Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water

[Display omitted] •The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of pollutants in water.•Simultaneous removal of 4-chlorophenol and Cr(VI) is achieved by piezocatalysis.•H2O2 and OH induced mechanism on Au/BiVO...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 259; p. 118084
Main Authors Wei, Yan, Zhang, Yiwen, Geng, Wei, Su, Hanrui, Long, Mingce
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.12.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of pollutants in water.•Simultaneous removal of 4-chlorophenol and Cr(VI) is achieved by piezocatalysis.•H2O2 and OH induced mechanism on Au/BiVO4 piezocatalysis is proposed. Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a piezoelectric material, Au nanoparticles modified BiVO4 (Au/BiVO4) is synthesized and its piezoelectric response is observed by piezo-response force microscopy. Au/BiVO4 is used as a bifunctional piezocatalyst for simultaneous removal of 4-chlorophenol (4-CP) and hexavalent chromium (Cr(VI)) upon ultrasonic vibration, with 91% and 83% of removal efficiency in 120 min, respectively. The piezocatalytic performance of Au/BiVO4 increases with the increase of ultrasonic power and the decrease of pH. The main active species for 4-CP oxidation and Cr(VI) reduction are determined to beOH and H2O2, respectively, since a significant formation rate ofOH is estimated by a probe method, and a high amount of H2O2 accumulation is directly detected. This study provides understanding on the piezocatalysis mechanism and brings new insights for development of piezocatalysis for multifunctional environmental applications.
AbstractList [Display omitted] •The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of pollutants in water.•Simultaneous removal of 4-chlorophenol and Cr(VI) is achieved by piezocatalysis.•H2O2 and OH induced mechanism on Au/BiVO4 piezocatalysis is proposed. Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a piezoelectric material, Au nanoparticles modified BiVO4 (Au/BiVO4) is synthesized and its piezoelectric response is observed by piezo-response force microscopy. Au/BiVO4 is used as a bifunctional piezocatalyst for simultaneous removal of 4-chlorophenol (4-CP) and hexavalent chromium (Cr(VI)) upon ultrasonic vibration, with 91% and 83% of removal efficiency in 120 min, respectively. The piezocatalytic performance of Au/BiVO4 increases with the increase of ultrasonic power and the decrease of pH. The main active species for 4-CP oxidation and Cr(VI) reduction are determined to beOH and H2O2, respectively, since a significant formation rate ofOH is estimated by a probe method, and a high amount of H2O2 accumulation is directly detected. This study provides understanding on the piezocatalysis mechanism and brings new insights for development of piezocatalysis for multifunctional environmental applications.
Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a piezoelectric material, Au nanoparticles modified BiVO4 (Au/BiVO4) is synthesized and its piezoelectric response is observed by piezo-response force microscopy. Au/BiVO4 is used as a bifunctional piezocatalyst for simultaneous removal of 4-chlorophenol (4-CP) and hexavalent chromium (Cr(VI)) upon ultrasonic vibration, with 91% and 83% of removal efficiency in 120 min, respectively. The piezocatalytic performance of Au/BiVO4 increases with the increase of ultrasonic power and the decrease of pH. The main active species for 4-CP oxidation and Cr(VI) reduction are determined to be•OH and H2O2, respectively, since a significant formation rate of•OH is estimated by a probe method, and a high amount of H2O2 accumulation is directly detected. This study provides understanding on the piezocatalysis mechanism and brings new insights for development of piezocatalysis for multifunctional environmental applications.
ArticleNumber 118084
Author Wei, Yan
Zhang, Yiwen
Geng, Wei
Su, Hanrui
Long, Mingce
Author_xml – sequence: 1
  givenname: Yan
  surname: Wei
  fullname: Wei, Yan
– sequence: 2
  givenname: Yiwen
  surname: Zhang
  fullname: Zhang, Yiwen
– sequence: 3
  givenname: Wei
  surname: Geng
  fullname: Geng, Wei
– sequence: 4
  givenname: Hanrui
  surname: Su
  fullname: Su, Hanrui
– sequence: 5
  givenname: Mingce
  orcidid: 0000-0002-5168-8330
  surname: Long
  fullname: Long, Mingce
  email: long_mc@sjtu.edu.cn
BookMark eNqFkU1P3DAURa0KpA6Uf9CFpW7KIoM_4onDAomOaIuExAbYWi_Oi_AoY6e2A6K_vh6lKxbt6m3uudI974Qc-eCRkM-crTnjm4vdGiYLuVsLxts155rp-gNZcd3ISmotj8iKtWJTSdnIj-QkpR1jTEihV2S6GQZnHfpMOzfM3mYXPIx0cvg7lE4Y35JLNAz0er745p7uazqESJPbz2MGj2FONOI-vBSmhOrKPo8hhukZfRgp-J5u49en23PqPH2FjPETOR5gTHj2956Sx-83D9uf1d39j9vt9V1la9nkquMKBOuF6DgoVB0MuuW2twK54nXHbIMSFIdWqKZtmdItsrKuU73tJZcgT8mXpXeK4deMKZtdmGOZloyQRRMXG61Kql5SNoaUIg5mim4P8c1wZg5uzc4sbs3BrVncFuzyHWZdhoO6HMGN_4OvFhjL_BeH0aTDAyz2LqLNpg_u3wV_ANiwmVs
CitedBy_id crossref_primary_10_1021_acs_inorgchem_2c02121
crossref_primary_10_1002_gch2_202100132
crossref_primary_10_1016_j_ces_2021_116707
crossref_primary_10_1016_j_jwpe_2024_105120
crossref_primary_10_1002_ange_202213927
crossref_primary_10_1002_adfm_202009594
crossref_primary_10_1016_j_ccr_2024_216234
crossref_primary_10_1134_S0036024421120050
crossref_primary_10_1007_s10311_022_01537_3
crossref_primary_10_1002_anie_202209484
crossref_primary_10_1016_j_ceramint_2022_10_251
crossref_primary_10_1016_j_jclepro_2023_139847
crossref_primary_10_1007_s10854_022_07939_x
crossref_primary_10_1016_j_nanoen_2021_106890
crossref_primary_10_1016_j_jhazmat_2020_124171
crossref_primary_10_1016_j_coco_2022_101466
crossref_primary_10_1016_j_surfin_2024_104588
crossref_primary_10_1016_j_jallcom_2023_169328
crossref_primary_10_1016_j_jhazmat_2024_136399
crossref_primary_10_1021_acsami_4c15127
crossref_primary_10_1021_acsami_4c10108
crossref_primary_10_1039_D3TA04758J
crossref_primary_10_1016_j_surfin_2021_101335
crossref_primary_10_1016_j_nanoen_2022_107218
crossref_primary_10_1016_j_jallcom_2024_174887
crossref_primary_10_1016_j_mtcomm_2024_108500
crossref_primary_10_1016_j_apcatb_2021_120414
crossref_primary_10_1016_j_nanoen_2022_107573
crossref_primary_10_1016_j_apcatb_2024_124950
crossref_primary_10_1039_D3CY00331K
crossref_primary_10_1016_j_jenvman_2024_121716
crossref_primary_10_1016_j_seppur_2020_117119
crossref_primary_10_1016_j_materresbull_2023_112559
crossref_primary_10_1021_acsanm_3c04168
crossref_primary_10_1016_j_apcatb_2023_123335
crossref_primary_10_1016_j_apsusc_2020_148791
crossref_primary_10_1080_09593330_2021_1970822
crossref_primary_10_1016_j_jcis_2024_04_106
crossref_primary_10_1016_j_hazadv_2024_100468
crossref_primary_10_1002_sus2_232
crossref_primary_10_1039_D3NR05016E
crossref_primary_10_1007_s10853_020_05053_z
crossref_primary_10_26599_NRE_2024_9120137
crossref_primary_10_1002_cctc_202000619
crossref_primary_10_1016_j_ceramint_2022_04_301
crossref_primary_10_1039_D3DT00707C
crossref_primary_10_1016_j_jallcom_2021_162591
crossref_primary_10_7498_aps_70_20210210
crossref_primary_10_1016_j_chemosphere_2021_131270
crossref_primary_10_3390_s23115336
crossref_primary_10_1016_j_apcatb_2022_122196
crossref_primary_10_1039_D2NR01202B
crossref_primary_10_1039_D1NJ05579H
crossref_primary_10_1039_D1EN00325A
crossref_primary_10_1016_j_jcis_2023_07_189
crossref_primary_10_1016_j_scitotenv_2021_150924
crossref_primary_10_1039_D2TA01578A
crossref_primary_10_1016_j_nanoen_2022_107473
crossref_primary_10_1016_j_apcatb_2022_121664
crossref_primary_10_1016_j_cej_2021_129484
crossref_primary_10_1002_adma_202413525
crossref_primary_10_1016_j_bioactmat_2025_01_026
crossref_primary_10_1016_j_ijbiomac_2024_134623
crossref_primary_10_1016_j_seppur_2021_119638
crossref_primary_10_1039_D3IM00093A
crossref_primary_10_1016_j_jmat_2021_05_007
crossref_primary_10_1002_smll_202001573
crossref_primary_10_1016_j_jhazmat_2021_126392
crossref_primary_10_1016_j_jenvman_2022_116395
crossref_primary_10_1080_09593330_2022_2135461
crossref_primary_10_1039_D2NJ01005D
crossref_primary_10_1007_s12274_023_6159_z
crossref_primary_10_1016_j_chemosphere_2020_128639
crossref_primary_10_1016_j_chemosphere_2021_130556
crossref_primary_10_1021_jacs_4c03851
crossref_primary_10_1007_s11431_023_2535_0
crossref_primary_10_1016_j_apsusc_2022_155807
crossref_primary_10_1016_j_cej_2023_146541
crossref_primary_10_1002_asia_202300090
crossref_primary_10_1016_j_jphotochem_2022_114435
crossref_primary_10_1039_D1TA02531G
crossref_primary_10_1016_j_apcatb_2020_118770
crossref_primary_10_1016_j_jallcom_2021_163492
crossref_primary_10_1039_D1NJ00993A
crossref_primary_10_1016_S1872_2067_20_63637_3
crossref_primary_10_1016_j_jhazmat_2020_123109
crossref_primary_10_1002_smtd_202100269
crossref_primary_10_1016_j_apsusc_2025_162536
crossref_primary_10_1016_j_jtice_2021_01_028
crossref_primary_10_1016_j_cej_2022_137868
crossref_primary_10_1016_j_seppur_2024_127477
crossref_primary_10_1016_j_seppur_2024_127911
crossref_primary_10_1016_j_materresbull_2021_111350
crossref_primary_10_3390_catal12121523
crossref_primary_10_1016_j_cej_2024_152947
crossref_primary_10_1016_j_nanoen_2021_106036
crossref_primary_10_3390_catal14090602
crossref_primary_10_1007_s11051_023_05713_6
crossref_primary_10_1016_j_cej_2024_150766
crossref_primary_10_1016_j_jwpe_2024_106121
crossref_primary_10_1016_j_jclepro_2022_130908
crossref_primary_10_1016_j_jclepro_2024_142597
crossref_primary_10_1016_j_solidstatesciences_2020_106285
crossref_primary_10_1002_adsu_202400265
crossref_primary_10_1016_j_colsurfa_2024_133563
crossref_primary_10_1002_smll_202303586
crossref_primary_10_1016_j_nanoen_2024_110518
crossref_primary_10_1002_smll_202307946
crossref_primary_10_1016_j_inoche_2022_110349
crossref_primary_10_1016_j_chemosphere_2020_126146
crossref_primary_10_1039_D4QM00848K
crossref_primary_10_1016_j_nantod_2022_101429
crossref_primary_10_20517_cs_2023_65
crossref_primary_10_1016_j_jpcs_2020_109899
crossref_primary_10_1016_j_inoche_2022_109311
crossref_primary_10_1007_s40544_021_0505_5
crossref_primary_10_1039_D1TA05151B
crossref_primary_10_1016_j_apcatb_2024_124688
crossref_primary_10_1016_j_jes_2021_08_023
crossref_primary_10_1016_j_jclepro_2022_135002
crossref_primary_10_1016_j_apcatb_2022_121717
crossref_primary_10_1016_j_cej_2024_149514
crossref_primary_10_1016_j_colsurfa_2023_131187
crossref_primary_10_1021_acs_inorgchem_3c04487
crossref_primary_10_1021_acsami_1c19287
crossref_primary_10_1016_j_jece_2024_112716
crossref_primary_10_1016_j_apsusc_2021_151146
crossref_primary_10_1016_j_seppur_2024_130297
crossref_primary_10_1002_adfm_202005158
crossref_primary_10_1039_D3DT02077K
crossref_primary_10_1016_j_seppur_2023_125447
crossref_primary_10_1016_j_surfin_2024_105271
crossref_primary_10_1021_acsanm_4c05864
crossref_primary_10_3390_catal14120854
crossref_primary_10_1039_D1MA00106J
crossref_primary_10_1016_j_apcatb_2021_120019
crossref_primary_10_1016_j_nanoen_2024_110459
crossref_primary_10_1002_ange_202110429
crossref_primary_10_1016_j_jhazmat_2020_123827
crossref_primary_10_1016_j_seppur_2024_126462
crossref_primary_10_3390_inorganics13030071
crossref_primary_10_1016_j_apsusc_2022_155555
crossref_primary_10_1016_j_jclepro_2023_138333
crossref_primary_10_1016_j_nanoen_2019_104366
crossref_primary_10_1016_j_nanoen_2023_108342
crossref_primary_10_1021_acscatal_1c02031
crossref_primary_10_1039_D1NR07386A
crossref_primary_10_1016_j_inoche_2020_107904
crossref_primary_10_1039_D2MH01221A
crossref_primary_10_1016_j_apcatb_2023_122655
crossref_primary_10_1111_jace_18233
crossref_primary_10_1002_ange_202209484
crossref_primary_10_1016_j_seppur_2024_127548
crossref_primary_10_1016_j_seppur_2022_120861
crossref_primary_10_1016_j_seppur_2023_123615
crossref_primary_10_1016_j_jcis_2021_11_070
crossref_primary_10_1016_j_nanoen_2022_107141
crossref_primary_10_1016_j_inoche_2024_113586
crossref_primary_10_1021_acsanm_3c02202
crossref_primary_10_1021_acsanm_3c02686
crossref_primary_10_1039_D0EN01028F
crossref_primary_10_1016_j_colsurfa_2023_131030
crossref_primary_10_1016_j_cej_2023_141947
crossref_primary_10_1016_j_cej_2022_136116
crossref_primary_10_1016_j_nantod_2021_101104
crossref_primary_10_1002_anie_202110429
crossref_primary_10_1016_j_apcatb_2023_122623
crossref_primary_10_1016_j_apsusc_2021_151851
crossref_primary_10_1016_j_seppur_2023_125598
crossref_primary_10_1016_j_ceramint_2024_01_096
crossref_primary_10_1021_acsanm_0c00039
crossref_primary_10_1016_j_jallcom_2023_172154
crossref_primary_10_1002_adfm_202407309
crossref_primary_10_1002_asia_202200278
crossref_primary_10_1016_j_envpol_2025_125778
crossref_primary_10_1007_s42452_020_3027_2
crossref_primary_10_1016_j_cjche_2020_09_010
crossref_primary_10_1007_s10854_022_08431_2
crossref_primary_10_1021_acsomega_2c01699
crossref_primary_10_1016_j_matpr_2021_11_381
crossref_primary_10_1016_j_apcatb_2023_122752
crossref_primary_10_1039_D3TA04626E
crossref_primary_10_1016_j_apsusc_2021_149557
crossref_primary_10_1021_acsami_4c01283
crossref_primary_10_1021_acsami_4c01287
crossref_primary_10_1016_j_apcatb_2022_121369
crossref_primary_10_1016_j_cej_2025_161443
crossref_primary_10_1016_j_apsusc_2021_150657
crossref_primary_10_1016_j_pmatsci_2023_101161
crossref_primary_10_1016_j_jwpe_2024_106195
crossref_primary_10_1039_D1TA05315A
crossref_primary_10_1016_j_jallcom_2022_168382
crossref_primary_10_1016_j_apcatb_2020_119340
crossref_primary_10_1016_j_microc_2024_110088
crossref_primary_10_1021_acssuschemeng_3c06462
crossref_primary_10_1016_j_apcatb_2022_122204
crossref_primary_10_1016_j_apsusc_2021_150669
crossref_primary_10_1021_acsomega_0c03743
crossref_primary_10_1016_j_apsusc_2023_156467
crossref_primary_10_1016_j_colsurfa_2023_132579
crossref_primary_10_1021_acsanm_3c02571
crossref_primary_10_1016_j_nanoen_2020_105290
crossref_primary_10_1002_wer_1407
crossref_primary_10_1016_j_apcatb_2020_119353
crossref_primary_10_1016_j_scitotenv_2023_161767
crossref_primary_10_1021_acscatal_0c00188
crossref_primary_10_1016_j_jcis_2024_06_088
crossref_primary_10_1021_acs_langmuir_4c02834
crossref_primary_10_1016_j_matlet_2022_133564
crossref_primary_10_1002_anie_202213927
crossref_primary_10_1016_j_apcatb_2022_121343
Cites_doi 10.1039/C9NR01676G
10.1039/C9EN00367C
10.1016/j.nanoen.2019.02.047
10.1016/j.cej.2019.121971
10.1016/j.cej.2016.11.048
10.1016/S1872-2067(16)62464-6
10.1016/j.apcatb.2019.03.054
10.1063/1.555805
10.1016/j.nanoen.2015.05.024
10.1016/j.watres.2014.05.005
10.1016/j.nanoen.2017.08.058
10.1016/j.desal.2005.12.007
10.1039/C4NR05245E
10.1016/j.cej.2018.03.089
10.1007/s40820-019-0241-9
10.1016/S1872-2067(17)62951-6
10.1002/anie.201201424
10.1016/j.nanoen.2018.11.028
10.1016/j.nanoen.2019.01.095
10.1016/j.apcatb.2018.08.016
10.1016/j.jhazmat.2011.10.016
10.1021/nl504630j
10.1016/j.watres.2018.09.020
10.1021/cs501076a
10.1016/j.nantod.2010.10.008
10.1016/j.apcatb.2016.10.046
10.1021/jz100027t
10.1021/acs.est.6b06426
10.1002/jctb.4981
10.1016/j.watres.2019.03.071
10.1021/jp105691v
10.1016/j.ultsonch.2008.02.002
10.1021/jp202127t
10.1016/S1872-2067(17)62947-4
10.1021/jp0144810
10.1021/jp063441z
10.1021/acscatal.6b01187
10.1016/j.watres.2012.01.046
10.1016/j.cej.2013.10.104
10.1016/j.watres.2017.09.021
10.1111/j.1551-2916.2012.05088.x
10.1016/j.apcatb.2016.11.057
10.1016/j.jhazmat.2016.06.002
10.1002/adma.201104365
10.1002/cssc.201702405
10.1016/j.apcatb.2018.03.025
10.1016/j.apcatb.2018.09.028
10.1038/srep02160
10.1016/j.apcatb.2017.09.070
10.1007/BF03353669
10.1039/C6NR09137G
10.1002/adma.201505785
10.1016/j.nanoen.2016.12.013
10.1021/es800168k
10.1039/C6NR00972G
10.1021/acsanm.9b00107
10.1016/S0926-3373(01)00225-9
10.1016/j.nanoen.2017.05.029
10.1016/j.nanoen.2018.12.006
10.1016/j.apsusc.2019.02.017
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Dec 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 15, 2019
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.118084
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2019_118084
S0926337319308318
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c437t-b15a20d22b1a5e5baf891cdc2e1514b0c7e3a51a9257990589e0373b5dcd313a3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 10:36:14 EDT 2025
Tue Jul 01 04:34:58 EDT 2025
Thu Apr 24 22:55:48 EDT 2025
Sat Mar 02 16:00:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrogen peroxide
Bifunctional catalysis
Piezocatalytic effect
Gold modified bismuth vanadate
Ultrasonic vibration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-b15a20d22b1a5e5baf891cdc2e1514b0c7e3a51a9257990589e0373b5dcd313a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5168-8330
PQID 2301912685
PQPubID 2045281
ParticipantIDs proquest_journals_2301912685
crossref_primary_10_1016_j_apcatb_2019_118084
crossref_citationtrail_10_1016_j_apcatb_2019_118084
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yao, Hu, Yu, Lian, Gao, Zhang, Li, Wang (bib0115) 2018; 344
Long, Cai, Cai, Zhou, Chai, Wu (bib0175) 2006; 110
Pan, Su, Zhu, Vafaei Molamahmood, Long (bib0290) 2018; 145
Wei, Su, Zhang, Zheng, Pan, Su, Geng, Long (bib0265) 2019; 375
Ke, Duan, Luo, Zhang, Sun, Liu, Tade, Wang (bib0145) 2017; 313
Hirakawa, Shiota, Shiraishi, Sakamoto, Ichikawa, Hirai (bib0305) 2016; 6
Liu, Zhang, Long, Lu, Zeng, Liu, Withers, Li, Yi (bib0155) 2018; 30
Li, Song, Wu, Wang, Pan, Sun, Meng, Han, Xu, Gan (bib0255) 2019; 478
Wang, Wang, Li, An, Zhao, Wong (bib0285) 2019; 157
Huang, Pan, Zou, Zhang, Wang (bib0140) 2014; 6
Van, Chang, Chen, Tsai, Tzeng, Lin, Kuo, Liu, Chang, Chou, Wu, Chen, Luo, Hsu, Chu (bib0200) 2015; 15
Long, Jiang, Li, Cao, Zhang, Cai (bib0180) 2011; 3
Ramalingam, Radika, Al-Lohedan (bib0020) 2016; 37
Buxton, Greenstock, Helman, Ross (bib0295) 1988; 17
Wang, Ma, Zhang, Zhang, Jiang, Pan, Wen, Kang, Zhang (bib0280) 2006; 195
Li, Sang, Chang, Huang, Zhang, Yang, Jiang, Liu, Wang (bib0050) 2015; 15
Biswas, Saha, Jana (bib0075) 2019; 2
Chou, Chan, Lin, Yang, Liu, Lin, Wu, Lee, Lin (bib0170) 2019; 57
Yu, Liu, Zhang, Li, Zhao, Zhu, Liu, Lin, Liu, Zhang (bib0210) 2019; 58
Singh, Khare (bib0065) 2017; 38
Brame, Long, Li, Alvarez (bib0300) 2014; 60
Zhang, Huang, Yeom (bib0085) 2019; 11
Wang, Jiang, Zhang, Xie, Wang, Xing, Xu, Zhang (bib0250) 2008; 15
Ye, Jiang, Xu, Zhang, Wang, Lv, Pan (bib0185) 2017; 126
Qiu, Zhang, Diao, Huang, He, Morel, Xiong (bib0225) 2012; 46
Feng, Sun, Liu, Zhu, Xiong, Tian (bib0040) 2019
Yourdkhani, Caruntu (bib0070) 2011; 115
Liu, Wu (bib0015) 2019; 56
Wang, Yi, Wang, Deng (bib0110) 2017; 38
Zhang, Lu, Ge, Han, Li, Gao, Li, Xu (bib0195) 2017; 204
Wang, Zhao, Ji, Liu, Chen, Ma, Zhu, Zhao (bib0275) 2010; 114
Wang (bib0005) 2010; 5
Lan, Feng, Xiong, Tian, Liu, Kong (bib0010) 2017; 51
Bai, Du, Hu, He, He, Liu, Fan (bib0130) 2018; 239
Zanella, Giorgio, Henry, Louis (bib0235) 2002; 106
Wang (bib0080) 2012; 24
You, Hu, Liu, Wei (bib0240) 2018; 232
Lu, Fang, Wu, Ding, Jiang, Zhao, Li, Yang, Li, Wang (bib0220) 2017; 9
Liu, Yan (bib0160) 2012; 95
Liu, Sun, Borthwick, Wang, Li, Guan (bib0230) 2016; 317
Tang, Yang, Zeng, Cai, Li, Zhou, Pang, Liu, Zhang, Luna (bib0260) 2014; 239
Bandara, Mielczarski, Lopez, Kiwi (bib0125) 2001; 34
Jin, Liu, Hu, Wang, Zhang, Lv, Zhuge (bib0215) 2019; 59
Starr, Wang (bib0245) 2013; 3
Sun, Wang, Li, Zhang, Jiang (bib0150) 2014; 4
Wang, Zhao, Ma, Chen, Zhao (bib0310) 2008; 42
Hua, Zhang, Pan, Zhang, Lv, Zhang (bib0120) 2012; 211-212
Wu, Chang, Chang, Chang (bib0090) 2016; 28
Hong, Xu, Konishi, Li (bib0055) 2010; 1
Zhao, Huang, Gao, Zhang, Tian, Fang, Liu (bib0205) 2019; 11
Liu, Ma, Chen, Wen, Li, An (bib0270) 2019; 250
Deng, Tang, Zeng, Zhu, Yan, Zhou, Wang, Liu, Wang (bib0135) 2017; 203
Wei, Li, Yan, Luo, Guo, Dai, Luo (bib0105) 2018; 222
Feng, Ling, Wang, Xu, Cao, Li, Bian (bib0030) 2017; 40
Starr, Shi, Wang (bib0035) 2012; 51
Xu, Guo, Sun, Wang (bib0165) 2019; 29
Lin, Tsao, Wu, Chou, Lin, Wu (bib0095) 2017; 31
Liang, Yan, Rtimi, Bandara (bib0025) 2019; 241
Shao, Zhang, Sun, Wang (bib0100) 2018; 11
Zheng, Yu, Long, Li (bib0190) 2017; 38
Wu, Mao, Wu, Xu, You, Xue, Jia (bib0060) 2016; 8
Lv, Kong, Lan, Feng, Xiong, Tian (bib0045) 2017; 92
Van (10.1016/j.apcatb.2019.118084_bib0200) 2015; 15
Ramalingam (10.1016/j.apcatb.2019.118084_bib0020) 2016; 37
Wang (10.1016/j.apcatb.2019.118084_bib0110) 2017; 38
Liu (10.1016/j.apcatb.2019.118084_bib0160) 2012; 95
Wang (10.1016/j.apcatb.2019.118084_bib0250) 2008; 15
Liu (10.1016/j.apcatb.2019.118084_bib0270) 2019; 250
Lan (10.1016/j.apcatb.2019.118084_bib0010) 2017; 51
Yourdkhani (10.1016/j.apcatb.2019.118084_bib0070) 2011; 115
Tang (10.1016/j.apcatb.2019.118084_bib0260) 2014; 239
Yu (10.1016/j.apcatb.2019.118084_bib0210) 2019; 58
Jin (10.1016/j.apcatb.2019.118084_bib0215) 2019; 59
You (10.1016/j.apcatb.2019.118084_bib0240) 2018; 232
Liu (10.1016/j.apcatb.2019.118084_bib0230) 2016; 317
Lin (10.1016/j.apcatb.2019.118084_bib0095) 2017; 31
Feng (10.1016/j.apcatb.2019.118084_bib0040) 2019
Ye (10.1016/j.apcatb.2019.118084_bib0185) 2017; 126
Wang (10.1016/j.apcatb.2019.118084_bib0275) 2010; 114
Singh (10.1016/j.apcatb.2019.118084_bib0065) 2017; 38
Wang (10.1016/j.apcatb.2019.118084_bib0310) 2008; 42
Buxton (10.1016/j.apcatb.2019.118084_bib0295) 1988; 17
Starr (10.1016/j.apcatb.2019.118084_bib0245) 2013; 3
Wei (10.1016/j.apcatb.2019.118084_bib0105) 2018; 222
Wu (10.1016/j.apcatb.2019.118084_bib0060) 2016; 8
Pan (10.1016/j.apcatb.2019.118084_bib0290) 2018; 145
Zhao (10.1016/j.apcatb.2019.118084_bib0205) 2019; 11
Ke (10.1016/j.apcatb.2019.118084_bib0145) 2017; 313
Hirakawa (10.1016/j.apcatb.2019.118084_bib0305) 2016; 6
Zheng (10.1016/j.apcatb.2019.118084_bib0190) 2017; 38
Lv (10.1016/j.apcatb.2019.118084_bib0045) 2017; 92
Zanella (10.1016/j.apcatb.2019.118084_bib0235) 2002; 106
Chou (10.1016/j.apcatb.2019.118084_bib0170) 2019; 57
Lu (10.1016/j.apcatb.2019.118084_bib0220) 2017; 9
Biswas (10.1016/j.apcatb.2019.118084_bib0075) 2019; 2
Wu (10.1016/j.apcatb.2019.118084_bib0090) 2016; 28
Wang (10.1016/j.apcatb.2019.118084_bib0005) 2010; 5
Bai (10.1016/j.apcatb.2019.118084_bib0130) 2018; 239
Brame (10.1016/j.apcatb.2019.118084_bib0300) 2014; 60
Wang (10.1016/j.apcatb.2019.118084_bib0285) 2019; 157
Wang (10.1016/j.apcatb.2019.118084_bib0280) 2006; 195
Deng (10.1016/j.apcatb.2019.118084_bib0135) 2017; 203
Long (10.1016/j.apcatb.2019.118084_bib0175) 2006; 110
Yao (10.1016/j.apcatb.2019.118084_bib0115) 2018; 344
Sun (10.1016/j.apcatb.2019.118084_bib0150) 2014; 4
Zhang (10.1016/j.apcatb.2019.118084_bib0085) 2019; 11
Zhang (10.1016/j.apcatb.2019.118084_bib0195) 2017; 204
Li (10.1016/j.apcatb.2019.118084_bib0255) 2019; 478
Long (10.1016/j.apcatb.2019.118084_bib0180) 2011; 3
Feng (10.1016/j.apcatb.2019.118084_bib0030) 2017; 40
Starr (10.1016/j.apcatb.2019.118084_bib0035) 2012; 51
Wang (10.1016/j.apcatb.2019.118084_bib0080) 2012; 24
Liu (10.1016/j.apcatb.2019.118084_bib0155) 2018; 30
Wei (10.1016/j.apcatb.2019.118084_bib0265) 2019; 375
Liang (10.1016/j.apcatb.2019.118084_bib0025) 2019; 241
Xu (10.1016/j.apcatb.2019.118084_bib0165) 2019; 29
Huang (10.1016/j.apcatb.2019.118084_bib0140) 2014; 6
Qiu (10.1016/j.apcatb.2019.118084_bib0225) 2012; 46
Hong (10.1016/j.apcatb.2019.118084_bib0055) 2010; 1
Li (10.1016/j.apcatb.2019.118084_bib0050) 2015; 15
Hua (10.1016/j.apcatb.2019.118084_bib0120) 2012; 211-212
Bandara (10.1016/j.apcatb.2019.118084_bib0125) 2001; 34
Shao (10.1016/j.apcatb.2019.118084_bib0100) 2018; 11
Liu (10.1016/j.apcatb.2019.118084_bib0015) 2019; 56
References_xml – volume: 15
  start-page: 2372
  year: 2015
  end-page: 2379
  ident: bib0050
  article-title: Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect
  publication-title: Nano Lett.
– volume: 40
  start-page: 481
  year: 2017
  end-page: 486
  ident: bib0030
  article-title: Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis
  publication-title: Nano Energy
– volume: 58
  start-page: 695
  year: 2019
  end-page: 705
  ident: bib0210
  article-title: Enhanced catalytic performance by multi-field coupling in KNbO
  publication-title: Nano Energy
– volume: 9
  start-page: 3231
  year: 2017
  end-page: 3245
  ident: bib0220
  article-title: Solvothermal-assisted synthesis of self-assembling TiO
  publication-title: Nanoscale
– volume: 115
  start-page: 14797
  year: 2011
  end-page: 14805
  ident: bib0070
  article-title: Characterization of the microstructural and piezoelectric properties of PbTiO
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: 4632
  year: 2012
  end-page: 4646
  ident: bib0080
  article-title: Progress in piezotronics and piezo-phototronics
  publication-title: Adv. Mater.
– volume: 29
  year: 2019
  ident: bib0165
  article-title: Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO
  publication-title: Adv. Funct. Mater.
– volume: 95
  start-page: 1944
  year: 2012
  end-page: 1948
  ident: bib0160
  article-title: The application of bismuth-based oxides in organic-inorganic hybrid photovoltaic devices
  publication-title: J. Am. Ceram. Soc.
– volume: 11
  start-page: 527
  year: 2018
  end-page: 531
  ident: bib0100
  article-title: Oxygen reduction reaction for generating H
  publication-title: ChemSusChem
– volume: 38
  start-page: 2076
  year: 2017
  end-page: 2084
  ident: bib0190
  article-title: Humic acid-mediated visible-light degradation of phenol on phosphate-modified and Nafion-modified TiO
  publication-title: Chin. J. Catal.
– volume: 8
  start-page: 7343
  year: 2016
  end-page: 7350
  ident: bib0060
  article-title: Strong pyro-catalysis of pyroelectric BiFeO
  publication-title: Nanoscale
– volume: 15
  start-page: 768
  year: 2008
  end-page: 774
  ident: bib0250
  article-title: Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation
  publication-title: Ultrason. Sonochem.
– volume: 145
  start-page: 731
  year: 2018
  end-page: 740
  ident: bib0290
  article-title: CaO
  publication-title: Water Res.
– volume: 232
  start-page: 288
  year: 2018
  end-page: 298
  ident: bib0240
  article-title: Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi
  publication-title: Appl. Catal. B-Environ.
– volume: 2
  start-page: 1120
  year: 2019
  end-page: 1128
  ident: bib0075
  article-title: ZnSnO
  publication-title: ACS Appl. Nano Mater.
– volume: 126
  start-page: 172
  year: 2017
  end-page: 178
  ident: bib0185
  article-title: Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism
  publication-title: Water Res.
– volume: 317
  start-page: 385
  year: 2016
  end-page: 393
  ident: bib0230
  article-title: Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: synergetic promotion effect and autosynchronous doping
  publication-title: J. Hazard. Mater.
– volume: 4
  start-page: 3498
  year: 2014
  end-page: 3503
  ident: bib0150
  article-title: Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst
  publication-title: ACS Catal.
– volume: 222
  start-page: 88
  year: 2018
  end-page: 98
  ident: bib0105
  article-title: One-step fabrication of g-C
  publication-title: Appl. Catal. B-Environ.
– volume: 239
  start-page: 114
  year: 2014
  end-page: 122
  ident: bib0260
  article-title: Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study
  publication-title: Chem. Eng. J.
– volume: 56
  start-page: 74
  year: 2019
  end-page: 81
  ident: bib0015
  article-title: Synergistically catalytic activities of BiFeO
  publication-title: Nano Energy
– volume: 6
  start-page: 14044
  year: 2014
  end-page: 14063
  ident: bib0140
  article-title: Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress
  publication-title: Nanoscale
– volume: 34
  start-page: 321
  year: 2001
  end-page: 333
  ident: bib0125
  article-title: 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light - comparison with titanium oxide
  publication-title: Appl. Catal. B-Environ.
– volume: 211-212
  start-page: 317
  year: 2012
  end-page: 331
  ident: bib0120
  article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review
  publication-title: J. Hazard. Mater.
– volume: 241
  start-page: 256
  year: 2019
  end-page: 269
  ident: bib0025
  article-title: Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook
  publication-title: Appl. Catal. B-Environ.
– volume: 46
  start-page: 2299
  year: 2012
  end-page: 2306
  ident: bib0225
  article-title: Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO
  publication-title: Water Res.
– volume: 250
  start-page: 337
  year: 2019
  end-page: 346
  ident: bib0270
  article-title: Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO
  publication-title: Appl. Catal. B-Environ.
– volume: 203
  start-page: 343
  year: 2017
  end-page: 354
  ident: bib0135
  article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C
  publication-title: Appl. Catal. B-Environ.
– volume: 3
  start-page: 171
  year: 2011
  end-page: 177
  ident: bib0180
  article-title: Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO
  publication-title: Nano-Micro Lett.
– volume: 5
  start-page: 540
  year: 2010
  end-page: 552
  ident: bib0005
  article-title: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics
  publication-title: Nano Today
– volume: 57
  start-page: 14
  year: 2019
  end-page: 21
  ident: bib0170
  article-title: A highly efficient Au-MoS
  publication-title: Nano Energy
– volume: 3
  start-page: e2160
  year: 2013
  ident: bib0245
  article-title: Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials
  publication-title: Sci. Rep.
– volume: 1
  start-page: 997
  year: 2010
  end-page: 1002
  ident: bib0055
  article-title: Direct water splitting through vibrating piezoelectric microfibers in water
  publication-title: J. Phys. Chem. Lett.
– volume: 31
  start-page: 575
  year: 2017
  end-page: 581
  ident: bib0095
  article-title: Single- and few-layers MoS
  publication-title: Nano Energy
– volume: 195
  start-page: 294
  year: 2006
  end-page: 305
  ident: bib0280
  article-title: Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO
  publication-title: Desalination
– volume: 478
  start-page: 744
  year: 2019
  end-page: 753
  ident: bib0255
  article-title: Novel Z-scheme visible-light photocatalyst based on CoFe
  publication-title: Appl. Surf. Sci.
– volume: 375
  year: 2019
  ident: bib0265
  article-title: Efficient peroxodisulfate activation by iodine vacancy rich bismuth oxyiodide: a vacancy induced mechanism
  publication-title: Chem. Eng. J.
– volume: 28
  start-page: 3718
  year: 2016
  end-page: 3725
  ident: bib0090
  article-title: Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS
  publication-title: Adv. Mater.
– volume: 110
  start-page: 20211
  year: 2006
  end-page: 20216
  ident: bib0175
  article-title: Efficient photocatalytic degradation of phenol over Co
  publication-title: J. Phys. Chem. B
– volume: 17
  start-page: 513
  year: 1988
  end-page: 886
  ident: bib0295
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O
  publication-title: J. Phys. Chem. Ref. Data
– volume: 37
  start-page: 1235
  year: 2016
  end-page: 1241
  ident: bib0020
  article-title: Preparation and surface characterization of nanodisk/nanoflower-structured gallium-doped zinc oxide as a catalyst for sensor applications
  publication-title: Chin. J. Catal.
– volume: 42
  start-page: 6173
  year: 2008
  end-page: 6178
  ident: bib0310
  article-title: Enhanced sonocatalytic degradation of azo dyes by Au/TiO
  publication-title: Environ. Sci. Technol.
– volume: 30
  year: 2018
  ident: bib0155
  article-title: Anomalous photovoltaic effect in centrosymmetric ferroelastic BiVO
  publication-title: Adv. Mater
– volume: 92
  start-page: 152
  year: 2017
  end-page: 156
  ident: bib0045
  article-title: Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 60
  start-page: 259
  year: 2014
  end-page: 266
  ident: bib0300
  article-title: Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen
  publication-title: Water Res.
– volume: 6
  start-page: 4976
  year: 2016
  end-page: 4982
  ident: bib0305
  article-title: Au nanoparticles supported on BiVO
  publication-title: ACS Catal.
– volume: 38
  start-page: 2141
  year: 2017
  end-page: 2149
  ident: bib0110
  article-title: Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer
  publication-title: Chin. J. Catal.
– volume: 114
  start-page: 17728
  year: 2010
  end-page: 17733
  ident: bib0275
  article-title: Sonochemical hydrogen production efficiently catalyzed by Au/TiO
  publication-title: J. Phys. Chem. C
– volume: 51
  start-page: 5962
  year: 2012
  end-page: 5966
  ident: bib0035
  article-title: Piezopotential-driven redox reactions at the surface of piezoelectric materials
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 625
  year: 2015
  end-page: 633
  ident: bib0200
  article-title: Heteroepitaxial approach to explore charge dynamics across Au/BiVO
  publication-title: Nano Energy
– volume: 38
  start-page: 335
  year: 2017
  end-page: 341
  ident: bib0065
  article-title: Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO
  publication-title: Nano Energy
– volume: 344
  start-page: 535
  year: 2018
  end-page: 544
  ident: bib0115
  article-title: Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 6560
  year: 2017
  end-page: 6569
  ident: bib0010
  article-title: Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination
  publication-title: Environ. Sci. Technol.
– volume: 11
  start-page: 9085
  year: 2019
  end-page: 9090
  ident: bib0205
  article-title: Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity
  publication-title: Nanoscale
– volume: 204
  start-page: 385
  year: 2017
  end-page: 393
  ident: bib0195
  article-title: Novel AuPd bimetallic alloy decorated 2D BiVO
  publication-title: Appl. Catal. B-Environ.
– volume: 11
  start-page: 11
  year: 2019
  ident: bib0085
  article-title: A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination
  publication-title: Nano-Micro Lett.
– volume: 313
  start-page: 1447
  year: 2017
  end-page: 1453
  ident: bib0145
  article-title: UV-assisted construction of 3D hierarchical rGO/Bi
  publication-title: Chem. Eng. J.
– year: 2019
  ident: bib0040
  article-title: Enhancement and mechanism of nano-BaTiO
  publication-title: Environ. Sci. - Nano
– volume: 59
  start-page: 372
  year: 2019
  end-page: 379
  ident: bib0215
  article-title: The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater
  publication-title: Nano Energy
– volume: 157
  start-page: 106
  year: 2019
  end-page: 118
  ident: bib0285
  article-title: Catalyst-free activation of persulfate by visible light for water disinfection: efficiency and mechanisms
  publication-title: Water Res.
– volume: 239
  start-page: 204
  year: 2018
  end-page: 213
  ident: bib0130
  article-title: Synergy removal of Cr (VI) and organic pollutants over RP-MoS
  publication-title: Appl. Catal. B- Environ.
– volume: 106
  start-page: 7634
  year: 2002
  end-page: 7642
  ident: bib0235
  article-title: Alternative methods for the preparation of gold nanoparticles supported on TiO
  publication-title: J. Phys. Chem. B
– volume: 11
  start-page: 9085
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0205
  article-title: Study on water splitting characteristics of CdS nanosheets driven by the coupling effect between photocatalysis and piezoelectricity
  publication-title: Nanoscale
  doi: 10.1039/C9NR01676G
– year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0040
  article-title: Enhancement and mechanism of nano-BaTiO3 piezocatalytic degradation of tricyclazole by co-loading Pt and RuO2
  publication-title: Environ. Sci. - Nano
  doi: 10.1039/C9EN00367C
– volume: 59
  start-page: 372
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0215
  article-title: The role of microstructure in piezocatalytic degradation of organic dye pollutants in wastewater
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.047
– volume: 375
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0265
  article-title: Efficient peroxodisulfate activation by iodine vacancy rich bismuth oxyiodide: a vacancy induced mechanism
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.121971
– volume: 313
  start-page: 1447
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0145
  article-title: UV-assisted construction of 3D hierarchical rGO/Bi2MoO6 composites for enhanced photocatalytic water oxidation
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.11.048
– volume: 37
  start-page: 1235
  year: 2016
  ident: 10.1016/j.apcatb.2019.118084_bib0020
  article-title: Preparation and surface characterization of nanodisk/nanoflower-structured gallium-doped zinc oxide as a catalyst for sensor applications
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(16)62464-6
– volume: 250
  start-page: 337
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0270
  article-title: Highly efficient visible-light-driven photocatalytic degradation of VOCs by CO2-assisted synthesized mesoporous carbon confined mixed-phase TiO2 nanocomposites derived from MOFs
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2019.03.054
– volume: 17
  start-page: 513
  year: 1988
  ident: 10.1016/j.apcatb.2019.118084_bib0295
  article-title: Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in aqueous solution
  publication-title: J. Phys. Chem. Ref. Data
  doi: 10.1063/1.555805
– volume: 15
  start-page: 625
  year: 2015
  ident: 10.1016/j.apcatb.2019.118084_bib0200
  article-title: Heteroepitaxial approach to explore charge dynamics across Au/BiVO4 interface for photoactivity enhancement
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.05.024
– volume: 60
  start-page: 259
  year: 2014
  ident: 10.1016/j.apcatb.2019.118084_bib0300
  article-title: Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.05.005
– volume: 40
  start-page: 481
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0030
  article-title: Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.08.058
– volume: 195
  start-page: 294
  year: 2006
  ident: 10.1016/j.apcatb.2019.118084_bib0280
  article-title: Investigation on the sonocatalytic degradation of methyl orange in the presence of nanometer anatase and rutile TiO2 powders and comparison of their sonocatalytic activities
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.12.007
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2019.118084_bib0155
  article-title: Anomalous photovoltaic effect in centrosymmetric ferroelastic BiVO4
  publication-title: Adv. Mater
– volume: 6
  start-page: 14044
  year: 2014
  ident: 10.1016/j.apcatb.2019.118084_bib0140
  article-title: Nanostructured bismuth vanadate-based materials for solar-energy-driven water oxidation: a review on recent progress
  publication-title: Nanoscale
  doi: 10.1039/C4NR05245E
– volume: 344
  start-page: 535
  year: 2018
  ident: 10.1016/j.apcatb.2019.118084_bib0115
  article-title: Nitrogen-doped carbon encapsulating molybdenum carbide and nickel nanostructures loaded with PVDF membrane for hexavalent chromium reduction
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.03.089
– volume: 11
  start-page: 11
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0085
  article-title: A floatable piezo-photocatalytic platform based on semi-embedded ZnO nanowire array for high-performance water decontamination
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-019-0241-9
– volume: 38
  start-page: 2076
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0190
  article-title: Humic acid-mediated visible-light degradation of phenol on phosphate-modified and Nafion-modified TiO2 surfaces
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62951-6
– volume: 51
  start-page: 5962
  year: 2012
  ident: 10.1016/j.apcatb.2019.118084_bib0035
  article-title: Piezopotential-driven redox reactions at the surface of piezoelectric materials
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201424
– volume: 56
  start-page: 74
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0015
  article-title: Synergistically catalytic activities of BiFeO3/TiO2 core-shell nanocomposites for degradation of organic dye molecule through piezophototronic effect
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.11.028
– volume: 58
  start-page: 695
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0210
  article-title: Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: piezo-photocatalytic and ferro-photoelectrochemical effects
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.095
– volume: 239
  start-page: 204
  year: 2018
  ident: 10.1016/j.apcatb.2019.118084_bib0130
  article-title: Synergy removal of Cr (VI) and organic pollutants over RP-MoS2/rGO photocatalyst
  publication-title: Appl. Catal. B- Environ.
  doi: 10.1016/j.apcatb.2018.08.016
– volume: 211-212
  start-page: 317
  year: 2012
  ident: 10.1016/j.apcatb.2019.118084_bib0120
  article-title: Heavy metal removal from water/wastewater by nanosized metal oxides: a review
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2011.10.016
– volume: 15
  start-page: 2372
  year: 2015
  ident: 10.1016/j.apcatb.2019.118084_bib0050
  article-title: Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect
  publication-title: Nano Lett.
  doi: 10.1021/nl504630j
– volume: 145
  start-page: 731
  year: 2018
  ident: 10.1016/j.apcatb.2019.118084_bib0290
  article-title: CaO2 based Fenton-like reaction at neutral pH: accelerated reduction of ferric species and production of superoxide radicals
  publication-title: Water Res.
  doi: 10.1016/j.watres.2018.09.020
– volume: 4
  start-page: 3498
  year: 2014
  ident: 10.1016/j.apcatb.2019.118084_bib0150
  article-title: Solar light driven pure water splitting on quantum sized BiVO4 without any cocatalyst
  publication-title: ACS Catal.
  doi: 10.1021/cs501076a
– volume: 5
  start-page: 540
  year: 2010
  ident: 10.1016/j.apcatb.2019.118084_bib0005
  article-title: Piezopotential gated nanowire devices: piezotronics and piezo-phototronics
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2010.10.008
– volume: 203
  start-page: 343
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0135
  article-title: Insight into highly efficient simultaneous photocatalytic removal of Cr(VI) and 2,4-diclorophenol under visible light irradiation by phosphorus doped porous ultrathin g-C3N4 nanosheets from aqueous media: performance and reaction mechanism
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.10.046
– volume: 1
  start-page: 997
  year: 2010
  ident: 10.1016/j.apcatb.2019.118084_bib0055
  article-title: Direct water splitting through vibrating piezoelectric microfibers in water
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz100027t
– volume: 51
  start-page: 6560
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0010
  article-title: Performance and mechanism of piezo-catalytic degradation of 4-chlorophenol: finding of effective piezo-dechlorination
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b06426
– volume: 92
  start-page: 152
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0045
  article-title: Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.4981
– volume: 29
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0165
  article-title: Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures
  publication-title: Adv. Funct. Mater.
– volume: 157
  start-page: 106
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0285
  article-title: Catalyst-free activation of persulfate by visible light for water disinfection: efficiency and mechanisms
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.03.071
– volume: 114
  start-page: 17728
  year: 2010
  ident: 10.1016/j.apcatb.2019.118084_bib0275
  article-title: Sonochemical hydrogen production efficiently catalyzed by Au/TiO2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp105691v
– volume: 15
  start-page: 768
  year: 2008
  ident: 10.1016/j.apcatb.2019.118084_bib0250
  article-title: Sonocatalytic degradation of acid red B and rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation
  publication-title: Ultrason. Sonochem.
  doi: 10.1016/j.ultsonch.2008.02.002
– volume: 115
  start-page: 14797
  year: 2011
  ident: 10.1016/j.apcatb.2019.118084_bib0070
  article-title: Characterization of the microstructural and piezoelectric properties of PbTiO3 thin films synthesized by liquid-phase deposition
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp202127t
– volume: 38
  start-page: 2141
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0110
  article-title: Photocatalytic Cr(VI) reduction and organic-pollutant degradation in a stable 2D coordination polymer
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62947-4
– volume: 106
  start-page: 7634
  year: 2002
  ident: 10.1016/j.apcatb.2019.118084_bib0235
  article-title: Alternative methods for the preparation of gold nanoparticles supported on TiO2
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0144810
– volume: 110
  start-page: 20211
  year: 2006
  ident: 10.1016/j.apcatb.2019.118084_bib0175
  article-title: Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp063441z
– volume: 6
  start-page: 4976
  year: 2016
  ident: 10.1016/j.apcatb.2019.118084_bib0305
  article-title: Au nanoparticles supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01187
– volume: 46
  start-page: 2299
  year: 2012
  ident: 10.1016/j.apcatb.2019.118084_bib0225
  article-title: Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.01.046
– volume: 239
  start-page: 114
  year: 2014
  ident: 10.1016/j.apcatb.2019.118084_bib0260
  article-title: Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.10.104
– volume: 126
  start-page: 172
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0185
  article-title: Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: negligible Cr(VI) accumulation and mechanism
  publication-title: Water Res.
  doi: 10.1016/j.watres.2017.09.021
– volume: 95
  start-page: 1944
  year: 2012
  ident: 10.1016/j.apcatb.2019.118084_bib0160
  article-title: The application of bismuth-based oxides in organic-inorganic hybrid photovoltaic devices
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05088.x
– volume: 204
  start-page: 385
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0195
  article-title: Novel AuPd bimetallic alloy decorated 2D BiVO4 nanosheets with enhanced photocatalytic performance under visible light irradiation
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.11.057
– volume: 317
  start-page: 385
  year: 2016
  ident: 10.1016/j.apcatb.2019.118084_bib0230
  article-title: Simultaneous removal of Cr(VI) and 4-chlorophenol through photocatalysis by a novel anatase/titanate nanosheet composite: synergetic promotion effect and autosynchronous doping
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2016.06.002
– volume: 24
  start-page: 4632
  year: 2012
  ident: 10.1016/j.apcatb.2019.118084_bib0080
  article-title: Progress in piezotronics and piezo-phototronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201104365
– volume: 11
  start-page: 527
  year: 2018
  ident: 10.1016/j.apcatb.2019.118084_bib0100
  article-title: Oxygen reduction reaction for generating H2O2 through a piezo-catalytic process over bismuth oxychloride
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201702405
– volume: 232
  start-page: 288
  year: 2018
  ident: 10.1016/j.apcatb.2019.118084_bib0240
  article-title: Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.03.025
– volume: 241
  start-page: 256
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0025
  article-title: Piezoelectric materials for catalytic/photocatalytic removal of pollutants: recent advances and outlook
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2018.09.028
– volume: 3
  start-page: e2160
  year: 2013
  ident: 10.1016/j.apcatb.2019.118084_bib0245
  article-title: Fundamental analysis of piezocatalysis process on the surfaces of strained piezoelectric materials
  publication-title: Sci. Rep.
  doi: 10.1038/srep02160
– volume: 222
  start-page: 88
  year: 2018
  ident: 10.1016/j.apcatb.2019.118084_bib0105
  article-title: One-step fabrication of g-C3N4 nanosheets/TiO2 hollow microspheres heterojunctions with atomic level hybridization and their application in the multi-component synergistic photocatalytic systems
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.09.070
– volume: 3
  start-page: 171
  year: 2011
  ident: 10.1016/j.apcatb.2019.118084_bib0180
  article-title: Effect of gold nanoparticles on the photocatalytic and photoelectrochemical performance of Au modified BiVO4
  publication-title: Nano-Micro Lett.
  doi: 10.1007/BF03353669
– volume: 9
  start-page: 3231
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0220
  article-title: Solvothermal-assisted synthesis of self-assembling TiO2 nanorods on large graphitic carbon nitride sheets with their anti-recombination in the photocatalytic removal of Cr(Ⅵ) and rhodamine B under visible light irradiation
  publication-title: Nanoscale
  doi: 10.1039/C6NR09137G
– volume: 28
  start-page: 3718
  year: 2016
  ident: 10.1016/j.apcatb.2019.118084_bib0090
  article-title: Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505785
– volume: 31
  start-page: 575
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0095
  article-title: Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.013
– volume: 42
  start-page: 6173
  year: 2008
  ident: 10.1016/j.apcatb.2019.118084_bib0310
  article-title: Enhanced sonocatalytic degradation of azo dyes by Au/TiO2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es800168k
– volume: 8
  start-page: 7343
  year: 2016
  ident: 10.1016/j.apcatb.2019.118084_bib0060
  article-title: Strong pyro-catalysis of pyroelectric BiFeO3 nanoparticles under a room-temperature cold-hot alternation
  publication-title: Nanoscale
  doi: 10.1039/C6NR00972G
– volume: 2
  start-page: 1120
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0075
  article-title: ZnSnO3 nanoparticle-based piezocatalysts for ultrasound-assisted degradation of organic pollutants
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00107
– volume: 34
  start-page: 321
  year: 2001
  ident: 10.1016/j.apcatb.2019.118084_bib0125
  article-title: 2. Sensitized degradation of chlorophenols on iron oxides induced by visible light - comparison with titanium oxide
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/S0926-3373(01)00225-9
– volume: 38
  start-page: 335
  year: 2017
  ident: 10.1016/j.apcatb.2019.118084_bib0065
  article-title: Coupling of piezoelectric, semiconducting and photoexcitation properties in NaNbO3 nanostructures for controlling electrical transport: realizing an efficient piezo-photoanode and piezo-photocatalyst
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.029
– volume: 57
  start-page: 14
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0170
  article-title: A highly efficient Au-MoS2 nanocatalyst for tunable piezocatalytic and photocatalytic water disinfection
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.006
– volume: 478
  start-page: 744
  year: 2019
  ident: 10.1016/j.apcatb.2019.118084_bib0255
  article-title: Novel Z-scheme visible-light photocatalyst based on CoFe2O4/BiOBr/Graphene composites for organic dye degradation and Cr(VI) reduction
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.02.017
SSID ssj0002328
Score 2.6608353
Snippet [Display omitted] •The piezoelectric effect of Au/BiVO4 is characterized by PFM measurements.•Au/BiVO4 is used as a bifunctional piezocatalyst for removal of...
Piezocatalysis induced by polarization of piezoelectric materials is considered as an emerging technology in environmental cleanup. In this work, a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118084
SubjectTerms Bifunctional catalysis
Bismuth oxides
Chlorophenol
Chromium
Environmental cleanup
Gold
Gold modified bismuth vanadate
Hexavalent chromium
Hydrogen peroxide
Nanoparticles
New technology
Oxidation
Piezocatalytic effect
Piezoelectricity
Ultrasonic vibration
Vanadates
Title Efficient bifunctional piezocatalysis of Au/BiVO4 for simultaneous removal of 4-chlorophenol and Cr(VI) in water
URI https://dx.doi.org/10.1016/j.apcatb.2019.118084
https://www.proquest.com/docview/2301912685
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS91AEB9ED7YHqc9KtVb24KEe4kuyu0n2-Hw8eVa0h1bxtuxuNjTFJuF9UOihf3tn8lFtoQg9JsyGMDM7X_xmBuBExLni0lH9i2OCInIVZIZjzuNj6W2hcmup3_n6Jpnfig_38n4DpkMvDMEqe9vf2fTWWvdvxj03x01Zjj-FKk44T1GHOK3LooZfIVLS8rOfjzAPjBhaa4zEAVEP7XMtxss0zqwsAbzUGc1Cy8S_3NNfhrr1PhevYKcPG9mk-7Nd2PDVCLanw7a2Ebx8MlhwBPuzx_41PNZf4OUeNLN2ZAS-ZrYkn9aVAllT-h91W8qhCSWsLthkPT4v7z4KhlEtW5YEPDSVr9dLtvDfatRPIhKB-4IJP80mqOoHZqqcTRfv7y5PWVmx7xjGLl7D7cXs83Qe9EsXAid4ugpsJE0c5nFsIyO9tKbIVORyF3uMDYQNXeq5kZFReNfRk8lM-RDZamXucpS34fuwWdWVfwPMJCl3mAEnDhnLbaYKkSpLhaYCBRfaA-ADr7XrJ5LTYowHPUDPvupOQpokpDsJHUDw-1TTTeR4hj4dxKj_0CyNTuOZk0eD1HV_s5caUzZMceMkk4f__eG38IKeCBUTySPYXC3W_h3GNit73CrvMWxNLq_mN78Adef3_w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V7aFwQLBQUSjgAwc4hE1iO4mPy2qrXdouB9qqN8t2HBFUkmgfQuLXM5NHeUioEtfEE0Uz43lp5huANyLOFZeO6l8cExSRqyAzHHMeH0tvC5VbS_PO56tkcSk-XsvrPZgNszDUVtnb_s6mt9a6fzLpuTlpynLyOVRxwnmKOsRpXVZ2D_YJnUqOYH-6PF2sbg0yBg2tQcbzAREME3Rtm5dpnNla6vFS7wkOLRP_8lB_2erWAZ08god95Mim3c89hj1fjeFgNixsG8OD37AFx3A4_zXChmT9Hd48gWbeokbgY2ZLcmtdNZA1pf9Rt9UcAilhdcGmu8mH8uqTYBjYsk1JvYem8vVuw9b-W40qSodE4L5gzk_wBFV9w0yVs9n67dXyHSsr9h0j2fVTuDyZX8wWQb93IXCCp9vARtLEYR7HNjLSS2uKTEUud7HH8EDY0KWeGxkZhdcdnZnMlA-RrVbmLkeRG34Io6qu_DNgJkm5wyQ4cchYbjNViFRZqjUVKLvQHgEfeK1dD0pOuzFu9NB99lV3EtIkId1J6AiCW6qmA-W443w6iFH_oVwa_cYdlMeD1HV_uTcaszbMcuMkk8__-8Ov4WBxcX6mz5ar0xdwn95Qk0wkj2G0Xe_8Swx1tvZVr8o_AfWw-rA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+bifunctional+piezocatalysis+of+Au%2FBiVO4+for+simultaneous+removal+of+4-chlorophenol+and+Cr%28VI%29+in+water&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Wei%2C+Yan&rft.au=Zhang%2C+Yiwen&rft.au=Geng%2C+Wei&rft.au=Su%2C+Hanrui&rft.date=2019-12-15&rft.issn=0926-3373&rft.volume=259&rft.spage=118084&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2019_118084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon