start-page: 18244 year: 2015 ident: 10.1016/j.apcatb.2019.05.031_bib0110 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04573H – volume: 129 start-page: 4136 year: 2007 ident: 10.1016/j.apcatb.2019.05.031_bib0195 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja070099a – volume: 127 start-page: 5308 year: 2005 ident: 10.1016/j.apcatb.2019.05.031_bib0085 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0504690 – volume: 134 start-page: 11864 year: 2012 ident: 10.1016/j.apcatb.2019.05.031_bib0135 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3037146 – volume: 19 start-page: 3889 year: 2003 ident: 10.1016/j.apcatb.2019.05.031_bib0155 publication-title: Langmuir doi: 10.1021/la025775v – volume: 39 start-page: 4802 year: 2010 ident: 10.1016/j.apcatb.2019.05.031_bib0025 publication-title: Chem. Soc. Rev. doi: 10.1039/b919698f – volume: 133 start-page: 17652 year: 2011 ident: 10.1016/j.apcatb.2019.05.031_bib0060 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja204838s – volume: 4 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0130 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300995 – volume: 55 start-page: 5851 year: 2016 ident: 10.1016/j.apcatb.2019.05.031_bib0140 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201600918 – volume: 14 start-page: 16745 year: 2012 ident: 10.1016/j.apcatb.2019.05.031_bib0160 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp42484c – volume: 118 start-page: 7801 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0165 publication-title: J. Phys. Chem. C doi: 10.1021/jp5000232 – volume: 10 start-page: 1673 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0200 publication-title: Nano Res. doi: 10.1007/s12274-016-1391-4 – volume: 225 start-page: 284 year: 2018 ident: 10.1016/j.apcatb.2019.05.031_bib0100 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.11.083 – volume: 136 start-page: 8839 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0065 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5044787 – volume: 46 start-page: 7631 year: 2010 ident: 10.1016/j.apcatb.2019.05.031_bib0105 publication-title: Chem. Commun. doi: 10.1039/c0cc01562h – volume: 140 start-page: 6729 year: 2018 ident: 10.1016/j.apcatb.2019.05.031_bib0070 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04039 – volume: 5 start-page: 9671 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0150 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA01888F – volume: 14 start-page: 1703277 year: 2018 ident: 10.1016/j.apcatb.2019.05.031_bib0210 publication-title: Small doi: 10.1002/smll.201703277 – volume: 4 start-page: 873 year: 2012 ident: 10.1016/j.apcatb.2019.05.031_bib0005 publication-title: Nat. Chem. doi: 10.1038/nchem.1478 – volume: 117 start-page: 7510 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0010 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00673 – volume: 136 start-page: 458 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0055 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410994f – volume: 10 start-page: 18693 year: 2018 ident: 10.1016/j.apcatb.2019.05.031_bib0220 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b03250 – volume: 8 start-page: 1532 year: 2018 ident: 10.1016/j.apcatb.2019.05.031_bib0095 publication-title: ACS Catal. doi: 10.1021/acscatal.7b04228 – volume: 34 start-page: 181 year: 2001 ident: 10.1016/j.apcatb.2019.05.031_bib0015 publication-title: Acc. Chem. Res. doi: 10.1021/ar000110a – volume: 43 start-page: 7787 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0075 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60425J – volume: 47 start-page: 5348 year: 2008 ident: 10.1016/j.apcatb.2019.05.031_bib0180 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200800528 – volume: 17 start-page: 6735 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0225 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b02799 – volume: 9 start-page: 34844 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0120 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b08548 – volume: 9 start-page: 2500 year: 2017 ident: 10.1016/j.apcatb.2019.05.031_bib0170 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b13984 – volume: 3 start-page: 1500467 year: 2016 ident: 10.1016/j.apcatb.2019.05.031_bib0115 publication-title: Adv. Energy Mater. – volume: 6 start-page: 1502555 year: 2016 ident: 10.1016/j.apcatb.2019.05.031_bib0125 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201502555 – volume: 43 start-page: 1107 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0030 publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60215J – volume: 11 start-page: 4774 year: 2011 ident: 10.1016/j.apcatb.2019.05.031_bib0090 publication-title: Nano Lett. doi: 10.1021/nl202587b – volume: 136 start-page: 2342 year: 2014 ident: 10.1016/j.apcatb.2019.05.031_bib0080 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4092616 – volume: 245 start-page: 177 year: 2019 ident: 10.1016/j.apcatb.2019.05.031_bib0215 publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2018.12.056 |
SSID | ssj0002328 |
Score | 2.519323 |
Snippet | [Display omitted]
•Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of... For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 594 |
SubjectTerms | Current carriers Heterostructure Hydrogen evolution In situ Migration Nanoparticles Particle physics Photocatalysis Photodeposition Photoluminescence Photons Reaction kinetics Structure-activity relationships Titanium dioxide |
Title | In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity |
URI | https://dx.doi.org/10.1016/j.apcatb.2019.05.031 https://www.proquest.com/docview/2250580446 |
Volume | 254 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QAcECxUFErlA1ez2fgj2WO1arUFsRy6SL1ZtuN0g1pntZsi7YUjv5ux47SAhCpxTORxoszzzMR-MwPwfqpLoxEbtJwUjHKWW2oMZ1RodN-hBZKJRX0-L-T8K_94KS73YDbkwgRaZbL9vU2P1jrdGaevOV43zfgim-aSsQIxFKuGh4RfzouA8g8_7mke-MhojXEwDaOH9LnI8dJrqzsTCF7TWL-TTf7lnv4y1NH7nD2HZylsJCf9m72APedH8Hg2dGsbwdPfCguO4OD0Pn8NxdIC3r6En-eebJvulrTmbjuWtDVZNBfEa49_0IkoRyrX87n8FWmDjL-6dmTZfMnJjUONbnbbMDOGvMT5VaQRkPWq7dq4H7TDSchqV21axCdx3xO-SciiCM0qXsHy7HQ5m9PUioFazoqO1rkTNUYChkmjTRGKxPHMZdrmpS1kJaS10pYTaQXPM1dKLbnlghn8XROmtuwA9n3r3WsgRe0qXuGAeALIMSLRdclrjMo0k7KcHgIbFKBsKlMeumVcq4GP9k31alNBbSoTCtV2CPROat2X6XhgfDHoVv0BN4We5AHJowEKKi33rcpDIFmGs_E3_z3xW3gSriJRUBzBfre5de8w4OnMcUT0MTw6Of80X_wChpkB-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6N8TB4QKMwMRjgB15N09hx3EdUbepgKw8r0t4s23HWTCOp2gypLzzud-_sOBtDQpN4Te6cyHe-O9vf3QF8GmtpNOoGlaOcUc5SS43hjGYa3bdvgWRCUZ_TmZj-4F_Ps_MtmPS5MB5WGW1_Z9ODtY5PhnE2h8uqGp4l41QwlqMOharh8gk85bh8fRuDz7_vcR74zWCOkZp68j5_LoC89NLq1niE1zgU8GSjf_mnvyx1cD9Hu_Aixo3kS_drL2HL1QPYmfTt2gbw_I_KggPYO7xPYEO2uILXr-DmuCbrqr0mjbk7jyVNSWbVGal1jVvoiJQjhesAXfUFaTxPfXHlyLz6npKfDkW62qz9yBjzElcvAo6ALBdN24QDoQ0OQhabYtWgghL3Kyo48WkUvlvFa5gfHc4nUxp7MVDLWd7SMnVZiaGAYcJok_sqcTxxibaptLkoMmGtsHIkbMbTxEmhBbcoDYP7tcyUlu3Bdt3U7g2QvHQFL5AgXAFyDEl0KXmJYZlmQsjxPrBeAMrGOuW-XcaV6gFpl6oTm_JiU0mmUGz7QO-4ll2djkfo81626oG-KXQlj3Ae9Kqg4npfq9RHktJfjr_974E_ws50fnqiTo5n397BM_8moAazA9huV9fuPUY_rfkQtPsWV78Dhg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+observation+of+NiS+nanoparticles+depositing+on+single+TiO2+mesocrystal+for+enhanced+photocatalytic+hydrogen+evolution+activity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Shi%2C+Xiaowei&rft.au=Kim%2C+Sooyeon&rft.au=Fujitsuka%2C+Mamoru&rft.au=Majima%2C+Tetsuro&rft.date=2019-10-05&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=254&rft.spage=594&rft_id=info:doi/10.1016%2Fj.apcatb.2019.05.031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |