Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China

Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emiss...

Full description

Saved in:
Bibliographic Details
Published inJournal of Cleaner Production Vol. 275; p. 123061
Main Authors Wang, Qun, Xue, Mianqiang, Lin, Bin-Le, Lei, Zhongfang, Zhang, Zhenya
Format Journal Article
LanguageEnglish
Japanese
Published Elsevier Ltd 01.12.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emission and air pollutants emissions of VOCs, CO, NOx, SOx, PM2.5 and PM10 for HFCV under 12 hydrogen pathways in China for the current (2017) and near future (2030). The results were compared with the gasoline-fueled internal combustion engine vehicle (gasoline-ICEV) and battery electric vehicle (BEV) counterparts. The results show that HFCV can reduce 11–92% fossil fuel consumption compared with gasoline-ICEV in 2017, with one exception that HFCV based on on-site water electrolysis by grid electricity in which fossil fuel consumption increased by 10% instead. Compared with BEV, HFCV based on by-product hydrogen from chlor-alkali process and renewable water electrolysis have the fossil fuel consumption reduction benefits. Regarding GHG emissions, HFCV based on water electrolysis using the renewable electricity performs the best with a value of 31 g CO2-eq/km while that based on on-site water electrolysis using grid electricity performs the worst with a value of 431 g CO2-eq/km in 2017. For air pollutants, HFCV based on all hydrogen pathways can achieve a significant reduction of VOCs and CO emissions on a WTW basis, in comparison with gasoline-ICEV in 2017. In terms of NOx, SOx, PM2.5 and PM10, HFCV based on on-site water electrolysis by grid electricity electrolysis has the highest emissions due to high emission factors of the electricity generation process. Moreover, due to increased share of renewable electricity and improvement in the fuel economy, reductions in WTW fossil fuel consumption and pollutants emissions are excepted by 2030. This study indicates the importance of hydrogen production when considering the energy and environment performance of HFCV to ensure a life cycle low carbon and air pollutants emissions. •Well-to-wheel analysis of hydrogen fuel cell vehicle under various H2 pathways in China.•Fossil fuel consumption, GHG and criteria air pollutants emission are examined.•Hydrogen pathways are critical for emission reduction.•Air pollutants mitigation characteristics are identified.•Highlight the importance of incorporating well-to-tank stage into the comparison.
AbstractList Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emission and air pollutants emissions of VOCs, CO, NOx, SOx, PM2.5 and PM10 for HFCV under 12 hydrogen pathways in China for the current (2017) and near future (2030). The results were compared with the gasoline-fueled internal combustion engine vehicle (gasoline-ICEV) and battery electric vehicle (BEV) counterparts. The results show that HFCV can reduce 11–92% fossil fuel consumption compared with gasoline-ICEV in 2017, with one exception that HFCV based on on-site water electrolysis by grid electricity in which fossil fuel consumption increased by 10% instead. Compared with BEV, HFCV based on by-product hydrogen from chlor-alkali process and renewable water electrolysis have the fossil fuel consumption reduction benefits. Regarding GHG emissions, HFCV based on water electrolysis using the renewable electricity performs the best with a value of 31 g CO2-eq/km while that based on on-site water electrolysis using grid electricity performs the worst with a value of 431 g CO2-eq/km in 2017. For air pollutants, HFCV based on all hydrogen pathways can achieve a significant reduction of VOCs and CO emissions on a WTW basis, in comparison with gasoline-ICEV in 2017. In terms of NOx, SOx, PM2.5 and PM10, HFCV based on on-site water electrolysis by grid electricity electrolysis has the highest emissions due to high emission factors of the electricity generation process. Moreover, due to increased share of renewable electricity and improvement in the fuel economy, reductions in WTW fossil fuel consumption and pollutants emissions are excepted by 2030. This study indicates the importance of hydrogen production when considering the energy and environment performance of HFCV to ensure a life cycle low carbon and air pollutants emissions. •Well-to-wheel analysis of hydrogen fuel cell vehicle under various H2 pathways in China.•Fossil fuel consumption, GHG and criteria air pollutants emission are examined.•Hydrogen pathways are critical for emission reduction.•Air pollutants mitigation characteristics are identified.•Highlight the importance of incorporating well-to-tank stage into the comparison.
Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emission and air pollutants emissions of VOCs, CO, NOₓ, SOₓ, PM₂.₅ and PM₁₀ for HFCV under 12 hydrogen pathways in China for the current (2017) and near future (2030). The results were compared with the gasoline-fueled internal combustion engine vehicle (gasoline-ICEV) and battery electric vehicle (BEV) counterparts. The results show that HFCV can reduce 11–92% fossil fuel consumption compared with gasoline-ICEV in 2017, with one exception that HFCV based on on-site water electrolysis by grid electricity in which fossil fuel consumption increased by 10% instead. Compared with BEV, HFCV based on by-product hydrogen from chlor-alkali process and renewable water electrolysis have the fossil fuel consumption reduction benefits. Regarding GHG emissions, HFCV based on water electrolysis using the renewable electricity performs the best with a value of 31 g CO₂-eq/km while that based on on-site water electrolysis using grid electricity performs the worst with a value of 431 g CO₂-eq/km in 2017. For air pollutants, HFCV based on all hydrogen pathways can achieve a significant reduction of VOCs and CO emissions on a WTW basis, in comparison with gasoline-ICEV in 2017. In terms of NOₓ, SOₓ, PM₂.₅ and PM₁₀, HFCV based on on-site water electrolysis by grid electricity electrolysis has the highest emissions due to high emission factors of the electricity generation process. Moreover, due to increased share of renewable electricity and improvement in the fuel economy, reductions in WTW fossil fuel consumption and pollutants emissions are excepted by 2030. This study indicates the importance of hydrogen production when considering the energy and environment performance of HFCV to ensure a life cycle low carbon and air pollutants emissions.
ArticleNumber 123061
Author Lei, Zhongfang
Wang, Qun
Xue, Mianqiang
Lin, Bin-Le
Zhang, Zhenya
Author_xml – sequence: 1
  givenname: Qun
  surname: Wang
  fullname: Wang, Qun
  organization: Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
– sequence: 2
  givenname: Mianqiang
  surname: Xue
  fullname: Xue, Mianqiang
  email: mq.xue@aist.go.jp
  organization: Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
– sequence: 3
  givenname: Bin-Le
  surname: Lin
  fullname: Lin, Bin-Le
  organization: Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
– sequence: 4
  givenname: Zhongfang
  surname: Lei
  fullname: Lei, Zhongfang
  organization: Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
– sequence: 5
  givenname: Zhenya
  surname: Zhang
  fullname: Zhang, Zhenya
  organization: Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
BackLink https://cir.nii.ac.jp/crid/1870020692667165184$$DView record in CiNii
BookMark eNqFkb2PFCEYh4k5E_dO_wQTCgsLZ-VjhoFYGLPR0-QSG40lYeFlh80srDBzZjv_dJmbq2yugYQ8v_fj4RpdxRQBodeUbCmh4v1xe7QjnHPaMsLqG-NE0GdoQ2WvGtpLcYU2RHWqER0TL9B1KUdCaE_6doP-_oJxbKbU_BkARmyiGS8lFJw8hgj5cME2xTKfzlNI8R0-ZIA4pLkAPphScYdNyPicxnGeTJwKhlMopbIPJYaLy-kAEfu5Fre1Fb6HIdRpcYh4N4RoXqLn3owFXj3eN-jnl88_dl-bu--333af7hrb8n5qnOfUOWYco1J6B05xQ9qeSkNN5_aEcOmV58T73ii67xSV3O6N4ZKB3AvGb9DbtW719HuGMuk66DKRiVD30ayViitGiapot6I2p1IyeH3O4WTyRVOiF-P6qB-N68W4Xo3X3If_cjZMZhE3ZRPGJ9Nv1nQMoQaXs34gqYRQTIieio7KtmIfVwyqrPsAWRcbIFpwIYOdtEvhiUb_AEtQrvE
CitedBy_id crossref_primary_10_1007_s11356_022_24649_3
crossref_primary_10_1016_j_energy_2025_134379
crossref_primary_10_1016_j_ijhydene_2024_08_004
crossref_primary_10_1016_j_energy_2023_128773
crossref_primary_10_1016_j_rineng_2024_102507
crossref_primary_10_1016_j_ijhydene_2023_12_198
crossref_primary_10_3390_su13158237
crossref_primary_10_1007_s43621_023_00159_1
crossref_primary_10_1016_j_nanoms_2022_04_003
crossref_primary_10_1016_j_jclepro_2023_137305
crossref_primary_10_1016_j_energy_2024_134140
crossref_primary_10_1016_j_ijhydene_2024_03_310
crossref_primary_10_1016_j_jclepro_2025_144809
crossref_primary_10_1016_j_ijhydene_2021_05_141
crossref_primary_10_1016_j_renene_2020_10_051
crossref_primary_10_1016_j_ijhydene_2021_05_024
crossref_primary_10_3390_en16135101
crossref_primary_10_51137_ijarbm_2022_3_3_7
crossref_primary_10_3390_en15197059
crossref_primary_10_5937_ZbDght2402080P
crossref_primary_10_1016_j_energy_2022_124731
crossref_primary_10_1016_j_psep_2022_02_057
crossref_primary_10_1016_j_heliyon_2023_e14373
crossref_primary_10_1016_j_jclepro_2021_126959
crossref_primary_10_1007_s11814_024_00264_5
crossref_primary_10_1002_bse_3598
crossref_primary_10_1016_j_apenergy_2024_123055
crossref_primary_10_1016_j_jclepro_2021_129424
crossref_primary_10_1016_j_trd_2024_104206
crossref_primary_10_3390_atmos14050882
crossref_primary_10_1016_j_ifacol_2024_07_530
crossref_primary_10_1016_j_ese_2024_100395
crossref_primary_10_1016_j_energy_2024_131472
crossref_primary_10_1039_D1EE02798K
crossref_primary_10_1016_j_diamond_2024_111880
crossref_primary_10_1016_j_isci_2023_108203
crossref_primary_10_1016_j_renene_2024_121365
crossref_primary_10_1016_j_seta_2022_102059
crossref_primary_10_1021_acs_iecr_4c00392
crossref_primary_10_1016_j_ijhydene_2023_09_021
crossref_primary_10_1016_j_ijhydene_2024_04_026
crossref_primary_10_1016_j_renene_2021_01_079
crossref_primary_10_1016_j_scs_2023_105011
crossref_primary_10_1109_TPEL_2022_3149099
crossref_primary_10_1016_j_enpol_2021_112552
crossref_primary_10_1016_j_ijhydene_2023_02_090
crossref_primary_10_1016_j_enpol_2021_112643
crossref_primary_10_1016_j_ijhydene_2020_11_186
crossref_primary_10_3390_su16219464
crossref_primary_10_3389_fenrg_2022_893475
crossref_primary_10_1088_1742_6596_2798_1_012051
crossref_primary_10_1049_esi2_12139
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104879
crossref_primary_10_1016_j_trd_2022_103219
crossref_primary_10_1016_j_egyr_2024_11_056
crossref_primary_10_3390_ijerph192113876
crossref_primary_10_1016_j_gerr_2024_100098
crossref_primary_10_3390_su132212918
crossref_primary_10_1016_j_jclepro_2020_123876
crossref_primary_10_1007_s11356_022_24150_x
crossref_primary_10_1016_j_egyr_2022_06_021
crossref_primary_10_3390_app14219895
crossref_primary_10_20914_2310_1202_2024_3_258_266
crossref_primary_10_1016_j_jclepro_2021_129954
crossref_primary_10_1007_s10479_023_05736_1
crossref_primary_10_1016_j_enconman_2022_116326
crossref_primary_10_3390_su15097483
crossref_primary_10_1016_j_trd_2021_102911
crossref_primary_10_1016_j_ijhydene_2021_10_011
crossref_primary_10_1016_j_enpol_2023_113587
crossref_primary_10_1016_j_rser_2024_114543
crossref_primary_10_1039_D4SE01554A
crossref_primary_10_1149_1945_7111_ad32a3
crossref_primary_10_1016_j_jclepro_2024_143330
crossref_primary_10_1016_j_ijhydene_2022_04_137
crossref_primary_10_1016_j_jpowsour_2021_230598
crossref_primary_10_2478_bipie_2022_0008
crossref_primary_10_3389_fpubh_2022_994620
crossref_primary_10_1016_j_rsase_2023_101011
crossref_primary_10_1007_s42154_023_00246_z
crossref_primary_10_1016_j_ijhydene_2022_08_233
crossref_primary_10_3390_en18051229
crossref_primary_10_1016_j_jclepro_2021_128769
crossref_primary_10_1016_j_jclepro_2021_128528
crossref_primary_10_1016_j_jclepro_2021_128646
crossref_primary_10_1016_j_envres_2022_112781
crossref_primary_10_3390_app11062515
crossref_primary_10_1088_2516_1083_ac34e9
crossref_primary_10_1016_j_jclepro_2022_130983
crossref_primary_10_1016_j_jclepro_2022_134669
crossref_primary_10_3390_catal11030393
crossref_primary_10_3390_en15155321
crossref_primary_10_1016_j_ijhydene_2021_10_077
crossref_primary_10_1016_j_asoc_2024_112102
crossref_primary_10_1016_j_ijhydene_2021_04_124
crossref_primary_10_1029_2024GH001188
crossref_primary_10_1016_j_jclepro_2021_130284
crossref_primary_10_1007_s11356_023_28085_9
crossref_primary_10_3390_su151511501
Cites_doi 10.1016/j.jclepro.2019.04.301
10.1016/j.atmosenv.2008.12.025
10.1016/j.ijhydene.2009.12.082
10.1016/j.energy.2015.11.023
10.1016/j.apenergy.2016.11.048
10.1016/j.energy.2009.05.029
10.1016/j.enpol.2019.01.021
10.1016/j.jclepro.2019.117879
10.1016/j.apenergy.2016.12.011
10.1021/es500524e
10.1016/j.ijhydene.2007.10.022
10.1016/j.apenergy.2015.01.019
10.1016/j.jclepro.2016.11.159
10.1016/j.ijhydene.2019.10.192
10.1787/weo-2017-en
10.1016/j.jclepro.2020.120659
10.1007/s11708-018-0561-3
10.1016/j.ijhydene.2018.09.039
10.1016/S0378-7753(02)00447-0
10.1016/j.ijhydene.2018.08.088
10.1039/C5EE01512J
10.1016/j.apenergy.2018.02.132
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID RYH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jclepro.2020.123061
DatabaseName CiNii Complete
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1786
ExternalDocumentID 10_1016_j_jclepro_2020_123061
S0959652620331061
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
..I
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
K-O
KCYFY
KOM
LY9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSJ
SSR
SSZ
T5K
~G-
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SEN
SSH
29K
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ADHUB
ADMUD
ADNMO
AEGFY
AFJKZ
AGQPQ
AIGII
ASPBG
AVWKF
AZFZN
CITATION
D-I
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SEW
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c437t-df31dd2ad2188fded93a04718a1a5db0038f9f30ff7a91b59183cbaa382e8b623
IEDL.DBID .~1
ISSN 0959-6526
IngestDate Fri Jul 11 01:34:26 EDT 2025
Tue Jul 01 03:03:39 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Thu Jun 26 22:21:50 EDT 2025
Fri Feb 23 02:46:52 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy consumption
Greenhouse gas emission
Well-to-wheel analysis
Air pollutants
Hydrogen fuel cell vehicle
Language English
Japanese
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-df31dd2ad2188fded93a04718a1a5db0038f9f30ff7a91b59183cbaa382e8b623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2489392109
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2489392109
crossref_primary_10_1016_j_jclepro_2020_123061
crossref_citationtrail_10_1016_j_jclepro_2020_123061
nii_cinii_1870020692667165184
elsevier_sciencedirect_doi_10_1016_j_jclepro_2020_123061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-01
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of Cleaner Production
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Shen, Han, Wallington (bib35) 2014; 48
China electricity council (CEC) (bib6) 2018
Argonne National Laboratory (ANL) (bib1) 2016
The Intergovernmental Panel on Climate Change (IPCC) (bib14) 2007
Yoo, Kim, Song (bib33) 2018; 43
Bauer, Hofer, Althaus, Del Duce, Simons (bib3) 2015; 157
Society of Automotive Engineers (Sae-China) (bib28) 2016
Hao, Mu, Liu, Zhao (bib9) 2018; 12
Brinkman, Wang, Weber, Darlington (bib5) 2005
Bonsu (bib4) 2020; 256
International Energy Agency (IEA) (bib13) 2019
Ministry of Ecology and Environment (Mee), People’s Republic of China (bib25) 2019
Lee, Elgowainy, Dai (bib19) 2018; 217
Mao, Mao, Yu (bib24) 2018
Lin, Wu, He, Zhang, Hao (bib22) 2018; 39
Rosenfeld, Lindorfer, Fazeni-Fraisl (bib27) 2019; 238
Xu, Xu, Dong, Liu (bib32) 2017; 196
Wang (bib30) 2002; 112
Evangelisti, Tagliaferri, Brett, Lettieri (bib8) 2017; 142
Zhao, Liu, Li (bib34) 2017
Argonne National Laboratory (ANL) (bib2) 2018
Huo, Wu, Wang (bib10) 2009; 43
Lee, Elgowainy (bib17) 2018; 43
Liu, Reddi, Elgowainy, Lohse-Busch, Wang, Rustagi (bib23) 2020; 45
International Energy Agency (IEA) (bib12) 2017
Li, Zhang, Li (bib21) 2016; 94
Ramachandran, Stimming (bib26) 2015; 8
Shi, Zhang, Yang, Zhang, Wang (bib29) 2019; 228
China Hydrogen Alliane (CHA) (bib7) 2019
Joseck, Wang, Wu (bib15) 2008; 33
Lee, Elgowainy, Vijayagopal (bib20) 2019; 128
Ke, Zhang, He, Wu, Hao (bib16) 2017; 188
Xie, Li, Zhao (bib31) 2010; 35
Lee, An, Cha, Hur (bib18) 2010; 35
International Energy Agency (IEA) (10.1016/j.jclepro.2020.123061_bib13) 2019
Yoo (10.1016/j.jclepro.2020.123061_bib33) 2018; 43
Bauer (10.1016/j.jclepro.2020.123061_bib3) 2015; 157
Li (10.1016/j.jclepro.2020.123061_bib21) 2016; 94
Argonne National Laboratory (ANL) (10.1016/j.jclepro.2020.123061_bib1) 2016
Mao (10.1016/j.jclepro.2020.123061_bib24) 2018
China electricity council (CEC) (10.1016/j.jclepro.2020.123061_bib6) 2018
Bonsu (10.1016/j.jclepro.2020.123061_bib4) 2020; 256
Joseck (10.1016/j.jclepro.2020.123061_bib15) 2008; 33
Wang (10.1016/j.jclepro.2020.123061_bib30) 2002; 112
Xu (10.1016/j.jclepro.2020.123061_bib32) 2017; 196
Brinkman (10.1016/j.jclepro.2020.123061_bib5) 2005
Lee (10.1016/j.jclepro.2020.123061_bib20) 2019; 128
Shen (10.1016/j.jclepro.2020.123061_bib35) 2014; 48
Xie (10.1016/j.jclepro.2020.123061_bib31) 2010; 35
Argonne National Laboratory (ANL) (10.1016/j.jclepro.2020.123061_bib2) 2018
Lee (10.1016/j.jclepro.2020.123061_bib17) 2018; 43
Ramachandran (10.1016/j.jclepro.2020.123061_bib26) 2015; 8
Ke (10.1016/j.jclepro.2020.123061_bib16) 2017; 188
International Energy Agency (IEA) (10.1016/j.jclepro.2020.123061_bib12) 2017
Shi (10.1016/j.jclepro.2020.123061_bib29) 2019; 228
Lee (10.1016/j.jclepro.2020.123061_bib19) 2018; 217
Liu (10.1016/j.jclepro.2020.123061_bib23) 2020; 45
Huo (10.1016/j.jclepro.2020.123061_bib10) 2009; 43
Society of Automotive Engineers (Sae-China) (10.1016/j.jclepro.2020.123061_bib28) 2016
Evangelisti (10.1016/j.jclepro.2020.123061_bib8) 2017; 142
Lee (10.1016/j.jclepro.2020.123061_bib18) 2010; 35
Ministry of Ecology and Environment (Mee) (10.1016/j.jclepro.2020.123061_bib25) 2019
Hao (10.1016/j.jclepro.2020.123061_bib9) 2018; 12
Rosenfeld (10.1016/j.jclepro.2020.123061_bib27) 2019; 238
China Hydrogen Alliane (CHA) (10.1016/j.jclepro.2020.123061_bib7) 2019
Lin (10.1016/j.jclepro.2020.123061_bib22) 2018; 39
Zhao (10.1016/j.jclepro.2020.123061_bib34) 2017
The Intergovernmental Panel on Climate Change (IPCC) (10.1016/j.jclepro.2020.123061_bib14) 2007
References_xml – volume: 94
  start-page: 693
  year: 2016
  end-page: 704
  ident: bib21
  article-title: A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis
  publication-title: Energy
– volume: 48
  start-page: 7069
  year: 2014
  end-page: 7075
  ident: bib35
  article-title: Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles
  publication-title: Environ. Sci. Technol.
– year: 2005
  ident: bib5
  article-title: Well-to-wheels Analysis of Advanced Fuel/vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions
– year: 2016
  ident: bib1
  article-title: GREET: Life-Cycle Model User Guide
– year: 2019
  ident: bib13
  article-title: The Future of Hydrogen: Seizing Today’s Opportunities
– year: 2018
  ident: bib24
  article-title: Hydrogen Production Process and Technology
– volume: 142
  start-page: 4339
  year: 2017
  end-page: 4355
  ident: bib8
  article-title: Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles
  publication-title: J. Clean. Prod.
– volume: 45
  start-page: 972
  year: 2020
  end-page: 983
  ident: bib23
  article-title: Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle
  publication-title: Int. J. Hydrogen Energy
– year: 2019
  ident: bib7
  article-title: Distribution Information of Hydrogen Refueling Stations in China
– volume: 35
  start-page: 2213
  year: 2010
  end-page: 2225
  ident: bib18
  article-title: Life cycle environmental and economic analysis of a hydrogen station with wind energy
  publication-title: Int. J. Hydrogen Energy
– year: 2016
  ident: bib28
  article-title: Technology Roadmap for Energy Saving and New Energy Vehicles
– volume: 8
  start-page: 3313
  year: 2015
  end-page: 3324
  ident: bib26
  article-title: Well to wheel analysis of low carbon alternatives for road traffic
  publication-title: Energy Environ. Sci.
– year: 2007
  ident: bib14
  article-title: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change
– year: 2018
  ident: bib2
  article-title: GREET Model 2018
– start-page: 273
  year: 2017
  end-page: 309
  ident: bib34
  article-title: Modelling and analysis of China’s passenger car fuel consumption up to 2030
  publication-title: Advances in Energy Systems Engineering
– volume: 217
  start-page: 467
  year: 2018
  end-page: 479
  ident: bib19
  article-title: Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States
  publication-title: Appl. Energy
– volume: 112
  start-page: 307
  year: 2002
  end-page: 321
  ident: bib30
  article-title: Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts
  publication-title: J. Power Sources
– volume: 188
  start-page: 367
  year: 2017
  end-page: 377
  ident: bib16
  article-title: Well-to-wheels energy consumption and emissions of electric vehicles: mid-term implications from real-world features and air pollution control progress
  publication-title: Appl. Energy
– volume: 33
  start-page: 1445
  year: 2008
  end-page: 1454
  ident: bib15
  article-title: Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills
  publication-title: Int. J. Hydrogen Energy
– volume: 12
  start-page: 466
  year: 2018
  end-page: 480
  ident: bib9
  article-title: Abating transport GHG emissions by hydrogen fuel cell vehicles: chances for the developing world
  publication-title: Front. Energy
– volume: 35
  start-page: 4349
  year: 2010
  end-page: 4355
  ident: bib31
  article-title: Coal chemical industry and its sustainable development in China
  publication-title: Energy
– volume: 128
  start-page: 565
  year: 2019
  end-page: 583
  ident: bib20
  article-title: Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States
  publication-title: Energy Pol.
– volume: 43
  start-page: 20143
  year: 2018
  end-page: 20160
  ident: bib17
  article-title: By-product hydrogen from steam cracking of natural gas liquids (NGLs): potential for large-scale hydrogen fuel production, life-cycle air emissions reduction, and economic benefit
  publication-title: Int. J. Hydrogen Energy
– volume: 157
  start-page: 871
  year: 2015
  end-page: 883
  ident: bib3
  article-title: The environmental performance of current and future passenger vehicles: life cycle assessment based on a novel scenario analysis framework
  publication-title: Appl. Energy
– volume: 228
  start-page: 606
  year: 2019
  end-page: 618
  ident: bib29
  article-title: A life-cycle assessment of battery electric and internal combustion engine vehicles: a case in Hebei Province, China
  publication-title: J. Clean. Prod.
– year: 2019
  ident: bib25
  article-title: China Mobile Source Environmental Management Annual Report
– volume: 256
  year: 2020
  ident: bib4
  article-title: Towards a circular and low-carbon economy: insights from the transitioning to electric vehicles and net zero economy
  publication-title: J. Clean. Prod.
– volume: 43
  start-page: 1796
  year: 2009
  end-page: 1804
  ident: bib10
  article-title: Total versus urban: well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems
  publication-title: Atoms. Environ.
– year: 2018
  ident: bib6
  article-title: National Power Industry Statistical Express 2017
– volume: 39
  start-page: 3946
  year: 2018
  end-page: 3953
  ident: bib22
  article-title: Well-to-Wheels fossil energy consumption and CO
  publication-title: Environ. Sci.
– volume: 238
  year: 2019
  ident: bib27
  article-title: Comparison of advanced fuels-Which technology can win from the life cycle perspective?
  publication-title: J. Clean. Prod.
– volume: 43
  start-page: 19267
  year: 2018
  end-page: 19278
  ident: bib33
  article-title: Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea
  publication-title: Int. J. Hydrogen Energy
– volume: 196
  start-page: 229
  year: 2017
  end-page: 237
  ident: bib32
  article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China
  publication-title: Appl. Energy
– year: 2017
  ident: bib12
  article-title: China Energy Outlook: World Energy Outlook-2017 Special Report
– volume: 228
  start-page: 606
  year: 2019
  ident: 10.1016/j.jclepro.2020.123061_bib29
  article-title: A life-cycle assessment of battery electric and internal combustion engine vehicles: a case in Hebei Province, China
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.04.301
– volume: 43
  start-page: 1796
  year: 2009
  ident: 10.1016/j.jclepro.2020.123061_bib10
  article-title: Total versus urban: well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems
  publication-title: Atoms. Environ.
  doi: 10.1016/j.atmosenv.2008.12.025
– volume: 35
  start-page: 2213
  year: 2010
  ident: 10.1016/j.jclepro.2020.123061_bib18
  article-title: Life cycle environmental and economic analysis of a hydrogen station with wind energy
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.12.082
– volume: 94
  start-page: 693
  year: 2016
  ident: 10.1016/j.jclepro.2020.123061_bib21
  article-title: A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis
  publication-title: Energy
  doi: 10.1016/j.energy.2015.11.023
– volume: 196
  start-page: 229
  year: 2017
  ident: 10.1016/j.jclepro.2020.123061_bib32
  article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.11.048
– year: 2016
  ident: 10.1016/j.jclepro.2020.123061_bib28
– volume: 35
  start-page: 4349
  year: 2010
  ident: 10.1016/j.jclepro.2020.123061_bib31
  article-title: Coal chemical industry and its sustainable development in China
  publication-title: Energy
  doi: 10.1016/j.energy.2009.05.029
– start-page: 273
  year: 2017
  ident: 10.1016/j.jclepro.2020.123061_bib34
  article-title: Modelling and analysis of China’s passenger car fuel consumption up to 2030
– volume: 128
  start-page: 565
  year: 2019
  ident: 10.1016/j.jclepro.2020.123061_bib20
  article-title: Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States
  publication-title: Energy Pol.
  doi: 10.1016/j.enpol.2019.01.021
– volume: 238
  year: 2019
  ident: 10.1016/j.jclepro.2020.123061_bib27
  article-title: Comparison of advanced fuels-Which technology can win from the life cycle perspective?
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.117879
– volume: 188
  start-page: 367
  year: 2017
  ident: 10.1016/j.jclepro.2020.123061_bib16
  article-title: Well-to-wheels energy consumption and emissions of electric vehicles: mid-term implications from real-world features and air pollution control progress
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.011
– year: 2007
  ident: 10.1016/j.jclepro.2020.123061_bib14
– volume: 48
  start-page: 7069
  year: 2014
  ident: 10.1016/j.jclepro.2020.123061_bib35
  article-title: Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es500524e
– volume: 39
  start-page: 3946
  year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib22
  article-title: Well-to-Wheels fossil energy consumption and CO2 emissions of hydrogen fuel cell vehicles in China
  publication-title: Environ. Sci.
– volume: 33
  start-page: 1445
  year: 2008
  ident: 10.1016/j.jclepro.2020.123061_bib15
  article-title: Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.10.022
– volume: 157
  start-page: 871
  year: 2015
  ident: 10.1016/j.jclepro.2020.123061_bib3
  article-title: The environmental performance of current and future passenger vehicles: life cycle assessment based on a novel scenario analysis framework
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.01.019
– volume: 142
  start-page: 4339
  year: 2017
  ident: 10.1016/j.jclepro.2020.123061_bib8
  article-title: Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.159
– volume: 45
  start-page: 972
  year: 2020
  ident: 10.1016/j.jclepro.2020.123061_bib23
  article-title: Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.10.192
– year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib24
– year: 2017
  ident: 10.1016/j.jclepro.2020.123061_bib12
  doi: 10.1787/weo-2017-en
– volume: 256
  year: 2020
  ident: 10.1016/j.jclepro.2020.123061_bib4
  article-title: Towards a circular and low-carbon economy: insights from the transitioning to electric vehicles and net zero economy
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.120659
– volume: 12
  start-page: 466
  year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib9
  article-title: Abating transport GHG emissions by hydrogen fuel cell vehicles: chances for the developing world
  publication-title: Front. Energy
  doi: 10.1007/s11708-018-0561-3
– year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib6
– year: 2005
  ident: 10.1016/j.jclepro.2020.123061_bib5
– volume: 43
  start-page: 20143
  year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib17
  article-title: By-product hydrogen from steam cracking of natural gas liquids (NGLs): potential for large-scale hydrogen fuel production, life-cycle air emissions reduction, and economic benefit
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.09.039
– volume: 112
  start-page: 307
  issue: 1
  year: 2002
  ident: 10.1016/j.jclepro.2020.123061_bib30
  article-title: Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(02)00447-0
– year: 2016
  ident: 10.1016/j.jclepro.2020.123061_bib1
– volume: 43
  start-page: 19267
  year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib33
  article-title: Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.08.088
– year: 2019
  ident: 10.1016/j.jclepro.2020.123061_bib7
– year: 2019
  ident: 10.1016/j.jclepro.2020.123061_bib25
– year: 2019
  ident: 10.1016/j.jclepro.2020.123061_bib13
– volume: 8
  start-page: 3313
  year: 2015
  ident: 10.1016/j.jclepro.2020.123061_bib26
  article-title: Well to wheel analysis of low carbon alternatives for road traffic
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01512J
– year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib2
– volume: 217
  start-page: 467
  year: 2018
  ident: 10.1016/j.jclepro.2020.123061_bib19
  article-title: Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.02.132
SSID ssj0017074
ssib006547906
Score 2.5992112
Snippet Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123061
SubjectTerms Air pollutants
air pollution
byproducts
carbon
carbon monoxide
China
chlor-alkali process
electricity
electrolysis
emissions factor
Energy consumption
energy use and consumption
fossil fuels
Greenhouse gas emission
greenhouse gas emissions
greenhouse gases
hydrogen
Hydrogen fuel cell vehicle
hydrogen fuel cells
hydrogen production
internal combustion engines
nitrogen oxides
particulates
renewable electricity
sulfur oxides
transportation industry
vehicles (equipment)
volatile organic compounds
Well-to-wheel analysis
Title Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China
URI https://dx.doi.org/10.1016/j.jclepro.2020.123061
https://cir.nii.ac.jp/crid/1870020692667165184
https://www.proquest.com/docview/2489392109
Volume 275
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXOgBtTzE0oKM1CPZTTZ2Eh8RKtqCxKVF5WZNYns3q1V2tQ8Ql4qfzoyT0FYIrcQlUhLbsTyTbx6aB2PfrDTWgXJBJnIXCEghyIVEgrhcFqGyyEM-QPYmGdyKqzt5t8Eu2lwYCqtssL_GdI_WzZNec5q9WVn2fpIHK5FUUD2OybChDHaREpd3_7yEeURpWFdiJncXjf6bxdMbd8e4GAIVmol9qrOA6nP0lnz6UJXlK7z2QujyE9tptEd-Xm_wM9uw1S77-E9NwT329NtOJsFyGjyMrJ1waIqO8Knj1uf58cJnXXqoOONDirsZoflv-RAWONxwKOd8Rh2QqcHwglNDOHKp-SVGj2Y-RZ7jboWLk9ef39sRbYaXFffNuPfZ7eX3XxeDoGmzEBQiTpeBcXFkTB8MSvvMGWtUDCHJLIhAGvrtM6dcHDqXgopyqRAFihwgzvo2y1F9OmCb1bSyh4zHQhU2SUMBgsChyEBAaBIhZSKKMI86TLSHq4umBjm1wpjoNthsrBuaaKKJrmnSYd2XabO6CMe6CVlLOf0fN2kUFOumHiOlcXd0jRDN8FWiUI1Bw1KiOdxhpy0PaDx_OmioLJJJ96mOj0ITWh29__Nf2Dbd1QEzX9nmcr6yx6j2LPMTz9cnbOv8x_Xg5hk6qwGI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615UA5IF4VWygYiWOzm2zsJD6iimqB0gut6M2axHY3q1V2td226gXx05lxkgKqUCUuOSS2Y82Mv3loPAPw3inrPGofFbL0kcQco1IqYogvVRVrRzIUEmSPs8mp_HymzjbgoL8Lw2mVHfa3mB7Qunsz6qg5Wtb16BtHsDLFBdXTlB2bTXgg6fhyG4Phj9s8jySP21LMHO_i4b-v8YxmwxmtRkhFfuKYCy2Q_Zz8S0FtNnV9B7CDFjp8Ao8781F8aHf4FDZc8wwe_VFU8Dn8_O7m82i9iK6nzs0FdlVHxMILFy76iSpcuwxYsS_OOfFmSv6_E-d4QcOtwHolltwCmTsMXwjuCMcxtbDE9MauFiR0wl_S4hz2F1duypsRdSNCN-4XcHr48eRgEnV9FqJKpvk6sj5NrB2jJXVfeOusTjFmpYUJKsvnvvDap7H3OeqkVJpgoCoRidauKMl-2oGtZtG4lyBSqSuX5bFEyehQFSgxtplUKpNVXCYDkD1xTdUVIedeGHPTZ5vNTMcTwzwxLU8GMLydtmyrcNw3oeg5Z_4SJ0Oa4r6pe8Rp2h0_E4Iz-pRpsmPIs1TkDw_gXS8DhujPhMbGEZvMmAv5aPKh9e7___4tPJycfD0yR5-Ov7yCbf7SZs-8hq316tLtkQ20Lt8EGf8FDRYDFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well-to-wheel+analysis+of+energy+consumption%2C+greenhouse+gas+and+air+pollutants+emissions+of+hydrogen+fuel+cell+vehicle+in+China&rft.jtitle=Journal+of+Cleaner+Production&rft.au=Zhenya+Zhang&rft.au=Zhongfang+Lei&rft.au=Qun+Wang&rft.au=Mianqiang+Xue&rft.date=2020-12-01&rft.pub=Elsevier+BV&rft.issn=0959-6526&rft.volume=275&rft.spage=123061&rft_id=info:doi/10.1016%2Fj.jclepro.2020.123061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon