Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae
[Display omitted] •The present Myrteae phylogeny reports key differences among group relationships in comparison to previous published trees.•Future nomenclatural changes are necessary in at least eight genera that proved to be either poly or paraphyletic.•Three increases in diversification rates co...
Saved in:
Published in | Molecular phylogenetics and evolution Vol. 109; pp. 113 - 137 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
01.04.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The present Myrteae phylogeny reports key differences among group relationships in comparison to previous published trees.•Future nomenclatural changes are necessary in at least eight genera that proved to be either poly or paraphyletic.•Three increases in diversification rates contribute to the high diversity of Myrteae in the Neotropics.•Ancestral range estimation emphasizes the significance of higher latitude in the early diversification of the tribe.•Strong evidence for long distance dispersal event in Myrteae is found only in Rhodamnia and Eugenia group.•The only European Myrtaceae, Myrtus communis, is part of a mainly Neotropical clade.
Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution. |
---|---|
AbstractList | Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution. [Display omitted] •The present Myrteae phylogeny reports key differences among group relationships in comparison to previous published trees.•Future nomenclatural changes are necessary in at least eight genera that proved to be either poly or paraphyletic.•Three increases in diversification rates contribute to the high diversity of Myrteae in the Neotropics.•Ancestral range estimation emphasizes the significance of higher latitude in the early diversification of the tribe.•Strong evidence for long distance dispersal event in Myrteae is found only in Rhodamnia and Eugenia group.•The only European Myrtaceae, Myrtus communis, is part of a mainly Neotropical clade. Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution. Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution.Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic relationships in Myrteae are complex, hindering conservation initiatives and jeopardizing evolutionary modelling. A well-supported and robust phylogenetic hypothesis was here targeted towards a comprehensive understanding of the relationships within the tribe. The resultant topology was used as a base for key evolutionary analyses such as age estimation, historical biogeography and diversification rate patterns. One nuclear (ITS) and seven chloroplast (psbA-trnH, matK, ndhF, trnl-trnF, trnQ-rps16, rpl16 and rpl32-trnL) DNA regions for 115 taxa representing 46 out of the 51 genera in the tribe were accessed and analysed using maximum likelihood and Bayesian inference tools for phylogenetic reconstruction. Dates of diversification events were estimated and contrasted using two distinct fossil sets (macro and pollen) in BEAST. The subsequent dated phylogenies were compared and analysed for biogeographical patterns using BioGeoBEARS and diversification rates using BAMM. Myrteae phylogeny presents strong statistical support for three major clades within the tribe: Australasian group, Myrtus group and Main Neotropical Lineage. Dating results from calibration using macrofossil are an average of 20 million years older and show an early Paleocene origin of Myrteae, against a mid-Eocene one from the pollen fossil calibration. Biogeographic analysis shows the origin of Myrteae in Zealandia in both calibration approaches, followed by a widespread distribution throughout the still-linked Gondwana continents and diversification of Neotropical endemic lineages by later vicariance. Best configuration shift indicates three points of acceleration in diversification rates, all of them occurring in the Main Neotropical Lineage. Based on the reconstructed topology, several new taxonomic placements were recovered, including: the relative position of Myrtus communis, the placement of the Blepharocalyx group, the absence of generic endemism in the Caribbean, and the paraphyletism of the former Pimenta group. Distinct calibration approaches affect biogeography interpretation, increasing the number of necessary long distance dispersal events in the topology with older nodes. It is hypothesised that biological intrinsic factors such as modifications of embryo type and polyploidy might have played a role in accelerating shifts of diversification rates in Neotropical lineages. Future perspectives include formal subtribal classification, standardization of fossil calibration approaches and better links between diversification shifts and trait evolution. |
Author | Soewarto, Julia De-Carvalho, Plauto S. Amorim, Bruno S. Wingler, Astrid Faria, Jair E.Q. Santos, Matheus F. Campbell, Keron Costa, Itayguara R. Proença, Carol E.B. Giaretta, Augusto Aguilar, Reinaldo Ahmad, Berhaman Aguilar, Daniel S. Lucas, Eve J. Mazine, Fiorella F. Vasconcelos, Thais N.C. Prenner, Gerhard Peguero, Brigido Kooij, Pepijn W. Lima, Duane F. |
Author_xml | – sequence: 1 givenname: Thais N.C. surname: Vasconcelos fullname: Vasconcelos, Thais N.C. email: t.vasconcelos@kew.org organization: Comparative Plant and Fungal Biology, Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS Richmond, Surrey, United Kingdom – sequence: 2 givenname: Carol E.B. surname: Proença fullname: Proença, Carol E.B. organization: Departamento de Botânica, Universidade de Brasília, 70919970 Brasília, DF, Brazil – sequence: 3 givenname: Berhaman surname: Ahmad fullname: Ahmad, Berhaman organization: Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia – sequence: 4 givenname: Daniel S. surname: Aguilar fullname: Aguilar, Daniel S. organization: Herbaria, Harvard University, 021382020 Cambridge, MA, United States – sequence: 5 givenname: Reinaldo surname: Aguilar fullname: Aguilar, Reinaldo organization: Centro de Diversidad de Plantas Regionales, Los Charcos de Osa, 768203, Península de Osa, Puntarenas, Costa Rica – sequence: 6 givenname: Bruno S. surname: Amorim fullname: Amorim, Bruno S. organization: Departamento de Botânica, Universidade Federal de Pernambuco, 50670901 Recife, PE, Brazil – sequence: 7 givenname: Keron surname: Campbell fullname: Campbell, Keron organization: Natural History Museum of Jamaica, Institute of Jamaica, 10-16 East Street, Kingston, Jamaica – sequence: 8 givenname: Itayguara R. surname: Costa fullname: Costa, Itayguara R. organization: Departamento de Biologia, Universidade Federal do Ceará, 60455760 Fortaleza, CE, Brazil – sequence: 9 givenname: Plauto S. surname: De-Carvalho fullname: De-Carvalho, Plauto S. organization: Universidade Estadual de Goiás, 76190000 Palmeiras de Goiás, GO, Brazil – sequence: 10 givenname: Jair E.Q. surname: Faria fullname: Faria, Jair E.Q. organization: Departamento de Engenharia Florestal, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39100000 Diamantina, MG, Brazil – sequence: 11 givenname: Augusto surname: Giaretta fullname: Giaretta, Augusto organization: Departamento de Botânica, Universidade de São Paulo, 05508900 São Paulo, SP, Brazil – sequence: 12 givenname: Pepijn W. surname: Kooij fullname: Kooij, Pepijn W. organization: Comparative Plant and Fungal Biology, Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS Richmond, Surrey, United Kingdom – sequence: 13 givenname: Duane F. surname: Lima fullname: Lima, Duane F. organization: Departamento de Biologia Vegetal, Universidade Estadual de Campinas, 13083979 Campinas, SP, Brazil – sequence: 14 givenname: Fiorella F. surname: Mazine fullname: Mazine, Fiorella F. organization: Departamento de Ciências Ambientais, Universidade Federal de São Carlos, 18052780 Sorocaba, SP, Brazil – sequence: 15 givenname: Brigido surname: Peguero fullname: Peguero, Brigido organization: Departamento de Botánica, Jardín Botánico Nacional Dr. Rafael Ma. Moscoso, 10507 Santo Domingo, Dominican Republic – sequence: 16 givenname: Gerhard surname: Prenner fullname: Prenner, Gerhard organization: Comparative Plant and Fungal Biology, Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS Richmond, Surrey, United Kingdom – sequence: 17 givenname: Matheus F. surname: Santos fullname: Santos, Matheus F. organization: Departamento de Biologia, Universidade Federal de São Carlos, 18052780 Sorocaba, SP, Brazil – sequence: 18 givenname: Julia surname: Soewarto fullname: Soewarto, Julia organization: Institut Agronomique néo-Calédonien, 98851 Nouméa, New Caledonia – sequence: 19 givenname: Astrid surname: Wingler fullname: Wingler, Astrid organization: School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, T12 YN60 Cork, Ireland – sequence: 20 givenname: Eve J. surname: Lucas fullname: Lucas, Eve J. organization: Comparative Plant and Fungal Biology Department, Herbarium, Royal Botanic Gardens, Kew, TW9 3AB Richmond, Surrey, United Kingdom |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28069533$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1uEzEUhS1URH_gCZCQlyw64Xocz2SQWFQVlEpFbGBt-edO4mjGHmwn0rwEz4yTtJsuysqW9Z3re865JGc-eCTkPYMFA9Z82i7mccL9ogbWLoAtAOpX5IJBJ6pOMH52uAtRtR3wc3KZ0haAMdGJN-S8XkHTCc4vyN8fc8yokE6beQhr9PM1NWpwOqrsgr-m2pXXsI6qAFR5S63bY0yud-ZI0EnljNGnz_Tem4gqoaU7bwuTC-78mjpP8wbpGFKmaULjMNHozIbm6DTS0NPDEsqUNd6S170aEr57PK_I729ff91-rx5-3t3f3jxUZsnbXOlVr0C1xbFa1rC0GnQPvLGdbhpb98KYni2V0qIY1V3b9Uqb2jDRaKU51MivyMfT3CmGPztMWY4uGRwG5THskqwBoPxUt_BflK1Ey1tWc1bQD4_oTo9o5RTdqOIsn-IuQHcCTAwpReylcfkYY47KDZKBPFQrt_JYrTxUK4HJYrRo-TPt0_iXVV9OKixp7h1GmUr-3qB1EU2WNrgX9f8AUbzBtQ |
CitedBy_id | crossref_primary_10_1016_j_ecoinf_2024_102490 crossref_primary_10_1139_cjb_2023_0038 crossref_primary_10_3389_fpls_2022_981884 crossref_primary_10_5902_2179460X85018 crossref_primary_10_1098_rsos_160546 crossref_primary_10_1007_s12225_019_9847_9 crossref_primary_10_1111_brv_13092 crossref_primary_10_1590_1806_908820210000001 crossref_primary_10_1111_cla_12538 crossref_primary_10_3390_plants12081582 crossref_primary_10_3390_plants13162244 crossref_primary_10_3390_medicines5030089 crossref_primary_10_1126_sciadv_abh3233 crossref_primary_10_1590_1678_4685_gmb_2021_0193 crossref_primary_10_1002_tax_12263 crossref_primary_10_1590_1678_4685_gmb_2021_0191 crossref_primary_10_1111_jbi_14791 crossref_primary_10_1016_j_ympev_2019_106553 crossref_primary_10_1016_j_gene_2023_147488 crossref_primary_10_1007_s10265_022_01396_7 crossref_primary_10_1111_aec_13053 crossref_primary_10_1126_sciadv_aaz5373 crossref_primary_10_1080_0028825X_2021_1965629 crossref_primary_10_1002_ajb2_16330 crossref_primary_10_1007_s11258_022_01258_1 crossref_primary_10_1086_716661 crossref_primary_10_3389_fpls_2021_714763 crossref_primary_10_1071_BT23047 crossref_primary_10_1002_ppp3_10295 crossref_primary_10_1016_j_ympev_2020_107043 crossref_primary_10_1093_aob_mcac005 crossref_primary_10_14814_phy2_15770 crossref_primary_10_12705_674_5 crossref_primary_10_1007_s12228_019_09595_8 crossref_primary_10_1002_ppp3_10606 crossref_primary_10_1007_s11101_020_09697_2 crossref_primary_10_1016_j_ympev_2019_106570 crossref_primary_10_1007_s10681_018_2195_2 crossref_primary_10_1590_2175_7860202374017 crossref_primary_10_1016_j_flora_2024_152598 crossref_primary_10_1080_23802359_2022_2080022 crossref_primary_10_1086_715639 crossref_primary_10_1111_efp_12402 crossref_primary_10_1016_j_flora_2021_151969 crossref_primary_10_1093_hr_uhad214 crossref_primary_10_1093_aob_mcx142 crossref_primary_10_3390_plants9111569 crossref_primary_10_1007_s00606_019_01615_0 crossref_primary_10_1111_brv_12485 crossref_primary_10_3389_fpls_2021_759460 crossref_primary_10_1016_j_flora_2017_06_010 crossref_primary_10_1007_s40415_021_00769_x crossref_primary_10_1016_j_scienta_2017_12_059 crossref_primary_10_1016_j_ympev_2017_01_012 crossref_primary_10_1098_rspb_2019_2933 crossref_primary_10_1007_s42965_022_00271_9 crossref_primary_10_1002_tpg2_20501 crossref_primary_10_1093_botlinnean_boac065 crossref_primary_10_1093_botlinnean_boab095 crossref_primary_10_1016_j_flora_2021_151863 crossref_primary_10_1111_cla_12445 crossref_primary_10_1002_cbdv_202400388 crossref_primary_10_1080_00837792_2018_1534045 crossref_primary_10_1016_j_ecoinf_2022_101625 crossref_primary_10_1590_0102_33062021abb0255 crossref_primary_10_1590_0102_33062021abb0253 crossref_primary_10_1016_j_flora_2018_10_004 crossref_primary_10_1016_j_ympev_2023_107855 crossref_primary_10_1055_a_1323_3622 crossref_primary_10_1590_2175_7860202071006 crossref_primary_10_1071_SB18018 crossref_primary_10_1093_botlinnean_boab102 crossref_primary_10_1600_036364422X16573019348319 crossref_primary_10_1007_s00468_019_01845_2 crossref_primary_10_1590_1677_941x_abb_2022_0194 crossref_primary_10_1002_ajb2_1699 crossref_primary_10_7717_peerj_10487 crossref_primary_10_1111_aec_12657 crossref_primary_10_1016_j_ympev_2019_05_014 crossref_primary_10_3390_agronomy12081802 crossref_primary_10_1002_ajb2_1060 crossref_primary_10_1111_ppl_14220 crossref_primary_10_7717_peerj_5426 crossref_primary_10_1016_j_jep_2023_116859 crossref_primary_10_1007_s13313_020_00694_9 crossref_primary_10_1016_j_sajb_2023_07_015 crossref_primary_10_1600_036364422X16512564801669 crossref_primary_10_1016_j_flora_2021_151885 crossref_primary_10_1007_s11295_022_01536_z crossref_primary_10_1590_2175_7860202475076 crossref_primary_10_1111_nph_15453 crossref_primary_10_1086_700581 crossref_primary_10_1590_1678_4685_gmb_2017_0096 crossref_primary_10_1093_aob_mcad091 crossref_primary_10_1111_jbi_14600 crossref_primary_10_1007_s11756_023_01557_6 crossref_primary_10_1016_j_ympev_2018_03_010 crossref_primary_10_15406_mojes_2020_05_00193 crossref_primary_10_1071_SB17056 |
Cites_doi | 10.1073/pnas.1518659113 10.4067/S0716-02082002000100007 10.1086/660913 10.1163/22941932-90000889 10.1073/pnas.0811575106 10.1007/s00606-008-0088-x 10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2 10.2307/2388002 10.12705/654.5 10.2307/4118781 10.1093/bioinformatics/btg180 10.1007/s00606-004-0164-9 10.1111/jbi.12702 10.1016/j.revpalbo.2012.03.003 10.1016/S0034-6667(03)00120-9 10.1111/boj.12385 10.1038/hdy.2012.79 10.1016/S0031-0182(01)00452-7 10.1109/GCE.2010.5676129 10.1139/b93-001 10.1111/j.1558-5646.1995.tb02309.x 10.2307/4135449 10.1080/10635150701883881 10.2307/2418954 10.1007/s12225-014-9497-x 10.1093/nar/gkh340 10.1093/molbev/mss075 10.1016/j.ympev.2015.10.001 10.1093/aob/mcq088 10.1016/j.tree.2010.11.005 10.1600/036364411X569570 10.1016/j.ympev.2015.07.007 10.1093/aob/mcv005 10.1016/j.tree.2004.07.015 10.1007/s40415-014-0121-y 10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2 10.1666/0094-8373(2005)031[0077:KICASM]2.0.CO;2 10.1144/GSL.SP.2006.258.01.04 10.1126/science.1059412 10.1098/rspb.2000.1368 10.2307/1217393 10.2307/1224719 10.1038/nmeth.2109 10.2307/4109586 10.1007/978-3-642-14397-7_14 10.2307/25065906 10.1111/j.1095-8339.1982.tb00359.x 10.1016/j.ympev.2011.12.003 10.2307/2399084 10.1111/boj.12328 10.1093/bioinformatics/bts199 10.1086/421066 10.1111/2041-210X.12199 10.1093/sysbio/syr116 10.1111/j.1744-7429.2000.tb00619.x 10.21425/F55419694 10.2307/2807742 10.1016/j.ympev.2011.11.021 10.1071/BT00023 10.1023/A:1009730810655 10.3133/ofr20071047KP03 10.1600/036364415X689249 10.1093/sysbio/syp041 10.1007/s00606-004-0162-y 10.1086/331589 10.7751/telopea10389 10.1126/science.aaa2815 10.1111/j.1523-1739.2008.01075.x 10.2307/2399990 10.1130/G22383.1 10.1111/j.1472-4642.2011.00782.x 10.1007/s00606-004-0160-0 10.1146/annurev.es.13.110182.001221 10.1016/S0034-6667(02)00244-0 10.1600/036364408784571491 10.12705/624.7 10.1093/bioinformatics/btu033 10.2307/2806583 10.1590/S0100-84042006000400002 10.1111/j.1365-2699.2006.01643.x 10.2307/3391603 10.1017/S0960428600003401 10.1007/s10531-015-0992-7 10.1111/j.1365-2699.2011.02646.x |
ContentType | Journal Article |
Copyright | 2017 Elsevier Inc. Copyright © 2017 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright © 2017 Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ympev.2017.01.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1095-9513 |
EndPage | 137 |
ExternalDocumentID | 28069533 10_1016_j_ympev_2017_01_002 S1055790317300052 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Caribbean |
GeographicLocations_xml | – name: Caribbean |
GroupedDBID | --- --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 53G 5VS 6I. 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG CBWCG COF CS3 DM4 DOVZS DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HLW HVGLF HZ~ IHE J1W K-O KOM LG5 LW8 LX2 M41 MO0 MVM N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SBG SCC SDF SDG SDP SES SEW SPCBC SSA SSU SSZ T5K TN5 UNMZH WUQ XJT XPP XSW YK3 ZCG ZKB ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c437t-b8fa0a7002a4204db0bf036d9b66d2f5ccf14aab5280b979fabc2c156bab302e3 |
IEDL.DBID | .~1 |
ISSN | 1055-7903 1095-9513 |
IngestDate | Fri Jul 11 00:41:02 EDT 2025 Fri Jul 11 00:29:59 EDT 2025 Wed Feb 19 02:41:59 EST 2025 Thu Apr 24 22:59:55 EDT 2025 Tue Jul 01 00:44:25 EDT 2025 Fri Feb 23 02:26:05 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Eugenia Evolution Systematics Psidium Myrcia Myrtus |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 Copyright © 2017 Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-b8fa0a7002a4204db0bf036d9b66d2f5ccf14aab5280b979fabc2c156bab302e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1055790317300052 |
PMID | 28069533 |
PQID | 1857371231 |
PQPubID | 23479 |
PageCount | 25 |
ParticipantIDs | proquest_miscellaneous_2000437270 proquest_miscellaneous_1857371231 pubmed_primary_28069533 crossref_citationtrail_10_1016_j_ympev_2017_01_002 crossref_primary_10_1016_j_ympev_2017_01_002 elsevier_sciencedirect_doi_10_1016_j_ympev_2017_01_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2017 2017-04-00 20170401 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 04 year: 2017 text: April 2017 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Molecular phylogenetics and evolution |
PublicationTitleAlternate | Mol Phylogenet Evol |
PublicationYear | 2017 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Angiosperm Phylogeny Group (b0005) 2016; 181 Richardson, Rejmanek (b0370) 2011; 17 Trewick, Paterson, Campbell (b0465) 2007; 34 Doyle, Doyle (b0070) 1987; 19 Landrum, Kawasaki (b0215) 1997; 49 Kennett, Houtz, Andrews, Edwards, Gostin, Hajós, Hampton, Jenkins, Margolis, Ovenshine, Perch-Nielsen (b0170) 1975; 29 Thornhill, Popple, Carter, Ho, Crisp (b0450) 2012; 63 Edgar (b0085) 2004; 32 Berger, Kriebel, Spalink, Sytsma (b0010) 2016; 95 Drummond, Suchard, Xie, Rambaut (b0075) 2012; 29 Wilson, O'Brien, Heslewood, Quinn (b0490) 2005; 251 Crisp, Trewick, Cook (b0050) 2011; 26 Thornhill, Macphail (b0445) 2012; 176–177 Ivany, Van Simaeys, Domack, Samson (b0175) 2006; 34 Grifo, F.T., 1992. A revision of Myrcianthes Berg (Myrtaceae). Doctoral dissertation, Cornell Univer- sity, Ithaca, New York. Gentry (b0120) 1982; 69 Murillo-A, Ruiz-P, Landrum, Stuessy, Barfuss (b0285) 2012; 62 . Wilson, P.G., 2011. Myrtaceae. In ‘The families and genera of vascular plants. In: Kubitzki, K. (Ed.), Vol. X. Flowering plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Springer-Verlag. Mazine, Souza, Sobral, Forest, Lucas (b9015) 2014; 69 Zachos, Pagani, Sloan, Thomas, Billups (b0525) 2001; 27 Lucas, Bünger (b0235) 2015; 24 (accessed in July, 2016). Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). San Diego Supercomput. Center, New Orleans, Louisiana. Friis, Chaloner, Crane (b0110) 1987 Snow (b0410) 2008; 33 Wilson (b0495) 2009; 60 Francis, J.E., Ashworth, A., Cantrill, D.J., Crame, J.A., Howe, J., Stephens, R., Tosolini, A.M., Thorn, V., 2008. 100 million years of Antarctic climate evolution; evidence from fossil plants. In: Cooper, A.K., Barrett, P., Stagg, H., Storey, B., Stump, E., Wise, W. (Eds.), Antarctica: a keystone in a changing world. The 10th ISAES editorial team. Proceedings of the 10th international symposium on Antarctic earth sciences, Washington, DC. Rambaut, A., 2014. Figtree, a graphical viewer of phylogenetic trees. Thornhill, Hope, Craven, Crisp (b0455) 2012 Kochummen, LaFrankie, Manokaran (b0185) 1990; 3 Pillon, Lucas, Johansen, Sakishima, Hall, Geib, Stacy (b0330) 2015; 40 Ragonese (b9030) 1980; 17 Proença (b0335) 1990; 47 Thornhill, Ho, Külheim, Crisp (b0460) 2015; 93 Berry (b0015) 1915; 59 Francis, Poole (b9010) 2002; 182 Maddison, W.P., Maddison D.R., 2015. Mesquite: a modular system for evolutionary analysis. (Version 3.02). Soltis, Kuzoff (b0420) 1995; 49 Smith-Ramirez, Armesto, Figueroa (b0400) 1998; 136 Faria, J.E.Q., 2014. Revisāo taxonomica e Filogenia de Eugenia sect. Pilothecium (Kiaersk.) D. Legrand (Myrtaceae). PhD Thesis, Universidade de Brasilia. Landrum, L.R. 1986. Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Flora Neotropica Monographs 45. New York Botanical Garden, New York. Lucas, Belsham, Nic-Lughadha, Orlovich, Sakuragui, Chase, Wilson (b0220) 2005; 251 Costa, Dornelas, Forni-Martins (b0040) 2008; 276 Flora do Brasil, 2020 (ongoing) Jardim Botânico do Rio de Janeiro. McLoughlin (b0255) 2001; 49 Condamine, Leslie, Antonelli (b0035) 2016 Matzke (b0250) 2013; 5 Murillo-A, Stuessy, Ruiz (b0290) 2016; 43 Pigg, Stockey, Maxwell (b0325) 1993; 71 Johnson, Briggs (b0180) 1981 Huber, Hodell, Hamilton (b0160) 1995; 107 WCSP. 2016. World Checklist of Selected Plant Families Cracraft (b0045) 2001; 268 Gibbs (b0130) 2004 Santos, Sano, Forest, Lucas (b0380) 2016; 65 Bünger (b0025) 2015 Swenson, Hill, McLoughlin (b0435) 2001; 50 Donoghue (b0080) 2005; 31 Montes, Cardona, Jaramillo, Pardo, Silva, Valencia, Ayala, Perez-Angel, Rodriguez-Parra, Ramirez, Niño (b0275) 2015; 348 Staggemeier, Diniz-Filho, Forest, Lucas (b0425) 2015; 115 Stamatakis (b0430) 2014; 30 Clayton, Soltis, Soltis (b0030) 2009; 58 Frodin (b0115) 2004; 53 Landrum, Stevenson (b0205) 1986; 11 McVaugh (b0260) 1968; 17 Wilson, Heslewood (b0505) 2016; 19 Dengo (b0065) 1975; vol. 3 Hayes, P.A., Francis, J. E., Cantrill, D. J., Crame, J. A., 2006. Palaeoclimatic analysis of late Cretaceous angiosperm leaf floras, James Ross Island, Antarctica. In: Francis, J.E., Pirrie, D. Crame J. A., James Ross (Eds.), Cretaceous–Tertiary high-latitude palaeoenvironments. Basin, Antarctica. Geological Society of London Special Publication 258. Oliveira-Filho, Fontes (b0305) 2000; 32 R Core Team (b0345) 2016 Nic Lughadha, Proença (b0300) 1996; 83 Rambaut, A., Suchard M.A., Xie D., Drummond A.J., 2013. Tracer v1.6. Available at Mori, Boom, Carvalino, Santo (b0280) 1983; 15 Eklund (b0090) 2003; 127 Snow, McFadden, Evans, Salywon, Wojciechowski, Wilson (b0415) 2011; 36 Howe, Smallwood (b0155) 1982; 13 Snow (b0405) 2000; 22 Migliore, Baumel, Juin, Medail (b0265) 2012; 39 Kearse, Moir, Wilson, Stones-Havas, Cheung, Sturrock, Buxton, Cooper, Markowitz, Duran, Thierer, Ashton, Meintjes, Drummond (b0165) 2012; 28 Giaretta, Menezes, Peixoto (b0125) 2015; 38 Lucas, Matsumoto, Harris, NicLughadha, Benardini, Chase (b0230) 2011; 172 Wood, Takebayashi, Barker, Mayrose, Greenspoon, Rieseberg (b0510) 2009; 106 Biffin, Lucas, Craven, da Costa, Harrington, Crisp (b0020) 2010; 106 Landrum (b0190) 1981; 33 Van Wyk, Robbertse, Kok (b0475) 1982; 84 Rabosky, Grundler, Anderson, Title, Shi, Brown, Larson (b0350) 2014; 5 De-Carvalho (b0060) 2013 Acesse. July 2016. Moore, Höhna, May, Rannala, Huelsenbeck (b9020) 2016; 113 Lucas, Harris, Mazine, Belsham, Nic Lughadha, Telford, Gasson, Chase (b0225) 2007; 56 Poole, Mennega, Cantrill (b9025) 2003; 124 Scott (b0395) 1978; 33 Darriba, Taboada, Doallo, Posada (b0055) 2012; 9 Landrum (b0200) 1992; 2 Gressler, Pizo, Morellato (b0135) 2006; 29 Ronquist, Huelsenbeck (b0340) 2003; 19 Forest (b9005) 2009 Van der Merwe, Van Wyk, Botha (b0480) 2005; 251 Landrum, Grifo (b0210) 1988; 45 Zachos, Breza, Wise (b0520) 1991; 20 Penny, Phillips (b0320) 2004; 19 Sytsma, Litt, Zjhra, Pires, Nepokroeff, Conti, Walker, Wilson (b0440) 2004; 165 Ree, Smith (b0365) 2008; 57 Madlung (b0245) 2013; 110 Vasconcelos, Prenner, Bünger, De-Carvalho, Wingler, Lucas (b0485) 2015; 179 Murray-Smith, Brummitt, Oliveira-Filho, Bachman, Moat, Lughadha, Lucas (b0295) 2009; 23 Troncoso, Suárez, De la Cruz, Palma-Heldt (b0470) 2002; 29 Baker (b9000) 1955; 9 Oskolski, Feng, Jin (b0310) 2013; 62 Sauquet, Ho, Gandolfo, Jordan, Wilf, Cantrill, Bayly, Bromham, Brown, Carpenter, Lee, Murphy, Sniderman, Udovicic (b0385) 2012; 61 Schmid, Baas (b0390) 1984; 5 Holst, B.K., Landrum, L., Grifo, F., 2003. Myrtaceae. In: Steyermark J.A. et al. (Eds,), Flora of the Venezuelan Guayana, vol. 7 – Myrtaceae. Missouri Botanical Garden Press, St. Louis, Missouri. Oskolski (10.1016/j.ympev.2017.01.002_b0310) 2013; 62 Huber (10.1016/j.ympev.2017.01.002_b0160) 1995; 107 Swenson (10.1016/j.ympev.2017.01.002_b0435) 2001; 50 Clayton (10.1016/j.ympev.2017.01.002_b0030) 2009; 58 Giaretta (10.1016/j.ympev.2017.01.002_b0125) 2015; 38 Stamatakis (10.1016/j.ympev.2017.01.002_b0430) 2014; 30 Berger (10.1016/j.ympev.2017.01.002_b0010) 2016; 95 Gibbs (10.1016/j.ympev.2017.01.002_b0130) 2004 Scott (10.1016/j.ympev.2017.01.002_b0395) 1978; 33 Mori (10.1016/j.ympev.2017.01.002_b0280) 1983; 15 Penny (10.1016/j.ympev.2017.01.002_b0320) 2004; 19 Migliore (10.1016/j.ympev.2017.01.002_b0265) 2012; 39 Pigg (10.1016/j.ympev.2017.01.002_b0325) 1993; 71 Crisp (10.1016/j.ympev.2017.01.002_b0050) 2011; 26 Ronquist (10.1016/j.ympev.2017.01.002_b0340) 2003; 19 Friis (10.1016/j.ympev.2017.01.002_b0110) 1987 Smith-Ramirez (10.1016/j.ympev.2017.01.002_b0400) 1998; 136 10.1016/j.ympev.2017.01.002_b0150 Kearse (10.1016/j.ympev.2017.01.002_b0165) 2012; 28 10.1016/j.ympev.2017.01.002_b0270 Ree (10.1016/j.ympev.2017.01.002_b0365) 2008; 57 Gressler (10.1016/j.ympev.2017.01.002_b0135) 2006; 29 Nic Lughadha (10.1016/j.ympev.2017.01.002_b0300) 1996; 83 Pillon (10.1016/j.ympev.2017.01.002_b0330) 2015; 40 Vasconcelos (10.1016/j.ympev.2017.01.002_b0485) 2015; 179 Cracraft (10.1016/j.ympev.2017.01.002_b0045) 2001; 268 Landrum (10.1016/j.ympev.2017.01.002_b0215) 1997; 49 Santos (10.1016/j.ympev.2017.01.002_b0380) 2016; 65 Bünger (10.1016/j.ympev.2017.01.002_b0025) 2015 Van der Merwe (10.1016/j.ympev.2017.01.002_b0480) 2005; 251 Thornhill (10.1016/j.ympev.2017.01.002_b0450) 2012; 63 Howe (10.1016/j.ympev.2017.01.002_b0155) 1982; 13 Landrum (10.1016/j.ympev.2017.01.002_b0200) 1992; 2 Montes (10.1016/j.ympev.2017.01.002_b0275) 2015; 348 10.1016/j.ympev.2017.01.002_b0145 De-Carvalho (10.1016/j.ympev.2017.01.002_b0060) 2013 10.1016/j.ympev.2017.01.002_b0140 Landrum (10.1016/j.ympev.2017.01.002_b0205) 1986; 11 Thornhill (10.1016/j.ympev.2017.01.002_b0455) 2012 Madlung (10.1016/j.ympev.2017.01.002_b0245) 2013; 110 Staggemeier (10.1016/j.ympev.2017.01.002_b0425) 2015; 115 Van Wyk (10.1016/j.ympev.2017.01.002_b0475) 1982; 84 Berry (10.1016/j.ympev.2017.01.002_b0015) 1915; 59 McVaugh (10.1016/j.ympev.2017.01.002_b0260) 1968; 17 Lucas (10.1016/j.ympev.2017.01.002_b0235) 2015; 24 Thornhill (10.1016/j.ympev.2017.01.002_b0460) 2015; 93 Schmid (10.1016/j.ympev.2017.01.002_b0390) 1984; 5 Costa (10.1016/j.ympev.2017.01.002_b0040) 2008; 276 R Core Team (10.1016/j.ympev.2017.01.002_b0345) 2016 Snow (10.1016/j.ympev.2017.01.002_b0410) 2008; 33 Condamine (10.1016/j.ympev.2017.01.002_b0035) 2016 Donoghue (10.1016/j.ympev.2017.01.002_b0080) 2005; 31 Lucas (10.1016/j.ympev.2017.01.002_b0225) 2007; 56 Darriba (10.1016/j.ympev.2017.01.002_b0055) 2012; 9 Wilson (10.1016/j.ympev.2017.01.002_b0490) 2005; 251 Troncoso (10.1016/j.ympev.2017.01.002_b0470) 2002; 29 Eklund (10.1016/j.ympev.2017.01.002_b0090) 2003; 127 10.1016/j.ympev.2017.01.002_b0095 Kennett (10.1016/j.ympev.2017.01.002_b0170) 1975; 29 Biffin (10.1016/j.ympev.2017.01.002_b0020) 2010; 106 Landrum (10.1016/j.ympev.2017.01.002_b0210) 1988; 45 Ivany (10.1016/j.ympev.2017.01.002_b0175) 2006; 34 10.1016/j.ympev.2017.01.002_b0240 10.1016/j.ympev.2017.01.002_b0360 Gentry (10.1016/j.ympev.2017.01.002_b0120) 1982; 69 Baker (10.1016/j.ympev.2017.01.002_b9000) 1955; 9 Murillo-A (10.1016/j.ympev.2017.01.002_b0290) 2016; 43 Murray-Smith (10.1016/j.ympev.2017.01.002_b0295) 2009; 23 Lucas (10.1016/j.ympev.2017.01.002_b0220) 2005; 251 Francis (10.1016/j.ympev.2017.01.002_b9010) 2002; 182 Richardson (10.1016/j.ympev.2017.01.002_b0370) 2011; 17 10.1016/j.ympev.2017.01.002_b0515 McLoughlin (10.1016/j.ympev.2017.01.002_b0255) 2001; 49 10.1016/j.ympev.2017.01.002_b0355 10.1016/j.ympev.2017.01.002_b0195 Wood (10.1016/j.ympev.2017.01.002_b0510) 2009; 106 Angiosperm Phylogeny Group (10.1016/j.ympev.2017.01.002_b0005) 2016; 181 Proença (10.1016/j.ympev.2017.01.002_b0335) 1990; 47 Wilson (10.1016/j.ympev.2017.01.002_b0495) 2009; 60 Edgar (10.1016/j.ympev.2017.01.002_b0085) 2004; 32 Sauquet (10.1016/j.ympev.2017.01.002_b0385) 2012; 61 Poole (10.1016/j.ympev.2017.01.002_b9025) 2003; 124 Sytsma (10.1016/j.ympev.2017.01.002_b0440) 2004; 165 Mazine (10.1016/j.ympev.2017.01.002_b9015) 2014; 69 Dengo (10.1016/j.ympev.2017.01.002_b0065) 1975; vol. 3 Oliveira-Filho (10.1016/j.ympev.2017.01.002_b0305) 2000; 32 Wilson (10.1016/j.ympev.2017.01.002_b0505) 2016; 19 10.1016/j.ympev.2017.01.002_b0105 Lucas (10.1016/j.ympev.2017.01.002_b0230) 2011; 172 10.1016/j.ympev.2017.01.002_b0500 Zachos (10.1016/j.ympev.2017.01.002_b0525) 2001; 27 10.1016/j.ympev.2017.01.002_b0100 Ragonese (10.1016/j.ympev.2017.01.002_b9030) 1980; 17 Frodin (10.1016/j.ympev.2017.01.002_b0115) 2004; 53 Zachos (10.1016/j.ympev.2017.01.002_b0520) 1991; 20 Matzke (10.1016/j.ympev.2017.01.002_b0250) 2013; 5 Rabosky (10.1016/j.ympev.2017.01.002_b0350) 2014; 5 Doyle (10.1016/j.ympev.2017.01.002_b0070) 1987; 19 Thornhill (10.1016/j.ympev.2017.01.002_b0445) 2012; 176–177 Landrum (10.1016/j.ympev.2017.01.002_b0190) 1981; 33 Snow (10.1016/j.ympev.2017.01.002_b0405) 2000; 22 Kochummen (10.1016/j.ympev.2017.01.002_b0185) 1990; 3 Soltis (10.1016/j.ympev.2017.01.002_b0420) 1995; 49 Forest (10.1016/j.ympev.2017.01.002_b9005) 2009 Murillo-A (10.1016/j.ympev.2017.01.002_b0285) 2012; 62 Trewick (10.1016/j.ympev.2017.01.002_b0465) 2007; 34 Snow (10.1016/j.ympev.2017.01.002_b0415) 2011; 36 Drummond (10.1016/j.ympev.2017.01.002_b0075) 2012; 29 Johnson (10.1016/j.ympev.2017.01.002_b0180) 1981 Moore (10.1016/j.ympev.2017.01.002_b9020) 2016; 113 |
References_xml | – volume: 176–177 start-page: 1 year: 2012 end-page: 23 ident: b0445 article-title: Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: a review of fossil Myrtaceidites species publication-title: Rev. Palaeobot. Palyno. – volume: 45 start-page: 277 year: 1988 end-page: 317 ident: b0210 article-title: The Myrtle family (Myrtaceae) in Chile publication-title: Proc. Calif. Acad. Sci. – reference: Rambaut, A., Suchard M.A., Xie D., Drummond A.J., 2013. Tracer v1.6. Available at < – volume: 5 start-page: 701 year: 2014 end-page: 707 ident: b0350 article-title: BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees publication-title: Methods Ecol. Evol. – volume: 127 start-page: 187 year: 2003 end-page: 217 ident: b0090 article-title: First Cretaceous flowers from Antarctica publication-title: Rev. Palaeobot. Palynol. – volume: 9 start-page: 772 year: 2012 ident: b0055 article-title: JModelTest 2: more models, new heuristics and high-performance computing publication-title: Nat. Methods – volume: 11 start-page: 155 year: 1986 end-page: 162 ident: b0205 article-title: Variability of embryos in subtribe Myrtinae (Myrtaceae) publication-title: Syst. Bot. – volume: 33 start-page: 105 year: 1981 end-page: 129 ident: b0190 article-title: The phylogeny and geography of publication-title: Brittonia – volume: 5 start-page: 242 year: 2013 end-page: 248 ident: b0250 article-title: Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing publication-title: Front. Biogeogr. – volume: 15 start-page: 68 year: 1983 end-page: 70 ident: b0280 article-title: Ecological importance of Myrtaceae in an eastern Brazilian wet forest publication-title: Biotropica – volume: vol. 3 start-page: 283 year: 1975 end-page: 323 ident: b0065 article-title: Palaeozoic and Mesozoic tectonic belts in Mexico and Central America publication-title: The Ocean Basins and Margins. The Gulf of Mexico and the Caribbean – volume: 172 start-page: 915 year: 2011 end-page: 934 ident: b0230 article-title: Phylogenetics, morphology, and evolution of the large Genus Myrcia s.l. (Myrtaceae) publication-title: Int. J. Pl. Sci. – volume: 251 start-page: 35 year: 2005 end-page: 51 ident: b0220 article-title: Phylogenetic patterns in the fleshy-fruited Myrtaceae? Preliminary molecular evidence publication-title: PI Syst. Evol. – volume: 19 start-page: 516 year: 2004 end-page: 522 ident: b0320 article-title: The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution? publication-title: Trends Ecol. Evol. – year: 2016 ident: b0035 article-title: Ancient islands acted as refugia and pumps for conifer diversity publication-title: Cladistics – year: 2004 ident: b0130 article-title: Ghosts of Gondwana. The History of Life in New Zealand – reference: Landrum, L.R. 1986. Campomanesia, Pimenta, Blepharocalyx, Legrandia, Acca, Myrrhinium, and Luma (Myrtaceae). Flora Neotropica Monographs 45. New York Botanical Garden, New York. – reference: Maddison, W.P., Maddison D.R., 2015. Mesquite: a modular system for evolutionary analysis. (Version 3.02). – reference: Faria, J.E.Q., 2014. Revisāo taxonomica e Filogenia de Eugenia sect. Pilothecium (Kiaersk.) D. Legrand (Myrtaceae). PhD Thesis, Universidade de Brasilia. – reference: Flora do Brasil, 2020 (ongoing) Jardim Botânico do Rio de Janeiro. – year: 2012 ident: b0455 article-title: Pollen morphology of the Myrtaceae Part 4: Tribes Kanieae, Myrteae and Tristanieae publication-title: Aust. J. Bot. – year: 2015 ident: b0025 article-title: Revisāo, Filogenia e Biogeograpfia de Eugenia sect. Phyllocalyx (Myrtaceae) – volume: 47 start-page: 239 year: 1990 end-page: 271 ident: b0335 article-title: A revision of publication-title: Edinburgh J. Bot. – volume: 33 start-page: 311 year: 1978 end-page: 329 ident: b0395 article-title: A revision of publication-title: Kew. Bull. – volume: 29 start-page: 1155 year: 1975 end-page: 1169 ident: b0170 article-title: Cenozoic paleoceanography in the southwest Pacific Ocean, Antarctic glaciation, and the development of the Circum-Antarctic Current publication-title: Init. Rep. Deep Sea Drilling Proj. – volume: 29 start-page: 113 year: 2002 end-page: 135 ident: b0470 article-title: Paleoflora de la Formación Ligorio Márquez (XI Región, Chile) en su localidad tipo: sistemática, edad e implicancias paleoclimáticas publication-title: Revista geológica de Chile – volume: 31 start-page: 77 year: 2005 end-page: 93 ident: b0080 article-title: Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny publication-title: Paleobiology – volume: 69 start-page: 557 year: 1982 end-page: 593 ident: b0120 article-title: Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? publication-title: Ann. Missouri Bot. Gard. – volume: 107 start-page: 1164 year: 1995 end-page: 1191 ident: b0160 article-title: Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal Equator-to-Pole gradients publication-title: Geol. Soc. Am. Bull. – volume: 26 start-page: 66 year: 2011 end-page: 72 ident: b0050 article-title: Hypothesis testing in biogeography publication-title: Trends Ecol. Evol. – volume: 32 start-page: 793 year: 2000 end-page: 810 ident: b0305 article-title: Patterns of floristic differentiation among Atlantic Forests in southeastern Brazil and the influence of climate publication-title: Biotropica – volume: 17 start-page: 354 year: 1968 end-page: 418 ident: b0260 article-title: The genera of American Myrtaceae–an interim report publication-title: Taxon – volume: 110 start-page: 99 year: 2013 end-page: 104 ident: b0245 article-title: Polyploidy and its effect on evolutionary success: old questions revisited with new tools publication-title: Heredity – volume: 95 start-page: 116 year: 2016 end-page: 136 ident: b0010 article-title: Divergence times, historical biogeography, and shifts in speciation rates of Myrtales publication-title: Mol. Phylogenet. Evol. – volume: 69 start-page: 1 year: 2014 end-page: 14 ident: b9015 article-title: A preliminary phylogenetic analysis of eugenia (myrtaceae: myrteae), with a focus on neotropical species publication-title: Kew Bull. – volume: 58 start-page: 395 year: 2009 end-page: 410 ident: b0030 article-title: Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales) publication-title: Syst. Biol. – volume: 83 start-page: 480 year: 1996 end-page: 503 ident: b0300 article-title: A survey of the reproductive biology of the Myrtoideae (Myrtaceae) publication-title: Ann. Missouri Bot. Gard. – volume: 28 start-page: 1647 year: 2012 end-page: 1649 ident: b0165 article-title: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics – volume: 62 start-page: 771 year: 2013 end-page: 778 ident: b0310 article-title: gen. nov.: The first fossil wood record of the tribe Myrteae (Myrtaceae) in eastern Asia publication-title: Taxon – volume: 124 start-page: 9 year: 2003 end-page: 27 ident: b9025 article-title: Valdivian ecosystems in the late cretaceous and early tertiary of antarctica: further evidence from myrtaceous and eucryphiaceous fossil wood publication-title: Rev. Palaeobot. Palyno. – reference: Hayes, P.A., Francis, J. E., Cantrill, D. J., Crame, J. A., 2006. Palaeoclimatic analysis of late Cretaceous angiosperm leaf floras, James Ross Island, Antarctica. In: Francis, J.E., Pirrie, D. Crame J. A., James Ross (Eds.), Cretaceous–Tertiary high-latitude palaeoenvironments. Basin, Antarctica. Geological Society of London Special Publication 258. – volume: 348 start-page: 226 year: 2015 end-page: 229 ident: b0275 article-title: Middle Miocene closure of the Central American seaway publication-title: Science – reference: Francis, J.E., Ashworth, A., Cantrill, D.J., Crame, J.A., Howe, J., Stephens, R., Tosolini, A.M., Thorn, V., 2008. 100 million years of Antarctic climate evolution; evidence from fossil plants. In: Cooper, A.K., Barrett, P., Stagg, H., Storey, B., Stump, E., Wise, W. (Eds.), Antarctica: a keystone in a changing world. The 10th ISAES editorial team. Proceedings of the 10th international symposium on Antarctic earth sciences, Washington, DC. – volume: 30 start-page: 1312 year: 2014 end-page: 1313 ident: b0430 article-title: RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies publication-title: Bioinformatics – volume: 84 start-page: 41 year: 1982 end-page: 56 ident: b0475 article-title: The genus publication-title: Bot. J. Linn. Soc. – volume: 268 start-page: 459 year: 2001 end-page: 469 ident: b0045 article-title: Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event publication-title: Proc. R. Soc. B – start-page: mcp192 year: 2009 ident: b9005 article-title: Calibrating the tree of life: fossils, molecules and evolutionary timescales publication-title: Ann. Bot. – volume: 17 start-page: 297 year: 1980 end-page: 311 ident: b9030 article-title: Leños fósiles de dicotile-dóneas del paleoceno de patagonia, Argentina. I. Myrceugenia chubutense n. sp. (Myrtaceae) publication-title: Ameghiniana – volume: 251 start-page: 3 year: 2005 end-page: 19 ident: b0490 article-title: Relationships within Myrtaceae sensu lato based on a matK phylogeny publication-title: Plant Syst. Evol. – volume: 56 start-page: 1105 year: 2007 end-page: 1128 ident: b0225 article-title: Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales) publication-title: Taxon – volume: 106 start-page: 13875 year: 2009 end-page: 13879 ident: b0510 article-title: The frequency of polyploidy speciation in plants publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 43 start-page: 979 year: 2016 end-page: 990 ident: b0290 article-title: Explaining disjunct distributions in the flora of southern South America: evolutionary history and biogeography of publication-title: J. Biogeogr. – volume: 34 start-page: 1 year: 2007 end-page: 6 ident: b0465 article-title: Hello New Zealand publication-title: J. Biogeogr. – volume: 181 start-page: 1 year: 2016 end-page: 20 ident: b0005 article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV publication-title: Bot. J. Linn. Soc. – volume: 182 start-page: 47 year: 2002 end-page: 64 ident: b9010 article-title: Cretaceous and early tertiary climates of antarctica: evidence from fossil wood publication-title: Palaeogeogr. Palaeocl. Palaeoecol. – volume: 2 start-page: 26 year: 1992 end-page: 29 ident: b0200 article-title: (Myrtaceae) in Mexico and Mesoamerica publication-title: Novon – volume: 49 start-page: 271 year: 2001 end-page: 300 ident: b0255 article-title: The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism publication-title: Aust. J. Bot. – volume: 29 start-page: 509 year: 2006 end-page: 530 ident: b0135 article-title: Polinização e dispersão de sementes em Myrtaceae do Brasil publication-title: Rev. Bras. Bot. – volume: 9 start-page: 347 year: 1955 end-page: 349 ident: b9000 article-title: Self-compatibility and establishment after ‘long-distance’ dispersal publication-title: Evolution – volume: 29 start-page: 1969 year: 2012 end-page: 1973 ident: b0075 article-title: Bayesian Phylogenetics with BEAUti and the BEAST 1.7 publication-title: Mol. Biol. Evol. – year: 2013 ident: b0060 article-title: Ecologia e relações filogenéticas de – reference: Miller, M.A., Pfeiffer, W., Schwartz, T., 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE). San Diego Supercomput. Center, New Orleans, Louisiana. – volume: 65 start-page: 759 year: 2016 end-page: 774 ident: b0380 article-title: Phylogeny, morphology and circumscription of publication-title: Taxon – reference: WCSP. 2016. World Checklist of Selected Plant Families, < – volume: 23 start-page: 151 year: 2009 end-page: 163 ident: b0295 article-title: Plant diversity hotspots in the Atlantic Coastal forests of Brazil publication-title: Conserv. Biol. – volume: 13 start-page: 201 year: 1982 end-page: 228 ident: b0155 article-title: Ecology of seed dispersal publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 53 start-page: 753 year: 2004 end-page: 776 ident: b0115 article-title: History and concepts of big plant genera publication-title: Taxon – volume: 50 start-page: 1025 year: 2001 end-page: 1041 ident: b0435 article-title: Biogeography of publication-title: Taxon – volume: 19 start-page: 11 year: 1987 end-page: 15 ident: b0070 article-title: Genomic plant DNA preparation from fresh tissue-CTAB method publication-title: Phytochem. Bull. – volume: 115 start-page: 747 year: 2015 end-page: 761 ident: b0425 article-title: Phylogenetic analysis in publication-title: Ann. Bot. – volume: 49 start-page: 508 year: 1997 end-page: 536 ident: b0215 article-title: The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys publication-title: Brittonia – volume: 34 start-page: 377 year: 2006 end-page: 380 ident: b0175 article-title: Evidence for the earliest Oligocene ice sheet on the Antarctic Peninsula publication-title: Geology – reference: Grifo, F.T., 1992. A revision of Myrcianthes Berg (Myrtaceae). Doctoral dissertation, Cornell Univer- sity, Ithaca, New York. – volume: 27 start-page: 686 year: 2001 end-page: 693 ident: b0525 article-title: Trends, rhythms, and aberrations in global climate 65 publication-title: Science – volume: 32 start-page: 1792 year: 2004 end-page: 1797 ident: b0085 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. – volume: 22 start-page: 647 year: 2000 end-page: 654 ident: b0405 article-title: Conspectus of Australasian Myrtinae (Myrtaceae) publication-title: Kew. Bull. – volume: 33 start-page: 343 year: 2008 end-page: 348 ident: b0410 article-title: Studies of Malagasy publication-title: Syst. Bot. – volume: 49 start-page: 727 year: 1995 end-page: 742 ident: b0420 article-title: Discordance between nuclear and chloroplast phylogenies in the publication-title: Evolution – volume: 61 start-page: 289 year: 2012 end-page: 313 ident: b0385 article-title: Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales) publication-title: Syst. Biol. – volume: 136 start-page: 119 year: 1998 end-page: 131 ident: b0400 article-title: Flowering, fruiting, and seed germination in Chilean rain forest Myrtaceae: ecological and phylogenetic constraints publication-title: Plant Ecol. – volume: 39 start-page: 942 year: 2012 end-page: 956 ident: b0265 article-title: From Mediterranean shores to central Saharan mountains: key phylogeographical insights from the genus publication-title: J. Biogeogr. – volume: 3 start-page: 1 year: 1990 end-page: 13 ident: b0185 article-title: Floristic composition of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia publication-title: J. Trop. For. Sci. – volume: 93 start-page: 29 year: 2015 end-page: 43 ident: b0460 article-title: Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny publication-title: Mol. Phylogenet. Evol. – volume: 19 start-page: 1572 year: 2003 end-page: 1574 ident: b0340 article-title: MRBAYES 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics – volume: 20 start-page: 569 year: 1991 end-page: 573 ident: b0520 article-title: Early Oligocene ice sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean publication-title: Geology – volume: 36 start-page: 390 year: 2011 end-page: 404 ident: b0415 article-title: Morphological and molecular evidence of polyphyly in publication-title: Syst. Bot. – volume: 276 start-page: 209 year: 2008 end-page: 217 ident: b0040 article-title: Nuclear genome size variation in fleshy-fruited Neotropical Myrtaceae publication-title: Plant Syst. Evol. – volume: 71 start-page: 1 year: 1993 end-page: 9 ident: b0325 article-title: Paleomyrtinaea, a new genus of permineralized myrtaceous fruits and seeds from the Eocene of British Columbia and Paleocene of North Dakota publication-title: Can. J. Bot. – volume: 38 start-page: 175 year: 2015 end-page: 185 ident: b0125 article-title: Diversity of Myrtaceae in the southeastern Atlantic forest of Brazil as a tool for conservation publication-title: Braz. J. Bot. – volume: 5 start-page: 197 year: 1984 end-page: 215 ident: b0390 article-title: The occurrence of scalarifrom perforation plates and helical vessel wall thickenings in wood of Myrtaceae publication-title: IAWA J. – volume: 251 start-page: 21 year: 2005 end-page: 34 ident: b0480 article-title: Molecular phylogenetic analysis of Eugenia L. (Myrtaceae), with emphasis on southern African taxa publication-title: Plant Syst. Evol. – volume: 40 start-page: 782 year: 2015 end-page: 790 ident: b0330 article-title: An expanded publication-title: Syst. Bot. – volume: 62 start-page: 764 year: 2012 end-page: 776 ident: b0285 article-title: Phylogenetic relationships in publication-title: Mol. Phylogenet. Evol. – volume: 57 start-page: 4 year: 2008 end-page: 14 ident: b0365 article-title: Maximum-likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis publication-title: Syst. Biol. – volume: 59 start-page: 484 year: 1915 end-page: 490 ident: b0015 article-title: The origin and distribution of the family Myrtaceae publication-title: Bot. Gaz. – reference: Rambaut, A., 2014. Figtree, a graphical viewer of phylogenetic trees. < – reference: > (accessed in July, 2016). – reference: Holst, B.K., Landrum, L., Grifo, F., 2003. Myrtaceae. In: Steyermark J.A. et al. (Eds,), Flora of the Venezuelan Guayana, vol. 7 – Myrtaceae. Missouri Botanical Garden Press, St. Louis, Missouri. – volume: 19 start-page: 45 year: 2016 end-page: 55 ident: b0505 article-title: Phylogenetic position of publication-title: Telopea – volume: 113 start-page: 9569 year: 2016 end-page: 9574 ident: b9020 article-title: Critically evaluating the theory and performance of bayesian analysis of macroevolutionary mixtures publication-title: P. Natl. A. Sci. – volume: 17 start-page: 788 year: 2011 end-page: 809 ident: b0370 article-title: Trees and shrubs as invasive alien species – a global review publication-title: Divers. Distrib. – volume: 179 start-page: 388 year: 2015 end-page: 402 ident: b0485 article-title: Systematic and evolutionary implications of stamen position in Myrteae (Myrtaceae) publication-title: Bot. J. Linn. Soc. – reference: >. – reference: . Acesse. July 2016. – reference: . – volume: 165 start-page: S85 year: 2004 end-page: S105 ident: b0440 article-title: Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere publication-title: Int. J. Plant Sci. – year: 1987 ident: b0110 article-title: The Origins of Angiosperms and Their Biological Consequences – volume: 60 start-page: 399 year: 2009 end-page: 410 ident: b0495 article-title: Conspectus of the genus publication-title: Gard. Bull. Singap. – reference: Wilson, P.G., 2011. Myrtaceae. In ‘The families and genera of vascular plants. In: Kubitzki, K. (Ed.), Vol. X. Flowering plants Eudicots: Sapindales, Cucurbitales, Myrtaceae. Springer-Verlag. – start-page: 427 year: 1981 end-page: 470 ident: b0180 article-title: Three old southern families – Myrtaceae, Proteaceae and Restionaceae publication-title: Ecological Biogeography of Australia – volume: 106 start-page: 79 year: 2010 end-page: 93 ident: b0020 article-title: Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae publication-title: Ann. Bot. – volume: 24 start-page: 2165 year: 2015 end-page: 2180 ident: b0235 article-title: Myrtaceae in the Atlantic forest—their role as a ‘model’ group publication-title: Biodivers. Conserv. – year: 2016 ident: b0345 article-title: R: A Language and Environment for Statistical Computing – volume: 63 start-page: 15 year: 2012 end-page: 27 ident: b0450 article-title: Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae publication-title: Mol. Phylogenet. Evol. – volume: 113 start-page: 9569 issue: 34 year: 2016 ident: 10.1016/j.ympev.2017.01.002_b9020 article-title: Critically evaluating the theory and performance of bayesian analysis of macroevolutionary mixtures publication-title: P. Natl. A. Sci. doi: 10.1073/pnas.1518659113 – volume: 29 start-page: 113 issue: 1 year: 2002 ident: 10.1016/j.ympev.2017.01.002_b0470 article-title: Paleoflora de la Formación Ligorio Márquez (XI Región, Chile) en su localidad tipo: sistemática, edad e implicancias paleoclimáticas publication-title: Revista geológica de Chile doi: 10.4067/S0716-02082002000100007 – volume: 9 start-page: 347 issue: 3 year: 1955 ident: 10.1016/j.ympev.2017.01.002_b9000 article-title: Self-compatibility and establishment after ‘long-distance’ dispersal publication-title: Evolution – volume: 172 start-page: 915 issue: 7 year: 2011 ident: 10.1016/j.ympev.2017.01.002_b0230 article-title: Phylogenetics, morphology, and evolution of the large Genus Myrcia s.l. (Myrtaceae) publication-title: Int. J. Pl. Sci. doi: 10.1086/660913 – volume: 5 start-page: 197 year: 1984 ident: 10.1016/j.ympev.2017.01.002_b0390 article-title: The occurrence of scalarifrom perforation plates and helical vessel wall thickenings in wood of Myrtaceae publication-title: IAWA J. doi: 10.1163/22941932-90000889 – volume: 106 start-page: 13875 year: 2009 ident: 10.1016/j.ympev.2017.01.002_b0510 article-title: The frequency of polyploidy speciation in plants publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0811575106 – volume: 276 start-page: 209 year: 2008 ident: 10.1016/j.ympev.2017.01.002_b0040 article-title: Nuclear genome size variation in fleshy-fruited Neotropical Myrtaceae publication-title: Plant Syst. Evol. doi: 10.1007/s00606-008-0088-x – volume: 107 start-page: 1164 year: 1995 ident: 10.1016/j.ympev.2017.01.002_b0160 article-title: Middle-Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal Equator-to-Pole gradients publication-title: Geol. Soc. Am. Bull. doi: 10.1130/0016-7606(1995)107<1164:MLCCOT>2.3.CO;2 – volume: 15 start-page: 68 year: 1983 ident: 10.1016/j.ympev.2017.01.002_b0280 article-title: Ecological importance of Myrtaceae in an eastern Brazilian wet forest publication-title: Biotropica doi: 10.2307/2388002 – volume: 65 start-page: 759 year: 2016 ident: 10.1016/j.ympev.2017.01.002_b0380 article-title: Phylogeny, morphology and circumscription of Myrcia sect. Sympodiomyrcia (Myrcia s.l., Myrtaceae) publication-title: Taxon doi: 10.12705/654.5 – volume: 22 start-page: 647 year: 2000 ident: 10.1016/j.ympev.2017.01.002_b0405 article-title: Conspectus of Australasian Myrtinae (Myrtaceae) publication-title: Kew. Bull. doi: 10.2307/4118781 – volume: 19 start-page: 1572 year: 2003 ident: 10.1016/j.ympev.2017.01.002_b0340 article-title: MRBAYES 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 – volume: 19 start-page: 11 year: 1987 ident: 10.1016/j.ympev.2017.01.002_b0070 article-title: Genomic plant DNA preparation from fresh tissue-CTAB method publication-title: Phytochem. Bull. – volume: 251 start-page: 35 year: 2005 ident: 10.1016/j.ympev.2017.01.002_b0220 article-title: Phylogenetic patterns in the fleshy-fruited Myrtaceae? Preliminary molecular evidence publication-title: PI Syst. Evol. doi: 10.1007/s00606-004-0164-9 – ident: 10.1016/j.ympev.2017.01.002_b0150 – start-page: 427 year: 1981 ident: 10.1016/j.ympev.2017.01.002_b0180 article-title: Three old southern families – Myrtaceae, Proteaceae and Restionaceae – volume: 43 start-page: 979 issue: 5 year: 2016 ident: 10.1016/j.ympev.2017.01.002_b0290 article-title: Explaining disjunct distributions in the flora of southern South America: evolutionary history and biogeography of Myrceugenia (Myrtaceae) publication-title: J. Biogeogr. doi: 10.1111/jbi.12702 – volume: 176–177 start-page: 1 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0445 article-title: Fossil myrtaceous pollen as evidence for the evolutionary history of the Myrtaceae: a review of fossil Myrtaceidites species publication-title: Rev. Palaeobot. Palyno. doi: 10.1016/j.revpalbo.2012.03.003 – volume: 127 start-page: 187 year: 2003 ident: 10.1016/j.ympev.2017.01.002_b0090 article-title: First Cretaceous flowers from Antarctica publication-title: Rev. Palaeobot. Palynol. doi: 10.1016/S0034-6667(03)00120-9 – volume: 181 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ympev.2017.01.002_b0005 article-title: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV publication-title: Bot. J. Linn. Soc. doi: 10.1111/boj.12385 – volume: 110 start-page: 99 year: 2013 ident: 10.1016/j.ympev.2017.01.002_b0245 article-title: Polyploidy and its effect on evolutionary success: old questions revisited with new tools publication-title: Heredity doi: 10.1038/hdy.2012.79 – start-page: mcp192 year: 2009 ident: 10.1016/j.ympev.2017.01.002_b9005 article-title: Calibrating the tree of life: fossils, molecules and evolutionary timescales publication-title: Ann. Bot. – volume: 182 start-page: 47 issue: 1 year: 2002 ident: 10.1016/j.ympev.2017.01.002_b9010 article-title: Cretaceous and early tertiary climates of antarctica: evidence from fossil wood publication-title: Palaeogeogr. Palaeocl. Palaeoecol. doi: 10.1016/S0031-0182(01)00452-7 – ident: 10.1016/j.ympev.2017.01.002_b0270 doi: 10.1109/GCE.2010.5676129 – volume: 71 start-page: 1 year: 1993 ident: 10.1016/j.ympev.2017.01.002_b0325 article-title: Paleomyrtinaea, a new genus of permineralized myrtaceous fruits and seeds from the Eocene of British Columbia and Paleocene of North Dakota publication-title: Can. J. Bot. doi: 10.1139/b93-001 – volume: 49 start-page: 727 year: 1995 ident: 10.1016/j.ympev.2017.01.002_b0420 article-title: Discordance between nuclear and chloroplast phylogenies in the Heuchera group (Saxifragaceae) publication-title: Evolution doi: 10.1111/j.1558-5646.1995.tb02309.x – volume: 53 start-page: 753 year: 2004 ident: 10.1016/j.ympev.2017.01.002_b0115 article-title: History and concepts of big plant genera publication-title: Taxon doi: 10.2307/4135449 – volume: 57 start-page: 4 year: 2008 ident: 10.1016/j.ympev.2017.01.002_b0365 article-title: Maximum-likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis publication-title: Syst. Biol. doi: 10.1080/10635150701883881 – year: 1987 ident: 10.1016/j.ympev.2017.01.002_b0110 – volume: 11 start-page: 155 year: 1986 ident: 10.1016/j.ympev.2017.01.002_b0205 article-title: Variability of embryos in subtribe Myrtinae (Myrtaceae) publication-title: Syst. Bot. doi: 10.2307/2418954 – volume: 69 start-page: 1 issue: 2 year: 2014 ident: 10.1016/j.ympev.2017.01.002_b9015 article-title: A preliminary phylogenetic analysis of eugenia (myrtaceae: myrteae), with a focus on neotropical species publication-title: Kew Bull. doi: 10.1007/s12225-014-9497-x – volume: 32 start-page: 1792 year: 2004 ident: 10.1016/j.ympev.2017.01.002_b0085 article-title: MUSCLE: multiple sequence alignment with high accuracy and high throughput publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 – volume: 29 start-page: 1969 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0075 article-title: Bayesian Phylogenetics with BEAUti and the BEAST 1.7 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mss075 – volume: 95 start-page: 116 year: 2016 ident: 10.1016/j.ympev.2017.01.002_b0010 article-title: Divergence times, historical biogeography, and shifts in speciation rates of Myrtales publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2015.10.001 – year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0455 article-title: Pollen morphology of the Myrtaceae Part 4: Tribes Kanieae, Myrteae and Tristanieae publication-title: Aust. J. Bot. – volume: 106 start-page: 79 year: 2010 ident: 10.1016/j.ympev.2017.01.002_b0020 article-title: Evolution of exceptional species richness among lineages of fleshy-fruited Myrtaceae publication-title: Ann. Bot. doi: 10.1093/aob/mcq088 – volume: 26 start-page: 66 issue: 2 year: 2011 ident: 10.1016/j.ympev.2017.01.002_b0050 article-title: Hypothesis testing in biogeography publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2010.11.005 – volume: 36 start-page: 390 year: 2011 ident: 10.1016/j.ympev.2017.01.002_b0415 article-title: Morphological and molecular evidence of polyphyly in Rhodomyrtus (Myrtaceae: Myrteae) publication-title: Syst. Bot. doi: 10.1600/036364411X569570 – ident: 10.1016/j.ympev.2017.01.002_b0360 – volume: 93 start-page: 29 year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0460 article-title: Interpreting the modern distribution of Myrtaceae using a dated molecular phylogeny publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2015.07.007 – ident: 10.1016/j.ympev.2017.01.002_b0100 – volume: 115 start-page: 747 year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0425 article-title: Phylogenetic analysis in Myrcia section Aulomyrcia and inferences on plant diversity in the Atlantic rainforest publication-title: Ann. Bot. doi: 10.1093/aob/mcv005 – volume: 19 start-page: 516 year: 2004 ident: 10.1016/j.ympev.2017.01.002_b0320 article-title: The rise of birds and mammals: are microevolutionary processes sufficient for macroevolution? publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2004.07.015 – volume: 38 start-page: 175 issue: 1 year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0125 article-title: Diversity of Myrtaceae in the southeastern Atlantic forest of Brazil as a tool for conservation publication-title: Braz. J. Bot. doi: 10.1007/s40415-014-0121-y – volume: 20 start-page: 569 year: 1991 ident: 10.1016/j.ympev.2017.01.002_b0520 article-title: Early Oligocene ice sheet expansion on Antarctica: stable isotope and sedimentological evidence from Kerguelen Plateau, southern Indian Ocean publication-title: Geology doi: 10.1130/0091-7613(1992)020<0569:EOISEO>2.3.CO;2 – volume: 31 start-page: 77 year: 2005 ident: 10.1016/j.ympev.2017.01.002_b0080 article-title: Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny publication-title: Paleobiology doi: 10.1666/0094-8373(2005)031[0077:KICASM]2.0.CO;2 – ident: 10.1016/j.ympev.2017.01.002_b0145 doi: 10.1144/GSL.SP.2006.258.01.04 – volume: 27 start-page: 686 issue: 292 year: 2001 ident: 10.1016/j.ympev.2017.01.002_b0525 article-title: Trends, rhythms, and aberrations in global climate 65Ma to present publication-title: Science doi: 10.1126/science.1059412 – volume: 268 start-page: 459 year: 2001 ident: 10.1016/j.ympev.2017.01.002_b0045 article-title: Avian evolution, Gondwana biogeography and the Cretaceous-Tertiary mass extinction event publication-title: Proc. R. Soc. B doi: 10.1098/rspb.2000.1368 – volume: 17 start-page: 354 year: 1968 ident: 10.1016/j.ympev.2017.01.002_b0260 article-title: The genera of American Myrtaceae–an interim report publication-title: Taxon doi: 10.2307/1217393 – volume: 50 start-page: 1025 year: 2001 ident: 10.1016/j.ympev.2017.01.002_b0435 article-title: Biogeography of Nothofagus supports the sequence of Gondwana break-up publication-title: Taxon doi: 10.2307/1224719 – volume: 9 start-page: 772 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0055 article-title: JModelTest 2: more models, new heuristics and high-performance computing publication-title: Nat. Methods doi: 10.1038/nmeth.2109 – volume: 33 start-page: 311 year: 1978 ident: 10.1016/j.ympev.2017.01.002_b0395 article-title: A revision of Rhodomyrtus (Myrtaceae) publication-title: Kew. Bull. doi: 10.2307/4109586 – ident: 10.1016/j.ympev.2017.01.002_b0500 doi: 10.1007/978-3-642-14397-7_14 – volume: 56 start-page: 1105 year: 2007 ident: 10.1016/j.ympev.2017.01.002_b0225 article-title: Suprageneric phylogenetics of Myrteae, the generically richest tribe in Myrtaceae (Myrtales) publication-title: Taxon doi: 10.2307/25065906 – volume: 84 start-page: 41 year: 1982 ident: 10.1016/j.ympev.2017.01.002_b0475 article-title: The genus Eugenia L. (Myrtaceae) in southern Africa: the structure and taxonomic value of stomata publication-title: Bot. J. Linn. Soc. doi: 10.1111/j.1095-8339.1982.tb00359.x – volume: 63 start-page: 15 issue: 1 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0450 article-title: Are pollen fossils useful for calibrating relaxed molecular clock dating of phylogenies? A comparative study using Myrtaceae publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2011.12.003 – volume: 69 start-page: 557 year: 1982 ident: 10.1016/j.ympev.2017.01.002_b0120 article-title: Neotropical floristic diversity: phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? publication-title: Ann. Missouri Bot. Gard. doi: 10.2307/2399084 – ident: 10.1016/j.ympev.2017.01.002_b0140 – volume: 179 start-page: 388 year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0485 article-title: Systematic and evolutionary implications of stamen position in Myrteae (Myrtaceae) publication-title: Bot. J. Linn. Soc. doi: 10.1111/boj.12328 – volume: 29 start-page: 1155 year: 1975 ident: 10.1016/j.ympev.2017.01.002_b0170 article-title: Cenozoic paleoceanography in the southwest Pacific Ocean, Antarctic glaciation, and the development of the Circum-Antarctic Current publication-title: Init. Rep. Deep Sea Drilling Proj. – volume: 28 start-page: 1647 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0165 article-title: Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts199 – volume: 165 start-page: S85 issue: 4 supplement year: 2004 ident: 10.1016/j.ympev.2017.01.002_b0440 article-title: Clades, clocks, and continents: historical and biogeographical analysis of Myrtaceae, Vochysiaceae, and relatives in the southern hemisphere publication-title: Int. J. Plant Sci. doi: 10.1086/421066 – volume: 5 start-page: 701 year: 2014 ident: 10.1016/j.ympev.2017.01.002_b0350 article-title: BAMMtools: an R package for the analysis of evolutionary dynamics on phylogenetic trees publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12199 – ident: 10.1016/j.ympev.2017.01.002_b0355 – volume: 45 start-page: 277 year: 1988 ident: 10.1016/j.ympev.2017.01.002_b0210 article-title: The Myrtle family (Myrtaceae) in Chile publication-title: Proc. Calif. Acad. Sci. – year: 2013 ident: 10.1016/j.ympev.2017.01.002_b0060 – ident: 10.1016/j.ympev.2017.01.002_b0195 – year: 2016 ident: 10.1016/j.ympev.2017.01.002_b0035 article-title: Ancient islands acted as refugia and pumps for conifer diversity publication-title: Cladistics – year: 2016 ident: 10.1016/j.ympev.2017.01.002_b0345 – volume: 61 start-page: 289 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0385 article-title: Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales) publication-title: Syst. Biol. doi: 10.1093/sysbio/syr116 – volume: 32 start-page: 793 issue: 4b year: 2000 ident: 10.1016/j.ympev.2017.01.002_b0305 article-title: Patterns of floristic differentiation among Atlantic Forests in southeastern Brazil and the influence of climate publication-title: Biotropica doi: 10.1111/j.1744-7429.2000.tb00619.x – volume: 5 start-page: 242 year: 2013 ident: 10.1016/j.ympev.2017.01.002_b0250 article-title: Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing publication-title: Front. Biogeogr. doi: 10.21425/F55419694 – volume: 49 start-page: 508 year: 1997 ident: 10.1016/j.ympev.2017.01.002_b0215 article-title: The genera of Myrtaceae in Brazil: an illustrated synoptic treatment and identification keys publication-title: Brittonia doi: 10.2307/2807742 – volume: 62 start-page: 764 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0285 article-title: Phylogenetic relationships in Myrceugenia (Myrtaceae) based on plastid and nuclear DNA sequences publication-title: Mol. Phylogenet. Evol. doi: 10.1016/j.ympev.2011.11.021 – volume: 49 start-page: 271 issue: 3 year: 2001 ident: 10.1016/j.ympev.2017.01.002_b0255 article-title: The breakup history of Gondwana and its impact on pre-Cenozoic floristic provincialism publication-title: Aust. J. Bot. doi: 10.1071/BT00023 – volume: 136 start-page: 119 year: 1998 ident: 10.1016/j.ympev.2017.01.002_b0400 article-title: Flowering, fruiting, and seed germination in Chilean rain forest Myrtaceae: ecological and phylogenetic constraints publication-title: Plant Ecol. doi: 10.1023/A:1009730810655 – ident: 10.1016/j.ympev.2017.01.002_b0105 doi: 10.3133/ofr20071047KP03 – volume: 40 start-page: 782 year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0330 article-title: An expanded Metrosideros (Myrtaceae) to include Carpolepis and Tepualia based on nuclear genes publication-title: Syst. Bot. doi: 10.1600/036364415X689249 – volume: 58 start-page: 395 issue: 4 year: 2009 ident: 10.1016/j.ympev.2017.01.002_b0030 article-title: Recent long-distance dispersal overshadows ancient biogeographical patterns in a pantropical angiosperm family (Simaroubaceae, Sapindales) publication-title: Syst. Biol. doi: 10.1093/sysbio/syp041 – volume: 251 start-page: 3 year: 2005 ident: 10.1016/j.ympev.2017.01.002_b0490 article-title: Relationships within Myrtaceae sensu lato based on a matK phylogeny publication-title: Plant Syst. Evol. doi: 10.1007/s00606-004-0162-y – volume: 59 start-page: 484 year: 1915 ident: 10.1016/j.ympev.2017.01.002_b0015 article-title: The origin and distribution of the family Myrtaceae publication-title: Bot. Gaz. doi: 10.1086/331589 – volume: 19 start-page: 45 year: 2016 ident: 10.1016/j.ympev.2017.01.002_b0505 article-title: Phylogenetic position of Meteoromyrtus (Myrtaceae) publication-title: Telopea doi: 10.7751/telopea10389 – volume: 348 start-page: 226 issue: 6231 year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0275 article-title: Middle Miocene closure of the Central American seaway publication-title: Science doi: 10.1126/science.aaa2815 – volume: 23 start-page: 151 year: 2009 ident: 10.1016/j.ympev.2017.01.002_b0295 article-title: Plant diversity hotspots in the Atlantic Coastal forests of Brazil publication-title: Conserv. Biol. doi: 10.1111/j.1523-1739.2008.01075.x – volume: 83 start-page: 480 year: 1996 ident: 10.1016/j.ympev.2017.01.002_b0300 article-title: A survey of the reproductive biology of the Myrtoideae (Myrtaceae) publication-title: Ann. Missouri Bot. Gard. doi: 10.2307/2399990 – volume: 34 start-page: 377 year: 2006 ident: 10.1016/j.ympev.2017.01.002_b0175 article-title: Evidence for the earliest Oligocene ice sheet on the Antarctic Peninsula publication-title: Geology doi: 10.1130/G22383.1 – volume: 17 start-page: 788 year: 2011 ident: 10.1016/j.ympev.2017.01.002_b0370 article-title: Trees and shrubs as invasive alien species – a global review publication-title: Divers. Distrib. doi: 10.1111/j.1472-4642.2011.00782.x – ident: 10.1016/j.ympev.2017.01.002_b0515 – volume: 251 start-page: 21 year: 2005 ident: 10.1016/j.ympev.2017.01.002_b0480 article-title: Molecular phylogenetic analysis of Eugenia L. (Myrtaceae), with emphasis on southern African taxa publication-title: Plant Syst. Evol. doi: 10.1007/s00606-004-0160-0 – ident: 10.1016/j.ympev.2017.01.002_b0240 – volume: 60 start-page: 399 issue: 2 year: 2009 ident: 10.1016/j.ympev.2017.01.002_b0495 article-title: Conspectus of the genus Eugenia (Myrtaceae) in the Philippines Conspectus of the genus publication-title: Gard. Bull. Singap. – ident: 10.1016/j.ympev.2017.01.002_b0095 – volume: 3 start-page: 1 year: 1990 ident: 10.1016/j.ympev.2017.01.002_b0185 article-title: Floristic composition of Pasoh Forest Reserve, a lowland rain forest in Peninsular Malaysia publication-title: J. Trop. For. Sci. – volume: 13 start-page: 201 year: 1982 ident: 10.1016/j.ympev.2017.01.002_b0155 article-title: Ecology of seed dispersal publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.es.13.110182.001221 – volume: 124 start-page: 9 year: 2003 ident: 10.1016/j.ympev.2017.01.002_b9025 article-title: Valdivian ecosystems in the late cretaceous and early tertiary of antarctica: further evidence from myrtaceous and eucryphiaceous fossil wood publication-title: Rev. Palaeobot. Palyno. doi: 10.1016/S0034-6667(02)00244-0 – volume: 33 start-page: 343 year: 2008 ident: 10.1016/j.ympev.2017.01.002_b0410 article-title: Studies of Malagasy Eugenia (Myrtaceae) – I: Two new species from the Masoala Peninsula and generic transfers from Monimiastrum publication-title: Syst. Bot. doi: 10.1600/036364408784571491 – volume: 62 start-page: 771 year: 2013 ident: 10.1016/j.ympev.2017.01.002_b0310 article-title: Myrtineoxylon gen. nov.: The first fossil wood record of the tribe Myrteae (Myrtaceae) in eastern Asia publication-title: Taxon doi: 10.12705/624.7 – volume: 30 start-page: 1312 issue: 9 year: 2014 ident: 10.1016/j.ympev.2017.01.002_b0430 article-title: RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu033 – year: 2004 ident: 10.1016/j.ympev.2017.01.002_b0130 – volume: 33 start-page: 105 year: 1981 ident: 10.1016/j.ympev.2017.01.002_b0190 article-title: The phylogeny and geography of Myrceugenia (Myrtaceae) publication-title: Brittonia doi: 10.2307/2806583 – volume: 17 start-page: 297 year: 1980 ident: 10.1016/j.ympev.2017.01.002_b9030 article-title: Leños fósiles de dicotile-dóneas del paleoceno de patagonia, Argentina. I. Myrceugenia chubutense n. sp. (Myrtaceae) publication-title: Ameghiniana – volume: 29 start-page: 509 issue: 4 year: 2006 ident: 10.1016/j.ympev.2017.01.002_b0135 article-title: Polinização e dispersão de sementes em Myrtaceae do Brasil publication-title: Rev. Bras. Bot. doi: 10.1590/S0100-84042006000400002 – volume: 34 start-page: 1 year: 2007 ident: 10.1016/j.ympev.2017.01.002_b0465 article-title: Hello New Zealand publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2006.01643.x – volume: vol. 3 start-page: 283 year: 1975 ident: 10.1016/j.ympev.2017.01.002_b0065 article-title: Palaeozoic and Mesozoic tectonic belts in Mexico and Central America – volume: 2 start-page: 26 year: 1992 ident: 10.1016/j.ympev.2017.01.002_b0200 article-title: Mosiera (Myrtaceae) in Mexico and Mesoamerica publication-title: Novon doi: 10.2307/3391603 – volume: 47 start-page: 239 year: 1990 ident: 10.1016/j.ympev.2017.01.002_b0335 article-title: A revision of Siphoneugena Berg publication-title: Edinburgh J. Bot. doi: 10.1017/S0960428600003401 – year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0025 – volume: 24 start-page: 2165 issue: 9 year: 2015 ident: 10.1016/j.ympev.2017.01.002_b0235 article-title: Myrtaceae in the Atlantic forest—their role as a ‘model’ group publication-title: Biodivers. Conserv. doi: 10.1007/s10531-015-0992-7 – volume: 39 start-page: 942 year: 2012 ident: 10.1016/j.ympev.2017.01.002_b0265 article-title: From Mediterranean shores to central Saharan mountains: key phylogeographical insights from the genus Myrtus publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2011.02646.x |
SSID | ssj0011595 |
Score | 2.5474846 |
Snippet | [Display omitted]
•The present Myrteae phylogeny reports key differences among group relationships in comparison to previous published trees.•Future... Myrteae (c. 2500 species; 51 genera) is the largest tribe of Myrtaceae and an ecologically important groups of angiosperms in the Neotropics. Systematic... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113 |
SubjectTerms | Bayes Theorem Bayesian theory biogeography Blepharocalyx Calibration Caribbean chloroplasts Chloroplasts - genetics DNA Eugenia Evolution Evolution, Molecular Fossils Genes, Plant Genetic Speciation Genetic Variation indigenous species internal transcribed spacers Multilocus Sequence Typing Myrcia Myrtaceae - classification Myrtaceae - genetics Myrtus Myrtus communis Neotropics Phylogeny Phylogeography Pimenta pollen polyploidy Psidium Systematics topology |
Title | Myrteae phylogeny, calibration, biogeography and diversification patterns: Increased understanding in the most species rich tribe of Myrtaceae |
URI | https://dx.doi.org/10.1016/j.ympev.2017.01.002 https://www.ncbi.nlm.nih.gov/pubmed/28069533 https://www.proquest.com/docview/1857371231 https://www.proquest.com/docview/2000437270 |
Volume | 109 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS-QwEA-iHPgieurd-sUI97i97abptvFNFmXvQznuTvAtJG2CK9pd9kPYF_8E_2Zn0nTx4PTBp9KQwpCZzvyS_GaGsS_ccYTxzkZGJwkd3Rj0g8JFGPnQXWKELnwi7cVlb3Alvl-n1yus3-TCEK0y-P7ap3tvHUY6YTU74-Gw84daO2YSjZJKrscp-WEhMrLyr49LmgcCHt95hSZHNLupPOQ5XguEpg_E78p87c5wtvKf6PQa-vRR6HyTbQT4CKe1hFtsxVYf2Ye6oeRimz1dLCaoNQu4eDhiq0UbUAm0JSYFtMEMcTRUqQZdlVDWvAwXju5g7OttVtMTQM9BhHVbwvxlAgwMK0DQCPej6QwoTxO32oDO9Aaod5aFkQMSQhcoxg67Oj_72x9EoeNCVIgkm0UmdzrWGS6EFjwWpYmNwxBXStPrldylReG6QmuT8jw2MpNOm4IXuAU02iQxt8kuW61Glf3MING5LFNjpCGQVuaS0lxzibuvLBdCuhbjzUqrIpQjp64Yd6rhnd0qrx5F6lFxV6FULdZefjSuq3G8Pb3XqFD9Y1QK48XbHx43Clf4u9Ediq7saD5VVDoryTDcd1-fw_39KgLDuMU-1daylJYusonRu_de0fbZOr3V5KEDtjqbzO0h4qKZOfKGf8TWTvu_f_6i57cfg8tnHXEQDg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED9KythexrrPbN12gz3GRJHt2OpbKSvp2uRlLfRNSLbEUjYnNMkg_8T-5t3Jctig7cNeZQuOO-k-dHe_A_gsvSQ33rvEmjTlpxtLejDzCVk-UpdkoavQSDudjSdX2dfr_HoPTrpeGC6rjLq_1elBW8eVYeTmcDmfD7_xaMdC0aFkyHWRkx7eZ3SqvAf7x2fnk9kumUAWOw9Jz5zRGUXagQ-FMq8teae_uMSrCPCd8XnlDgN1nwMaDNHpM3gaPUg8bok8gD3XPIdH7UzJ7Qv4Pd3ekuAcEv9oxTXbAZIcOCpmGQzQzmk1AlWjaWqs29IMH1_vcBkgN5vVEZLy4Jp1V-Pm7x4YnDdIfiP-XKzWyK2aFG0j6dPvyOOzHC48MhGmIjJewtXpl8uTSRKHLiRVlhbrxJbeCFMQI0wmRVZbYT1ZuVrZ8biWPq8qP8qMsbkshVWF8sZWsqIo0BqbCunSV9BrFo17A5iaUtW5tcqyn1aXijtdS0UBWFFmmfJ9kB2ndRURyXkwxg_dlZ7d6CAezeLRYqSJqj4MdpuWLSDHw7-POxHqf86VJpPx8MZPncA13ThOo5jGLTYrzehZaUEWf3T_PzKkWMk3FH143Z6WHbWcy-ai3rf_S9pHeDy5nF7oi7PZ-Tt4wl_aWqJD6K1vN-49uUlr-yFegz_WmBEq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myrteae+phylogeny%2C+calibration%2C+biogeography+and+diversification+patterns%3A+Increased+understanding+in+the+most+species+rich+tribe+of+Myrtaceae&rft.jtitle=Molecular+phylogenetics+and+evolution&rft.au=Vasconcelos%2C+Thais+N.C.&rft.au=Proen%C3%A7a%2C+Carol+E.B.&rft.au=Ahmad%2C+Berhaman&rft.au=Aguilar%2C+Daniel+S.&rft.date=2017-04-01&rft.pub=Elsevier+Inc&rft.issn=1055-7903&rft.eissn=1095-9513&rft.volume=109&rft.spage=113&rft.epage=137&rft_id=info:doi/10.1016%2Fj.ympev.2017.01.002&rft.externalDocID=S1055790317300052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-7903&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-7903&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-7903&client=summon |