Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water
[Display omitted] •The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of pollutants in water.•Simultaneous removal of 4-chlorophenol and Cr(VI) is achieved by piezocatalysis.•H2O2 and OH induced mechanism on Au/BiVO...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 259; p. 118084 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.12.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of pollutants in water.•Simultaneous removal of 4-chlorophenol and Cr(VI) is achieved by piezocatalysis.•H2O2 and OH induced mechanism on Au/BiVO4 piezocatalysis is proposed.
Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a piezoelectric material, Au nanoparticles modified BiVO4 (Au/BiVO4) is synthesized and its piezoelectric response is observed by piezo-response force microscopy. Au/BiVO4 is used as a bifunctional piezocatalyst for simultaneous removal of 4-chlorophenol (4-CP) and hexavalent chromium (Cr(VI)) upon ultrasonic vibration, with 91% and 83% of removal efficiency in 120 min, respectively. The piezocatalytic performance of Au/BiVO4 increases with the increase of ultrasonic power and the decrease of pH. The main active species for 4-CP oxidation and Cr(VI) reduction are determined to beOH and H2O2, respectively, since a significant formation rate ofOH is estimated by a probe method, and a high amount of H2O2 accumulation is directly detected. This study provides understanding on the piezocatalysis mechanism and brings new insights for development of piezocatalysis for multifunctional environmental applications. |
---|---|
AbstractList | [Display omitted]
•The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of pollutants in water.•Simultaneous removal of 4-chlorophenol and Cr(VI) is achieved by piezocatalysis.•H2O2 and OH induced mechanism on Au/BiVO4 piezocatalysis is proposed.
Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a piezoelectric material, Au nanoparticles modified BiVO4 (Au/BiVO4) is synthesized and its piezoelectric response is observed by piezo-response force microscopy. Au/BiVO4 is used as a bifunctional piezocatalyst for simultaneous removal of 4-chlorophenol (4-CP) and hexavalent chromium (Cr(VI)) upon ultrasonic vibration, with 91% and 83% of removal efficiency in 120 min, respectively. The piezocatalytic performance of Au/BiVO4 increases with the increase of ultrasonic power and the decrease of pH. The main active species for 4-CP oxidation and Cr(VI) reduction are determined to beOH and H2O2, respectively, since a significant formation rate ofOH is estimated by a probe method, and a high amount of H2O2 accumulation is directly detected. This study provides understanding on the piezocatalysis mechanism and brings new insights for development of piezocatalysis for multifunctional environmental applications. Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a piezoelectric material, Au nanoparticles modified BiVO4 (Au/BiVO4) is synthesized and its piezoelectric response is observed by piezo-response force microscopy. Au/BiVO4 is used as a bifunctional piezocatalyst for simultaneous removal of 4-chlorophenol (4-CP) and hexavalent chromium (Cr(VI)) upon ultrasonic vibration, with 91% and 83% of removal efficiency in 120 min, respectively. The piezocatalytic performance of Au/BiVO4 increases with the increase of ultrasonic power and the decrease of pH. The main active species for 4-CP oxidation and Cr(VI) reduction are determined to be•OH and H2O2, respectively, since a significant formation rate of•OH is estimated by a probe method, and a high amount of H2O2 accumulation is directly detected. This study provides understanding on the piezocatalysis mechanism and brings new insights for development of piezocatalysis for multifunctional environmental applications. |
ArticleNumber | 118084 |
Author | Wei, Yan Zhang, Yiwen Geng, Wei Su, Hanrui Long, Mingce |
Author_xml | – sequence: 1 givenname: Yan surname: Wei fullname: Wei, Yan – sequence: 2 givenname: Yiwen surname: Zhang fullname: Zhang, Yiwen – sequence: 3 givenname: Wei surname: Geng fullname: Geng, Wei – sequence: 4 givenname: Hanrui surname: Su fullname: Su, Hanrui – sequence: 5 givenname: Mingce orcidid: 0000-0002-5168-8330 surname: Long fullname: Long, Mingce email: long_mc@sjtu.edu.cn |
BookMark | eNqFkU1P3DAURa0KpA6Uf9CFpW7KIoM_4onDAomOaIuExAbYWi_Oi_AoY6e2A6K_vh6lKxbt6m3uudI974Qc-eCRkM-crTnjm4vdGiYLuVsLxts155rp-gNZcd3ISmotj8iKtWJTSdnIj-QkpR1jTEihV2S6GQZnHfpMOzfM3mYXPIx0cvg7lE4Y35JLNAz0er745p7uazqESJPbz2MGj2FONOI-vBSmhOrKPo8hhukZfRgp-J5u49en23PqPH2FjPETOR5gTHj2956Sx-83D9uf1d39j9vt9V1la9nkquMKBOuF6DgoVB0MuuW2twK54nXHbIMSFIdWqKZtmdItsrKuU73tJZcgT8mXpXeK4deMKZtdmGOZloyQRRMXG61Kql5SNoaUIg5mim4P8c1wZg5uzc4sbs3BrVncFuzyHWZdhoO6HMGN_4OvFhjL_BeH0aTDAyz2LqLNpg_u3wV_ANiwmVs |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_2c02121 crossref_primary_10_1002_gch2_202100132 crossref_primary_10_1016_j_ces_2021_116707 crossref_primary_10_1016_j_jwpe_2024_105120 crossref_primary_10_1002_ange_202213927 crossref_primary_10_1002_adfm_202009594 crossref_primary_10_1016_j_ccr_2024_216234 crossref_primary_10_1134_S0036024421120050 crossref_primary_10_1007_s10311_022_01537_3 crossref_primary_10_1002_anie_202209484 crossref_primary_10_1016_j_ceramint_2022_10_251 crossref_primary_10_1016_j_jclepro_2023_139847 crossref_primary_10_1007_s10854_022_07939_x crossref_primary_10_1016_j_nanoen_2021_106890 crossref_primary_10_1016_j_jhazmat_2020_124171 crossref_primary_10_1016_j_coco_2022_101466 crossref_primary_10_1016_j_surfin_2024_104588 crossref_primary_10_1016_j_jallcom_2023_169328 crossref_primary_10_1016_j_jhazmat_2024_136399 crossref_primary_10_1021_acsami_4c15127 crossref_primary_10_1021_acsami_4c10108 crossref_primary_10_1039_D3TA04758J crossref_primary_10_1016_j_surfin_2021_101335 crossref_primary_10_1016_j_nanoen_2022_107218 crossref_primary_10_1016_j_jallcom_2024_174887 crossref_primary_10_1016_j_mtcomm_2024_108500 crossref_primary_10_1016_j_apcatb_2021_120414 crossref_primary_10_1016_j_nanoen_2022_107573 crossref_primary_10_1016_j_apcatb_2024_124950 crossref_primary_10_1039_D3CY00331K crossref_primary_10_1016_j_jenvman_2024_121716 crossref_primary_10_1016_j_seppur_2020_117119 crossref_primary_10_1016_j_materresbull_2023_112559 crossref_primary_10_1021_acsanm_3c04168 crossref_primary_10_1016_j_apcatb_2023_123335 crossref_primary_10_1016_j_apsusc_2020_148791 crossref_primary_10_1080_09593330_2021_1970822 crossref_primary_10_1016_j_jcis_2024_04_106 crossref_primary_10_1016_j_hazadv_2024_100468 crossref_primary_10_1002_sus2_232 crossref_primary_10_1039_D3NR05016E crossref_primary_10_1007_s10853_020_05053_z crossref_primary_10_26599_NRE_2024_9120137 crossref_primary_10_1002_cctc_202000619 crossref_primary_10_1016_j_ceramint_2022_04_301 crossref_primary_10_1039_D3DT00707C crossref_primary_10_1016_j_jallcom_2021_162591 crossref_primary_10_7498_aps_70_20210210 crossref_primary_10_1016_j_chemosphere_2021_131270 crossref_primary_10_3390_s23115336 crossref_primary_10_1016_j_apcatb_2022_122196 crossref_primary_10_1039_D2NR01202B crossref_primary_10_1039_D1NJ05579H crossref_primary_10_1039_D1EN00325A crossref_primary_10_1016_j_jcis_2023_07_189 crossref_primary_10_1016_j_scitotenv_2021_150924 crossref_primary_10_1039_D2TA01578A crossref_primary_10_1016_j_nanoen_2022_107473 crossref_primary_10_1016_j_apcatb_2022_121664 crossref_primary_10_1016_j_cej_2021_129484 crossref_primary_10_1002_adma_202413525 crossref_primary_10_1016_j_bioactmat_2025_01_026 crossref_primary_10_1016_j_ijbiomac_2024_134623 crossref_primary_10_1016_j_seppur_2021_119638 crossref_primary_10_1039_D3IM00093A crossref_primary_10_1016_j_jmat_2021_05_007 crossref_primary_10_1002_smll_202001573 crossref_primary_10_1016_j_jhazmat_2021_126392 crossref_primary_10_1016_j_jenvman_2022_116395 crossref_primary_10_1080_09593330_2022_2135461 crossref_primary_10_1039_D2NJ01005D crossref_primary_10_1007_s12274_023_6159_z crossref_primary_10_1016_j_chemosphere_2020_128639 crossref_primary_10_1016_j_chemosphere_2021_130556 crossref_primary_10_1021_jacs_4c03851 crossref_primary_10_1007_s11431_023_2535_0 crossref_primary_10_1016_j_apsusc_2022_155807 crossref_primary_10_1016_j_cej_2023_146541 crossref_primary_10_1002_asia_202300090 crossref_primary_10_1016_j_jphotochem_2022_114435 crossref_primary_10_1039_D1TA02531G crossref_primary_10_1016_j_apcatb_2020_118770 crossref_primary_10_1016_j_jallcom_2021_163492 crossref_primary_10_1039_D1NJ00993A crossref_primary_10_1016_S1872_2067_20_63637_3 crossref_primary_10_1016_j_jhazmat_2020_123109 crossref_primary_10_1002_smtd_202100269 crossref_primary_10_1016_j_apsusc_2025_162536 crossref_primary_10_1016_j_jtice_2021_01_028 crossref_primary_10_1016_j_cej_2022_137868 crossref_primary_10_1016_j_seppur_2024_127477 crossref_primary_10_1016_j_seppur_2024_127911 crossref_primary_10_1016_j_materresbull_2021_111350 crossref_primary_10_3390_catal12121523 crossref_primary_10_1016_j_cej_2024_152947 crossref_primary_10_1016_j_nanoen_2021_106036 crossref_primary_10_3390_catal14090602 crossref_primary_10_1007_s11051_023_05713_6 crossref_primary_10_1016_j_cej_2024_150766 crossref_primary_10_1016_j_jwpe_2024_106121 crossref_primary_10_1016_j_jclepro_2022_130908 crossref_primary_10_1016_j_jclepro_2024_142597 crossref_primary_10_1016_j_solidstatesciences_2020_106285 crossref_primary_10_1002_adsu_202400265 crossref_primary_10_1016_j_colsurfa_2024_133563 crossref_primary_10_1002_smll_202303586 crossref_primary_10_1016_j_nanoen_2024_110518 crossref_primary_10_1002_smll_202307946 crossref_primary_10_1016_j_inoche_2022_110349 crossref_primary_10_1016_j_chemosphere_2020_126146 crossref_primary_10_1039_D4QM00848K crossref_primary_10_1016_j_nantod_2022_101429 crossref_primary_10_20517_cs_2023_65 crossref_primary_10_1016_j_jpcs_2020_109899 crossref_primary_10_1016_j_inoche_2022_109311 crossref_primary_10_1007_s40544_021_0505_5 crossref_primary_10_1039_D1TA05151B crossref_primary_10_1016_j_apcatb_2024_124688 crossref_primary_10_1016_j_jes_2021_08_023 crossref_primary_10_1016_j_jclepro_2022_135002 crossref_primary_10_1016_j_apcatb_2022_121717 crossref_primary_10_1016_j_cej_2024_149514 crossref_primary_10_1016_j_colsurfa_2023_131187 crossref_primary_10_1021_acs_inorgchem_3c04487 crossref_primary_10_1021_acsami_1c19287 crossref_primary_10_1016_j_jece_2024_112716 crossref_primary_10_1016_j_apsusc_2021_151146 crossref_primary_10_1016_j_seppur_2024_130297 crossref_primary_10_1002_adfm_202005158 crossref_primary_10_1039_D3DT02077K crossref_primary_10_1016_j_seppur_2023_125447 crossref_primary_10_1016_j_surfin_2024_105271 crossref_primary_10_1021_acsanm_4c05864 crossref_primary_10_3390_catal14120854 crossref_primary_10_1039_D1MA00106J crossref_primary_10_1016_j_apcatb_2021_120019 crossref_primary_10_1016_j_nanoen_2024_110459 crossref_primary_10_1002_ange_202110429 crossref_primary_10_1016_j_jhazmat_2020_123827 crossref_primary_10_1016_j_seppur_2024_126462 crossref_primary_10_3390_inorganics13030071 crossref_primary_10_1016_j_apsusc_2022_155555 crossref_primary_10_1016_j_jclepro_2023_138333 crossref_primary_10_1016_j_nanoen_2019_104366 crossref_primary_10_1016_j_nanoen_2023_108342 crossref_primary_10_1021_acscatal_1c02031 crossref_primary_10_1039_D1NR07386A crossref_primary_10_1016_j_inoche_2020_107904 crossref_primary_10_1039_D2MH01221A crossref_primary_10_1016_j_apcatb_2023_122655 crossref_primary_10_1111_jace_18233 crossref_primary_10_1002_ange_202209484 crossref_primary_10_1016_j_seppur_2024_127548 crossref_primary_10_1016_j_seppur_2022_120861 crossref_primary_10_1016_j_seppur_2023_123615 crossref_primary_10_1016_j_jcis_2021_11_070 crossref_primary_10_1016_j_nanoen_2022_107141 crossref_primary_10_1016_j_inoche_2024_113586 crossref_primary_10_1021_acsanm_3c02202 crossref_primary_10_1021_acsanm_3c02686 crossref_primary_10_1039_D0EN01028F crossref_primary_10_1016_j_colsurfa_2023_131030 crossref_primary_10_1016_j_cej_2023_141947 crossref_primary_10_1016_j_cej_2022_136116 crossref_primary_10_1016_j_nantod_2021_101104 crossref_primary_10_1002_anie_202110429 crossref_primary_10_1016_j_apcatb_2023_122623 crossref_primary_10_1016_j_apsusc_2021_151851 crossref_primary_10_1016_j_seppur_2023_125598 crossref_primary_10_1016_j_ceramint_2024_01_096 crossref_primary_10_1021_acsanm_0c00039 crossref_primary_10_1016_j_jallcom_2023_172154 crossref_primary_10_1002_adfm_202407309 crossref_primary_10_1002_asia_202200278 crossref_primary_10_1016_j_envpol_2025_125778 crossref_primary_10_1007_s42452_020_3027_2 crossref_primary_10_1016_j_cjche_2020_09_010 crossref_primary_10_1007_s10854_022_08431_2 crossref_primary_10_1021_acsomega_2c01699 crossref_primary_10_1016_j_matpr_2021_11_381 crossref_primary_10_1016_j_apcatb_2023_122752 crossref_primary_10_1039_D3TA04626E crossref_primary_10_1016_j_apsusc_2021_149557 crossref_primary_10_1021_acsami_4c01283 crossref_primary_10_1021_acsami_4c01287 crossref_primary_10_1016_j_apcatb_2022_121369 crossref_primary_10_1016_j_cej_2025_161443 crossref_primary_10_1016_j_apsusc_2021_150657 crossref_primary_10_1016_j_pmatsci_2023_101161 crossref_primary_10_1016_j_jwpe_2024_106195 crossref_primary_10_1039_D1TA05315A crossref_primary_10_1016_j_jallcom_2022_168382 crossref_primary_10_1016_j_apcatb_2020_119340 crossref_primary_10_1016_j_microc_2024_110088 crossref_primary_10_1021_acssuschemeng_3c06462 crossref_primary_10_1016_j_apcatb_2022_122204 crossref_primary_10_1016_j_apsusc_2021_150669 crossref_primary_10_1021_acsomega_0c03743 crossref_primary_10_1016_j_apsusc_2023_156467 crossref_primary_10_1016_j_colsurfa_2023_132579 crossref_primary_10_1021_acsanm_3c02571 crossref_primary_10_1016_j_nanoen_2020_105290 crossref_primary_10_1002_wer_1407 crossref_primary_10_1016_j_apcatb_2020_119353 crossref_primary_10_1016_j_scitotenv_2023_161767 crossref_primary_10_1021_acscatal_0c00188 crossref_primary_10_1016_j_jcis_2024_06_088 crossref_primary_10_1021_acs_langmuir_4c02834 crossref_primary_10_1016_j_matlet_2022_133564 crossref_primary_10_1002_anie_202213927 crossref_primary_10_1016_j_apcatb_2022_121343 |
Cites_doi | 10.1039/C9NR01676G 10.1039/C9EN00367C 10.1016/j.nanoen.2019.02.047 10.1016/j.cej.2019.121971 10.1016/j.cej.2016.11.048 10.1016/S1872-2067(16)62464-6 10.1016/j.apcatb.2019.03.054 10.1063/1.555805 10.1016/j.nanoen.2015.05.024 10.1016/j.watres.2014.05.005 10.1016/j.nanoen.2017.08.058 10.1016/j.desal.2005.12.007 10.1039/C4NR05245E 10.1016/j.cej.2018.03.089 10.1007/s40820-019-0241-9 10.1016/S1872-2067(17)62951-6 10.1002/anie.201201424 10.1016/j.nanoen.2018.11.028 10.1016/j.nanoen.2019.01.095 10.1016/j.apcatb.2018.08.016 10.1016/j.jhazmat.2011.10.016 10.1021/nl504630j 10.1016/j.watres.2018.09.020 10.1021/cs501076a 10.1016/j.nantod.2010.10.008 10.1016/j.apcatb.2016.10.046 10.1021/jz100027t 10.1021/acs.est.6b06426 10.1002/jctb.4981 10.1016/j.watres.2019.03.071 10.1021/jp105691v 10.1016/j.ultsonch.2008.02.002 10.1021/jp202127t 10.1016/S1872-2067(17)62947-4 10.1021/jp0144810 10.1021/jp063441z 10.1021/acscatal.6b01187 10.1016/j.watres.2012.01.046 10.1016/j.cej.2013.10.104 10.1016/j.watres.2017.09.021 10.1111/j.1551-2916.2012.05088.x 10.1016/j.apcatb.2016.11.057 10.1016/j.jhazmat.2016.06.002 10.1002/adma.201104365 10.1002/cssc.201702405 10.1016/j.apcatb.2018.03.025 10.1016/j.apcatb.2018.09.028 10.1038/srep02160 10.1016/j.apcatb.2017.09.070 10.1007/BF03353669 10.1039/C6NR09137G 10.1002/adma.201505785 10.1016/j.nanoen.2016.12.013 10.1021/es800168k 10.1039/C6NR00972G 10.1021/acsanm.9b00107 10.1016/S0926-3373(01)00225-9 10.1016/j.nanoen.2017.05.029 10.1016/j.nanoen.2018.12.006 10.1016/j.apsusc.2019.02.017 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Dec 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Dec 15, 2019 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2019.118084 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2019_118084 S0926337319308318 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c437t-b15a20d22b1a5e5baf891cdc2e1514b0c7e3a51a9257990589e0373b5dcd313a3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 10:36:14 EDT 2025 Tue Jul 01 04:34:58 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 Sat Mar 02 16:00:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hydrogen peroxide Bifunctional catalysis Piezocatalytic effect Gold modified bismuth vanadate Ultrasonic vibration |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-b15a20d22b1a5e5baf891cdc2e1514b0c7e3a51a9257990589e0373b5dcd313a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5168-8330 |
PQID | 2301912685 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2301912685 crossref_primary_10_1016_j_apcatb_2019_118084 crossref_citationtrail_10_1016_j_apcatb_2019_118084 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-15 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Yao, Hu, Yu, Lian, Gao, Zhang, Li, Wang (bib0115) 2018; 344 Long, Cai, Cai, Zhou, Chai, Wu (bib0175) 2006; 110 Pan, Su, Zhu, Vafaei Molamahmood, Long (bib0290) 2018; 145 Wei, Su, Zhang, Zheng, Pan, Su, Geng, Long (bib0265) 2019; 375 Ke, Duan, Luo, Zhang, Sun, Liu, Tade, Wang (bib0145) 2017; 313 Hirakawa, Shiota, Shiraishi, Sakamoto, Ichikawa, Hirai (bib0305) 2016; 6 Liu, Zhang, Long, Lu, Zeng, Liu, Withers, Li, Yi (bib0155) 2018; 30 Li, Song, Wu, Wang, Pan, Sun, Meng, Han, Xu, Gan (bib0255) 2019; 478 Wang, Wang, Li, An, Zhao, Wong (bib0285) 2019; 157 Huang, Pan, Zou, Zhang, Wang (bib0140) 2014; 6 Van, Chang, Chen, Tsai, Tzeng, Lin, Kuo, Liu, Chang, Chou, Wu, Chen, Luo, Hsu, Chu (bib0200) 2015; 15 Long, Jiang, Li, Cao, Zhang, Cai (bib0180) 2011; 3 Ramalingam, Radika, Al-Lohedan (bib0020) 2016; 37 Buxton, Greenstock, Helman, Ross (bib0295) 1988; 17 Wang, Ma, Zhang, Zhang, Jiang, Pan, Wen, Kang, Zhang (bib0280) 2006; 195 Li, Sang, Chang, Huang, Zhang, Yang, Jiang, Liu, Wang (bib0050) 2015; 15 Biswas, Saha, Jana (bib0075) 2019; 2 Chou, Chan, Lin, Yang, Liu, Lin, Wu, Lee, Lin (bib0170) 2019; 57 Yu, Liu, Zhang, Li, Zhao, Zhu, Liu, Lin, Liu, Zhang (bib0210) 2019; 58 Singh, Khare (bib0065) 2017; 38 Brame, Long, Li, Alvarez (bib0300) 2014; 60 Zhang, Huang, Yeom (bib0085) 2019; 11 Wang, Jiang, Zhang, Xie, Wang, Xing, Xu, Zhang (bib0250) 2008; 15 Ye, Jiang, Xu, Zhang, Wang, Lv, Pan (bib0185) 2017; 126 Qiu, Zhang, Diao, Huang, He, Morel, Xiong (bib0225) 2012; 46 Feng, Sun, Liu, Zhu, Xiong, Tian (bib0040) 2019 Yourdkhani, Caruntu (bib0070) 2011; 115 Liu, Wu (bib0015) 2019; 56 Wang, Yi, Wang, Deng (bib0110) 2017; 38 Zhang, Lu, Ge, Han, Li, Gao, Li, Xu (bib0195) 2017; 204 Wang, Zhao, Ji, Liu, Chen, Ma, Zhu, Zhao (bib0275) 2010; 114 Wang (bib0005) 2010; 5 Lan, Feng, Xiong, Tian, Liu, Kong (bib0010) 2017; 51 Bai, Du, Hu, He, He, Liu, Fan (bib0130) 2018; 239 Zanella, Giorgio, Henry, Louis (bib0235) 2002; 106 Wang (bib0080) 2012; 24 You, Hu, Liu, Wei (bib0240) 2018; 232 Lu, Fang, Wu, Ding, Jiang, Zhao, Li, Yang, Li, Wang (bib0220) 2017; 9 Liu, Yan (bib0160) 2012; 95 Liu, Sun, Borthwick, Wang, Li, Guan (bib0230) 2016; 317 Tang, Yang, Zeng, Cai, Li, Zhou, Pang, Liu, Zhang, Luna (bib0260) 2014; 239 Bandara, Mielczarski, Lopez, Kiwi (bib0125) 2001; 34 Jin, Liu, Hu, Wang, Zhang, Lv, Zhuge (bib0215) 2019; 59 Starr, Wang (bib0245) 2013; 3 Sun, Wang, Li, Zhang, Jiang (bib0150) 2014; 4 Wang, Zhao, Ma, Chen, Zhao (bib0310) 2008; 42 Hua, Zhang, Pan, Zhang, Lv, Zhang (bib0120) 2012; 211-212 Wu, Chang, Chang, Chang (bib0090) 2016; 28 Hong, Xu, Konishi, Li (bib0055) 2010; 1 Zhao, Huang, Gao, Zhang, Tian, Fang, Liu (bib0205) 2019; 11 Liu, Ma, Chen, Wen, Li, An (bib0270) 2019; 250 Deng, Tang, Zeng, Zhu, Yan, Zhou, Wang, Liu, Wang (bib0135) 2017; 203 Wei, Li, Yan, Luo, Guo, Dai, Luo (bib0105) 2018; 222 Feng, Ling, Wang, Xu, Cao, Li, Bian (bib0030) 2017; 40 Starr, Shi, Wang (bib0035) 2012; 51 Xu, Guo, Sun, Wang (bib0165) 2019; 29 Lin, Tsao, Wu, Chou, Lin, Wu (bib0095) 2017; 31 Liang, Yan, Rtimi, Bandara (bib0025) 2019; 241 Shao, Zhang, Sun, Wang (bib0100) 2018; 11 Zheng, Yu, Long, Li (bib0190) 2017; 38 Wu, Mao, Wu, Xu, You, Xue, Jia (bib0060) 2016; 8 Lv, Kong, Lan, Feng, Xiong, Tian (bib0045) 2017; 92 Van (10.1016/j.apcatb.2019.118084_bib0200) 2015; 15 Ramalingam (10.1016/j.apcatb.2019.118084_bib0020) 2016; 37 Wang (10.1016/j.apcatb.2019.118084_bib0110) 2017; 38 Liu (10.1016/j.apcatb.2019.118084_bib0160) 2012; 95 Wang (10.1016/j.apcatb.2019.118084_bib0250) 2008; 15 Liu (10.1016/j.apcatb.2019.118084_bib0270) 2019; 250 Lan (10.1016/j.apcatb.2019.118084_bib0010) 2017; 51 Yourdkhani (10.1016/j.apcatb.2019.118084_bib0070) 2011; 115 Tang (10.1016/j.apcatb.2019.118084_bib0260) 2014; 239 Yu (10.1016/j.apcatb.2019.118084_bib0210) 2019; 58 Jin (10.1016/j.apcatb.2019.118084_bib0215) 2019; 59 You (10.1016/j.apcatb.2019.118084_bib0240) 2018; 232 Liu (10.1016/j.apcatb.2019.118084_bib0230) 2016; 317 Lin (10.1016/j.apcatb.2019.118084_bib0095) 2017; 31 Feng (10.1016/j.apcatb.2019.118084_bib0040) 2019 Ye (10.1016/j.apcatb.2019.118084_bib0185) 2017; 126 Wang (10.1016/j.apcatb.2019.118084_bib0275) 2010; 114 Singh (10.1016/j.apcatb.2019.118084_bib0065) 2017; 38 Wang (10.1016/j.apcatb.2019.118084_bib0310) 2008; 42 Buxton (10.1016/j.apcatb.2019.118084_bib0295) 1988; 17 Starr (10.1016/j.apcatb.2019.118084_bib0245) 2013; 3 Wei (10.1016/j.apcatb.2019.118084_bib0105) 2018; 222 Wu (10.1016/j.apcatb.2019.118084_bib0060) 2016; 8 Pan (10.1016/j.apcatb.2019.118084_bib0290) 2018; 145 Zhao (10.1016/j.apcatb.2019.118084_bib0205) 2019; 11 Ke (10.1016/j.apcatb.2019.118084_bib0145) 2017; 313 Hirakawa (10.1016/j.apcatb.2019.118084_bib0305) 2016; 6 Zheng (10.1016/j.apcatb.2019.118084_bib0190) 2017; 38 Lv (10.1016/j.apcatb.2019.118084_bib0045) 2017; 92 Zanella (10.1016/j.apcatb.2019.118084_bib0235) 2002; 106 Chou (10.1016/j.apcatb.2019.118084_bib0170) 2019; 57 Lu (10.1016/j.apcatb.2019.118084_bib0220) 2017; 9 Biswas (10.1016/j.apcatb.2019.118084_bib0075) 2019; 2 Wu (10.1016/j.apcatb.2019.118084_bib0090) 2016; 28 Wang (10.1016/j.apcatb.2019.118084_bib0005) 2010; 5 Bai (10.1016/j.apcatb.2019.118084_bib0130) 2018; 239 Brame (10.1016/j.apcatb.2019.118084_bib0300) 2014; 60 Wang (10.1016/j.apcatb.2019.118084_bib0285) 2019; 157 Wang (10.1016/j.apcatb.2019.118084_bib0280) 2006; 195 Deng (10.1016/j.apcatb.2019.118084_bib0135) 2017; 203 Long (10.1016/j.apcatb.2019.118084_bib0175) 2006; 110 Yao (10.1016/j.apcatb.2019.118084_bib0115) 2018; 344 Sun (10.1016/j.apcatb.2019.118084_bib0150) 2014; 4 Zhang (10.1016/j.apcatb.2019.118084_bib0085) 2019; 11 Zhang (10.1016/j.apcatb.2019.118084_bib0195) 2017; 204 Li (10.1016/j.apcatb.2019.118084_bib0255) 2019; 478 Long (10.1016/j.apcatb.2019.118084_bib0180) 2011; 3 Feng (10.1016/j.apcatb.2019.118084_bib0030) 2017; 40 Starr (10.1016/j.apcatb.2019.118084_bib0035) 2012; 51 Wang (10.1016/j.apcatb.2019.118084_bib0080) 2012; 24 Liu (10.1016/j.apcatb.2019.118084_bib0155) 2018; 30 Wei (10.1016/j.apcatb.2019.118084_bib0265) 2019; 375 Liang (10.1016/j.apcatb.2019.118084_bib0025) 2019; 241 Xu (10.1016/j.apcatb.2019.118084_bib0165) 2019; 29 Huang (10.1016/j.apcatb.2019.118084_bib0140) 2014; 6 Qiu (10.1016/j.apcatb.2019.118084_bib0225) 2012; 46 Hong (10.1016/j.apcatb.2019.118084_bib0055) 2010; 1 Li (10.1016/j.apcatb.2019.118084_bib0050) 2015; 15 Hua (10.1016/j.apcatb.2019.118084_bib0120) 2012; 211-212 Bandara (10.1016/j.apcatb.2019.118084_bib0125) 2001; 34 Shao (10.1016/j.apcatb.2019.118084_bib0100) 2018; 11 Liu (10.1016/j.apcatb.2019.118084_bib0015) 2019; 56 |
References_xml | – volume: 15 start-page: 2372 year: 2015 end-page: 2379 ident: bib0050 article-title: Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect publication-title: Nano Lett. – volume: 40 start-page: 481 year: 2017 end-page: 486 ident: bib0030 article-title: Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis publication-title: Nano Energy – volume: 58 start-page: 695 year: 2019 end-page: 705 ident: bib0210 article-title: Enhanced catalytic performance by multi-field coupling in KNbO publication-title: Nano Energy – volume: 9 start-page: 3231 year: 2017 end-page: 3245 ident: bib0220 article-title: Solvothermal-assisted synthesis of self-assembling TiO publication-title: Nanoscale – volume: 115 start-page: 14797 year: 2011 end-page: 14805 ident: bib0070 article-title: Characterization of the microstructural and piezoelectric properties of PbTiO publication-title: J. Phys. Chem. C – volume: 24 start-page: 4632 year: 2012 end-page: 4646 ident: bib0080 article-title: Progress in piezotronics and piezo-phototronics publication-title: Adv. Mater. – volume: 29 year: 2019 ident: bib0165 article-title: Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO publication-title: Adv. Funct. Mater. – volume: 95 start-page: 1944 year: 2012 end-page: 1948 ident: bib0160 article-title: The application of bismuth-based oxides in organic-inorganic hybrid photovoltaic devices publication-title: J. Am. Ceram. Soc. – volume: 11 start-page: 527 year: 2018 end-page: 531 ident: bib0100 article-title: Oxygen reduction reaction for generating H publication-title: ChemSusChem – volume: 38 start-page: 2076 year: 2017 end-page: 2084 ident: bib0190 article-title: Humic acid-mediated visible-light degradation of phenol on phosphate-modified and Nafion-modified TiO publication-title: Chin. J. Catal. – volume: 8 start-page: 7343 year: 2016 end-page: 7350 ident: bib0060 article-title: Strong pyro-catalysis of pyroelectric BiFeO publication-title: Nanoscale – volume: 15 start-page: 768 year: 2008 end-page: 774 ident: bib0250 article-title: Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation publication-title: Ultrason. Sonochem. – volume: 145 start-page: 731 year: 2018 end-page: 740 ident: bib0290 article-title: CaO publication-title: Water Res. – volume: 232 start-page: 288 year: 2018 end-page: 298 ident: bib0240 article-title: Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi publication-title: Appl. Catal. B-Environ. – volume: 2 start-page: 1120 year: 2019 end-page: 1128 ident: bib0075 article-title: ZnSnO publication-title: ACS Appl. Nano Mater. – volume: 126 start-page: 172 year: 2017 end-page: 178 ident: bib0185 article-title: Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism publication-title: Water Res. – volume: 317 start-page: 385 year: 2016 end-page: 393 ident: bib0230 article-title: Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: synergetic promotion effect and autosynchronous doping publication-title: J. Hazard. Mater. – volume: 4 start-page: 3498 year: 2014 end-page: 3503 ident: bib0150 article-title: Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst publication-title: ACS Catal. – volume: 222 start-page: 88 year: 2018 end-page: 98 ident: bib0105 article-title: One-step fabrication of g-C publication-title: Appl. Catal. B-Environ. – volume: 239 start-page: 114 year: 2014 end-page: 122 ident: bib0260 article-title: Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study publication-title: Chem. Eng. J. – volume: 56 start-page: 74 year: 2019 end-page: 81 ident: bib0015 article-title: Synergistically catalytic activities of BiFeO publication-title: Nano Energy – volume: 6 start-page: 14044 year: 2014 end-page: 14063 ident: bib0140 article-title: Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress publication-title: Nanoscale – volume: 34 start-page: 321 year: 2001 end-page: 333 ident: bib0125 article-title: 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light - comparison with titanium oxide publication-title: Appl. Catal. B-Environ. – volume: 211-212 start-page: 317 year: 2012 end-page: 331 ident: bib0120 article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review publication-title: J. Hazard. Mater. – volume: 241 start-page: 256 year: 2019 end-page: 269 ident: bib0025 article-title: Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook publication-title: Appl. Catal. B-Environ. – volume: 46 start-page: 2299 year: 2012 end-page: 2306 ident: bib0225 article-title: Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO publication-title: Water Res. – volume: 250 start-page: 337 year: 2019 end-page: 346 ident: bib0270 article-title: Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO publication-title: Appl. Catal. B-Environ. – volume: 203 start-page: 343 year: 2017 end-page: 354 ident: bib0135 article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C publication-title: Appl. Catal. B-Environ. – volume: 3 start-page: 171 year: 2011 end-page: 177 ident: bib0180 article-title: Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO publication-title: Nano-Micro Lett. – volume: 5 start-page: 540 year: 2010 end-page: 552 ident: bib0005 article-title: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics publication-title: Nano Today – volume: 57 start-page: 14 year: 2019 end-page: 21 ident: bib0170 article-title: A highly efficient Au-MoS publication-title: Nano Energy – volume: 3 start-page: e2160 year: 2013 ident: bib0245 article-title: Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials publication-title: Sci. Rep. – volume: 1 start-page: 997 year: 2010 end-page: 1002 ident: bib0055 article-title: Direct water splitting through vibrating piezoelectric microfibers in water publication-title: J. Phys. Chem. Lett. – volume: 31 start-page: 575 year: 2017 end-page: 581 ident: bib0095 article-title: Single- and few-layers MoS publication-title: Nano Energy – volume: 195 start-page: 294 year: 2006 end-page: 305 ident: bib0280 article-title: Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO publication-title: Desalination – volume: 478 start-page: 744 year: 2019 end-page: 753 ident: bib0255 article-title: Novel Z-scheme visible-light photocatalyst based on CoFe publication-title: Appl. Surf. Sci. – volume: 375 year: 2019 ident: bib0265 article-title: Efficient peroxodisulfate activation by iodine vacancy rich bismuth oxyiodide: a vacancy induced mechanism publication-title: Chem. Eng. J. – volume: 28 start-page: 3718 year: 2016 end-page: 3725 ident: bib0090 article-title: Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS publication-title: Adv. Mater. – volume: 110 start-page: 20211 year: 2006 end-page: 20216 ident: bib0175 article-title: Efficient photocatalytic degradation of phenol over Co publication-title: J. Phys. Chem. B – volume: 17 start-page: 513 year: 1988 end-page: 886 ident: bib0295 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O publication-title: J. Phys. Chem. Ref. Data – volume: 37 start-page: 1235 year: 2016 end-page: 1241 ident: bib0020 article-title: Preparation and surface characterization of nanodisk/nanoflower-structured gallium-doped zinc oxide as a catalyst for sensor applications publication-title: Chin. J. Catal. – volume: 42 start-page: 6173 year: 2008 end-page: 6178 ident: bib0310 article-title: Enhanced sonocatalytic degradation of azo dyes by Au/TiO publication-title: Environ. Sci. Technol. – volume: 30 year: 2018 ident: bib0155 article-title: Anomalous photovoltaic effect in centrosymmetric ferroelastic BiVO publication-title: Adv. Mater – volume: 92 start-page: 152 year: 2017 end-page: 156 ident: bib0045 article-title: Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process publication-title: J. Chem. Technol. Biotechnol. – volume: 60 start-page: 259 year: 2014 end-page: 266 ident: bib0300 article-title: Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen publication-title: Water Res. – volume: 6 start-page: 4976 year: 2016 end-page: 4982 ident: bib0305 article-title: Au nanoparticles supported on BiVO publication-title: ACS Catal. – volume: 38 start-page: 2141 year: 2017 end-page: 2149 ident: bib0110 article-title: Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer publication-title: Chin. J. Catal. – volume: 114 start-page: 17728 year: 2010 end-page: 17733 ident: bib0275 article-title: Sonochemical hydrogen production efficiently catalyzed by Au/TiO publication-title: J. Phys. Chem. C – volume: 51 start-page: 5962 year: 2012 end-page: 5966 ident: bib0035 article-title: Piezopotential-driven redox reactions at the surface of piezoelectric materials publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 625 year: 2015 end-page: 633 ident: bib0200 article-title: Heteroepitaxial approach to explore charge dynamics across Au/BiVO publication-title: Nano Energy – volume: 38 start-page: 335 year: 2017 end-page: 341 ident: bib0065 article-title: Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO publication-title: Nano Energy – volume: 344 start-page: 535 year: 2018 end-page: 544 ident: bib0115 article-title: Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction publication-title: Chem. Eng. J. – volume: 51 start-page: 6560 year: 2017 end-page: 6569 ident: bib0010 article-title: Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination publication-title: Environ. Sci. Technol. – volume: 11 start-page: 9085 year: 2019 end-page: 9090 ident: bib0205 article-title: Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity publication-title: Nanoscale – volume: 204 start-page: 385 year: 2017 end-page: 393 ident: bib0195 article-title: Novel AuPd bimetallic alloy decorated 2D BiVO publication-title: Appl. Catal. B-Environ. – volume: 11 start-page: 11 year: 2019 ident: bib0085 article-title: A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination publication-title: Nano-Micro Lett. – volume: 313 start-page: 1447 year: 2017 end-page: 1453 ident: bib0145 article-title: UV-assisted construction of 3D hierarchical rGO/Bi publication-title: Chem. Eng. J. – year: 2019 ident: bib0040 article-title: Enhancement and mechanism of nano-BaTiO publication-title: Environ. Sci. - Nano – volume: 59 start-page: 372 year: 2019 end-page: 379 ident: bib0215 article-title: The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater publication-title: Nano Energy – volume: 157 start-page: 106 year: 2019 end-page: 118 ident: bib0285 article-title: Catalyst-free activation of persulfate by visible light for water disinfection: efficiency and mechanisms publication-title: Water Res. – volume: 239 start-page: 204 year: 2018 end-page: 213 ident: bib0130 article-title: Synergy removal of Cr (VI) and organic pollutants over RP-MoS publication-title: Appl. Catal. B- Environ. – volume: 106 start-page: 7634 year: 2002 end-page: 7642 ident: bib0235 article-title: Alternative methods for the preparation of gold nanoparticles supported on TiO publication-title: J. Phys. Chem. B – volume: 11 start-page: 9085 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0205 article-title: Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity publication-title: Nanoscale doi: 10.1039/C9NR01676G – year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0040 article-title: Enhancement and mechanism of nano-BaTiO3 piezocatalytic degradation of tricyclazole by co-loading Pt and RuO2 publication-title: Environ. Sci. - Nano doi: 10.1039/C9EN00367C – volume: 59 start-page: 372 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0215 article-title: The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.047 – volume: 375 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0265 article-title: Efficient peroxodisulfate activation by iodine vacancy rich bismuth oxyiodide: a vacancy induced mechanism publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.121971 – volume: 313 start-page: 1447 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0145 article-title: UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.11.048 – volume: 37 start-page: 1235 year: 2016 ident: 10.1016/j.apcatb.2019.118084_bib0020 article-title: Preparation and surface characterization of nanodisk/nanoflower-structured gallium-doped zinc oxide as a catalyst for sensor applications publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(16)62464-6 – volume: 250 start-page: 337 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0270 article-title: Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2019.03.054 – volume: 17 start-page: 513 year: 1988 ident: 10.1016/j.apcatb.2019.118084_bib0295 article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution publication-title: J. Phys. Chem. Ref. Data doi: 10.1063/1.555805 – volume: 15 start-page: 625 year: 2015 ident: 10.1016/j.apcatb.2019.118084_bib0200 article-title: Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.05.024 – volume: 60 start-page: 259 year: 2014 ident: 10.1016/j.apcatb.2019.118084_bib0300 article-title: Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen publication-title: Water Res. doi: 10.1016/j.watres.2014.05.005 – volume: 40 start-page: 481 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0030 article-title: Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.08.058 – volume: 195 start-page: 294 year: 2006 ident: 10.1016/j.apcatb.2019.118084_bib0280 article-title: Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO2 powders and comparison of their sonocatalytic activities publication-title: Desalination doi: 10.1016/j.desal.2005.12.007 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2019.118084_bib0155 article-title: Anomalous photovoltaic effect in centrosymmetric ferroelastic BiVO4 publication-title: Adv. Mater – volume: 6 start-page: 14044 year: 2014 ident: 10.1016/j.apcatb.2019.118084_bib0140 article-title: Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress publication-title: Nanoscale doi: 10.1039/C4NR05245E – volume: 344 start-page: 535 year: 2018 ident: 10.1016/j.apcatb.2019.118084_bib0115 article-title: Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.03.089 – volume: 11 start-page: 11 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0085 article-title: A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination publication-title: Nano-Micro Lett. doi: 10.1007/s40820-019-0241-9 – volume: 38 start-page: 2076 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0190 article-title: Humic acid-mediated visible-light degradation of phenol on phosphate-modified and Nafion-modified TiO2 surfaces publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62951-6 – volume: 51 start-page: 5962 year: 2012 ident: 10.1016/j.apcatb.2019.118084_bib0035 article-title: Piezopotential-driven redox reactions at the surface of piezoelectric materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201201424 – volume: 56 start-page: 74 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0015 article-title: Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.11.028 – volume: 58 start-page: 695 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0210 article-title: Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: piezo-photocatalytic and ferro-photoelectrochemical effects publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.095 – volume: 239 start-page: 204 year: 2018 ident: 10.1016/j.apcatb.2019.118084_bib0130 article-title: Synergy removal of Cr (VI) and organic pollutants over RP-MoS2/rGO photocatalyst publication-title: Appl. Catal. B- Environ. doi: 10.1016/j.apcatb.2018.08.016 – volume: 211-212 start-page: 317 year: 2012 ident: 10.1016/j.apcatb.2019.118084_bib0120 article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2011.10.016 – volume: 15 start-page: 2372 year: 2015 ident: 10.1016/j.apcatb.2019.118084_bib0050 article-title: Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect publication-title: Nano Lett. doi: 10.1021/nl504630j – volume: 145 start-page: 731 year: 2018 ident: 10.1016/j.apcatb.2019.118084_bib0290 article-title: CaO2 based Fenton-like reaction at neutral pH: accelerated reduction of ferric species and production of superoxide radicals publication-title: Water Res. doi: 10.1016/j.watres.2018.09.020 – volume: 4 start-page: 3498 year: 2014 ident: 10.1016/j.apcatb.2019.118084_bib0150 article-title: Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst publication-title: ACS Catal. doi: 10.1021/cs501076a – volume: 5 start-page: 540 year: 2010 ident: 10.1016/j.apcatb.2019.118084_bib0005 article-title: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics publication-title: Nano Today doi: 10.1016/j.nantod.2010.10.008 – volume: 203 start-page: 343 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0135 article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.10.046 – volume: 1 start-page: 997 year: 2010 ident: 10.1016/j.apcatb.2019.118084_bib0055 article-title: Direct water splitting through vibrating piezoelectric microfibers in water publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz100027t – volume: 51 start-page: 6560 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0010 article-title: Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b06426 – volume: 92 start-page: 152 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0045 article-title: Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.4981 – volume: 29 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0165 article-title: Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures publication-title: Adv. Funct. Mater. – volume: 157 start-page: 106 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0285 article-title: Catalyst-free activation of persulfate by visible light for water disinfection: efficiency and mechanisms publication-title: Water Res. doi: 10.1016/j.watres.2019.03.071 – volume: 114 start-page: 17728 year: 2010 ident: 10.1016/j.apcatb.2019.118084_bib0275 article-title: Sonochemical hydrogen production efficiently catalyzed by Au/TiO2 publication-title: J. Phys. Chem. C doi: 10.1021/jp105691v – volume: 15 start-page: 768 year: 2008 ident: 10.1016/j.apcatb.2019.118084_bib0250 article-title: Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation publication-title: Ultrason. Sonochem. doi: 10.1016/j.ultsonch.2008.02.002 – volume: 115 start-page: 14797 year: 2011 ident: 10.1016/j.apcatb.2019.118084_bib0070 article-title: Characterization of the microstructural and piezoelectric properties of PbTiO3 thin films synthesized by liquid-phase deposition publication-title: J. Phys. Chem. C doi: 10.1021/jp202127t – volume: 38 start-page: 2141 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0110 article-title: Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62947-4 – volume: 106 start-page: 7634 year: 2002 ident: 10.1016/j.apcatb.2019.118084_bib0235 article-title: Alternative methods for the preparation of gold nanoparticles supported on TiO2 publication-title: J. Phys. Chem. B doi: 10.1021/jp0144810 – volume: 110 start-page: 20211 year: 2006 ident: 10.1016/j.apcatb.2019.118084_bib0175 article-title: Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation publication-title: J. Phys. Chem. B doi: 10.1021/jp063441z – volume: 6 start-page: 4976 year: 2016 ident: 10.1016/j.apcatb.2019.118084_bib0305 article-title: Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light publication-title: ACS Catal. doi: 10.1021/acscatal.6b01187 – volume: 46 start-page: 2299 year: 2012 ident: 10.1016/j.apcatb.2019.118084_bib0225 article-title: Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation publication-title: Water Res. doi: 10.1016/j.watres.2012.01.046 – volume: 239 start-page: 114 year: 2014 ident: 10.1016/j.apcatb.2019.118084_bib0260 article-title: Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.10.104 – volume: 126 start-page: 172 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0185 article-title: Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism publication-title: Water Res. doi: 10.1016/j.watres.2017.09.021 – volume: 95 start-page: 1944 year: 2012 ident: 10.1016/j.apcatb.2019.118084_bib0160 article-title: The application of bismuth-based oxides in organic-inorganic hybrid photovoltaic devices publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05088.x – volume: 204 start-page: 385 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0195 article-title: Novel AuPd bimetallic alloy decorated 2D BiVO4 nanosheets with enhanced photocatalytic performance under visible light irradiation publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.11.057 – volume: 317 start-page: 385 year: 2016 ident: 10.1016/j.apcatb.2019.118084_bib0230 article-title: Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: synergetic promotion effect and autosynchronous doping publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.06.002 – volume: 24 start-page: 4632 year: 2012 ident: 10.1016/j.apcatb.2019.118084_bib0080 article-title: Progress in piezotronics and piezo-phototronics publication-title: Adv. Mater. doi: 10.1002/adma.201104365 – volume: 11 start-page: 527 year: 2018 ident: 10.1016/j.apcatb.2019.118084_bib0100 article-title: Oxygen reduction reaction for generating H2O2 through a piezo-catalytic process over bismuth oxychloride publication-title: ChemSusChem doi: 10.1002/cssc.201702405 – volume: 232 start-page: 288 year: 2018 ident: 10.1016/j.apcatb.2019.118084_bib0240 article-title: Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.03.025 – volume: 241 start-page: 256 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0025 article-title: Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2018.09.028 – volume: 3 start-page: e2160 year: 2013 ident: 10.1016/j.apcatb.2019.118084_bib0245 article-title: Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials publication-title: Sci. Rep. doi: 10.1038/srep02160 – volume: 222 start-page: 88 year: 2018 ident: 10.1016/j.apcatb.2019.118084_bib0105 article-title: One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.09.070 – volume: 3 start-page: 171 year: 2011 ident: 10.1016/j.apcatb.2019.118084_bib0180 article-title: Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4 publication-title: Nano-Micro Lett. doi: 10.1007/BF03353669 – volume: 9 start-page: 3231 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0220 article-title: Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(Ⅵ) and rhodamine B under visible light irradiation publication-title: Nanoscale doi: 10.1039/C6NR09137G – volume: 28 start-page: 3718 year: 2016 ident: 10.1016/j.apcatb.2019.118084_bib0090 article-title: Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers publication-title: Adv. Mater. doi: 10.1002/adma.201505785 – volume: 31 start-page: 575 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0095 article-title: Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.013 – volume: 42 start-page: 6173 year: 2008 ident: 10.1016/j.apcatb.2019.118084_bib0310 article-title: Enhanced sonocatalytic degradation of azo dyes by Au/TiO2 publication-title: Environ. Sci. Technol. doi: 10.1021/es800168k – volume: 8 start-page: 7343 year: 2016 ident: 10.1016/j.apcatb.2019.118084_bib0060 article-title: Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation publication-title: Nanoscale doi: 10.1039/C6NR00972G – volume: 2 start-page: 1120 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0075 article-title: ZnSnO3 nanoparticle-based piezocatalysts for ultrasound-assisted degradation of organic pollutants publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b00107 – volume: 34 start-page: 321 year: 2001 ident: 10.1016/j.apcatb.2019.118084_bib0125 article-title: 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light - comparison with titanium oxide publication-title: Appl. Catal. B-Environ. doi: 10.1016/S0926-3373(01)00225-9 – volume: 38 start-page: 335 year: 2017 ident: 10.1016/j.apcatb.2019.118084_bib0065 article-title: Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: realizing an efficient piezo-photoanode and piezo-photocatalyst publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.029 – volume: 57 start-page: 14 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0170 article-title: A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.006 – volume: 478 start-page: 744 year: 2019 ident: 10.1016/j.apcatb.2019.118084_bib0255 article-title: Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/Graphene composites for organic dye degradation and Cr(VI) reduction publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.02.017 |
SSID | ssj0002328 |
Score | 2.6608353 |
Snippet | [Display omitted]
•The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of... Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118084 |
SubjectTerms | Bifunctional catalysis Bismuth oxides Chlorophenol Chromium Environmental cleanup Gold Gold modified bismuth vanadate Hexavalent chromium Hydrogen peroxide Nanoparticles New technology Oxidation Piezocatalytic effect Piezoelectricity Ultrasonic vibration Vanadates |
Title | Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water |
URI | https://dx.doi.org/10.1016/j.apcatb.2019.118084 https://www.proquest.com/docview/2301912685 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB9ED7YHqc9KtVb24KEe4kuyu0n2-Hw8eVa0h1bxtuxuNjTFJuF9UOihf3tn8lFtoQg9JsyGMDM7X_xmBuBExLni0lH9i2OCInIVZIZjzuNj6W2hcmup3_n6Jpnfig_38n4DpkMvDMEqe9vf2fTWWvdvxj03x01Zjj-FKk44T1GHOK3LooZfIVLS8rOfjzAPjBhaa4zEAVEP7XMtxss0zqwsAbzUGc1Cy8S_3NNfhrr1PhevYKcPG9mk-7Nd2PDVCLanw7a2Ebx8MlhwBPuzx_41PNZf4OUeNLN2ZAS-ZrYkn9aVAllT-h91W8qhCSWsLthkPT4v7z4KhlEtW5YEPDSVr9dLtvDfatRPIhKB-4IJP80mqOoHZqqcTRfv7y5PWVmx7xjGLl7D7cXs83Qe9EsXAid4ugpsJE0c5nFsIyO9tKbIVORyF3uMDYQNXeq5kZFReNfRk8lM-RDZamXucpS34fuwWdWVfwPMJCl3mAEnDhnLbaYKkSpLhaYCBRfaA-ADr7XrJ5LTYowHPUDPvupOQpokpDsJHUDw-1TTTeR4hj4dxKj_0CyNTuOZk0eD1HV_s5caUzZMceMkk4f__eG38IKeCBUTySPYXC3W_h3GNit73CrvMWxNLq_mN78Adef3_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQLBQUSjgAwc4hE1iO4mPy2qrXdouB9qqN8t2HBFUkmgfQuLXM5NHeUioEtfEE0Uz43lp5huANyLOFZeO6l8cExSRqyAzHHMeH0tvC5VbS_PO56tkcSk-XsvrPZgNszDUVtnb_s6mt9a6fzLpuTlpynLyOVRxwnmKOsRpXVZ2D_YJnUqOYH-6PF2sbg0yBg2tQcbzAREME3Rtm5dpnNla6vFS7wkOLRP_8lB_2erWAZ08god95Mim3c89hj1fjeFgNixsG8OD37AFx3A4_zXChmT9Hd48gWbeokbgY2ZLcmtdNZA1pf9Rt9UcAilhdcGmu8mH8uqTYBjYsk1JvYem8vVuw9b-W40qSodE4L5gzk_wBFV9w0yVs9n67dXyHSsr9h0j2fVTuDyZX8wWQb93IXCCp9vARtLEYR7HNjLSS2uKTEUud7HH8EDY0KWeGxkZhdcdnZnMlA-RrVbmLkeRG34Io6qu_DNgJkm5wyQ4cchYbjNViFRZqjUVKLvQHgEfeK1dD0pOuzFu9NB99lV3EtIkId1J6AiCW6qmA-W443w6iFH_oVwa_cYdlMeD1HV_uTcaszbMcuMkk8__-8Ov4WBxcX6mz5ar0xdwn95Qk0wkj2G0Xe_8Swx1tvZVr8o_AfWw-rA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+bifunctional+piezocatalysis+of+Au%2FBiVO4+for+simultaneous+removal+of+4-chlorophenol+and+Cr%28VI%29+in+water&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wei%2C+Yan&rft.au=Zhang%2C+Yiwen&rft.au=Geng%2C+Wei&rft.au=Su%2C+Hanrui&rft.date=2019-12-15&rft.issn=0926-3373&rft.volume=259&rft.spage=118084&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2019_118084 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |