Self-Assembling Peptide-Based Nanoarchitectonics

Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for ap...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 92; no. 1; pp. 70 - 79
Main Authors Zhao, Luyang, Zou, Qianli, Yan, Xuehai
Format Journal Article
LanguageEnglish
Published Tokyo The Chemical Society of Japan 01.01.2019
Chemical Society of Japan
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for application. In this review, we summarize our recent works on self-assembling peptide-based nanoarchitectonics, where peptides with a simple molecular structure can modulate the assembly of various species in a flexible and controllable way and efficiently construct nanoarchitectonics with desired functionalities. Our recent findings regarding the applications of self-assembling peptides in the fields of biomimetic photosystems, oriented microtubes for optical waveguiding, and phototherapy are discussed in detail. In addition, the self-assembly mechanism and the effects of peptides on self-assembly are reviewed. This review is expected to provide an understanding of the role of peptides in the assembly of nanoarchitectonics and guidance towards the future design and application of novel functional peptide-modulated self-assembling materials.
AbstractList Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for application. In this review, we summarize our recent works on self-assembling peptide-based nanoarchitectonics, where peptides with a simple molecular structure can modulate the assembly of various species in a flexible and controllable way and efficiently construct nanoarchitectonics with desired functionalities. Our recent findings regarding the applications of self-assembling peptides in the fields of biomimetic photosystems, oriented microtubes for optical waveguiding, and phototherapy are discussed in detail. In addition, the self-assembly mechanism and the effects of peptides on self-assembly are reviewed. This review is expected to provide an understanding of the role of peptides in the assembly of nanoarchitectonics and guidance towards the future design and application of novel functional peptide-modulated self-assembling materials.
Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for application. In this review, we summarize our recent works on self-assembling peptide-based nanoarchitectonics, where peptides with a simple molecular structure can modulate the assembly of various species in a flexible and controllable way and efficiently construct nanoarchitectonics with desired functionalities. Our recent findings regarding the applications of self-assembling peptides in the fields of biomimetic photosystems, oriented microtubes for optical waveguiding, and phototherapy are discussed in detail. In addition, the self-assembly mechanism and the effects of peptides on self-assembly are reviewed. This review is expected to provide an understanding of the role of peptides in the assembly of nanoarchitectonics and guidance towards the future design and application of novel functional peptide-modulated self-assembling materials. Peptides, as a versatile building block, hold significant promises for creation of biology-friendly nanoarchitectonics. In this review article, we will make an overview on how peptides are designed for modulating intermolecular interactions for formation of various nanoarchitectonics and their applications towards biomimetic photosystem, optical waveguiding and phototherapy. These examples will present the newest advances of biomolecules-based nanoarchitectonics and the related nanotechnology.
Author Zou, Qianli
Yan, Xuehai
Zhao, Luyang
Author_xml – sequence: 1
  givenname: Luyang
  surname: Zhao
  fullname: Zhao, Luyang
– sequence: 2
  givenname: Qianli
  surname: Zou
  fullname: Zou, Qianli
– sequence: 3
  givenname: Xuehai
  surname: Yan
  fullname: Yan, Xuehai
BookMark eNp1kE1LAzEQhoNUsFaP3gueU5NsNpv1VotfUFRQz0s2O7FZtsmapIf-e7e0IoiehoHnmXl5T9HIeQcIXVAyo4yLq1rHdsYIlYRxeYTGNOMSE5HxERoTQkrMRJGdoNMY22GVOS_HiLxCZ_A8RljXnXUf0xfok20A36gIzfRJOa-CXtkEOnlndTxDx0Z1Ec4Pc4Le727fFg94-Xz_uJgvseZZkbBqNHDgVBkJmWpobQwU1Aiui6YmRkvRGE4KXita0LLhIAuTy1IJxiE3ILIJutzf7YP_3EBMVes3wQ0vK8ZYKSinIh-obE_p4GMMYCptk0rWuxSU7SpKql011a6a6ruawcK_rD7YtQrbf_nrA7-CtdVDBq8tpG2reuV-cv0tfwGSuHxH
CitedBy_id crossref_primary_10_1039_D0MA00744G
crossref_primary_10_3762_bjnano_11_36
crossref_primary_10_1002_sstr_202100006
crossref_primary_10_1021_acsabm_9b01138
crossref_primary_10_1039_D2CS00675H
crossref_primary_10_1002_adfm_201910475
crossref_primary_10_1002_anie_202012470
crossref_primary_10_1021_acsami_1c11794
crossref_primary_10_1039_C9RA06130D
crossref_primary_10_1002_ange_201909424
crossref_primary_10_1002_anie_202015340
crossref_primary_10_1002_anie_202000802
crossref_primary_10_1007_s10118_021_2599_7
crossref_primary_10_1021_acsabm_0c00340
crossref_primary_10_1080_24701556_2020_1862217
crossref_primary_10_1016_j_jcis_2022_04_122
crossref_primary_10_1002_cnma_201900207
crossref_primary_10_1021_acs_chemrev_1c00754
crossref_primary_10_1093_bulcsj_bcsj_20230224
crossref_primary_10_1039_D1NA00637A
crossref_primary_10_1016_j_apmt_2021_100989
crossref_primary_10_1002_smsc_202000032
crossref_primary_10_1016_j_actbio_2019_07_024
crossref_primary_10_1002_advs_202101101
crossref_primary_10_1002_cmdc_202100236
crossref_primary_10_1080_17425247_2022_2093855
crossref_primary_10_1016_j_colsurfa_2019_04_020
crossref_primary_10_1021_acs_langmuir_0c01023
crossref_primary_10_1002_chem_202000789
crossref_primary_10_1002_asia_201900627
crossref_primary_10_1002_smtd_202000500
crossref_primary_10_1111_1541_4337_13171
crossref_primary_10_1007_s10904_019_01294_x
crossref_primary_10_1039_D3TB03004K
crossref_primary_10_3390_pharmaceutics12100907
crossref_primary_10_1002_aisy_201900157
crossref_primary_10_1016_j_jcis_2021_04_062
crossref_primary_10_1016_j_jcis_2021_04_100
crossref_primary_10_1002_smll_201903948
crossref_primary_10_1063_1_5134530
crossref_primary_10_1039_C9CS00309F
crossref_primary_10_1039_D0RA04529B
crossref_primary_10_1002_ange_202000802
crossref_primary_10_1080_10717544_2022_2058647
crossref_primary_10_1515_revic_2020_0015
crossref_primary_10_1002_cnma_202000137
crossref_primary_10_1007_s10904_021_01891_9
crossref_primary_10_3390_nano11082146
crossref_primary_10_3390_ma13102280
crossref_primary_10_3762_bjnano_10_153
crossref_primary_10_1016_j_colsurfa_2020_125753
crossref_primary_10_1246_bcsj_20190215
crossref_primary_10_1016_j_mtbio_2020_100075
crossref_primary_10_1039_D0QM00615G
crossref_primary_10_1007_s10853_020_04831_z
crossref_primary_10_1016_j_advmem_2022_100031
crossref_primary_10_1246_bcsj_20200362
crossref_primary_10_1134_S1990793121100079
crossref_primary_10_1002_anie_202005575
crossref_primary_10_1016_j_ccr_2022_214481
crossref_primary_10_3762_bjnano_13_23
crossref_primary_10_1002_ijch_202200008
crossref_primary_10_1002_ange_202012470
crossref_primary_10_1002_ange_202015340
crossref_primary_10_1007_s10904_021_02002_4
crossref_primary_10_1039_D1CP04669A
crossref_primary_10_1039_D1RA03424C
crossref_primary_10_1246_bcsj_20200012
crossref_primary_10_3762_bjnano_10_173
crossref_primary_10_1021_acsami_2c10497
crossref_primary_10_1039_C9NR06266A
crossref_primary_10_1002_ange_202103507
crossref_primary_10_1007_s12668_024_01582_y
crossref_primary_10_1016_j_microc_2021_106218
crossref_primary_10_3762_bjnano_11_11
crossref_primary_10_1039_C9MH01300H
crossref_primary_10_1002_anbr_202100087
crossref_primary_10_6023_A23050240
crossref_primary_10_1002_chem_201905075
crossref_primary_10_1039_D2NR02537J
crossref_primary_10_1002_VIW_20200020
crossref_primary_10_1021_acsanm_0c03280
crossref_primary_10_1007_s11051_022_05577_2
crossref_primary_10_3762_bjnano_10_184
crossref_primary_10_1016_j_cis_2021_102489
crossref_primary_10_1039_D0SM01107J
crossref_primary_10_1016_j_bioorg_2022_105842
crossref_primary_10_1002_anie_202103507
crossref_primary_10_1021_acsami_0c01803
crossref_primary_10_1039_D0NH00680G
crossref_primary_10_1007_s00216_021_03737_2
crossref_primary_10_1002_anie_201909424
crossref_primary_10_1002_admi_202001395
crossref_primary_10_3390_molecules26154636
crossref_primary_10_1002_adma_201905657
crossref_primary_10_1002_psc_3305
crossref_primary_10_1016_j_cocis_2019_08_004
crossref_primary_10_3390_c7040073
crossref_primary_10_1021_acs_langmuir_0c01044
crossref_primary_10_3390_molecules26061621
crossref_primary_10_1002_asia_202001445
crossref_primary_10_1016_j_jcis_2021_05_117
crossref_primary_10_3390_molecules27134115
crossref_primary_10_3762_bjnano_10_198
crossref_primary_10_1021_acs_langmuir_0c02370
crossref_primary_10_1002_ange_202005575
crossref_primary_10_1002_smll_202304675
crossref_primary_10_1016_j_mcat_2019_110492
Cites_doi 10.1038/nnano.2007.387
10.1016/j.colsurfa.2017.09.026
10.1002/adfm.201703553
10.1021/acsbiomaterials.7b00624
10.1021/acscentsci.7b00115
10.1002/asia.201800825
10.1007/s10904-014-0144-7
10.1038/35015043
10.1016/j.gee.2016.12.005
10.1021/acsnano.8b03529
10.1021/jacs.8b05359
10.1039/C6CP01358A
10.6023/A17060272
10.1021/jacs.6b03811
10.1039/C8CS00115D
10.1007/978-3-540-74252-4
10.1246/bcsj.20180084
10.1038/nchembio.1555
10.1038/nnano.2011.50
10.1021/jacs.8b04912
10.1002/smll.201600230
10.1016/j.cis.2017.04.008
10.1021/acsami.6b00011
10.1038/nature19764
10.1002/adma.201502868
10.1038/nmat4538
10.1021/acs.accounts.7b00434
10.1002/adma.201505715
10.3866/PKU.WHXB20170615
10.1021/acsnano.5b06567
10.1021/acsami.6b10754
10.1039/C5CC00501A
10.1038/natrevmats.2016.24
10.1021/acsbiomaterials.8b00283
10.1246/bcsj.20170184
10.1039/C7CS00522A
10.1021/ja4086353
10.1016/j.colsurfa.2016.12.042
10.1038/nmat2496
10.1021/jacs.5b09974
10.1021/acs.chemrev.7b00552
10.1080/10610278.2010.550685
10.1039/C7CS90088K
10.1021/acsami.8b09511
10.1021/acs.jpcc.8b02392
10.1021/acsnano.5b00168
10.1021/acs.biomac.7b01437
10.1002/anie.201409149
10.1016/j.colsurfa.2017.03.048
10.1002/anie.201308792
10.1002/wnan.1275
10.1016/j.gee.2016.11.009
10.1002/anie.201103941
10.1002/adma.201100353
10.1073/pnas.0702336104
10.1038/nbt874
10.1002/anie.201704678
10.1038/nmat2558
10.1016/j.cocis.2018.01.007
10.1016/j.colsurfa.2016.10.003
10.1039/C6CS00176A
10.1016/j.colsurfa.2016.06.048
10.1038/nature10720
10.1021/acsanm.7b00344
10.1021/acs.chemrev.5b00140
10.1016/j.cocis.2017.12.004
10.1002/smll.201600328
10.1039/C7CS00121E
10.1002/adma.201707083
10.1007/s11120-013-9869-3
10.1039/C4NR04340E
10.1039/C5CC01996F
10.1126/science.aam9756
10.1002/anie.201803859
10.1039/c8nr05949g
10.1021/acsnano.8b01146
10.1039/C7CP06575B
10.1002/adma.201201544
10.1002/advs.201701001
10.1016/j.colsurfa.2017.04.003
10.1021/acsabm.8b00214
10.1038/srep16070
10.1021/cm4021172
10.1021/ja206742m
10.1021/acschemneuro
10.1016/j.colsurfa.2017.07.044
10.1021/am501673x
10.1002/cplu.201600450
10.1126/science.1082387
10.1021/acsnano.8b03118
10.1038/nature10513
10.1039/C5MH00012B
10.1021/acsami.7b17933
10.3390/polym8050181
10.1039/C6CP06150H
10.1016/j.colsurfa.2016.07.014
10.1021/acs.biomac.7b00787
10.1002/anie.201606795
10.1002/chem.201704032
10.1016/j.colsurfa.2017.03.060
10.1126/science.286.5438.287
10.1021/nl802813f
10.1021/cm702931b
10.1021/jacs.6b11382
10.1002/anie.201509810
10.1016/j.colsurfa.2016.11.019
10.1002/anie.201710642
10.1039/C7CS00594F
10.1039/C5CS00470E
10.1002/smll.201702175
10.1039/C6CS00542J
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright Chemical Society of Japan 2019
Copyright_xml – notice: The Chemical Society of Japan
– notice: Copyright Chemical Society of Japan 2019
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1246/bcsj.20180248
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Self-Assembling Peptide-Based Nanoarchitectonics
EISSN 1348-0634
EndPage 79
ExternalDocumentID 10_1246_bcsj_20180248
FullText_t_NoSnippeting true
GroupedDBID 02
23N
5GY
ABEFU
ABFLS
ABZEH
ACCUC
ACIWK
ACNCT
AENEX
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
EJD
F20
F5P
GX1
JSI
JSP
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
X
XPZ
-~X
0R~
6J9
AAUAY
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABVGC
ABXVV
ACGFO
ADIPN
ADNBA
ADVOB
AGMDO
AGORE
AJNCP
BCRHZ
CITATION
KOP
NU-
OJZSN
OWPYF
ROX
~02
7SR
8BQ
8FD
H13
JG9
ID FETCH-LOGICAL-c437t-adce4e41af8e3ad1bffe71f64c7db0fc86df4074ba1719d4e87f589a624e5fe63
ISSN 0009-2673
IngestDate Wed Aug 13 06:05:38 EDT 2025
Tue Jul 01 00:34:44 EDT 2025
Thu Apr 24 23:12:45 EDT 2025
Tue Jan 05 20:23:50 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Nanoarchitectonics
Peptide
Self-assembly
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-adce4e41af8e3ad1bffe71f64c7db0fc86df4074ba1719d4e87f589a624e5fe63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://dx.doi.org/10.1246/bcsj.20180248
PQID 2229614165
PQPubID 1996365
PageCount 10
ParticipantIDs proquest_journals_2229614165
crossref_citationtrail_10_1246_bcsj_20180248
crossref_primary_10_1246_bcsj_20180248
chemicalsocietyjapan_journals_10_1246_bcsj_20180248
ProviderPackageCode RAD
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2019
Publisher The Chemical Society of Japan
Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
– name: Chemical Society of Japan
References 77S. Li, R. Xing, R. Chang, Q. Zou, X. Yan, Curr. Opin. Colloid Interface Sci. 2018, 35, 17. 10.1016/j.cocis.2017.12.004
19A. Panchal, G. Fakhrullina, R. Fakhrullin, Y. Lvov, Nanoscale 2018, 10, 18205. 10.1039/c8nr05949g30211430
87K. Liu, R. Xing, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 3036. 10.1002/anie.201509810
5B. V. V. Prasad, M. E. Hardy, T. Dokland, J. Bella, M. G. Rossmannn, M. K. Estes, Science 1999, 286, 287. 10.1126/science.286.5438.28710514371
81X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174. 10.1039/C7CS00594F29334090
25A. Levin, T. C. T. Michaels, T. O. Mason, T. Müller, L. Adler-abramovich, L. Mahadevan, M. E. Cates, E. Gazit, T. P. J. Knowles, ACS Appl. Mater. Interfaces 2018, 10, 27578. 10.1021/acsami.8b0951130080033
46A. C. Mendes, T. Strohmenger, F. Goycoolea, I. S. Chronakis, Colloids Surf., A 2017, 531, 182. 10.1016/j.colsurfa.2017.07.044
36R. Xing, S. Li, N. Zhang, G. Shen, H. Möhwald, X. Yan, Biomacromolecules 2017, 18, 3514. 10.1021/acs.biomac.7b0078728721731
74M. P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K. F. Jensen, Nature 2016, 538, 183. 10.1038/nature1976427734871
2R. R. Naik, S. Singamaneni, Chem. Rev. 2017, 117, 12581. 10.1021/acs.chemrev.7b0055229065691
109R. Xing, C. Yuan, S. Li, J. Song, J. Li, X. Yan, Angew. Chem., Int. Ed. 2018, 57, 1537. 10.1002/anie.201710642
41K. J. Nagy, M. C. Giano, A. Jin, D. J. Pochan, J. P. Schneider, J. Am. Chem. Soc. 2011, 133, 14975. 10.1021/ja206742m21863803
110H. Zhang, K. Liu, S. Li, X. Xin, S. Yuan, G. Ma, X. Yan, ACS Nano 2018, 12, 8266. 10.1021/acsnano.8b0352930091901
16M. Pandeeswar, H. Khare, S. Ramakumar, T. Govindaraju, Chem. Commun. 2015, 51, 8315. 10.1039/C5CC01996F
55K. Liu, R. Xing, Y. Li, Q. Zou, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 12503. 10.1002/anie.201606795
61H. Liang, G. Whited, C. Nguyen, G. D. Stucky, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8212. 10.1073/pnas.070233610417488827
9K. Ariga, J. Li, Adv. Mater. 2016, 28, 987. 10.1002/adma.20150571526849665
40M. B. Avinash, T. Govindaraju, Nanoscale 2014, 6, 13348. 10.1039/C4NR04340E25287110
35N. Hauptstein, L. M. De Leon-Rodriguez, A. K. Mitra, Y. Hemar, I. Kavianinia, N. Li, V. Castelletto, I. W. Hamley, M. A. Brimble, ACS Biomater. Sci. Eng. 2018, 4, 2733. 10.1021/acsbiomaterials.8b00283
91H.-Y. Kim, B. R. Novak, B. Shrestha, S. E. Lee, D. Moldovan, Colloids Surf., A 2017, 523, 9. 10.1016/j.colsurfa.2017.03.060
63G. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga, Chem. Soc. Rev. 2017, 46, 4661. 10.1039/C6CS00542J28530745
28S. Khanra, M. Abdullah-Al Mamun, F. F. Ferreira, K. Ghosh, S. Guha, ACS Appl. Nano Mater. 2018, 1, 1175. 10.1021/acsanm.7b00344
24Y. Mo, S. Brahmachari, J. Lei, S. Gilead, Y. Tang, E. Gazit, G. Wei, ACS Chem. Neurosci. 2018, 9, 2741. 10.1021/acschemneuro29697126
73D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751. 10.1038/nnano.2007.38718654426
30C. Meier, T. Weil, F. Kirchhoff, J. Münch, WIREs Nanomed. Nanobiotechnol. 2014, 6, 438. 10.1002/wnan.1275
18D. A. Prishchenko, E. V. Zenkov, V. V. Mazurenko, R. F. Fakhrullin, Y. M. Lvov, V. G. Mazurenko, Phys. Chem. Chem. Phys. 2018, 20, 5841. 10.1039/C7CP06575B29412207
78H. Cheng, Y.-J. Cheng, S. Bhasin, J.-Y. Zhu, X.-D. Xu, R.-X. Zhuo, X.-Z. Zhang, Chem. Commun. 2015, 51, 6936. 10.1039/C5CC00501A
10K. Ariga, Q. Ji, W. Nakanishi, J. P. Hill, M. Aono, Mater. Horiz. 2015, 2, 406. 10.1039/C5MH00012B
69X. Yan, J. Li, H. Möhwald, Adv. Mater. 2011, 23, 2796. 10.1002/adma.20110035321495089
3W.-J. Chung, J.-W. Oh, K. Kwak, B. Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.-W. Lee, Nature 2011, 478, 364. 10.1038/nature1051322012394
79C. Chen, S. Li, K. Liu, G. Ma, X. Yan, Small 2016, 12, 4719. 10.1002/smll.20160032827043722
86X. Yan, Y. Cui, Q. He, K. Wang, J. Li, Chem. Mater. 2008, 20, 1522. 10.1021/cm702931b
95S. Debnath, S. Roy, R. V. Ulijn, J. Am. Chem. Soc. 2013, 135, 16789. 10.1021/ja408635324147566
56X. Yan, Green Energy Environ. 2017, 2, 66. 10.1016/j.gee.2016.11.009
75M. W. Tibbitt, J. E. Dahlman, R. Langer, J. Am. Chem. Soc. 2016, 138, 704. 10.1021/jacs.5b0997426741786
84C. Wang, F. Tang, X. Wang, L. Li, Colloids Surf., A 2016, 506, 425. 10.1016/j.colsurfa.2016.07.014
13I. Saptiama, Y. V. Kaneti, Y. Suzuki, Y. Suzuki, K. Tsuchiya, T. Sakae, K. Takai, N. Fukumitsu, Z. A. Alothman, M. S. A. Hossain, K. Ariga, Y. Yamauchi, Bull. Chem. Soc. Jpn. 2017, 90, 1174. 10.1246/bcsj.20170184
1P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature 2012, 481, 492. 10.1038/nature1072022258506
103S. Haldar, K. Karmakar, Colloids Surf., A 2017, 516, 394. 10.1016/j.colsurfa.2016.12.042
58K. Liu, X. Ren, J. Sun, Q. Zou, X. Yan, Adv. Sci. 2018, 5, 1701001. 10.1002/advs.201701001
27J. Wang, Q. Zou, X. Yan, Acta Chimi. Sin. 2017, 75, 933. 10.6023/A17060272
52N. M. Bedford, H. Ramezani-Dakhel, J. M. Slocik, B. D. Briggs, Y. Ren, A. I. Frenkel, V. Petkov, H. Heinz, R. R. Naik, M. R. Knecht, ACS Nano 2015, 9, 5082. 10.1021/acsnano.5b0016825905675
22D. M. Raymond, B. L. Nilsson, Chem. Soc. Rev. 2018, 47, 3659. 10.1039/C8CS00115D29697126
85E. Csapó, D. Ungor, Á. Juhász, G. K. Tóth, I. Dékány, Colloids Surf., A 2016, 511, 264. 10.1016/j.colsurfa.2016.10.003
44R. F. Alves, M. T. P. Favaro, T. A. Balbino, M. A. S. de Toledo, L. G. de la Torre, A. R. Azzoni, Colloids Surf., A 2017, 513, 1. 10.1016/j.colsurfa.2016.11.019
62S. Zhang, Nat. Biotechnol. 2003, 21, 1171. 10.1038/nbt87414520402
21M. Reches, E. Gazit, Science 2003, 300, 625. 10.1126/science.108238712714741
70X. Yan, Y. Su, J. Li, J. Früh, H. Möhwald, Angew. Chem., Int. Ed. 2011, 50, 11186. 10.1002/anie.201103941
49S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature 2000, 405, 665. 10.1038/3501504310864319
15M. Pandeeswar, T. Govindaraju, J. Inorg. Organomet. Polym. Mater. 2015, 25, 293. 10.1007/s10904-014-0144-7
7M. B. Avinash, K. Swathi, K. S. Narayan, T. Govindaraju, ACS Appl. Mater. Interfaces 2016, 8, 8678. 10.1021/acsami.6b0001127002593
45X. Wang, X. Jiang, S. Zhu, L. Liu, J. Xia, L. Li, Colloids Surf., A 2017, 535, 69. 10.1016/j.colsurfa.2017.09.026
89Y. Liu, L. Zhao, R. Xing, T. Jiao, W. Song, X. Yan, Chem.—Asian J. 2018, 13, 3526. 10.1002/asia.201800825
33D. G. Fatouros, D. A. Lamprou, A. J. Urquhart, S. N. Yannopoulos, I. S. Vizirianakis, S. Zhang, S. Koutsopoulos, ACS Appl. Mater. Interfaces 2014, 6, 8184. 10.1021/am501673x24821330
60N. L. Nerurkar, B. M. Baker, S. Sen, E. E. Wible, D. M. Elliott, R. L. Mauck, Nat. Mater. 2009, 8, 986. 10.1038/nmat255819855383
48Z. Xie, K. Liu, X. Ren, H. Zhang, X. Xin, Q. Zou, X. Yan, ACS Appl. Bio Mater. 2018, 1, 748. 10.1021/acsabm.8b00214
82H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280. 10.1039/C7CS00522A29528360
100J. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589. 10.1039/C6CS00176A27487936
43E. R. Cross, S. Sproules, R. Schweins, E. R. Draper, D. J. Adams, J. Am. Chem. Soc. 2018, 140, 8667. 10.1021/jacs.8b0535929944359
57K. Liu, C. Yuan, Q. Zou, Z. Xie, X. Yan, Angew. Chem., Int. Ed. 2017, 56, 7876. 10.1002/anie.201704678
88K. Ma, R. Xing, T. Jiao, G. Shen, C. Chen, J. Li, X. Yan, ACS Appl. Mater. Interfaces 2016, 8, 30759. 10.1021/acsami.6b1075427778498
37M. Abbas, R. Xing, N. Zhang, Q. Zou, X. Yan, ACS Biomater. Sci. Eng. 2018, 4, 2046. 10.1021/acsbiomaterials.7b00624
47R. Croce, H. van Amerongen, Nat. Chem. Biol. 2014, 10, 492. 10.1038/nchembio.155524937067
106J. Wang, K. Liu, L. Yan, A. Wang, S. Bai, X. Yan, ACS Nano 2016, 10, 2138. 10.1021/acsnano.5b0656726756339
50E. S. Kang, Y.-T. Kim, Y.-S. Ko, N. H. Kim, G. Cho, Y. H. Huh, J.-H. Kim, J. Nam, T. T. Thach, D. Youn, Y. D. Kim, W. S. Yun, W. F. DeGrado, S. Y. Kim, P. T. Hammond, J. Lee, Y.-U. Kwon, D.-H. Ha, Y. H. Kim, ACS Nano 2018, 12, 6554. 10.1021/acsnano.8b0114629842775
97A. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476. 10.1039/C7CS00121E28349143
64K. Tao, P. Makam, R. Aizen, E. Gazit, Science 2017, 358, eaam9756. 10.1126/science.aam9756
29J.-H. Lee, K. Heo, K. Schulz-Schönhagen, J. H. Lee, M. S. Desai, H.-E. Jin, S.-W. Lee, ACS Nano 2018, 12, 8138. 10.1021/acsnano.8b0311830071165
31J. M. Khan, M. S. Khan, A. Qadeer, M. A. Alsenaidy, A. Ahmed, N. A. Al-Shabib, R. H. Khan, Colloids Surf., A 2017, 522, 494. 10.1016/j.colsurfa.2017.03.048
23E. De Santis, M. G. Ryadnov, Chem. Soc. Rev. 2015, 44, 8288. 10.1039/C5CS00470E26272066
93J. H. van Esch, R. Klajn, S. Otto, Chem. Soc. Rev. 2017, 46, 5474. 10.1039/C7CS90088K28884760
38M. Pandeeswar, S. P. Senanayak, K. S. Narayan, T. Govindaraju, J. Am. Chem. Soc. 2016, 138, 8259. 10.1021/jacs.6b0381127305598
98B. Han, Wuli Huaxue Xuebao 2017, 33, 2125. 10.3866/PKU.WHXB20170615
83K. K. Ng, G. Zheng, Chem. Rev. 2015, 115, 11012. 10.1021/acs.chemrev.5b0014026244706
111S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, J. Am. Chem. Soc. 2018, 140, 10794. 10.1021/jacs.8b0491230102029
8L. K. Shrestha, T. Mori, K. Ariga, Curr. Opin. Colloid Interface Sci. 2018, 35, 68. 10.1016/j.cocis.2018.01.007
12T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L. K. Shrestha, H. Sakamoto, K. Itami, K. Ariga, Angew. Chem., Int. Ed. 2018, 57, 9679. 10.1002/anie.201803859
90Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921. 10.1021/jacs.6b1138228103663
68T. Govindaraju, M. Pandeeswar, K. Jayaramulu, G. Jaipuria, H. S. Atreya, Supramol. Chem. 2011, 23, 487. 10.1080/10610278.2010.550685
4G. S. Orf, R. E. Blankenship, Photosynth. Res. 2013, 116, 315. 10.1007/s11120-013-9869-323761131
6M. B. Avinash, T. Govindaraju, Acc. Chem. Res. 2018, 51, 414. 10.1021/acs.accounts.7b0043429364649
66P. Xue, Y. Wei, H. Wu, X. Wang, T. He, R. Shen, F. Yue, J. Wang, Y. Zhang, Colloids Surf., A 2016, 506, 514. 10.1016/j.colsurfa.2016.06.048
11M. Aono, K. Ariga, Adv. Mater. 2016, 28, 989. 10.1002/a
Kang (2024012219305813300_r50) 2018; 12
Alves (2024012219305813300_r44) 2017; 513
Han (2024012219305813300_r98) 2017; 33
Li (2024012219305813300_r111) 2018; 140
Li (2024012219305813300_r81) 2018; 47
Komiyama (2024012219305813300_r14) 2018; 91
Levin (2024012219305813300_r25) 2018; 10
Tibbitt (2024012219305813300_r75) 2016; 138
Nagy (2024012219305813300_r41) 2011; 133
Shrestha (2024012219305813300_r8) 2018; 35
2024012219305813300_r96
Chronopoulou (2024012219305813300_r92) 2017; 532
Wang (2024012219305813300_r107) 2017; 13
Korevaar (2024012219305813300_r1) 2012; 481
Mendes (2024012219305813300_r46) 2017; 531
Li (2024012219305813300_r71) 2016; 12
Xing (2024012219305813300_r36) 2017; 18
Prishchenko (2024012219305813300_r18) 2018; 20
Wei (2024012219305813300_r63) 2017; 46
Ng (2024012219305813300_r83) 2015; 115
Saptiama (2024012219305813300_r13) 2017; 90
Korevaar (2024012219305813300_r99) 2014; 26
Tao (2024012219305813300_r64) 2017; 358
Wang (2024012219305813300_r100) 2016; 45
Avinash (2024012219305813300_r39) 2012; 24
Aono (2024012219305813300_r11) 2016; 28
Prasad (2024012219305813300_r5) 1999; 286
Yan (2024012219305813300_r56) 2017; 2
Tantakitti (2024012219305813300_r94) 2016; 15
Yan (2024012219305813300_r69) 2011; 23
Ma (2024012219305813300_r88) 2016; 8
Naik (2024012219305813300_r2) 2017; 117
Jung (2024012219305813300_r82) 2018; 47
Liu (2024012219305813300_r89) 2018; 13
Nguyen (2024012219305813300_r51) 2018; 122
Govindaraju (2024012219305813300_r68) 2011; 23
Hauptstein (2024012219305813300_r35) 2018; 4
Liu (2024012219305813300_r54) 2017; 2
Avinash (2024012219305813300_r67) 2015; 5
Zhao (2024012219305813300_r76) 2017; 249
Zou (2024012219305813300_r104) 2014; 53
Pandeeswar (2024012219305813300_r38) 2016; 138
Amit (2024012219305813300_r26) 2018; 30
Lee (2024012219305813300_r29) 2018; 12
Lutz (2024012219305813300_r20) 2016; 1
Raymond (2024012219305813300_r22) 2018; 47
Debnath (2024012219305813300_r95) 2013; 135
De Santis (2024012219305813300_r23) 2015; 44
Wang (2024012219305813300_r27) 2017; 75
Mann (2024012219305813300_r65) 2009; 8
Abbas (2024012219305813300_r37) 2018; 4
Nagy-Smith (2024012219305813300_r42) 2017; 3
Li (2024012219305813300_r77) 2018; 35
Liu (2024012219305813300_r105) 2015; 54
Liu (2024012219305813300_r87) 2016; 55
Micó-Vicent (2024012219305813300_r17) 2018; 28
Liu (2024012219305813300_r58) 2018; 5
Croce (2024012219305813300_r47) 2014; 10
Ariga (2024012219305813300_r9) 2016; 28
Dang (2024012219305813300_r59) 2011; 6
Zhang (2024012219305813300_r62) 2003; 21
Avinash (2024012219305813300_r7) 2016; 8
Chen (2024012219305813300_r79) 2016; 12
Liu (2024012219305813300_r57) 2017; 56
Pandeeswar (2024012219305813300_r15) 2015; 25
Avinash (2024012219305813300_r6) 2018; 51
Haldar (2024012219305813300_r103) 2017; 516
Yan (2024012219305813300_r70) 2011; 50
Csapó (2024012219305813300_r85) 2016; 511
Liang (2024012219305813300_r61) 2007; 104
Orf (2024012219305813300_r4) 2013; 116
Cheng (2024012219305813300_r78) 2015; 51
Xing (2024012219305813300_r80) 2016; 8
Avinash (2024012219305813300_r40) 2014; 6
Wang (2024012219305813300_r106) 2016; 10
Panchal (2024012219305813300_r19) 2018; 10
Xing (2024012219305813300_r109) 2018; 57
Bedford (2024012219305813300_r52) 2015; 9
Xue (2024012219305813300_r66) 2016; 506
Zou (2024012219305813300_r53) 2018; 24
Ariga (2024012219305813300_r10) 2015; 2
Liu (2024012219305813300_r102) 2016; 18
Song (2024012219305813300_r108) 2018; 10
Pandeeswar (2024012219305813300_r16) 2015; 51
Stewart (2024012219305813300_r74) 2016; 538
Wang (2024012219305813300_r45) 2017; 535
Cross (2024012219305813300_r43) 2018; 140
Khan (2024012219305813300_r31) 2017; 522
van Esch (2024012219305813300_r93) 2017; 46
Reches (2024012219305813300_r21) 2003; 300
Mori (2024012219305813300_r12) 2018; 57
Cui (2024012219305813300_r34) 2009; 9
Wang (2024012219305813300_r84) 2016; 506
Nerurkar (2024012219305813300_r60) 2009; 8
Xie (2024012219305813300_r48) 2018; 1
Liu (2024012219305813300_r55) 2016; 55
Mo (2024012219305813300_r24) 2018; 9
Fatouros (2024012219305813300_r33) 2014; 6
Kim (2024012219305813300_r91) 2017; 523
Zou (2024012219305813300_r90) 2017; 139
Meier (2024012219305813300_r30) 2014; 6
Sorrenti (2024012219305813300_r97) 2017; 46
Zhang (2024012219305813300_r110) 2018; 12
Khanra (2024012219305813300_r28) 2018; 1
Chung (2024012219305813300_r3) 2011; 478
Whaley (2024012219305813300_r49) 2000; 405
Manchineella (2024012219305813300_r32) 2017; 82
Yan (2024012219305813300_r72) 2017; 18
Wang (2024012219305813300_r101) 2016; 18
Peer (2024012219305813300_r73) 2007; 2
Yan (2024012219305813300_r86) 2008; 20
References_xml – reference: 82H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280. 10.1039/C7CS00522A29528360
– reference: 92L. Chronopoulou, Y. Toumia, B. Cerroni, A. Gentili, G. Paradossi, C. Palocci, Colloids Surf., A 2017, 532, 535. 10.1016/j.colsurfa.2017.04.003
– reference: 55K. Liu, R. Xing, Y. Li, Q. Zou, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 12503. 10.1002/anie.201606795
– reference: 47R. Croce, H. van Amerongen, Nat. Chem. Biol. 2014, 10, 492. 10.1038/nchembio.155524937067
– reference: 51M. A. Nguyen, Z. E. Hughes, Y. Liu, Y. Li, M. T. Swihart, M. R. Knecht, T. R. Walsh, J. Phys. Chem. C 2018, 122, 11532. 10.1021/acs.jpcc.8b02392
– reference: 49S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature 2000, 405, 665. 10.1038/3501504310864319
– reference: 56X. Yan, Green Energy Environ. 2017, 2, 66. 10.1016/j.gee.2016.11.009
– reference: 32S. Manchineella, T. Govindaraju, ChemPlusChem 2017, 82, 88. 10.1002/cplu.201600450
– reference: 54K. Liu, M. Abass, Q. Zou, X. Yan, Green Energy Environ. 2017, 2, 58. 10.1016/j.gee.2016.12.005
– reference: 28S. Khanra, M. Abdullah-Al Mamun, F. F. Ferreira, K. Ghosh, S. Guha, ACS Appl. Nano Mater. 2018, 1, 1175. 10.1021/acsanm.7b00344
– reference: 88K. Ma, R. Xing, T. Jiao, G. Shen, C. Chen, J. Li, X. Yan, ACS Appl. Mater. Interfaces 2016, 8, 30759. 10.1021/acsami.6b1075427778498
– reference: 90Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921. 10.1021/jacs.6b1138228103663
– reference: 104Q. Zou, L. Zhang, X. Yan, A. Wang, G. Ma, J. Li, H. Möhwald, S. Mann, Angew. Chem., Int. Ed. 2014, 53, 2366. 10.1002/anie.201308792
– reference: 21M. Reches, E. Gazit, Science 2003, 300, 625. 10.1126/science.108238712714741
– reference: 1P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature 2012, 481, 492. 10.1038/nature1072022258506
– reference: 72X. Yan, H. Möhwald, Biomacromolecules 2017, 18, 3469. 10.1021/acs.biomac.7b0143729129072
– reference: 48Z. Xie, K. Liu, X. Ren, H. Zhang, X. Xin, Q. Zou, X. Yan, ACS Appl. Bio Mater. 2018, 1, 748. 10.1021/acsabm.8b00214
– reference: 42K. Nagy-Smith, P. J. Beltramo, E. Moore, R. Tycko, E. M. Furst, J. P. Schneider, ACS Cent. Sci. 2017, 3, 586. 10.1021/acscentsci.7b0011528691070
– reference: 18D. A. Prishchenko, E. V. Zenkov, V. V. Mazurenko, R. F. Fakhrullin, Y. M. Lvov, V. G. Mazurenko, Phys. Chem. Chem. Phys. 2018, 20, 5841. 10.1039/C7CP06575B29412207
– reference: 62S. Zhang, Nat. Biotechnol. 2003, 21, 1171. 10.1038/nbt87414520402
– reference: 40M. B. Avinash, T. Govindaraju, Nanoscale 2014, 6, 13348. 10.1039/C4NR04340E25287110
– reference: 66P. Xue, Y. Wei, H. Wu, X. Wang, T. He, R. Shen, F. Yue, J. Wang, Y. Zhang, Colloids Surf., A 2016, 506, 514. 10.1016/j.colsurfa.2016.06.048
– reference: 15M. Pandeeswar, T. Govindaraju, J. Inorg. Organomet. Polym. Mater. 2015, 25, 293. 10.1007/s10904-014-0144-7
– reference: 111S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, J. Am. Chem. Soc. 2018, 140, 10794. 10.1021/jacs.8b0491230102029
– reference: 25A. Levin, T. C. T. Michaels, T. O. Mason, T. Müller, L. Adler-abramovich, L. Mahadevan, M. E. Cates, E. Gazit, T. P. J. Knowles, ACS Appl. Mater. Interfaces 2018, 10, 27578. 10.1021/acsami.8b0951130080033
– reference: 75M. W. Tibbitt, J. E. Dahlman, R. Langer, J. Am. Chem. Soc. 2016, 138, 704. 10.1021/jacs.5b0997426741786
– reference: 74M. P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K. F. Jensen, Nature 2016, 538, 183. 10.1038/nature1976427734871
– reference: 58K. Liu, X. Ren, J. Sun, Q. Zou, X. Yan, Adv. Sci. 2018, 5, 1701001. 10.1002/advs.201701001
– reference: 108J. Song, R. Xing, T. Jiao, Q. Peng, C. Yuan, H. Möhwald, X. Yan, ACS Appl. Mater. Interfaces 2018, 10, 2368. 10.1021/acsami.7b1793329285927
– reference: 64K. Tao, P. Makam, R. Aizen, E. Gazit, Science 2017, 358, eaam9756. 10.1126/science.aam9756
– reference: 84C. Wang, F. Tang, X. Wang, L. Li, Colloids Surf., A 2016, 506, 425. 10.1016/j.colsurfa.2016.07.014
– reference: 41K. J. Nagy, M. C. Giano, A. Jin, D. J. Pochan, J. P. Schneider, J. Am. Chem. Soc. 2011, 133, 14975. 10.1021/ja206742m21863803
– reference: 16M. Pandeeswar, H. Khare, S. Ramakumar, T. Govindaraju, Chem. Commun. 2015, 51, 8315. 10.1039/C5CC01996F
– reference: 61H. Liang, G. Whited, C. Nguyen, G. D. Stucky, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8212. 10.1073/pnas.070233610417488827
– reference: 22D. M. Raymond, B. L. Nilsson, Chem. Soc. Rev. 2018, 47, 3659. 10.1039/C8CS00115D29697126
– reference: 103S. Haldar, K. Karmakar, Colloids Surf., A 2017, 516, 394. 10.1016/j.colsurfa.2016.12.042
– reference: 35N. Hauptstein, L. M. De Leon-Rodriguez, A. K. Mitra, Y. Hemar, I. Kavianinia, N. Li, V. Castelletto, I. W. Hamley, M. A. Brimble, ACS Biomater. Sci. Eng. 2018, 4, 2733. 10.1021/acsbiomaterials.8b00283
– reference: 4G. S. Orf, R. E. Blankenship, Photosynth. Res. 2013, 116, 315. 10.1007/s11120-013-9869-323761131
– reference: 8L. K. Shrestha, T. Mori, K. Ariga, Curr. Opin. Colloid Interface Sci. 2018, 35, 68. 10.1016/j.cocis.2018.01.007
– reference: 11M. Aono, K. Ariga, Adv. Mater. 2016, 28, 989. 10.1002/adma.20150286826331278
– reference: 46A. C. Mendes, T. Strohmenger, F. Goycoolea, I. S. Chronakis, Colloids Surf., A 2017, 531, 182. 10.1016/j.colsurfa.2017.07.044
– reference: 67M. B. Avinash, D. Raut, M. K. Mishra, U. Ramamurty, T. Govindaraju, Sci. Rep. 2015, 5, 16070. 10.1038/srep1607026525957
– reference: 98B. Han, Wuli Huaxue Xuebao 2017, 33, 2125. 10.3866/PKU.WHXB20170615
– reference: 60N. L. Nerurkar, B. M. Baker, S. Sen, E. E. Wible, D. M. Elliott, R. L. Mauck, Nat. Mater. 2009, 8, 986. 10.1038/nmat255819855383
– reference: 107J. Wang, C. Yuan, Y. Han, Y. Wang, X. Liu, S. Zhang, X. Yan, Small 2017, 13, 1702175. 10.1002/smll.201702175
– reference: 63G. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga, Chem. Soc. Rev. 2017, 46, 4661. 10.1039/C6CS00542J28530745
– reference: 96G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-Equilibrium Thermodynamics, Springer-Verlag, Berlin Heidelberg, 2008. doi:10.1007/978-3-540-74252-4. 10.1007/978-3-540-74252-4
– reference: 52N. M. Bedford, H. Ramezani-Dakhel, J. M. Slocik, B. D. Briggs, Y. Ren, A. I. Frenkel, V. Petkov, H. Heinz, R. R. Naik, M. R. Knecht, ACS Nano 2015, 9, 5082. 10.1021/acsnano.5b0016825905675
– reference: 69X. Yan, J. Li, H. Möhwald, Adv. Mater. 2011, 23, 2796. 10.1002/adma.20110035321495089
– reference: 9K. Ariga, J. Li, Adv. Mater. 2016, 28, 987. 10.1002/adma.20150571526849665
– reference: 31J. M. Khan, M. S. Khan, A. Qadeer, M. A. Alsenaidy, A. Ahmed, N. A. Al-Shabib, R. H. Khan, Colloids Surf., A 2017, 522, 494. 10.1016/j.colsurfa.2017.03.048
– reference: 53Q. Zou, X. Yan, Chem.—Eur. J. 2018, 24, 755. 10.1002/chem.20170403229076199
– reference: 94F. Tantakitti, J. Boekhoven, X. Wang, R. V. Kazantsev, T. Yu, J. Li, E. Zhuang, R. Zandi, J. H. Ortony, C. J. Newcomb, L. C. Palmer, G. S. Shekhawat, M. O. de la Cruz, G. C. Schatz, S. I. Stupp, Nat. Mater. 2016, 15, 469. 10.1038/nmat453826779883
– reference: 71Y. Li, L. Yan, K. Liu, J. Wang, A. Wang, S. Bai, X. Yan, Small 2016, 12, 2575. 10.1002/smll.20160023027028848
– reference: 37M. Abbas, R. Xing, N. Zhang, Q. Zou, X. Yan, ACS Biomater. Sci. Eng. 2018, 4, 2046. 10.1021/acsbiomaterials.7b00624
– reference: 3W.-J. Chung, J.-W. Oh, K. Kwak, B. Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.-W. Lee, Nature 2011, 478, 364. 10.1038/nature1051322012394
– reference: 86X. Yan, Y. Cui, Q. He, K. Wang, J. Li, Chem. Mater. 2008, 20, 1522. 10.1021/cm702931b
– reference: 30C. Meier, T. Weil, F. Kirchhoff, J. Münch, WIREs Nanomed. Nanobiotechnol. 2014, 6, 438. 10.1002/wnan.1275
– reference: 33D. G. Fatouros, D. A. Lamprou, A. J. Urquhart, S. N. Yannopoulos, I. S. Vizirianakis, S. Zhang, S. Koutsopoulos, ACS Appl. Mater. Interfaces 2014, 6, 8184. 10.1021/am501673x24821330
– reference: 99P. A. Korevaar, T. F. A. De Greef, E. W. Meijer, Chem. Mater. 2014, 26, 576. 10.1021/cm4021172
– reference: 68T. Govindaraju, M. Pandeeswar, K. Jayaramulu, G. Jaipuria, H. S. Atreya, Supramol. Chem. 2011, 23, 487. 10.1080/10610278.2010.550685
– reference: 10K. Ariga, Q. Ji, W. Nakanishi, J. P. Hill, M. Aono, Mater. Horiz. 2015, 2, 406. 10.1039/C5MH00012B
– reference: 7M. B. Avinash, K. Swathi, K. S. Narayan, T. Govindaraju, ACS Appl. Mater. Interfaces 2016, 8, 8678. 10.1021/acsami.6b0001127002593
– reference: 26M. Amit, S. Yuran, E. Gazit, M. Reches, N. Ashkenasy, Adv. Mater. 2018, 30, 1707083. 10.1002/adma.201707083
– reference: 80R. Xing, T. Jiao, Y. Liu, K. Ma, Q. Zou, G. Ma, X. Yan, Polymers 2016, 8, 181. 10.3390/polym8050181
– reference: 19A. Panchal, G. Fakhrullina, R. Fakhrullin, Y. Lvov, Nanoscale 2018, 10, 18205. 10.1039/c8nr05949g30211430
– reference: 29J.-H. Lee, K. Heo, K. Schulz-Schönhagen, J. H. Lee, M. S. Desai, H.-E. Jin, S.-W. Lee, ACS Nano 2018, 12, 8138. 10.1021/acsnano.8b0311830071165
– reference: 38M. Pandeeswar, S. P. Senanayak, K. S. Narayan, T. Govindaraju, J. Am. Chem. Soc. 2016, 138, 8259. 10.1021/jacs.6b0381127305598
– reference: 59X. Dang, H. Yi, M.-H. Ham, J. Qi, D. S. Yun, R. Ladewski, M. S. Strano, P. T. Hammond, A. M. Belcher, Nat. Nanotechnol. 2011, 6, 377. 10.1038/nnano.2011.5021516089
– reference: 78H. Cheng, Y.-J. Cheng, S. Bhasin, J.-Y. Zhu, X.-D. Xu, R.-X. Zhuo, X.-Z. Zhang, Chem. Commun. 2015, 51, 6936. 10.1039/C5CC00501A
– reference: 102K. Liu, Y. Kang, G. Ma, H. Möhwald, X. Yan, Phys. Chem. Chem. Phys. 2016, 18, 16738. 10.1039/C6CP01358A27270974
– reference: 2R. R. Naik, S. Singamaneni, Chem. Rev. 2017, 117, 12581. 10.1021/acs.chemrev.7b0055229065691
– reference: 110H. Zhang, K. Liu, S. Li, X. Xin, S. Yuan, G. Ma, X. Yan, ACS Nano 2018, 12, 8266. 10.1021/acsnano.8b0352930091901
– reference: 5B. V. V. Prasad, M. E. Hardy, T. Dokland, J. Bella, M. G. Rossmannn, M. K. Estes, Science 1999, 286, 287. 10.1126/science.286.5438.28710514371
– reference: 13I. Saptiama, Y. V. Kaneti, Y. Suzuki, Y. Suzuki, K. Tsuchiya, T. Sakae, K. Takai, N. Fukumitsu, Z. A. Alothman, M. S. A. Hossain, K. Ariga, Y. Yamauchi, Bull. Chem. Soc. Jpn. 2017, 90, 1174. 10.1246/bcsj.20170184
– reference: 39M. B. Avinash, T. Govindaraju, Adv. Mater. 2012, 24, 3905. 10.1002/adma.20120154422714652
– reference: 27J. Wang, Q. Zou, X. Yan, Acta Chimi. Sin. 2017, 75, 933. 10.6023/A17060272
– reference: 101J. Wang, G. Shen, K. Ma, T. Jiao, K. Liu, X. Yan, Phys. Chem. Chem. Phys. 2016, 18, 30926. 10.1039/C6CP06150H27722335
– reference: 12T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L. K. Shrestha, H. Sakamoto, K. Itami, K. Ariga, Angew. Chem., Int. Ed. 2018, 57, 9679. 10.1002/anie.201803859
– reference: 97A. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476. 10.1039/C7CS00121E28349143
– reference: 17B. Micó-Vicent, F. M. Martínez-Verdú, A. Novikov, A. Stavitskaya, V. Vinokurov, E. Rozhina, R. Fakhrullin, R. Yendluri, Y. Lvov, Adv. Funct. Mater. 2018, 28, 1703553. 10.1002/adfm.201703553
– reference: 23E. De Santis, M. G. Ryadnov, Chem. Soc. Rev. 2015, 44, 8288. 10.1039/C5CS00470E26272066
– reference: 57K. Liu, C. Yuan, Q. Zou, Z. Xie, X. Yan, Angew. Chem., Int. Ed. 2017, 56, 7876. 10.1002/anie.201704678
– reference: 95S. Debnath, S. Roy, R. V. Ulijn, J. Am. Chem. Soc. 2013, 135, 16789. 10.1021/ja408635324147566
– reference: 6M. B. Avinash, T. Govindaraju, Acc. Chem. Res. 2018, 51, 414. 10.1021/acs.accounts.7b0043429364649
– reference: 20J.-F. Lutz, J.-M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev. Mater. 2016, 1, 16024. 10.1038/natrevmats.2016.24
– reference: 36R. Xing, S. Li, N. Zhang, G. Shen, H. Möhwald, X. Yan, Biomacromolecules 2017, 18, 3514. 10.1021/acs.biomac.7b0078728721731
– reference: 89Y. Liu, L. Zhao, R. Xing, T. Jiao, W. Song, X. Yan, Chem.—Asian J. 2018, 13, 3526. 10.1002/asia.201800825
– reference: 65S. Mann, Nat. Mater. 2009, 8, 781. 10.1038/nmat249619734883
– reference: 81X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174. 10.1039/C7CS00594F29334090
– reference: 87K. Liu, R. Xing, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 3036. 10.1002/anie.201509810
– reference: 109R. Xing, C. Yuan, S. Li, J. Song, J. Li, X. Yan, Angew. Chem., Int. Ed. 2018, 57, 1537. 10.1002/anie.201710642
– reference: 24Y. Mo, S. Brahmachari, J. Lei, S. Gilead, Y. Tang, E. Gazit, G. Wei, ACS Chem. Neurosci. 2018, 9, 2741. 10.1021/acschemneuro29697126
– reference: 43E. R. Cross, S. Sproules, R. Schweins, E. R. Draper, D. J. Adams, J. Am. Chem. Soc. 2018, 140, 8667. 10.1021/jacs.8b0535929944359
– reference: 70X. Yan, Y. Su, J. Li, J. Früh, H. Möhwald, Angew. Chem., Int. Ed. 2011, 50, 11186. 10.1002/anie.201103941
– reference: 79C. Chen, S. Li, K. Liu, G. Ma, X. Yan, Small 2016, 12, 4719. 10.1002/smll.20160032827043722
– reference: 91H.-Y. Kim, B. R. Novak, B. Shrestha, S. E. Lee, D. Moldovan, Colloids Surf., A 2017, 523, 9. 10.1016/j.colsurfa.2017.03.060
– reference: 76L. Zhao, G. Shen, G. Ma, X. Yan, Adv. Colloid Interface Sci. 2017, 249, 308. 10.1016/j.cis.2017.04.00828456289
– reference: 105K. Liu, R. Xing, C. Chen, G. Shen, L. Yan, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2015, 54, 500. 10.1002/anie.201409149
– reference: 34H. Cui, T. Muraoka, A. G. Cheetham, S. I. Stupp, Nano Lett. 2009, 9, 945. 10.1021/nl802813f19193022
– reference: 44R. F. Alves, M. T. P. Favaro, T. A. Balbino, M. A. S. de Toledo, L. G. de la Torre, A. R. Azzoni, Colloids Surf., A 2017, 513, 1. 10.1016/j.colsurfa.2016.11.019
– reference: 85E. Csapó, D. Ungor, Á. Juhász, G. K. Tóth, I. Dékány, Colloids Surf., A 2016, 511, 264. 10.1016/j.colsurfa.2016.10.003
– reference: 14M. Komiyama, T. Mori, K. Ariga, Bull. Chem. Soc. Jpn. 2018, 91, 1075. 10.1246/bcsj.20180084
– reference: 83K. K. Ng, G. Zheng, Chem. Rev. 2015, 115, 11012. 10.1021/acs.chemrev.5b0014026244706
– reference: 77S. Li, R. Xing, R. Chang, Q. Zou, X. Yan, Curr. Opin. Colloid Interface Sci. 2018, 35, 17. 10.1016/j.cocis.2017.12.004
– reference: 100J. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589. 10.1039/C6CS00176A27487936
– reference: 50E. S. Kang, Y.-T. Kim, Y.-S. Ko, N. H. Kim, G. Cho, Y. H. Huh, J.-H. Kim, J. Nam, T. T. Thach, D. Youn, Y. D. Kim, W. S. Yun, W. F. DeGrado, S. Y. Kim, P. T. Hammond, J. Lee, Y.-U. Kwon, D.-H. Ha, Y. H. Kim, ACS Nano 2018, 12, 6554. 10.1021/acsnano.8b0114629842775
– reference: 45X. Wang, X. Jiang, S. Zhu, L. Liu, J. Xia, L. Li, Colloids Surf., A 2017, 535, 69. 10.1016/j.colsurfa.2017.09.026
– reference: 73D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751. 10.1038/nnano.2007.38718654426
– reference: 106J. Wang, K. Liu, L. Yan, A. Wang, S. Bai, X. Yan, ACS Nano 2016, 10, 2138. 10.1021/acsnano.5b0656726756339
– reference: 93J. H. van Esch, R. Klajn, S. Otto, Chem. Soc. Rev. 2017, 46, 5474. 10.1039/C7CS90088K28884760
– volume: 2
  start-page: 751
  year: 2007
  ident: 2024012219305813300_r73
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.387
– volume: 535
  start-page: 69
  year: 2017
  ident: 2024012219305813300_r45
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2017.09.026
– volume: 28
  start-page: 1703553
  year: 2018
  ident: 2024012219305813300_r17
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201703553
– volume: 4
  start-page: 2046
  year: 2018
  ident: 2024012219305813300_r37
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.7b00624
– volume: 3
  start-page: 586
  year: 2017
  ident: 2024012219305813300_r42
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.7b00115
– volume: 13
  start-page: 3526
  year: 2018
  ident: 2024012219305813300_r89
  publication-title: Chem.—Asian J.
  doi: 10.1002/asia.201800825
– volume: 25
  start-page: 293
  year: 2015
  ident: 2024012219305813300_r15
  publication-title: J. Inorg. Organomet. Polym. Mater.
  doi: 10.1007/s10904-014-0144-7
– volume: 405
  start-page: 665
  year: 2000
  ident: 2024012219305813300_r49
  publication-title: Nature
  doi: 10.1038/35015043
– volume: 2
  start-page: 58
  year: 2017
  ident: 2024012219305813300_r54
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2016.12.005
– volume: 12
  start-page: 8266
  year: 2018
  ident: 2024012219305813300_r110
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03529
– volume: 140
  start-page: 8667
  year: 2018
  ident: 2024012219305813300_r43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b05359
– volume: 18
  start-page: 16738
  year: 2016
  ident: 2024012219305813300_r102
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01358A
– volume: 75
  start-page: 933
  year: 2017
  ident: 2024012219305813300_r27
  publication-title: Acta Chimi. Sin.
  doi: 10.6023/A17060272
– volume: 138
  start-page: 8259
  year: 2016
  ident: 2024012219305813300_r38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03811
– volume: 47
  start-page: 3659
  year: 2018
  ident: 2024012219305813300_r22
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00115D
– ident: 2024012219305813300_r96
  doi: 10.1007/978-3-540-74252-4
– volume: 91
  start-page: 1075
  year: 2018
  ident: 2024012219305813300_r14
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20180084
– volume: 10
  start-page: 492
  year: 2014
  ident: 2024012219305813300_r47
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1555
– volume: 6
  start-page: 377
  year: 2011
  ident: 2024012219305813300_r59
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2011.50
– volume: 140
  start-page: 10794
  year: 2018
  ident: 2024012219305813300_r111
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04912
– volume: 12
  start-page: 2575
  year: 2016
  ident: 2024012219305813300_r71
  publication-title: Small
  doi: 10.1002/smll.201600230
– volume: 249
  start-page: 308
  year: 2017
  ident: 2024012219305813300_r76
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/j.cis.2017.04.008
– volume: 8
  start-page: 8678
  year: 2016
  ident: 2024012219305813300_r7
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b00011
– volume: 538
  start-page: 183
  year: 2016
  ident: 2024012219305813300_r74
  publication-title: Nature
  doi: 10.1038/nature19764
– volume: 28
  start-page: 989
  year: 2016
  ident: 2024012219305813300_r11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502868
– volume: 15
  start-page: 469
  year: 2016
  ident: 2024012219305813300_r94
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4538
– volume: 51
  start-page: 414
  year: 2018
  ident: 2024012219305813300_r6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00434
– volume: 28
  start-page: 987
  year: 2016
  ident: 2024012219305813300_r9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505715
– volume: 33
  start-page: 2125
  year: 2017
  ident: 2024012219305813300_r98
  publication-title: Wuli Huaxue Xuebao
  doi: 10.3866/PKU.WHXB20170615
– volume: 10
  start-page: 2138
  year: 2016
  ident: 2024012219305813300_r106
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06567
– volume: 8
  start-page: 30759
  year: 2016
  ident: 2024012219305813300_r88
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10754
– volume: 51
  start-page: 6936
  year: 2015
  ident: 2024012219305813300_r78
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC00501A
– volume: 1
  start-page: 16024
  year: 2016
  ident: 2024012219305813300_r20
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.24
– volume: 4
  start-page: 2733
  year: 2018
  ident: 2024012219305813300_r35
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00283
– volume: 90
  start-page: 1174
  year: 2017
  ident: 2024012219305813300_r13
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20170184
– volume: 47
  start-page: 2280
  year: 2018
  ident: 2024012219305813300_r82
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00522A
– volume: 135
  start-page: 16789
  year: 2013
  ident: 2024012219305813300_r95
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4086353
– volume: 516
  start-page: 394
  year: 2017
  ident: 2024012219305813300_r103
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2016.12.042
– volume: 8
  start-page: 781
  year: 2009
  ident: 2024012219305813300_r65
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2496
– volume: 138
  start-page: 704
  year: 2016
  ident: 2024012219305813300_r75
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09974
– volume: 117
  start-page: 12581
  year: 2017
  ident: 2024012219305813300_r2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00552
– volume: 23
  start-page: 487
  year: 2011
  ident: 2024012219305813300_r68
  publication-title: Supramol. Chem.
  doi: 10.1080/10610278.2010.550685
– volume: 46
  start-page: 5474
  year: 2017
  ident: 2024012219305813300_r93
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS90088K
– volume: 10
  start-page: 27578
  year: 2018
  ident: 2024012219305813300_r25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b09511
– volume: 122
  start-page: 11532
  year: 2018
  ident: 2024012219305813300_r51
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b02392
– volume: 9
  start-page: 5082
  year: 2015
  ident: 2024012219305813300_r52
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00168
– volume: 18
  start-page: 3469
  year: 2017
  ident: 2024012219305813300_r72
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01437
– volume: 54
  start-page: 500
  year: 2015
  ident: 2024012219305813300_r105
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409149
– volume: 522
  start-page: 494
  year: 2017
  ident: 2024012219305813300_r31
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2017.03.048
– volume: 53
  start-page: 2366
  year: 2014
  ident: 2024012219305813300_r104
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201308792
– volume: 6
  start-page: 438
  year: 2014
  ident: 2024012219305813300_r30
  publication-title: WIREs Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1275
– volume: 2
  start-page: 66
  year: 2017
  ident: 2024012219305813300_r56
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2016.11.009
– volume: 50
  start-page: 11186
  year: 2011
  ident: 2024012219305813300_r70
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201103941
– volume: 23
  start-page: 2796
  year: 2011
  ident: 2024012219305813300_r69
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100353
– volume: 104
  start-page: 8212
  year: 2007
  ident: 2024012219305813300_r61
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0702336104
– volume: 21
  start-page: 1171
  year: 2003
  ident: 2024012219305813300_r62
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt874
– volume: 56
  start-page: 7876
  year: 2017
  ident: 2024012219305813300_r57
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201704678
– volume: 8
  start-page: 986
  year: 2009
  ident: 2024012219305813300_r60
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2558
– volume: 35
  start-page: 68
  year: 2018
  ident: 2024012219305813300_r8
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2018.01.007
– volume: 511
  start-page: 264
  year: 2016
  ident: 2024012219305813300_r85
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2016.10.003
– volume: 45
  start-page: 5589
  year: 2016
  ident: 2024012219305813300_r100
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00176A
– volume: 506
  start-page: 514
  year: 2016
  ident: 2024012219305813300_r66
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2016.06.048
– volume: 481
  start-page: 492
  year: 2012
  ident: 2024012219305813300_r1
  publication-title: Nature
  doi: 10.1038/nature10720
– volume: 1
  start-page: 1175
  year: 2018
  ident: 2024012219305813300_r28
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.7b00344
– volume: 115
  start-page: 11012
  year: 2015
  ident: 2024012219305813300_r83
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00140
– volume: 35
  start-page: 17
  year: 2018
  ident: 2024012219305813300_r77
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2017.12.004
– volume: 12
  start-page: 4719
  year: 2016
  ident: 2024012219305813300_r79
  publication-title: Small
  doi: 10.1002/smll.201600328
– volume: 46
  start-page: 5476
  year: 2017
  ident: 2024012219305813300_r97
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00121E
– volume: 30
  start-page: 1707083
  year: 2018
  ident: 2024012219305813300_r26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201707083
– volume: 116
  start-page: 315
  year: 2013
  ident: 2024012219305813300_r4
  publication-title: Photosynth. Res.
  doi: 10.1007/s11120-013-9869-3
– volume: 6
  start-page: 13348
  year: 2014
  ident: 2024012219305813300_r40
  publication-title: Nanoscale
  doi: 10.1039/C4NR04340E
– volume: 51
  start-page: 8315
  year: 2015
  ident: 2024012219305813300_r16
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01996F
– volume: 358
  year: 2017
  ident: 2024012219305813300_r64
  publication-title: Science
  doi: 10.1126/science.aam9756
– volume: 57
  start-page: 9679
  year: 2018
  ident: 2024012219305813300_r12
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201803859
– volume: 10
  start-page: 18205
  year: 2018
  ident: 2024012219305813300_r19
  publication-title: Nanoscale
  doi: 10.1039/c8nr05949g
– volume: 12
  start-page: 6554
  year: 2018
  ident: 2024012219305813300_r50
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01146
– volume: 20
  start-page: 5841
  year: 2018
  ident: 2024012219305813300_r18
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP06575B
– volume: 24
  start-page: 3905
  year: 2012
  ident: 2024012219305813300_r39
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201201544
– volume: 5
  start-page: 1701001
  year: 2018
  ident: 2024012219305813300_r58
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201701001
– volume: 532
  start-page: 535
  year: 2017
  ident: 2024012219305813300_r92
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2017.04.003
– volume: 1
  start-page: 748
  year: 2018
  ident: 2024012219305813300_r48
  publication-title: ACS Appl. Bio Mater.
  doi: 10.1021/acsabm.8b00214
– volume: 5
  start-page: 16070
  year: 2015
  ident: 2024012219305813300_r67
  publication-title: Sci. Rep.
  doi: 10.1038/srep16070
– volume: 26
  start-page: 576
  year: 2014
  ident: 2024012219305813300_r99
  publication-title: Chem. Mater.
  doi: 10.1021/cm4021172
– volume: 133
  start-page: 14975
  year: 2011
  ident: 2024012219305813300_r41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206742m
– volume: 9
  start-page: 2741
  year: 2018
  ident: 2024012219305813300_r24
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/acschemneuro
– volume: 531
  start-page: 182
  year: 2017
  ident: 2024012219305813300_r46
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2017.07.044
– volume: 6
  start-page: 8184
  year: 2014
  ident: 2024012219305813300_r33
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am501673x
– volume: 82
  start-page: 88
  year: 2017
  ident: 2024012219305813300_r32
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.201600450
– volume: 300
  start-page: 625
  year: 2003
  ident: 2024012219305813300_r21
  publication-title: Science
  doi: 10.1126/science.1082387
– volume: 12
  start-page: 8138
  year: 2018
  ident: 2024012219305813300_r29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03118
– volume: 478
  start-page: 364
  year: 2011
  ident: 2024012219305813300_r3
  publication-title: Nature
  doi: 10.1038/nature10513
– volume: 2
  start-page: 406
  year: 2015
  ident: 2024012219305813300_r10
  publication-title: Mater. Horiz.
  doi: 10.1039/C5MH00012B
– volume: 10
  start-page: 2368
  year: 2018
  ident: 2024012219305813300_r108
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17933
– volume: 8
  start-page: 181
  year: 2016
  ident: 2024012219305813300_r80
  publication-title: Polymers
  doi: 10.3390/polym8050181
– volume: 18
  start-page: 30926
  year: 2016
  ident: 2024012219305813300_r101
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP06150H
– volume: 506
  start-page: 425
  year: 2016
  ident: 2024012219305813300_r84
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2016.07.014
– volume: 18
  start-page: 3514
  year: 2017
  ident: 2024012219305813300_r36
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00787
– volume: 55
  start-page: 12503
  year: 2016
  ident: 2024012219305813300_r55
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201606795
– volume: 24
  start-page: 755
  year: 2018
  ident: 2024012219305813300_r53
  publication-title: Chem.—Eur. J.
  doi: 10.1002/chem.201704032
– volume: 523
  start-page: 9
  year: 2017
  ident: 2024012219305813300_r91
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2017.03.060
– volume: 286
  start-page: 287
  year: 1999
  ident: 2024012219305813300_r5
  publication-title: Science
  doi: 10.1126/science.286.5438.287
– volume: 9
  start-page: 945
  year: 2009
  ident: 2024012219305813300_r34
  publication-title: Nano Lett.
  doi: 10.1021/nl802813f
– volume: 20
  start-page: 1522
  year: 2008
  ident: 2024012219305813300_r86
  publication-title: Chem. Mater.
  doi: 10.1021/cm702931b
– volume: 139
  start-page: 1921
  year: 2017
  ident: 2024012219305813300_r90
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11382
– volume: 55
  start-page: 3036
  year: 2016
  ident: 2024012219305813300_r87
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201509810
– volume: 513
  start-page: 1
  year: 2017
  ident: 2024012219305813300_r44
  publication-title: Colloids Surf., A
  doi: 10.1016/j.colsurfa.2016.11.019
– volume: 57
  start-page: 1537
  year: 2018
  ident: 2024012219305813300_r109
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710642
– volume: 47
  start-page: 1174
  year: 2018
  ident: 2024012219305813300_r81
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00594F
– volume: 44
  start-page: 8288
  year: 2015
  ident: 2024012219305813300_r23
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00470E
– volume: 13
  start-page: 1702175
  year: 2017
  ident: 2024012219305813300_r107
  publication-title: Small
  doi: 10.1002/smll.201702175
– volume: 46
  start-page: 4661
  year: 2017
  ident: 2024012219305813300_r63
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00542J
SSID ssj0008549
Score 2.5501037
Snippet Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while...
SourceID proquest
crossref
chemicalsocietyjapan
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 70
SubjectTerms Assembling
Biomimetics
Biomolecules
Light therapy
Materials Innovation
Molecular structure
Nanotechnology
Peptides
Self-assembly
Title Self-Assembling Peptide-Based Nanoarchitectonics
URI http://dx.doi.org/10.1246/bcsj.20180248
https://www.proquest.com/docview/2229614165
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKOAAHBAy0sYF6QJzwqGMndi6TxrRpmsoA0UoRl8if2qbSTmtzYH89z3GcNnSbgEtUOZYbv_fT-7DfB0LvqCFEGZ5jTVXqHRSLQS0IbFLQxc4xm3OfO_z5LDsZs9MiLXq9_ZWopWqh9vTNrXkl_8NVGAO--izZf-BsuygMwG_gLzyBw_D8Kx5_txOH_bXtT1VnlX_1ISrG4k-gmowXnLP2nsBXwJ13bnCbutsxSKCtHBDjOGH8FDRpC54f57I-Vh1Wv2Sj7vzorPKD3wBlk4tWhIRT1aKy5_Ji9VzBpzJ1zhXu_9coTXOcZKEVyZ4NApQygcHsYasSNk_WkBTEZegZsibFk7p8sdLzSx97J3zZtaW6ilf0Z1_K4_FwWI6OitED9DABN6FO9i6WIT4ije5P-M6mxios_7Gz-BO0qZvtzsNuL_1Ou6ZKV1PX5sfoGXra-A39gwCC56hnpy_Qo8PYrm8TDf4AQ78Dhv46GF6i8fHR6PAEN-0wsGaUL7A02jLLiHTCUmmIcs5y4jKmuVEDp0VmHLjnTEnCSW6YFdylIpdZwmzqbEZfoY3pbGq3UJ84rqUkmmvglBUGvGZqc5qxfMC5E4NtRG8jSNlgf1561xHIWHoylpGM2-hDpFepmwrzvtHJ5K7p79vpV6G0yl0TdyPxl1_g-9CDaUmy9PX9r3fQ4yW8d9HG4rqyb8CQXKi3NVp-A3yFdX8
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembling+Peptide-Based+Nanoarchitectonics&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Zhao%2C+Luyang&rft.au=Zou%2C+Qianli&rft.au=Yan%2C+Xuehai&rft.date=2019-01-01&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=92&rft.issue=1&rft.spage=70&rft_id=info:doi/10.1246%2Fbcsj.20180248&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon