Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets

Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-opt...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 117; no. 26; p. 267203
Main Authors Sivadas, Nikhil, Okamoto, Satoshi, Xiao, Di
Format Journal Article
LanguageEnglish
Published United States 23.12.2016
Online AccessGet more information

Cover

Loading…
Abstract Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-optic effects without modifying the underlying magnetic structure. We further demonstrate the gate control of the magneto-optic Kerr effect (MOKE) in bilayer MnPSe_{3} using first-principles calculations. The field-induced inversion symmetry breaking effect leads to gate-controllable MOKE, whose direction of rotation can be switched by the reversal of the gate voltage.
AbstractList Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated by controlling crystal symmetries through a gate voltage. This provides a promising route for electric field manipulation of the magneto-optic effects without modifying the underlying magnetic structure. We further demonstrate the gate control of the magneto-optic Kerr effect (MOKE) in bilayer MnPSe_{3} using first-principles calculations. The field-induced inversion symmetry breaking effect leads to gate-controllable MOKE, whose direction of rotation can be switched by the reversal of the gate voltage.
Author Xiao, Di
Sivadas, Nikhil
Okamoto, Satoshi
Author_xml – sequence: 1
  givenname: Nikhil
  surname: Sivadas
  fullname: Sivadas, Nikhil
  organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
– sequence: 2
  givenname: Satoshi
  surname: Okamoto
  fullname: Okamoto, Satoshi
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 3
  givenname: Di
  surname: Xiao
  fullname: Xiao, Di
  organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28059540$$D View this record in MEDLINE/PubMed
BookMark eNo1j9tKxDAYhIMo7kFfYckLZE3SZJNeLmVdxYoH9Hr5m_7RSpsuaRT69hYPV8MM3wzMgpyGPiAhK8HXQvDs6vF9HJ7xq8SUpsCs5cZInp2QueAmZ0YINSOLYfjgnAu5sedkJi3XuVZ8Tp72kJAVfUixb1uoWqT38BYw9aw_psbRO4yR7rxHl2gTaAkjRqxpMdFNQIh0G1LjJ6jvfnrDBTnz0A54-adL8nq9eyluWPmwvy22JXMqM4k5rMHmFRjlHajK5sobAKPRyTzLvLdy8jUa7ZytpHbgreO5AdQOhalquSSr393jZ9VhfTjGpoM4Hv6_yW8n41ZF
CitedBy_id crossref_primary_10_1103_PhysRevB_102_085408
crossref_primary_10_1038_s41467_019_13968_8
crossref_primary_10_1038_s41565_022_01180_7
crossref_primary_10_34133_2020_1768918
crossref_primary_10_1038_s42254_019_0110_y
crossref_primary_10_1016_j_flatc_2023_100536
crossref_primary_10_1103_PhysRevB_109_L020404
crossref_primary_10_1103_PhysRevB_101_104418
crossref_primary_10_1038_s41565_019_0598_4
crossref_primary_10_1103_PhysRevB_109_L100403
crossref_primary_10_1103_PhysRevApplied_18_064086
crossref_primary_10_1002_adma_201900065
crossref_primary_10_1039_D1CP03989J
crossref_primary_10_1103_PhysRevB_104_024401
crossref_primary_10_1103_PhysRevB_97_035125
crossref_primary_10_1021_acs_nanolett_8b04160
crossref_primary_10_1016_j_taml_2020_01_015
crossref_primary_10_1021_acsaelm_0c00154
crossref_primary_10_1103_PhysRevB_106_245111
crossref_primary_10_1103_PhysRevB_108_125108
crossref_primary_10_1103_PhysRevLett_129_187602
crossref_primary_10_1103_PhysRevB_104_104427
crossref_primary_10_1038_s41467_019_09663_3
crossref_primary_10_1038_s41535_017_0051_6
crossref_primary_10_1021_acsaom_3c00299
crossref_primary_10_1063_5_0218996
crossref_primary_10_1021_acsami_3c02680
crossref_primary_10_3390_jlpea14030035
crossref_primary_10_1021_acs_jpclett_0c00567
crossref_primary_10_1088_2053_1583_abf251
crossref_primary_10_3390_condmat9040040
crossref_primary_10_1038_s41467_018_04953_8
crossref_primary_10_1021_acsaelm_2c00563
crossref_primary_10_1103_PhysRevB_103_L180407
crossref_primary_10_1073_pnas_2108924118
crossref_primary_10_1021_jacs_7b04911
crossref_primary_10_1002_adom_201901381
crossref_primary_10_1088_1674_1056_acd68a
crossref_primary_10_3390_nano14211729
crossref_primary_10_1103_PhysRevB_96_214423
crossref_primary_10_1021_acs_inorgchem_9b01785
crossref_primary_10_1038_s41567_024_02465_5
crossref_primary_10_1103_PhysRevB_98_125416
crossref_primary_10_1039_D1NR06383A
crossref_primary_10_1038_s41586_018_0631_z
crossref_primary_10_1088_1361_6463_ad9ebf
crossref_primary_10_1364_OL_457627
crossref_primary_10_1038_s41928_023_00978_0
crossref_primary_10_1103_PhysRevB_106_054408
crossref_primary_10_1103_PhysRevB_106_184408
crossref_primary_10_7566_JPSJ_93_072001
crossref_primary_10_1021_acs_nanolett_3c05052
crossref_primary_10_1016_j_physb_2017_10_126
crossref_primary_10_1038_s41535_020_00259_5
crossref_primary_10_1021_acs_nanolett_8b03321
crossref_primary_10_1126_sciadv_aaw8904
crossref_primary_10_1103_PhysRevResearch_2_022025
crossref_primary_10_1103_PhysRevMaterials_8_L051401
crossref_primary_10_1103_PhysRevResearch_3_033276
crossref_primary_10_1021_acsaelm_0c00528
crossref_primary_10_1103_PhysRevB_99_104428
crossref_primary_10_1021_acs_jpcc_7b09634
crossref_primary_10_1103_PhysRevLett_133_236903
crossref_primary_10_1016_j_jmmm_2019_165626
crossref_primary_10_1038_s42254_021_00403_5
crossref_primary_10_1038_s41563_018_0040_6
crossref_primary_10_1103_PhysRevB_110_224418
crossref_primary_10_1038_s41467_022_35248_8
crossref_primary_10_1088_2053_1583_ab6781
crossref_primary_10_1002_adfm_202409327
crossref_primary_10_1103_PhysRevB_106_144402
crossref_primary_10_1088_2053_1583_ac4af8
crossref_primary_10_1080_19475411_2020_1790055
crossref_primary_10_3390_sym16070926
crossref_primary_10_1021_acsami_3c11811
crossref_primary_10_1038_s41699_020_00188_8
crossref_primary_10_1103_PhysRevApplied_12_024031
crossref_primary_10_1038_s41524_025_01545_1
crossref_primary_10_1038_s41586_021_03679_w
crossref_primary_10_1088_0256_307X_40_7_077301
crossref_primary_10_1103_PhysRevB_109_014433
crossref_primary_10_1103_PhysRevApplied_16_014043
crossref_primary_10_1103_PhysRevLett_131_056401
crossref_primary_10_1016_j_jmmm_2023_170420
crossref_primary_10_1088_0256_307X_42_2_027502
crossref_primary_10_1002_adma_202209513
crossref_primary_10_1103_PhysRevB_105_014437
crossref_primary_10_1126_science_aav6926
crossref_primary_10_1103_PhysRevB_107_195128
crossref_primary_10_1039_D0NR06813F
crossref_primary_10_1103_PhysRevB_107_064412
crossref_primary_10_1063_5_0014865
crossref_primary_10_1364_OE_521000
crossref_primary_10_1103_PhysRevB_101_085415
crossref_primary_10_1021_acsami_1c21848
crossref_primary_10_1038_s41578_022_00430_3
crossref_primary_10_1103_PhysRevB_110_115152
crossref_primary_10_1016_j_physb_2022_414073
crossref_primary_10_1021_acs_jpclett_0c03476
crossref_primary_10_1002_nano_202000032
crossref_primary_10_1038_s41565_019_0438_6
crossref_primary_10_1103_PhysRevB_98_115424
crossref_primary_10_1103_PhysRevLett_122_227402
crossref_primary_10_1103_PhysRevB_104_064446
crossref_primary_10_1126_sciadv_ado1761
crossref_primary_10_1063_1_5036924
crossref_primary_10_1038_s41565_018_0121_3
ContentType Journal Article
DBID NPM
DOI 10.1103/PhysRevLett.117.267203
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 28059540
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
P2P
ROL
S7W
SJN
TN5
UBE
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c437t-ceda89ba74fca4b894f7aa75ec2933ff82f7ade75cc8b25caf8c097ae5ce17bd2
IngestDate Thu Apr 03 06:56:44 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-ceda89ba74fca4b894f7aa75ec2933ff82f7ade75cc8b25caf8c097ae5ce17bd2
OpenAccessLink https://www.osti.gov/servlets/purl/1337818
PMID 28059540
ParticipantIDs pubmed_primary_28059540
PublicationCentury 2000
PublicationDate 2016-12-23
PublicationDateYYYYMMDD 2016-12-23
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-23
  day: 23
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2016
SSID ssj0001268
Score 2.5766857
Snippet Using symmetry arguments and a tight-binding model, we show that for layered collinear antiferromagnets, magneto-optic effects can be generated and manipulated...
SourceID pubmed
SourceType Index Database
StartPage 267203
Title Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets
URI https://www.ncbi.nlm.nih.gov/pubmed/28059540
Volume 117
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bT9swFLbGJiRept1gYxf5gTfkkptr53Fim9A2YOMi9Q0dOycjApKqjZDYr9-xnbRQumnbS9TaipX6-2odn_j7DmNbtNsqcBgZgQipyGQeC2MwEQhJCXmqIfY-3fsHw73T7PNIjuZnVb26pDUD-3OpruR_UKU2wtWpZP8B2dmg1ECfCV-6EsJ0_SuMXepL7IbD5pdeA7UPP2psG9GMnRHrF5xMtjt_4qre_go3rjKnTxZQcAkTZx3gjrZMmit_3_R2qPqtR7BTt1x64c8sBD-urqEIarCD6uJ8flLj8AII_iakm9tmel71PaMKfPOH6nauIfYVeoIceIBhfYxULlQcdJ-zBTSoLzumJHfWw6F7zbt8qY6cZYT7LUd47bRL7v3x4P4NNOXjKw9goikWlMHd6c-9CxbafdcKW6HNhKuO6lI6a30ibqg76Tg90s7yB3Ke0d0gC_sPH4ecPGGPuw0Efx_Y8JQ9wPoZWw1gTZ-z7_c4we9wgjtO8MAJXtW84wSfcYIvcuIFO_308WR3T3RlM4TNUtUKiwXo3IDKSguZ0XlWKgAl0VJol5alTuh7gUpaq00iLZTaRrkClBZjZYpknT2smxpfMk6xZBxpGk8VeRaVUqfKoHQlFIoiwTh_xTbCXJyNgzfKWT9Lm7_tec3W5tR6wx6V9GfEtxTZteadR-YXLSpROQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gate-Controllable+Magneto-optic+Kerr+Effect+in+Layered+Collinear+Antiferromagnets&rft.jtitle=Physical+review+letters&rft.au=Sivadas%2C+Nikhil&rft.au=Okamoto%2C+Satoshi&rft.au=Xiao%2C+Di&rft.date=2016-12-23&rft.eissn=1079-7114&rft.volume=117&rft.issue=26&rft.spage=267203&rft_id=info:doi/10.1103%2FPhysRevLett.117.267203&rft_id=info%3Apmid%2F28059540&rft_id=info%3Apmid%2F28059540&rft.externalDocID=28059540