Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets
Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-opt...
Saved in:
Published in | Physical review letters Vol. 117; no. 26; p. 267203 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
23.12.2016
|
Online Access | Get more information |
Cover
Loading…
Abstract | Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-optic effects without modifying the underlying magnetic structure. We further demonstrate the gate control of the magneto-optic Kerr effect (MOKE) in bilayer MnPSe_{3} using first-principles calculations. The field-induced inversion symmetry breaking effect leads to gate-controllable MOKE, whose direction of rotation can be switched by the reversal of the gate voltage. |
---|---|
AbstractList | Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-optic effects without modifying the underlying magnetic structure. We further demonstrate the gate control of the magneto-optic Kerr effect (MOKE) in bilayer MnPSe_{3} using first-principles calculations. The field-induced inversion symmetry breaking effect leads to gate-controllable MOKE, whose direction of rotation can be switched by the reversal of the gate voltage. |
Author | Xiao, Di Sivadas, Nikhil Okamoto, Satoshi |
Author_xml | – sequence: 1 givenname: Nikhil surname: Sivadas fullname: Sivadas, Nikhil organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA – sequence: 2 givenname: Satoshi surname: Okamoto fullname: Okamoto, Satoshi organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA – sequence: 3 givenname: Di surname: Xiao fullname: Xiao, Di organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28059540$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j9tKxDAYhIMo7kFfYckLZE3SZJNeLmVdxYoH9Hr5m_7RSpsuaRT69hYPV8MM3wzMgpyGPiAhK8HXQvDs6vF9HJ7xq8SUpsCs5cZInp2QueAmZ0YINSOLYfjgnAu5sedkJi3XuVZ8Tp72kJAVfUixb1uoWqT38BYw9aw_psbRO4yR7rxHl2gTaAkjRqxpMdFNQIh0G1LjJ6jvfnrDBTnz0A54-adL8nq9eyluWPmwvy22JXMqM4k5rMHmFRjlHajK5sobAKPRyTzLvLdy8jUa7ZytpHbgreO5AdQOhalquSSr393jZ9VhfTjGpoM4Hv6_yW8n41ZF |
CitedBy_id | crossref_primary_10_1103_PhysRevB_102_085408 crossref_primary_10_1038_s41467_019_13968_8 crossref_primary_10_1038_s41565_022_01180_7 crossref_primary_10_34133_2020_1768918 crossref_primary_10_1038_s42254_019_0110_y crossref_primary_10_1016_j_flatc_2023_100536 crossref_primary_10_1103_PhysRevB_109_L020404 crossref_primary_10_1103_PhysRevB_101_104418 crossref_primary_10_1038_s41565_019_0598_4 crossref_primary_10_1103_PhysRevB_109_L100403 crossref_primary_10_1103_PhysRevApplied_18_064086 crossref_primary_10_1002_adma_201900065 crossref_primary_10_1039_D1CP03989J crossref_primary_10_1103_PhysRevB_104_024401 crossref_primary_10_1103_PhysRevB_97_035125 crossref_primary_10_1021_acs_nanolett_8b04160 crossref_primary_10_1016_j_taml_2020_01_015 crossref_primary_10_1021_acsaelm_0c00154 crossref_primary_10_1103_PhysRevB_106_245111 crossref_primary_10_1103_PhysRevB_108_125108 crossref_primary_10_1103_PhysRevLett_129_187602 crossref_primary_10_1103_PhysRevB_104_104427 crossref_primary_10_1038_s41467_019_09663_3 crossref_primary_10_1038_s41535_017_0051_6 crossref_primary_10_1021_acsaom_3c00299 crossref_primary_10_1063_5_0218996 crossref_primary_10_1021_acsami_3c02680 crossref_primary_10_3390_jlpea14030035 crossref_primary_10_1021_acs_jpclett_0c00567 crossref_primary_10_1088_2053_1583_abf251 crossref_primary_10_3390_condmat9040040 crossref_primary_10_1038_s41467_018_04953_8 crossref_primary_10_1021_acsaelm_2c00563 crossref_primary_10_1103_PhysRevB_103_L180407 crossref_primary_10_1073_pnas_2108924118 crossref_primary_10_1021_jacs_7b04911 crossref_primary_10_1002_adom_201901381 crossref_primary_10_1088_1674_1056_acd68a crossref_primary_10_3390_nano14211729 crossref_primary_10_1103_PhysRevB_96_214423 crossref_primary_10_1021_acs_inorgchem_9b01785 crossref_primary_10_1038_s41567_024_02465_5 crossref_primary_10_1103_PhysRevB_98_125416 crossref_primary_10_1039_D1NR06383A crossref_primary_10_1038_s41586_018_0631_z crossref_primary_10_1088_1361_6463_ad9ebf crossref_primary_10_1364_OL_457627 crossref_primary_10_1038_s41928_023_00978_0 crossref_primary_10_1103_PhysRevB_106_054408 crossref_primary_10_1103_PhysRevB_106_184408 crossref_primary_10_7566_JPSJ_93_072001 crossref_primary_10_1021_acs_nanolett_3c05052 crossref_primary_10_1016_j_physb_2017_10_126 crossref_primary_10_1038_s41535_020_00259_5 crossref_primary_10_1021_acs_nanolett_8b03321 crossref_primary_10_1126_sciadv_aaw8904 crossref_primary_10_1103_PhysRevResearch_2_022025 crossref_primary_10_1103_PhysRevMaterials_8_L051401 crossref_primary_10_1103_PhysRevResearch_3_033276 crossref_primary_10_1021_acsaelm_0c00528 crossref_primary_10_1103_PhysRevB_99_104428 crossref_primary_10_1021_acs_jpcc_7b09634 crossref_primary_10_1103_PhysRevLett_133_236903 crossref_primary_10_1016_j_jmmm_2019_165626 crossref_primary_10_1038_s42254_021_00403_5 crossref_primary_10_1038_s41563_018_0040_6 crossref_primary_10_1103_PhysRevB_110_224418 crossref_primary_10_1038_s41467_022_35248_8 crossref_primary_10_1088_2053_1583_ab6781 crossref_primary_10_1002_adfm_202409327 crossref_primary_10_1103_PhysRevB_106_144402 crossref_primary_10_1088_2053_1583_ac4af8 crossref_primary_10_1080_19475411_2020_1790055 crossref_primary_10_3390_sym16070926 crossref_primary_10_1021_acsami_3c11811 crossref_primary_10_1038_s41699_020_00188_8 crossref_primary_10_1103_PhysRevApplied_12_024031 crossref_primary_10_1038_s41524_025_01545_1 crossref_primary_10_1038_s41586_021_03679_w crossref_primary_10_1088_0256_307X_40_7_077301 crossref_primary_10_1103_PhysRevB_109_014433 crossref_primary_10_1103_PhysRevApplied_16_014043 crossref_primary_10_1103_PhysRevLett_131_056401 crossref_primary_10_1016_j_jmmm_2023_170420 crossref_primary_10_1088_0256_307X_42_2_027502 crossref_primary_10_1002_adma_202209513 crossref_primary_10_1103_PhysRevB_105_014437 crossref_primary_10_1126_science_aav6926 crossref_primary_10_1103_PhysRevB_107_195128 crossref_primary_10_1039_D0NR06813F crossref_primary_10_1103_PhysRevB_107_064412 crossref_primary_10_1063_5_0014865 crossref_primary_10_1364_OE_521000 crossref_primary_10_1103_PhysRevB_101_085415 crossref_primary_10_1021_acsami_1c21848 crossref_primary_10_1038_s41578_022_00430_3 crossref_primary_10_1103_PhysRevB_110_115152 crossref_primary_10_1016_j_physb_2022_414073 crossref_primary_10_1021_acs_jpclett_0c03476 crossref_primary_10_1002_nano_202000032 crossref_primary_10_1038_s41565_019_0438_6 crossref_primary_10_1103_PhysRevB_98_115424 crossref_primary_10_1103_PhysRevLett_122_227402 crossref_primary_10_1103_PhysRevB_104_064446 crossref_primary_10_1126_sciadv_ado1761 crossref_primary_10_1063_1_5036924 crossref_primary_10_1038_s41565_018_0121_3 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/PhysRevLett.117.267203 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 28059540 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM P2P ROL S7W SJN TN5 UBE WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c437t-ceda89ba74fca4b894f7aa75ec2933ff82f7ade75cc8b25caf8c097ae5ce17bd2 |
IngestDate | Thu Apr 03 06:56:44 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-ceda89ba74fca4b894f7aa75ec2933ff82f7ade75cc8b25caf8c097ae5ce17bd2 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1337818 |
PMID | 28059540 |
ParticipantIDs | pubmed_primary_28059540 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-23 |
PublicationDateYYYYMMDD | 2016-12-23 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2016 |
SSID | ssj0001268 |
Score | 2.5766857 |
Snippet | Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 267203 |
Title | Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/28059540 |
Volume | 117 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLbGJiRept1gYxf5gTfkkptr53Fim9A2YOMi9Q0dOycjApKqjZDYr9-xnbRQumnbS9TaipX6-2odn_j7DmNbtNsqcBgZgQipyGQeC2MwEQhJCXmqIfY-3fsHw73T7PNIjuZnVb26pDUD-3OpruR_UKU2wtWpZP8B2dmg1ECfCV-6EsJ0_SuMXepL7IbD5pdeA7UPP2psG9GMnRHrF5xMtjt_4qre_go3rjKnTxZQcAkTZx3gjrZMmit_3_R2qPqtR7BTt1x64c8sBD-urqEIarCD6uJ8flLj8AII_iakm9tmel71PaMKfPOH6nauIfYVeoIceIBhfYxULlQcdJ-zBTSoLzumJHfWw6F7zbt8qY6cZYT7LUd47bRL7v3x4P4NNOXjKw9goikWlMHd6c-9CxbafdcKW6HNhKuO6lI6a30ibqg76Tg90s7yB3Ke0d0gC_sPH4ecPGGPuw0Efx_Y8JQ9wPoZWw1gTZ-z7_c4we9wgjtO8MAJXtW84wSfcYIvcuIFO_308WR3T3RlM4TNUtUKiwXo3IDKSguZ0XlWKgAl0VJol5alTuh7gUpaq00iLZTaRrkClBZjZYpknT2smxpfMk6xZBxpGk8VeRaVUqfKoHQlFIoiwTh_xTbCXJyNgzfKWT9Lm7_tec3W5tR6wx6V9GfEtxTZteadR-YXLSpROQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate-Controllable+Magneto-optic+Kerr+Effect+in+Layered+Collinear+Antiferromagnets&rft.jtitle=Physical+review+letters&rft.au=Sivadas%2C+Nikhil&rft.au=Okamoto%2C+Satoshi&rft.au=Xiao%2C+Di&rft.date=2016-12-23&rft.eissn=1079-7114&rft.volume=117&rft.issue=26&rft.spage=267203&rft_id=info:doi/10.1103%2FPhysRevLett.117.267203&rft_id=info%3Apmid%2F28059540&rft_id=info%3Apmid%2F28059540&rft.externalDocID=28059540 |