In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity

[Display omitted] •Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of PL intensity and lifetime on individual TMC particle was detected before and after NiS photodeposition.•The interfacial electron injection k...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 254; pp. 594 - 600
Main Authors Shi, Xiaowei, Kim, Sooyeon, Fujitsuka, Mamoru, Majima, Tetsuro
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.10.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of PL intensity and lifetime on individual TMC particle was detected before and after NiS photodeposition.•The interfacial electron injection kinetics from TMC to NiS in individual TMC/NiS particle was investigated.•TMC/NiS heterostructure exhibited 71 folds enhanced H2 evolution compared with TMC. For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance because they play significant roles on unveiling the precise information of structure-activity relationships and closely relate to the photocatalytic activities of those semiconductors on targeted functions. Here, photodeposition process of NiS nanoparticles on single TiO2 mesocrystal (TMC) as co-catalyst is in situ monitored by PL images and spectra using a confocal single-particle PL microscopy, which provides straightforward results on understanding the photoexcited electrons transfer in both individual TMC and TMC/NiS nanoparticles. Through the changes in PL intensity and decay lifetime, preferential trapping site for NiS nanoparticles on TMC is identified and efficient electron interfacial migration from TMC to NiS nanoparticles is demonstrated, which lead to an almost 71 folds enhancement on the photocatalytic H2 evolution under 365-nm photoirradiation compared to pure TMC particles.
AbstractList For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance because they play significant roles on unveiling the precise information of structure-activity relationships and closely relate to the photocatalytic activities of those semiconductors on targeted functions. Here, photodeposition process of NiS nanoparticles on single TiO2 mesocrystal (TMC) as co-catalyst is in situ monitored by PL images and spectra using a confocal single-particle PL microscopy, which provides straightforward results on understanding the photoexcited electrons transfer in both individual TMC and TMC/NiS nanoparticles. Through the changes in PL intensity and decay lifetime, preferential trapping site for NiS nanoparticles on TMC is identified and efficient electron interfacial migration from TMC to NiS nanoparticles is demonstrated, which lead to an almost 71 folds enhancement on the photocatalytic H2 evolution under 365-nm photoirradiation compared to pure TMC particles.
[Display omitted] •Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of PL intensity and lifetime on individual TMC particle was detected before and after NiS photodeposition.•The interfacial electron injection kinetics from TMC to NiS in individual TMC/NiS particle was investigated.•TMC/NiS heterostructure exhibited 71 folds enhanced H2 evolution compared with TMC. For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance because they play significant roles on unveiling the precise information of structure-activity relationships and closely relate to the photocatalytic activities of those semiconductors on targeted functions. Here, photodeposition process of NiS nanoparticles on single TiO2 mesocrystal (TMC) as co-catalyst is in situ monitored by PL images and spectra using a confocal single-particle PL microscopy, which provides straightforward results on understanding the photoexcited electrons transfer in both individual TMC and TMC/NiS nanoparticles. Through the changes in PL intensity and decay lifetime, preferential trapping site for NiS nanoparticles on TMC is identified and efficient electron interfacial migration from TMC to NiS nanoparticles is demonstrated, which lead to an almost 71 folds enhancement on the photocatalytic H2 evolution under 365-nm photoirradiation compared to pure TMC particles.
Author Fujitsuka, Mamoru
Shi, Xiaowei
Kim, Sooyeon
Majima, Tetsuro
Author_xml – sequence: 1
  givenname: Xiaowei
  surname: Shi
  fullname: Shi, Xiaowei
  organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
– sequence: 2
  givenname: Sooyeon
  surname: Kim
  fullname: Kim, Sooyeon
  organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
– sequence: 3
  givenname: Mamoru
  surname: Fujitsuka
  fullname: Fujitsuka, Mamoru
  organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
– sequence: 4
  givenname: Tetsuro
  orcidid: 0000-0003-1805-1677
  surname: Majima
  fullname: Majima, Tetsuro
  email: majima@sanken.osaka-u.ac.jp
  organization: The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
BookMark eNqFkE1v1DAQhi1UJLaFf8DBEucEfyflgIQqPipV9MDeLWcy2fUqtYPtXSl_gN-Nt8uJA5zm8j7vzDzX5CrEgIS85azljJv3h9Yt4MrQCsZvW6ZbJvkLsuF9JxvZ9_KKbNitMI2UnXxFrnM-MMaEFP2G_LoPNPtypHHImE6u-BhonOh3_4MGF-LiUvEwY6YjLrEmfdjReGbCbka69Y-CPmGOkNZc3EynmCiGvQuAI132scR6mJvXWkL365jiDgPFU5yPz5scFH_yZX1NXk5uzvjmz7wh2y-ft3ffmofHr_d3nx4aULIrzSRQT0KpQZrBDZ1WPVMMmQPRQ2dGbQAM9NyAVoJhb5xRoLQcuFJ6mEDekHeX2iXFn0fMxR7iMYW60Qqhma51ytTUh0sKUsw54WTBl2czJTk_W87sWbs92It2e9ZumbZVe4XVX_CS_JNL6_-wjxcM6_cnj8lm8Hi26BNCsWP0_y74DcRuo7g
CitedBy_id crossref_primary_10_1002_slct_202004735
crossref_primary_10_1016_j_mssp_2022_106775
crossref_primary_10_1002_smll_202307057
crossref_primary_10_1016_j_ijhydene_2020_07_086
crossref_primary_10_1016_j_scitotenv_2021_145874
crossref_primary_10_1002_pssa_202100767
crossref_primary_10_1016_S1872_2067_23_64444_4
crossref_primary_10_1021_acscatal_1c00983
crossref_primary_10_1016_j_cclet_2022_07_026
crossref_primary_10_1039_D2RA02236B
crossref_primary_10_1016_j_carbon_2024_119451
crossref_primary_10_1039_D1NJ00608H
crossref_primary_10_1016_j_apcatb_2022_122028
crossref_primary_10_1002_smtd_202300627
crossref_primary_10_1016_j_apsusc_2021_152083
crossref_primary_10_1021_acsanm_9b02412
crossref_primary_10_1080_01614940_2024_2446475
crossref_primary_10_1016_j_ijhydene_2024_02_011
crossref_primary_10_1039_D2GC04535D
crossref_primary_10_1016_j_ijhydene_2021_11_171
crossref_primary_10_1021_acscatal_2c02447
crossref_primary_10_1016_j_apcatb_2021_119994
crossref_primary_10_1016_j_cattod_2021_07_004
crossref_primary_10_1016_j_cej_2021_130372
crossref_primary_10_1007_s11426_024_2199_7
crossref_primary_10_1016_j_electacta_2021_138951
crossref_primary_10_1039_D2NJ00395C
crossref_primary_10_1002_aenm_202200298
crossref_primary_10_1002_sstr_202100229
crossref_primary_10_1039_D2NJ03338K
crossref_primary_10_1039_D2TA01758J
crossref_primary_10_1016_j_apcatb_2020_118616
crossref_primary_10_1016_j_apcatb_2021_119947
crossref_primary_10_1007_s10311_021_01269_w
crossref_primary_10_2139_ssrn_4103322
crossref_primary_10_1016_S1872_2067_22_64105_6
crossref_primary_10_1039_D2QI02081E
crossref_primary_10_1016_S1872_2067_20_63633_6
crossref_primary_10_1016_j_jcis_2024_04_223
crossref_primary_10_1016_j_cclet_2024_110415
crossref_primary_10_1016_j_apcatb_2024_123974
crossref_primary_10_1016_j_foodchem_2021_129768
crossref_primary_10_1021_acscatal_4c02269
crossref_primary_10_1021_acsnano_4c10702
crossref_primary_10_1002_adma_202309199
crossref_primary_10_1016_j_molstruc_2021_131493
crossref_primary_10_1002_smll_202400617
crossref_primary_10_1016_j_cej_2020_124496
crossref_primary_10_1016_j_seppur_2022_121564
crossref_primary_10_1002_adma_202209141
crossref_primary_10_1016_j_cej_2020_126359
crossref_primary_10_1016_j_jelechem_2022_117082
crossref_primary_10_1016_j_cej_2025_159946
crossref_primary_10_1016_j_apsusc_2021_150676
crossref_primary_10_1021_acsanm_3c03418
crossref_primary_10_1016_j_renene_2020_12_102
crossref_primary_10_1007_s10854_024_12020_w
crossref_primary_10_1039_D2NJ02309A
Cites_doi 10.1021/jz3005128
10.1021/jp061693u
10.1016/j.solmat.2017.04.031
10.1021/ja201415j
10.1039/C3CS60245A
10.1021/acsnano.6b07581
10.1021/jp309683f
10.1002/ange.201301473
10.1039/C8CS00320C
10.1039/C5TA04573H
10.1021/ja070099a
10.1021/ja0504690
10.1021/ja3037146
10.1021/la025775v
10.1039/b919698f
10.1021/ja204838s
10.1002/aenm.201300995
10.1002/anie.201600918
10.1039/c2cp42484c
10.1021/jp5000232
10.1007/s12274-016-1391-4
10.1016/j.apcatb.2017.11.083
10.1021/ja5044787
10.1039/c0cc01562h
10.1021/jacs.8b04039
10.1039/C7TA01888F
10.1002/smll.201703277
10.1038/nchem.1478
10.1021/acs.chemrev.6b00673
10.1021/ja410994f
10.1021/acsami.8b03250
10.1021/acscatal.7b04228
10.1021/ar000110a
10.1039/C3CS60425J
10.1002/anie.200800528
10.1021/acs.nanolett.7b02799
10.1021/acsami.7b08548
10.1021/acsami.6b13984
10.1002/aenm.201502555
10.1039/C3CS60215J
10.1021/nl202587b
10.1021/ja4092616
10.1016/j.apcatb.2018.12.056
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Oct 5, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 5, 2019
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.05.031
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 600
ExternalDocumentID 10_1016_j_apcatb_2019_05_031
S0926337319304618
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c437t-f2e5f244b36bab7548040e0ac28c76d56cc6c816c5420e86a64c453b1445bfc3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 11:22:12 EDT 2025
Thu Apr 24 23:01:27 EDT 2025
Tue Jul 01 04:34:55 EDT 2025
Sat Mar 02 16:00:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heterostructure
Photodeposition
In situ
Hydrogen evolution
Photoluminescence
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-f2e5f244b36bab7548040e0ac28c76d56cc6c816c5420e86a64c453b1445bfc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1805-1677
PQID 2250580446
PQPubID 2045281
PageCount 7
ParticipantIDs proquest_journals_2250580446
crossref_citationtrail_10_1016_j_apcatb_2019_05_031
crossref_primary_10_1016_j_apcatb_2019_05_031
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_05_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-05
PublicationDateYYYYMMDD 2019-10-05
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-05
  day: 05
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Robel, Kuno, Kamat (bib0195) 2007; 129
D’Arienzo, Carbajo, Bahamonde, Crippa, Polizzi, Scotti, Wahba, Morazzoni (bib0060) 2011; 133
Chen, Zhou, Andoy, Han, Choudhary, Zou, Chen, Shen (bib0030) 2014; 43
Xia, Liu, Xu, Wang, Liao, Huang, Ye, He, Wong, Qiu (bib0215) 2019; 245
Xue, Li, An, Yang, Wei, Yang (bib0095) 2018; 8
Buurmans, Weckhuysen (bib0005) 2012; 4
Lou, Kim, Zhang, Shi, Fujitsuka, Majima (bib0190) 2017; 11
Janssen, De Cremer, Neely, Kubarev, Van Loon, Martens, De Vos, Roeffaers, Hofkens (bib0035) 2014; 43
Hesari, Mao, Chen (bib0070) 2018; 140
Yuan, Wen, Zhong, Li, Fang, Zhang, Liu (bib0110) 2015; 3
Hinnemann, Moses, Bonde, Jørgensen, Nielsen, Horch, Chorkendorff, Nørskov (bib0085) 2005; 127
Bian, Tachikawa, Zhang, Fujitsuka, Majima (bib0055) 2014; 136
Zhang, Yu, Zhang, Li, Gong (bib0090) 2011; 11
Weckhuysen (bib0020) 2005; 36
Yu, Low, Xiao, Zhou, Jaroniec (bib0065) 2014; 136
Zhang, Wang, Wang, Zhong, Xu (bib0105) 2010; 46
Chai, Peng, Mao, Li, Zan (bib0160) 2012; 14
Bian, Tachikawa, Majima (bib0045) 2012; 3
Li, Yang, Wu, Wang, Li, Feng, Deng, Zhang, Zhao (bib0135) 2012; 134
Shi, Fujitsuka, Lou, Zhang, Majima (bib0150) 2017; 5
Ran, Zhang, Yu, Jaroniec, Qiao (bib0075) 2014; 43
Bian, Tachikawa, Kim, Choi, Majima (bib0050) 2012; 116
Demortière, Schaller, Li, Chattopadhyay, Krylova, Shibata, dos Santos Claro, Rowland, Miller, Cook, Lee, Shevchenko (bib0080) 2014; 136
Zhang, Huang, Zhang, Gu, Fan, Liu (bib0115) 2016; 3
Zhai, Xie, Fan, Zhang, Wang, Deng, Wang (bib0145) 2013; 125
Chen, Fan, Dittrich, Li (bib0040) 2018; 47
Luo, Zhang, Liu, Zhang, Deng, Xu, Hu, Wang (bib0170) 2017; 9
Zhao, Zhang, Cui, Dong, Wang, Jiang, Wu, Zhao (bib0100) 2018; 225
Yu, Ho, Yu, Hark, Iu (bib0155) 2003; 19
Tachikawa, Yamashita, Majima (bib0175) 2011; 133
Adachi, Sakamoto, Jiu, Ogata, Isoda (bib0205) 2006; 110
Tachikawa, Majima (bib0025) 2010; 39
Zhu, Pang, Dittrich, Gao, Nie, Cui, Chen, An, Fan, Li (bib0225) 2017; 17
Chen, Dong, Chen, Zhao, Cheng, Ma, Lee, Zhang, Kang, Ha, Xu, Fang (bib0010) 2017; 117
Chen, Sun, Fan, Zhang, Fang (bib0165) 2014; 118
Zhang, Wang, Chang, Zhang, Gong (bib0140) 2016; 55
Crooks, Zhao, Sun, Chechik, Yeung (bib0015) 2001; 34
Li, Xue, Tian, Song, Zhang, Wang, Cui (bib0185) 2017; 168
Shi, Fujitsuka, Kim, Majima (bib0210) 2018; 14
Hu, He, Xia, Huang, Xu, Li, He, Yang, Shu, Wong (bib0220) 2018; 10
Elbanna, Fujitsuka, Majima (bib0120) 2017; 9
Chang, Hai, Ye (bib0125) 2016; 6
Xie, Fu, Jing, Luan, Feng, Fu (bib0130) 2014; 4
Tachikawa, Ishigaki, Li, Fujitsuka, Majima (bib0180) 2008; 47
Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib0200) 2017; 10
Weckhuysen (10.1016/j.apcatb.2019.05.031_bib0020) 2005; 36
Xia (10.1016/j.apcatb.2019.05.031_bib0215) 2019; 245
Lou (10.1016/j.apcatb.2019.05.031_bib0190) 2017; 11
Li (10.1016/j.apcatb.2019.05.031_bib0185) 2017; 168
Ong (10.1016/j.apcatb.2019.05.031_bib0200) 2017; 10
Shi (10.1016/j.apcatb.2019.05.031_bib0150) 2017; 5
Zhao (10.1016/j.apcatb.2019.05.031_bib0100) 2018; 225
Li (10.1016/j.apcatb.2019.05.031_bib0135) 2012; 134
Zhu (10.1016/j.apcatb.2019.05.031_bib0225) 2017; 17
Tachikawa (10.1016/j.apcatb.2019.05.031_bib0025) 2010; 39
Chen (10.1016/j.apcatb.2019.05.031_bib0165) 2014; 118
Elbanna (10.1016/j.apcatb.2019.05.031_bib0120) 2017; 9
Luo (10.1016/j.apcatb.2019.05.031_bib0170) 2017; 9
Zhang (10.1016/j.apcatb.2019.05.031_bib0090) 2011; 11
Xue (10.1016/j.apcatb.2019.05.031_bib0095) 2018; 8
D’Arienzo (10.1016/j.apcatb.2019.05.031_bib0060) 2011; 133
Zhang (10.1016/j.apcatb.2019.05.031_bib0105) 2010; 46
Hinnemann (10.1016/j.apcatb.2019.05.031_bib0085) 2005; 127
Ran (10.1016/j.apcatb.2019.05.031_bib0075) 2014; 43
Chen (10.1016/j.apcatb.2019.05.031_bib0030) 2014; 43
Demortière (10.1016/j.apcatb.2019.05.031_bib0080) 2014; 136
Yuan (10.1016/j.apcatb.2019.05.031_bib0110) 2015; 3
Yu (10.1016/j.apcatb.2019.05.031_bib0065) 2014; 136
Crooks (10.1016/j.apcatb.2019.05.031_bib0015) 2001; 34
Bian (10.1016/j.apcatb.2019.05.031_bib0045) 2012; 3
Buurmans (10.1016/j.apcatb.2019.05.031_bib0005) 2012; 4
Bian (10.1016/j.apcatb.2019.05.031_bib0050) 2012; 116
Tachikawa (10.1016/j.apcatb.2019.05.031_bib0180) 2008; 47
Zhang (10.1016/j.apcatb.2019.05.031_bib0140) 2016; 55
Zhai (10.1016/j.apcatb.2019.05.031_bib0145) 2013; 125
Bian (10.1016/j.apcatb.2019.05.031_bib0055) 2014; 136
Robel (10.1016/j.apcatb.2019.05.031_bib0195) 2007; 129
Adachi (10.1016/j.apcatb.2019.05.031_bib0205) 2006; 110
Chang (10.1016/j.apcatb.2019.05.031_bib0125) 2016; 6
Chen (10.1016/j.apcatb.2019.05.031_bib0040) 2018; 47
Yu (10.1016/j.apcatb.2019.05.031_bib0155) 2003; 19
Hesari (10.1016/j.apcatb.2019.05.031_bib0070) 2018; 140
Shi (10.1016/j.apcatb.2019.05.031_bib0210) 2018; 14
Xie (10.1016/j.apcatb.2019.05.031_bib0130) 2014; 4
Janssen (10.1016/j.apcatb.2019.05.031_bib0035) 2014; 43
Hu (10.1016/j.apcatb.2019.05.031_bib0220) 2018; 10
Chen (10.1016/j.apcatb.2019.05.031_bib0010) 2017; 117
Chai (10.1016/j.apcatb.2019.05.031_bib0160) 2012; 14
Zhang (10.1016/j.apcatb.2019.05.031_bib0115) 2016; 3
Tachikawa (10.1016/j.apcatb.2019.05.031_bib0175) 2011; 133
References_xml – volume: 36
  year: 2005
  ident: bib0020
  publication-title: ChemInform
– volume: 10
  start-page: 18693
  year: 2018
  end-page: 18708
  ident: bib0220
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1502555
  year: 2016
  ident: bib0125
  publication-title: Adv. Energy Mater.
– volume: 14
  start-page: 16745
  year: 2012
  end-page: 16752
  ident: bib0160
  publication-title: Phys. Chem. Chem. Phys.
– volume: 9
  start-page: 34844
  year: 2017
  end-page: 34854
  ident: bib0120
  publication-title: ACS Appl. Mater. Interfaces
– volume: 43
  start-page: 1107
  year: 2014
  end-page: 1117
  ident: bib0030
  publication-title: Chem. Soc. Rev.
– volume: 117
  start-page: 7510
  year: 2017
  end-page: 7537
  ident: bib0010
  publication-title: Chem. Rev.
– volume: 134
  start-page: 11864
  year: 2012
  end-page: 11867
  ident: bib0135
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 9671
  year: 2017
  end-page: 9681
  ident: bib0150
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1532
  year: 2018
  end-page: 1545
  ident: bib0095
  publication-title: ACS Catal.
– volume: 47
  start-page: 5348
  year: 2008
  end-page: 5352
  ident: bib0180
  publication-title: Angew. Chem. Int. Ed.
– volume: 118
  start-page: 7801
  year: 2014
  end-page: 7807
  ident: bib0165
  publication-title: J. Phys. Chem. C
– volume: 39
  start-page: 4802
  year: 2010
  end-page: 4819
  ident: bib0025
  publication-title: Chem. Soc. Rev.
– volume: 140
  start-page: 6729
  year: 2018
  end-page: 6740
  ident: bib0070
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 458
  year: 2014
  end-page: 465
  ident: bib0055
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 8839
  year: 2014
  end-page: 8842
  ident: bib0065
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 25444
  year: 2012
  end-page: 25453
  ident: bib0050
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 1500467
  year: 2016
  ident: bib0115
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 4774
  year: 2011
  end-page: 4779
  ident: bib0090
  publication-title: Nano Lett.
– volume: 127
  start-page: 5308
  year: 2005
  end-page: 5309
  ident: bib0085
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 5888
  year: 2013
  end-page: 5891
  ident: bib0145
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  start-page: 181
  year: 2001
  end-page: 190
  ident: bib0015
  publication-title: Acc. Chem. Res.
– volume: 17
  start-page: 6735
  year: 2017
  end-page: 6741
  ident: bib0225
  publication-title: Nano Lett.
– volume: 129
  start-page: 4136
  year: 2007
  end-page: 4137
  ident: bib0195
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 2342
  year: 2014
  end-page: 2350
  ident: bib0080
  publication-title: J. Am. Chem. Soc.
– volume: 168
  start-page: 100
  year: 2017
  end-page: 111
  ident: bib0185
  publication-title: Sol. Energy Mater. Sol. Cells.
– volume: 46
  start-page: 7631
  year: 2010
  end-page: 7633
  ident: bib0105
  publication-title: Chem. Commun.
– volume: 55
  start-page: 5851
  year: 2016
  end-page: 5855
  ident: bib0140
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 968
  year: 2017
  end-page: 974
  ident: bib0190
  publication-title: ACS Nano
– volume: 110
  start-page: 13872
  year: 2006
  end-page: 13880
  ident: bib0205
  publication-title: J. Phys. Chem. B
– volume: 225
  start-page: 284
  year: 2018
  end-page: 290
  ident: bib0100
  publication-title: Appl. Catal. B: Environ.
– volume: 9
  start-page: 2500
  year: 2017
  end-page: 2508
  ident: bib0170
  publication-title: ACS Appl. Mater. Interfaces
– volume: 133
  start-page: 17652
  year: 2011
  end-page: 17661
  ident: bib0060
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 3889
  year: 2003
  end-page: 3896
  ident: bib0155
  publication-title: Langmuir
– volume: 133
  start-page: 7197
  year: 2011
  end-page: 7204
  ident: bib0175
  publication-title: J. Am. Chem. Soc.
– volume: 245
  start-page: 177
  year: 2019
  end-page: 189
  ident: bib0215
  publication-title: Appl. Catal. B: Environ.
– volume: 10
  start-page: 1673
  year: 2017
  end-page: 1696
  ident: bib0200
  publication-title: Nano Res.
– volume: 3
  start-page: 18244
  year: 2015
  end-page: 18255
  ident: bib0110
  publication-title: J. Mater. Chem. A
– volume: 43
  start-page: 990
  year: 2014
  end-page: 1006
  ident: bib0035
  publication-title: Chem. Soc. Rev.
– volume: 3
  start-page: 1422
  year: 2012
  end-page: 1427
  ident: bib0045
  publication-title: J. Phys. Chem. Lett.
– volume: 14
  start-page: 1703277
  year: 2018
  ident: bib0210
  publication-title: Small
– volume: 47
  start-page: 8238
  year: 2018
  end-page: 8262
  ident: bib0040
  publication-title: Chem. Soc. Rev.
– volume: 4
  start-page: 873
  year: 2012
  ident: bib0005
  publication-title: Nat. Chem.
– volume: 43
  start-page: 7787
  year: 2014
  end-page: 7812
  ident: bib0075
  publication-title: Chem. Soc. Rev.
– volume: 4
  year: 2014
  ident: bib0130
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1422
  year: 2012
  ident: 10.1016/j.apcatb.2019.05.031_bib0045
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3005128
– volume: 110
  start-page: 13872
  year: 2006
  ident: 10.1016/j.apcatb.2019.05.031_bib0205
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061693u
– volume: 36
  year: 2005
  ident: 10.1016/j.apcatb.2019.05.031_bib0020
  publication-title: ChemInform
– volume: 168
  start-page: 100
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0185
  publication-title: Sol. Energy Mater. Sol. Cells.
  doi: 10.1016/j.solmat.2017.04.031
– volume: 133
  start-page: 7197
  year: 2011
  ident: 10.1016/j.apcatb.2019.05.031_bib0175
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja201415j
– volume: 43
  start-page: 990
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0035
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60245A
– volume: 11
  start-page: 968
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0190
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07581
– volume: 116
  start-page: 25444
  year: 2012
  ident: 10.1016/j.apcatb.2019.05.031_bib0050
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp309683f
– volume: 125
  start-page: 5888
  year: 2013
  ident: 10.1016/j.apcatb.2019.05.031_bib0145
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201301473
– volume: 47
  start-page: 8238
  year: 2018
  ident: 10.1016/j.apcatb.2019.05.031_bib0040
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00320C
– volume: 3
  start-page: 18244
  year: 2015
  ident: 10.1016/j.apcatb.2019.05.031_bib0110
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04573H
– volume: 129
  start-page: 4136
  year: 2007
  ident: 10.1016/j.apcatb.2019.05.031_bib0195
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja070099a
– volume: 127
  start-page: 5308
  year: 2005
  ident: 10.1016/j.apcatb.2019.05.031_bib0085
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0504690
– volume: 134
  start-page: 11864
  year: 2012
  ident: 10.1016/j.apcatb.2019.05.031_bib0135
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3037146
– volume: 19
  start-page: 3889
  year: 2003
  ident: 10.1016/j.apcatb.2019.05.031_bib0155
  publication-title: Langmuir
  doi: 10.1021/la025775v
– volume: 39
  start-page: 4802
  year: 2010
  ident: 10.1016/j.apcatb.2019.05.031_bib0025
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b919698f
– volume: 133
  start-page: 17652
  year: 2011
  ident: 10.1016/j.apcatb.2019.05.031_bib0060
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204838s
– volume: 4
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0130
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300995
– volume: 55
  start-page: 5851
  year: 2016
  ident: 10.1016/j.apcatb.2019.05.031_bib0140
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201600918
– volume: 14
  start-page: 16745
  year: 2012
  ident: 10.1016/j.apcatb.2019.05.031_bib0160
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp42484c
– volume: 118
  start-page: 7801
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0165
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5000232
– volume: 10
  start-page: 1673
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0200
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1391-4
– volume: 225
  start-page: 284
  year: 2018
  ident: 10.1016/j.apcatb.2019.05.031_bib0100
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.11.083
– volume: 136
  start-page: 8839
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0065
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5044787
– volume: 46
  start-page: 7631
  year: 2010
  ident: 10.1016/j.apcatb.2019.05.031_bib0105
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc01562h
– volume: 140
  start-page: 6729
  year: 2018
  ident: 10.1016/j.apcatb.2019.05.031_bib0070
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04039
– volume: 5
  start-page: 9671
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0150
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA01888F
– volume: 14
  start-page: 1703277
  year: 2018
  ident: 10.1016/j.apcatb.2019.05.031_bib0210
  publication-title: Small
  doi: 10.1002/smll.201703277
– volume: 4
  start-page: 873
  year: 2012
  ident: 10.1016/j.apcatb.2019.05.031_bib0005
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1478
– volume: 117
  start-page: 7510
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0010
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00673
– volume: 136
  start-page: 458
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0055
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410994f
– volume: 10
  start-page: 18693
  year: 2018
  ident: 10.1016/j.apcatb.2019.05.031_bib0220
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b03250
– volume: 8
  start-page: 1532
  year: 2018
  ident: 10.1016/j.apcatb.2019.05.031_bib0095
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b04228
– volume: 34
  start-page: 181
  year: 2001
  ident: 10.1016/j.apcatb.2019.05.031_bib0015
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar000110a
– volume: 43
  start-page: 7787
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0075
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60425J
– volume: 47
  start-page: 5348
  year: 2008
  ident: 10.1016/j.apcatb.2019.05.031_bib0180
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200800528
– volume: 17
  start-page: 6735
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0225
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b02799
– volume: 9
  start-page: 34844
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0120
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b08548
– volume: 9
  start-page: 2500
  year: 2017
  ident: 10.1016/j.apcatb.2019.05.031_bib0170
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b13984
– volume: 3
  start-page: 1500467
  year: 2016
  ident: 10.1016/j.apcatb.2019.05.031_bib0115
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 1502555
  year: 2016
  ident: 10.1016/j.apcatb.2019.05.031_bib0125
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502555
– volume: 43
  start-page: 1107
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0030
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60215J
– volume: 11
  start-page: 4774
  year: 2011
  ident: 10.1016/j.apcatb.2019.05.031_bib0090
  publication-title: Nano Lett.
  doi: 10.1021/nl202587b
– volume: 136
  start-page: 2342
  year: 2014
  ident: 10.1016/j.apcatb.2019.05.031_bib0080
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4092616
– volume: 245
  start-page: 177
  year: 2019
  ident: 10.1016/j.apcatb.2019.05.031_bib0215
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2018.12.056
SSID ssj0002328
Score 2.519323
Snippet [Display omitted] •Deposition of NiS on TiO2 mesocrystal (TMC) was in situ monitored via single-particle photoluminescence (PL) spectroscopy.•The variations of...
For photocatalysis, clarifications of charge carrier migration route and kinetics on individual particles by photoluminescence (PL) are of great importance...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 594
SubjectTerms Current carriers
Heterostructure
Hydrogen evolution
In situ
Migration
Nanoparticles
Particle physics
Photocatalysis
Photodeposition
Photoluminescence
Photons
Reaction kinetics
Structure-activity relationships
Titanium dioxide
Title In situ observation of NiS nanoparticles depositing on single TiO2 mesocrystal for enhanced photocatalytic hydrogen evolution activity
URI https://dx.doi.org/10.1016/j.apcatb.2019.05.031
https://www.proquest.com/docview/2250580446
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB1V5QAcECxUFErlA1ez2fgj2WO1arUFsRy6SL1ZtuN0g1pntZsi7YUjv5ux47SAhCpxTORxoszzzMR-MwPwfqpLoxEbtJwUjHKWW2oMZ1RodN-hBZKJRX0-L-T8K_94KS73YDbkwgRaZbL9vU2P1jrdGaevOV43zfgim-aSsQIxFKuGh4RfzouA8g8_7mke-MhojXEwDaOH9LnI8dJrqzsTCF7TWL-TTf7lnv4y1NH7nD2HZylsJCf9m72APedH8Hg2dGsbwdPfCguO4OD0Pn8NxdIC3r6En-eebJvulrTmbjuWtDVZNBfEa49_0IkoRyrX87n8FWmDjL-6dmTZfMnJjUONbnbbMDOGvMT5VaQRkPWq7dq4H7TDSchqV21axCdx3xO-SciiCM0qXsHy7HQ5m9PUioFazoqO1rkTNUYChkmjTRGKxPHMZdrmpS1kJaS10pYTaQXPM1dKLbnlghn8XROmtuwA9n3r3WsgRe0qXuGAeALIMSLRdclrjMo0k7KcHgIbFKBsKlMeumVcq4GP9k31alNBbSoTCtV2CPROat2X6XhgfDHoVv0BN4We5AHJowEKKi33rcpDIFmGs_E3_z3xW3gSriJRUBzBfre5de8w4OnMcUT0MTw6Of80X_wChpkB-A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Rb9MwED6N8TB4QKMwMRjgB15N09hx3EdUbepgKw8r0t4s23HWTCOp2gypLzzud-_sOBtDQpN4Te6cyHe-O9vf3QF8GmtpNOoGlaOcUc5SS43hjGYa3bdvgWRCUZ_TmZj-4F_Ps_MtmPS5MB5WGW1_Z9ODtY5PhnE2h8uqGp4l41QwlqMOharh8gk85bh8fRuDz7_vcR74zWCOkZp68j5_LoC89NLq1niE1zgU8GSjf_mnvyx1cD9Hu_Aixo3kS_drL2HL1QPYmfTt2gbw_I_KggPYO7xPYEO2uILXr-DmuCbrqr0mjbk7jyVNSWbVGal1jVvoiJQjhesAXfUFaTxPfXHlyLz6npKfDkW62qz9yBjzElcvAo6ALBdN24QDoQ0OQhabYtWgghL3Kyo48WkUvlvFa5gfHc4nUxp7MVDLWd7SMnVZiaGAYcJok_sqcTxxibaptLkoMmGtsHIkbMbTxEmhBbcoDYP7tcyUlu3Bdt3U7g2QvHQFL5AgXAFyDEl0KXmJYZlmQsjxPrBeAMrGOuW-XcaV6gFpl6oTm_JiU0mmUGz7QO-4ll2djkfo81626oG-KXQlj3Ae9Kqg4npfq9RHktJfjr_974E_ws50fnqiTo5n397BM_8moAazA9huV9fuPUY_rfkQtPsWV78Dhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+observation+of+NiS+nanoparticles+depositing+on+single+TiO2+mesocrystal+for+enhanced+photocatalytic+hydrogen+evolution+activity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Shi%2C+Xiaowei&rft.au=Kim%2C+Sooyeon&rft.au=Fujitsuka%2C+Mamoru&rft.au=Majima%2C+Tetsuro&rft.date=2019-10-05&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=254&rft.spage=594&rft_id=info:doi/10.1016%2Fj.apcatb.2019.05.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon