Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China
Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emiss...
Saved in:
Published in | Journal of Cleaner Production Vol. 275; p. 123061 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Elsevier Ltd
01.12.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emission and air pollutants emissions of VOCs, CO, NOx, SOx, PM2.5 and PM10 for HFCV under 12 hydrogen pathways in China for the current (2017) and near future (2030). The results were compared with the gasoline-fueled internal combustion engine vehicle (gasoline-ICEV) and battery electric vehicle (BEV) counterparts. The results show that HFCV can reduce 11–92% fossil fuel consumption compared with gasoline-ICEV in 2017, with one exception that HFCV based on on-site water electrolysis by grid electricity in which fossil fuel consumption increased by 10% instead. Compared with BEV, HFCV based on by-product hydrogen from chlor-alkali process and renewable water electrolysis have the fossil fuel consumption reduction benefits. Regarding GHG emissions, HFCV based on water electrolysis using the renewable electricity performs the best with a value of 31 g CO2-eq/km while that based on on-site water electrolysis using grid electricity performs the worst with a value of 431 g CO2-eq/km in 2017. For air pollutants, HFCV based on all hydrogen pathways can achieve a significant reduction of VOCs and CO emissions on a WTW basis, in comparison with gasoline-ICEV in 2017. In terms of NOx, SOx, PM2.5 and PM10, HFCV based on on-site water electrolysis by grid electricity electrolysis has the highest emissions due to high emission factors of the electricity generation process. Moreover, due to increased share of renewable electricity and improvement in the fuel economy, reductions in WTW fossil fuel consumption and pollutants emissions are excepted by 2030. This study indicates the importance of hydrogen production when considering the energy and environment performance of HFCV to ensure a life cycle low carbon and air pollutants emissions.
•Well-to-wheel analysis of hydrogen fuel cell vehicle under various H2 pathways in China.•Fossil fuel consumption, GHG and criteria air pollutants emission are examined.•Hydrogen pathways are critical for emission reduction.•Air pollutants mitigation characteristics are identified.•Highlight the importance of incorporating well-to-tank stage into the comparison. |
---|---|
AbstractList | Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emission and air pollutants emissions of VOCs, CO, NOx, SOx, PM2.5 and PM10 for HFCV under 12 hydrogen pathways in China for the current (2017) and near future (2030). The results were compared with the gasoline-fueled internal combustion engine vehicle (gasoline-ICEV) and battery electric vehicle (BEV) counterparts. The results show that HFCV can reduce 11–92% fossil fuel consumption compared with gasoline-ICEV in 2017, with one exception that HFCV based on on-site water electrolysis by grid electricity in which fossil fuel consumption increased by 10% instead. Compared with BEV, HFCV based on by-product hydrogen from chlor-alkali process and renewable water electrolysis have the fossil fuel consumption reduction benefits. Regarding GHG emissions, HFCV based on water electrolysis using the renewable electricity performs the best with a value of 31 g CO2-eq/km while that based on on-site water electrolysis using grid electricity performs the worst with a value of 431 g CO2-eq/km in 2017. For air pollutants, HFCV based on all hydrogen pathways can achieve a significant reduction of VOCs and CO emissions on a WTW basis, in comparison with gasoline-ICEV in 2017. In terms of NOx, SOx, PM2.5 and PM10, HFCV based on on-site water electrolysis by grid electricity electrolysis has the highest emissions due to high emission factors of the electricity generation process. Moreover, due to increased share of renewable electricity and improvement in the fuel economy, reductions in WTW fossil fuel consumption and pollutants emissions are excepted by 2030. This study indicates the importance of hydrogen production when considering the energy and environment performance of HFCV to ensure a life cycle low carbon and air pollutants emissions.
•Well-to-wheel analysis of hydrogen fuel cell vehicle under various H2 pathways in China.•Fossil fuel consumption, GHG and criteria air pollutants emission are examined.•Hydrogen pathways are critical for emission reduction.•Air pollutants mitigation characteristics are identified.•Highlight the importance of incorporating well-to-tank stage into the comparison. Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy security in the transportation sector. This study presents a well-to-wheel (WTW) analysis to estimate the WTW fossil fuel consumption, GHG emission and air pollutants emissions of VOCs, CO, NOₓ, SOₓ, PM₂.₅ and PM₁₀ for HFCV under 12 hydrogen pathways in China for the current (2017) and near future (2030). The results were compared with the gasoline-fueled internal combustion engine vehicle (gasoline-ICEV) and battery electric vehicle (BEV) counterparts. The results show that HFCV can reduce 11–92% fossil fuel consumption compared with gasoline-ICEV in 2017, with one exception that HFCV based on on-site water electrolysis by grid electricity in which fossil fuel consumption increased by 10% instead. Compared with BEV, HFCV based on by-product hydrogen from chlor-alkali process and renewable water electrolysis have the fossil fuel consumption reduction benefits. Regarding GHG emissions, HFCV based on water electrolysis using the renewable electricity performs the best with a value of 31 g CO₂-eq/km while that based on on-site water electrolysis using grid electricity performs the worst with a value of 431 g CO₂-eq/km in 2017. For air pollutants, HFCV based on all hydrogen pathways can achieve a significant reduction of VOCs and CO emissions on a WTW basis, in comparison with gasoline-ICEV in 2017. In terms of NOₓ, SOₓ, PM₂.₅ and PM₁₀, HFCV based on on-site water electrolysis by grid electricity electrolysis has the highest emissions due to high emission factors of the electricity generation process. Moreover, due to increased share of renewable electricity and improvement in the fuel economy, reductions in WTW fossil fuel consumption and pollutants emissions are excepted by 2030. This study indicates the importance of hydrogen production when considering the energy and environment performance of HFCV to ensure a life cycle low carbon and air pollutants emissions. |
ArticleNumber | 123061 |
Author | Lei, Zhongfang Wang, Qun Xue, Mianqiang Lin, Bin-Le Zhang, Zhenya |
Author_xml | – sequence: 1 givenname: Qun surname: Wang fullname: Wang, Qun organization: Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan – sequence: 2 givenname: Mianqiang surname: Xue fullname: Xue, Mianqiang email: mq.xue@aist.go.jp organization: Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan – sequence: 3 givenname: Bin-Le surname: Lin fullname: Lin, Bin-Le organization: Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan – sequence: 4 givenname: Zhongfang surname: Lei fullname: Lei, Zhongfang organization: Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan – sequence: 5 givenname: Zhenya surname: Zhang fullname: Zhang, Zhenya organization: Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan |
BackLink | https://cir.nii.ac.jp/crid/1870020692667165184$$DView record in CiNii |
BookMark | eNqFkb2PFCEYh4k5E_dO_wQTCgsLZ-VjhoFYGLPR0-QSG40lYeFlh80srDBzZjv_dJmbq2yugYQ8v_fj4RpdxRQBodeUbCmh4v1xe7QjnHPaMsLqG-NE0GdoQ2WvGtpLcYU2RHWqER0TL9B1KUdCaE_6doP-_oJxbKbU_BkARmyiGS8lFJw8hgj5cME2xTKfzlNI8R0-ZIA4pLkAPphScYdNyPicxnGeTJwKhlMopbIPJYaLy-kAEfu5Fre1Fb6HIdRpcYh4N4RoXqLn3owFXj3eN-jnl88_dl-bu--333af7hrb8n5qnOfUOWYco1J6B05xQ9qeSkNN5_aEcOmV58T73ii67xSV3O6N4ZKB3AvGb9DbtW719HuGMuk66DKRiVD30ayViitGiapot6I2p1IyeH3O4WTyRVOiF-P6qB-N68W4Xo3X3If_cjZMZhE3ZRPGJ9Nv1nQMoQaXs34gqYRQTIieio7KtmIfVwyqrPsAWRcbIFpwIYOdtEvhiUb_AEtQrvE |
CitedBy_id | crossref_primary_10_1007_s11356_022_24649_3 crossref_primary_10_1016_j_energy_2025_134379 crossref_primary_10_1016_j_ijhydene_2024_08_004 crossref_primary_10_1016_j_energy_2023_128773 crossref_primary_10_1016_j_rineng_2024_102507 crossref_primary_10_1016_j_ijhydene_2023_12_198 crossref_primary_10_3390_su13158237 crossref_primary_10_1007_s43621_023_00159_1 crossref_primary_10_1016_j_nanoms_2022_04_003 crossref_primary_10_1016_j_jclepro_2023_137305 crossref_primary_10_1016_j_energy_2024_134140 crossref_primary_10_1016_j_ijhydene_2024_03_310 crossref_primary_10_1016_j_jclepro_2025_144809 crossref_primary_10_1016_j_ijhydene_2021_05_141 crossref_primary_10_1016_j_renene_2020_10_051 crossref_primary_10_1016_j_ijhydene_2021_05_024 crossref_primary_10_3390_en16135101 crossref_primary_10_51137_ijarbm_2022_3_3_7 crossref_primary_10_3390_en15197059 crossref_primary_10_5937_ZbDght2402080P crossref_primary_10_1016_j_energy_2022_124731 crossref_primary_10_1016_j_psep_2022_02_057 crossref_primary_10_1016_j_heliyon_2023_e14373 crossref_primary_10_1016_j_jclepro_2021_126959 crossref_primary_10_1007_s11814_024_00264_5 crossref_primary_10_1002_bse_3598 crossref_primary_10_1016_j_apenergy_2024_123055 crossref_primary_10_1016_j_jclepro_2021_129424 crossref_primary_10_1016_j_trd_2024_104206 crossref_primary_10_3390_atmos14050882 crossref_primary_10_1016_j_ifacol_2024_07_530 crossref_primary_10_1016_j_ese_2024_100395 crossref_primary_10_1016_j_energy_2024_131472 crossref_primary_10_1039_D1EE02798K crossref_primary_10_1016_j_diamond_2024_111880 crossref_primary_10_1016_j_isci_2023_108203 crossref_primary_10_1016_j_renene_2024_121365 crossref_primary_10_1016_j_seta_2022_102059 crossref_primary_10_1021_acs_iecr_4c00392 crossref_primary_10_1016_j_ijhydene_2023_09_021 crossref_primary_10_1016_j_ijhydene_2024_04_026 crossref_primary_10_1016_j_renene_2021_01_079 crossref_primary_10_1016_j_scs_2023_105011 crossref_primary_10_1109_TPEL_2022_3149099 crossref_primary_10_1016_j_enpol_2021_112552 crossref_primary_10_1016_j_ijhydene_2023_02_090 crossref_primary_10_1016_j_enpol_2021_112643 crossref_primary_10_1016_j_ijhydene_2020_11_186 crossref_primary_10_3390_su16219464 crossref_primary_10_3389_fenrg_2022_893475 crossref_primary_10_1088_1742_6596_2798_1_012051 crossref_primary_10_1049_esi2_12139 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104879 crossref_primary_10_1016_j_trd_2022_103219 crossref_primary_10_1016_j_egyr_2024_11_056 crossref_primary_10_3390_ijerph192113876 crossref_primary_10_1016_j_gerr_2024_100098 crossref_primary_10_3390_su132212918 crossref_primary_10_1016_j_jclepro_2020_123876 crossref_primary_10_1007_s11356_022_24150_x crossref_primary_10_1016_j_egyr_2022_06_021 crossref_primary_10_3390_app14219895 crossref_primary_10_20914_2310_1202_2024_3_258_266 crossref_primary_10_1016_j_jclepro_2021_129954 crossref_primary_10_1007_s10479_023_05736_1 crossref_primary_10_1016_j_enconman_2022_116326 crossref_primary_10_3390_su15097483 crossref_primary_10_1016_j_trd_2021_102911 crossref_primary_10_1016_j_ijhydene_2021_10_011 crossref_primary_10_1016_j_enpol_2023_113587 crossref_primary_10_1016_j_rser_2024_114543 crossref_primary_10_1039_D4SE01554A crossref_primary_10_1149_1945_7111_ad32a3 crossref_primary_10_1016_j_jclepro_2024_143330 crossref_primary_10_1016_j_ijhydene_2022_04_137 crossref_primary_10_1016_j_jpowsour_2021_230598 crossref_primary_10_2478_bipie_2022_0008 crossref_primary_10_3389_fpubh_2022_994620 crossref_primary_10_1016_j_rsase_2023_101011 crossref_primary_10_1007_s42154_023_00246_z crossref_primary_10_1016_j_ijhydene_2022_08_233 crossref_primary_10_3390_en18051229 crossref_primary_10_1016_j_jclepro_2021_128769 crossref_primary_10_1016_j_jclepro_2021_128528 crossref_primary_10_1016_j_jclepro_2021_128646 crossref_primary_10_1016_j_envres_2022_112781 crossref_primary_10_3390_app11062515 crossref_primary_10_1088_2516_1083_ac34e9 crossref_primary_10_1016_j_jclepro_2022_130983 crossref_primary_10_1016_j_jclepro_2022_134669 crossref_primary_10_3390_catal11030393 crossref_primary_10_3390_en15155321 crossref_primary_10_1016_j_ijhydene_2021_10_077 crossref_primary_10_1016_j_asoc_2024_112102 crossref_primary_10_1016_j_ijhydene_2021_04_124 crossref_primary_10_1029_2024GH001188 crossref_primary_10_1016_j_jclepro_2021_130284 crossref_primary_10_1007_s11356_023_28085_9 crossref_primary_10_3390_su151511501 |
Cites_doi | 10.1016/j.jclepro.2019.04.301 10.1016/j.atmosenv.2008.12.025 10.1016/j.ijhydene.2009.12.082 10.1016/j.energy.2015.11.023 10.1016/j.apenergy.2016.11.048 10.1016/j.energy.2009.05.029 10.1016/j.enpol.2019.01.021 10.1016/j.jclepro.2019.117879 10.1016/j.apenergy.2016.12.011 10.1021/es500524e 10.1016/j.ijhydene.2007.10.022 10.1016/j.apenergy.2015.01.019 10.1016/j.jclepro.2016.11.159 10.1016/j.ijhydene.2019.10.192 10.1787/weo-2017-en 10.1016/j.jclepro.2020.120659 10.1007/s11708-018-0561-3 10.1016/j.ijhydene.2018.09.039 10.1016/S0378-7753(02)00447-0 10.1016/j.ijhydene.2018.08.088 10.1039/C5EE01512J 10.1016/j.apenergy.2018.02.132 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd |
Copyright_xml | – notice: 2020 Elsevier Ltd |
DBID | RYH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jclepro.2020.123061 |
DatabaseName | CiNii Complete CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-1786 |
ExternalDocumentID | 10_1016_j_jclepro_2020_123061 S0959652620331061 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M ..I .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE K-O KCYFY KOM LY9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SPC SPCBC SSJ SSR SSZ T5K ~G- AAHBH AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SEN SSH 29K AAQXK AAYXX ABFNM ABWVN ABXDB ACRPL ADHUB ADMUD ADNMO AEGFY AFJKZ AGQPQ AIGII ASPBG AVWKF AZFZN CITATION D-I EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SEW WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c437t-df31dd2ad2188fded93a04718a1a5db0038f9f30ff7a91b59183cbaa382e8b623 |
IEDL.DBID | .~1 |
ISSN | 0959-6526 |
IngestDate | Fri Jul 11 01:34:26 EDT 2025 Tue Jul 01 03:03:39 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Thu Jun 26 22:21:50 EDT 2025 Fri Feb 23 02:46:52 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy consumption Greenhouse gas emission Well-to-wheel analysis Air pollutants Hydrogen fuel cell vehicle |
Language | English Japanese |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-df31dd2ad2188fded93a04718a1a5db0038f9f30ff7a91b59183cbaa382e8b623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2489392109 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2489392109 crossref_primary_10_1016_j_jclepro_2020_123061 crossref_citationtrail_10_1016_j_jclepro_2020_123061 nii_cinii_1870020692667165184 elsevier_sciencedirect_doi_10_1016_j_jclepro_2020_123061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-01 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Cleaner Production |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Shen, Han, Wallington (bib35) 2014; 48 China electricity council (CEC) (bib6) 2018 Argonne National Laboratory (ANL) (bib1) 2016 The Intergovernmental Panel on Climate Change (IPCC) (bib14) 2007 Yoo, Kim, Song (bib33) 2018; 43 Bauer, Hofer, Althaus, Del Duce, Simons (bib3) 2015; 157 Society of Automotive Engineers (Sae-China) (bib28) 2016 Hao, Mu, Liu, Zhao (bib9) 2018; 12 Brinkman, Wang, Weber, Darlington (bib5) 2005 Bonsu (bib4) 2020; 256 International Energy Agency (IEA) (bib13) 2019 Ministry of Ecology and Environment (Mee), People’s Republic of China (bib25) 2019 Lee, Elgowainy, Dai (bib19) 2018; 217 Mao, Mao, Yu (bib24) 2018 Lin, Wu, He, Zhang, Hao (bib22) 2018; 39 Rosenfeld, Lindorfer, Fazeni-Fraisl (bib27) 2019; 238 Xu, Xu, Dong, Liu (bib32) 2017; 196 Wang (bib30) 2002; 112 Evangelisti, Tagliaferri, Brett, Lettieri (bib8) 2017; 142 Zhao, Liu, Li (bib34) 2017 Argonne National Laboratory (ANL) (bib2) 2018 Huo, Wu, Wang (bib10) 2009; 43 Lee, Elgowainy (bib17) 2018; 43 Liu, Reddi, Elgowainy, Lohse-Busch, Wang, Rustagi (bib23) 2020; 45 International Energy Agency (IEA) (bib12) 2017 Li, Zhang, Li (bib21) 2016; 94 Ramachandran, Stimming (bib26) 2015; 8 Shi, Zhang, Yang, Zhang, Wang (bib29) 2019; 228 China Hydrogen Alliane (CHA) (bib7) 2019 Joseck, Wang, Wu (bib15) 2008; 33 Lee, Elgowainy, Vijayagopal (bib20) 2019; 128 Ke, Zhang, He, Wu, Hao (bib16) 2017; 188 Xie, Li, Zhao (bib31) 2010; 35 Lee, An, Cha, Hur (bib18) 2010; 35 International Energy Agency (IEA) (10.1016/j.jclepro.2020.123061_bib13) 2019 Yoo (10.1016/j.jclepro.2020.123061_bib33) 2018; 43 Bauer (10.1016/j.jclepro.2020.123061_bib3) 2015; 157 Li (10.1016/j.jclepro.2020.123061_bib21) 2016; 94 Argonne National Laboratory (ANL) (10.1016/j.jclepro.2020.123061_bib1) 2016 Mao (10.1016/j.jclepro.2020.123061_bib24) 2018 China electricity council (CEC) (10.1016/j.jclepro.2020.123061_bib6) 2018 Bonsu (10.1016/j.jclepro.2020.123061_bib4) 2020; 256 Joseck (10.1016/j.jclepro.2020.123061_bib15) 2008; 33 Wang (10.1016/j.jclepro.2020.123061_bib30) 2002; 112 Xu (10.1016/j.jclepro.2020.123061_bib32) 2017; 196 Brinkman (10.1016/j.jclepro.2020.123061_bib5) 2005 Lee (10.1016/j.jclepro.2020.123061_bib20) 2019; 128 Shen (10.1016/j.jclepro.2020.123061_bib35) 2014; 48 Xie (10.1016/j.jclepro.2020.123061_bib31) 2010; 35 Argonne National Laboratory (ANL) (10.1016/j.jclepro.2020.123061_bib2) 2018 Lee (10.1016/j.jclepro.2020.123061_bib17) 2018; 43 Ramachandran (10.1016/j.jclepro.2020.123061_bib26) 2015; 8 Ke (10.1016/j.jclepro.2020.123061_bib16) 2017; 188 International Energy Agency (IEA) (10.1016/j.jclepro.2020.123061_bib12) 2017 Shi (10.1016/j.jclepro.2020.123061_bib29) 2019; 228 Lee (10.1016/j.jclepro.2020.123061_bib19) 2018; 217 Liu (10.1016/j.jclepro.2020.123061_bib23) 2020; 45 Huo (10.1016/j.jclepro.2020.123061_bib10) 2009; 43 Society of Automotive Engineers (Sae-China) (10.1016/j.jclepro.2020.123061_bib28) 2016 Evangelisti (10.1016/j.jclepro.2020.123061_bib8) 2017; 142 Lee (10.1016/j.jclepro.2020.123061_bib18) 2010; 35 Ministry of Ecology and Environment (Mee) (10.1016/j.jclepro.2020.123061_bib25) 2019 Hao (10.1016/j.jclepro.2020.123061_bib9) 2018; 12 Rosenfeld (10.1016/j.jclepro.2020.123061_bib27) 2019; 238 China Hydrogen Alliane (CHA) (10.1016/j.jclepro.2020.123061_bib7) 2019 Lin (10.1016/j.jclepro.2020.123061_bib22) 2018; 39 Zhao (10.1016/j.jclepro.2020.123061_bib34) 2017 The Intergovernmental Panel on Climate Change (IPCC) (10.1016/j.jclepro.2020.123061_bib14) 2007 |
References_xml | – volume: 94 start-page: 693 year: 2016 end-page: 704 ident: bib21 article-title: A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis publication-title: Energy – volume: 48 start-page: 7069 year: 2014 end-page: 7075 ident: bib35 article-title: Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles publication-title: Environ. Sci. Technol. – year: 2005 ident: bib5 article-title: Well-to-wheels Analysis of Advanced Fuel/vehicle Systems: A North American Study of Energy Use, Greenhouse Gas Emissions, and Criteria Pollutant Emissions – year: 2016 ident: bib1 article-title: GREET: Life-Cycle Model User Guide – year: 2019 ident: bib13 article-title: The Future of Hydrogen: Seizing Today’s Opportunities – year: 2018 ident: bib24 article-title: Hydrogen Production Process and Technology – volume: 142 start-page: 4339 year: 2017 end-page: 4355 ident: bib8 article-title: Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles publication-title: J. Clean. Prod. – volume: 45 start-page: 972 year: 2020 end-page: 983 ident: bib23 article-title: Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle publication-title: Int. J. Hydrogen Energy – year: 2019 ident: bib7 article-title: Distribution Information of Hydrogen Refueling Stations in China – volume: 35 start-page: 2213 year: 2010 end-page: 2225 ident: bib18 article-title: Life cycle environmental and economic analysis of a hydrogen station with wind energy publication-title: Int. J. Hydrogen Energy – year: 2016 ident: bib28 article-title: Technology Roadmap for Energy Saving and New Energy Vehicles – volume: 8 start-page: 3313 year: 2015 end-page: 3324 ident: bib26 article-title: Well to wheel analysis of low carbon alternatives for road traffic publication-title: Energy Environ. Sci. – year: 2007 ident: bib14 article-title: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change – year: 2018 ident: bib2 article-title: GREET Model 2018 – start-page: 273 year: 2017 end-page: 309 ident: bib34 article-title: Modelling and analysis of China’s passenger car fuel consumption up to 2030 publication-title: Advances in Energy Systems Engineering – volume: 217 start-page: 467 year: 2018 end-page: 479 ident: bib19 article-title: Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States publication-title: Appl. Energy – volume: 112 start-page: 307 year: 2002 end-page: 321 ident: bib30 article-title: Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts publication-title: J. Power Sources – volume: 188 start-page: 367 year: 2017 end-page: 377 ident: bib16 article-title: Well-to-wheels energy consumption and emissions of electric vehicles: mid-term implications from real-world features and air pollution control progress publication-title: Appl. Energy – volume: 33 start-page: 1445 year: 2008 end-page: 1454 ident: bib15 article-title: Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills publication-title: Int. J. Hydrogen Energy – volume: 12 start-page: 466 year: 2018 end-page: 480 ident: bib9 article-title: Abating transport GHG emissions by hydrogen fuel cell vehicles: chances for the developing world publication-title: Front. Energy – volume: 35 start-page: 4349 year: 2010 end-page: 4355 ident: bib31 article-title: Coal chemical industry and its sustainable development in China publication-title: Energy – volume: 128 start-page: 565 year: 2019 end-page: 583 ident: bib20 article-title: Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States publication-title: Energy Pol. – volume: 43 start-page: 20143 year: 2018 end-page: 20160 ident: bib17 article-title: By-product hydrogen from steam cracking of natural gas liquids (NGLs): potential for large-scale hydrogen fuel production, life-cycle air emissions reduction, and economic benefit publication-title: Int. J. Hydrogen Energy – volume: 157 start-page: 871 year: 2015 end-page: 883 ident: bib3 article-title: The environmental performance of current and future passenger vehicles: life cycle assessment based on a novel scenario analysis framework publication-title: Appl. Energy – volume: 228 start-page: 606 year: 2019 end-page: 618 ident: bib29 article-title: A life-cycle assessment of battery electric and internal combustion engine vehicles: a case in Hebei Province, China publication-title: J. Clean. Prod. – year: 2019 ident: bib25 article-title: China Mobile Source Environmental Management Annual Report – volume: 256 year: 2020 ident: bib4 article-title: Towards a circular and low-carbon economy: insights from the transitioning to electric vehicles and net zero economy publication-title: J. Clean. Prod. – volume: 43 start-page: 1796 year: 2009 end-page: 1804 ident: bib10 article-title: Total versus urban: well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems publication-title: Atoms. Environ. – year: 2018 ident: bib6 article-title: National Power Industry Statistical Express 2017 – volume: 39 start-page: 3946 year: 2018 end-page: 3953 ident: bib22 article-title: Well-to-Wheels fossil energy consumption and CO publication-title: Environ. Sci. – volume: 238 year: 2019 ident: bib27 article-title: Comparison of advanced fuels-Which technology can win from the life cycle perspective? publication-title: J. Clean. Prod. – volume: 43 start-page: 19267 year: 2018 end-page: 19278 ident: bib33 article-title: Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea publication-title: Int. J. Hydrogen Energy – volume: 196 start-page: 229 year: 2017 end-page: 237 ident: bib32 article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China publication-title: Appl. Energy – year: 2017 ident: bib12 article-title: China Energy Outlook: World Energy Outlook-2017 Special Report – volume: 228 start-page: 606 year: 2019 ident: 10.1016/j.jclepro.2020.123061_bib29 article-title: A life-cycle assessment of battery electric and internal combustion engine vehicles: a case in Hebei Province, China publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.04.301 – volume: 43 start-page: 1796 year: 2009 ident: 10.1016/j.jclepro.2020.123061_bib10 article-title: Total versus urban: well-to-wheels assessment of criteria pollutant emissions from various vehicle/fuel systems publication-title: Atoms. Environ. doi: 10.1016/j.atmosenv.2008.12.025 – volume: 35 start-page: 2213 year: 2010 ident: 10.1016/j.jclepro.2020.123061_bib18 article-title: Life cycle environmental and economic analysis of a hydrogen station with wind energy publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.12.082 – volume: 94 start-page: 693 year: 2016 ident: 10.1016/j.jclepro.2020.123061_bib21 article-title: A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis publication-title: Energy doi: 10.1016/j.energy.2015.11.023 – volume: 196 start-page: 229 year: 2017 ident: 10.1016/j.jclepro.2020.123061_bib32 article-title: Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.11.048 – year: 2016 ident: 10.1016/j.jclepro.2020.123061_bib28 – volume: 35 start-page: 4349 year: 2010 ident: 10.1016/j.jclepro.2020.123061_bib31 article-title: Coal chemical industry and its sustainable development in China publication-title: Energy doi: 10.1016/j.energy.2009.05.029 – start-page: 273 year: 2017 ident: 10.1016/j.jclepro.2020.123061_bib34 article-title: Modelling and analysis of China’s passenger car fuel consumption up to 2030 – volume: 128 start-page: 565 year: 2019 ident: 10.1016/j.jclepro.2020.123061_bib20 article-title: Well-to-wheel environmental implications of fuel economy targets for hydrogen fuel cell electric buses in the United States publication-title: Energy Pol. doi: 10.1016/j.enpol.2019.01.021 – volume: 238 year: 2019 ident: 10.1016/j.jclepro.2020.123061_bib27 article-title: Comparison of advanced fuels-Which technology can win from the life cycle perspective? publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.117879 – volume: 188 start-page: 367 year: 2017 ident: 10.1016/j.jclepro.2020.123061_bib16 article-title: Well-to-wheels energy consumption and emissions of electric vehicles: mid-term implications from real-world features and air pollution control progress publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.011 – year: 2007 ident: 10.1016/j.jclepro.2020.123061_bib14 – volume: 48 start-page: 7069 year: 2014 ident: 10.1016/j.jclepro.2020.123061_bib35 article-title: Current and Future Greenhouse Gas Emissions Associated with Electricity Generation in China: Implications for Electric Vehicles publication-title: Environ. Sci. Technol. doi: 10.1021/es500524e – volume: 39 start-page: 3946 year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib22 article-title: Well-to-Wheels fossil energy consumption and CO2 emissions of hydrogen fuel cell vehicles in China publication-title: Environ. Sci. – volume: 33 start-page: 1445 year: 2008 ident: 10.1016/j.jclepro.2020.123061_bib15 article-title: Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.10.022 – volume: 157 start-page: 871 year: 2015 ident: 10.1016/j.jclepro.2020.123061_bib3 article-title: The environmental performance of current and future passenger vehicles: life cycle assessment based on a novel scenario analysis framework publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.01.019 – volume: 142 start-page: 4339 year: 2017 ident: 10.1016/j.jclepro.2020.123061_bib8 article-title: Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.159 – volume: 45 start-page: 972 year: 2020 ident: 10.1016/j.jclepro.2020.123061_bib23 article-title: Comparison of well-to-wheels energy use and emissions of a hydrogen fuel cell electric vehicle relative to a conventional gasoline-powered internal combustion engine vehicle publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.10.192 – year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib24 – year: 2017 ident: 10.1016/j.jclepro.2020.123061_bib12 doi: 10.1787/weo-2017-en – volume: 256 year: 2020 ident: 10.1016/j.jclepro.2020.123061_bib4 article-title: Towards a circular and low-carbon economy: insights from the transitioning to electric vehicles and net zero economy publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.120659 – volume: 12 start-page: 466 year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib9 article-title: Abating transport GHG emissions by hydrogen fuel cell vehicles: chances for the developing world publication-title: Front. Energy doi: 10.1007/s11708-018-0561-3 – year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib6 – year: 2005 ident: 10.1016/j.jclepro.2020.123061_bib5 – volume: 43 start-page: 20143 year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib17 article-title: By-product hydrogen from steam cracking of natural gas liquids (NGLs): potential for large-scale hydrogen fuel production, life-cycle air emissions reduction, and economic benefit publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.09.039 – volume: 112 start-page: 307 issue: 1 year: 2002 ident: 10.1016/j.jclepro.2020.123061_bib30 article-title: Fuel choices for fuel-cell vehicles: well-to-wheels energy and emission impacts publication-title: J. Power Sources doi: 10.1016/S0378-7753(02)00447-0 – year: 2016 ident: 10.1016/j.jclepro.2020.123061_bib1 – volume: 43 start-page: 19267 year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib33 article-title: Well-to-wheel analysis of hydrogen fuel-cell electric vehicle in Korea publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.08.088 – year: 2019 ident: 10.1016/j.jclepro.2020.123061_bib7 – year: 2019 ident: 10.1016/j.jclepro.2020.123061_bib25 – year: 2019 ident: 10.1016/j.jclepro.2020.123061_bib13 – volume: 8 start-page: 3313 year: 2015 ident: 10.1016/j.jclepro.2020.123061_bib26 article-title: Well to wheel analysis of low carbon alternatives for road traffic publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01512J – year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib2 – volume: 217 start-page: 467 year: 2018 ident: 10.1016/j.jclepro.2020.123061_bib19 article-title: Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.02.132 |
SSID | ssj0017074 ssib006547906 |
Score | 2.5992112 |
Snippet | Hydrogen fuel cell vehicle (HFCV) is considered as a promising solution for reducing greenhouse gas (GHG) and air pollutants emissions and improving energy... |
SourceID | proquest crossref nii elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 123061 |
SubjectTerms | Air pollutants air pollution byproducts carbon carbon monoxide China chlor-alkali process electricity electrolysis emissions factor Energy consumption energy use and consumption fossil fuels Greenhouse gas emission greenhouse gas emissions greenhouse gases hydrogen Hydrogen fuel cell vehicle hydrogen fuel cells hydrogen production internal combustion engines nitrogen oxides particulates renewable electricity sulfur oxides transportation industry vehicles (equipment) volatile organic compounds Well-to-wheel analysis |
Title | Well-to-wheel analysis of energy consumption, greenhouse gas and air pollutants emissions of hydrogen fuel cell vehicle in China |
URI | https://dx.doi.org/10.1016/j.jclepro.2020.123061 https://cir.nii.ac.jp/crid/1870020692667165184 https://www.proquest.com/docview/2489392109 |
Volume | 275 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoXOgBtTzE0oKM1CPZTTZ2Eh8RKtqCxKVF5WZNYns3q1V2tQ8Ql4qfzoyT0FYIrcQlUhLbsTyTbx6aB2PfrDTWgXJBJnIXCEghyIVEgrhcFqGyyEM-QPYmGdyKqzt5t8Eu2lwYCqtssL_GdI_WzZNec5q9WVn2fpIHK5FUUD2OybChDHaREpd3_7yEeURpWFdiJncXjf6bxdMbd8e4GAIVmol9qrOA6nP0lnz6UJXlK7z2QujyE9tptEd-Xm_wM9uw1S77-E9NwT329NtOJsFyGjyMrJ1waIqO8Knj1uf58cJnXXqoOONDirsZoflv-RAWONxwKOd8Rh2QqcHwglNDOHKp-SVGj2Y-RZ7jboWLk9ef39sRbYaXFffNuPfZ7eX3XxeDoGmzEBQiTpeBcXFkTB8MSvvMGWtUDCHJLIhAGvrtM6dcHDqXgopyqRAFihwgzvo2y1F9OmCb1bSyh4zHQhU2SUMBgsChyEBAaBIhZSKKMI86TLSHq4umBjm1wpjoNthsrBuaaKKJrmnSYd2XabO6CMe6CVlLOf0fN2kUFOumHiOlcXd0jRDN8FWiUI1Bw1KiOdxhpy0PaDx_OmioLJJJ96mOj0ITWh29__Nf2Dbd1QEzX9nmcr6yx6j2LPMTz9cnbOv8x_Xg5hk6qwGI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB615UA5IF4VWygYiWOzm2zsJD6iimqB0gut6M2axHY3q1V2td226gXx05lxkgKqUCUuOSS2Y82Mv3loPAPw3inrPGofFbL0kcQco1IqYogvVRVrRzIUEmSPs8mp_HymzjbgoL8Lw2mVHfa3mB7Qunsz6qg5Wtb16BtHsDLFBdXTlB2bTXgg6fhyG4Phj9s8jySP21LMHO_i4b-v8YxmwxmtRkhFfuKYCy2Q_Zz8S0FtNnV9B7CDFjp8Ao8781F8aHf4FDZc8wwe_VFU8Dn8_O7m82i9iK6nzs0FdlVHxMILFy76iSpcuwxYsS_OOfFmSv6_E-d4QcOtwHolltwCmTsMXwjuCMcxtbDE9MauFiR0wl_S4hz2F1duypsRdSNCN-4XcHr48eRgEnV9FqJKpvk6sj5NrB2jJXVfeOusTjFmpYUJKsvnvvDap7H3OeqkVJpgoCoRidauKMl-2oGtZtG4lyBSqSuX5bFEyehQFSgxtplUKpNVXCYDkD1xTdUVIedeGHPTZ5vNTMcTwzwxLU8GMLydtmyrcNw3oeg5Z_4SJ0Oa4r6pe8Rp2h0_E4Iz-pRpsmPIs1TkDw_gXS8DhujPhMbGEZvMmAv5aPKh9e7___4tPJycfD0yR5-Ov7yCbf7SZs-8hq316tLtkQ20Lt8EGf8FDRYDFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Well-to-wheel+analysis+of+energy+consumption%2C+greenhouse+gas+and+air+pollutants+emissions+of+hydrogen+fuel+cell+vehicle+in+China&rft.jtitle=Journal+of+Cleaner+Production&rft.au=Zhenya+Zhang&rft.au=Zhongfang+Lei&rft.au=Qun+Wang&rft.au=Mianqiang+Xue&rft.date=2020-12-01&rft.pub=Elsevier+BV&rft.issn=0959-6526&rft.volume=275&rft.spage=123061&rft_id=info:doi/10.1016%2Fj.jclepro.2020.123061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-6526&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-6526&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-6526&client=summon |