Self-Assembling Peptide-Based Nanoarchitectonics
Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for ap...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 92; no. 1; pp. 70 - 79 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Tokyo
The Chemical Society of Japan
01.01.2019
Chemical Society of Japan |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for application. In this review, we summarize our recent works on self-assembling peptide-based nanoarchitectonics, where peptides with a simple molecular structure can modulate the assembly of various species in a flexible and controllable way and efficiently construct nanoarchitectonics with desired functionalities. Our recent findings regarding the applications of self-assembling peptides in the fields of biomimetic photosystems, oriented microtubes for optical waveguiding, and phototherapy are discussed in detail. In addition, the self-assembly mechanism and the effects of peptides on self-assembly are reviewed. This review is expected to provide an understanding of the role of peptides in the assembly of nanoarchitectonics and guidance towards the future design and application of novel functional peptide-modulated self-assembling materials. |
---|---|
AbstractList | Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for application. In this review, we summarize our recent works on self-assembling peptide-based nanoarchitectonics, where peptides with a simple molecular structure can modulate the assembly of various species in a flexible and controllable way and efficiently construct nanoarchitectonics with desired functionalities. Our recent findings regarding the applications of self-assembling peptides in the fields of biomimetic photosystems, oriented microtubes for optical waveguiding, and phototherapy are discussed in detail. In addition, the self-assembly mechanism and the effects of peptides on self-assembly are reviewed. This review is expected to provide an understanding of the role of peptides in the assembly of nanoarchitectonics and guidance towards the future design and application of novel functional peptide-modulated self-assembling materials. Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while maintaining their inherent functionalities has proven to be a highly promising route towards artificial nanoarchitectonics with great potential for application. In this review, we summarize our recent works on self-assembling peptide-based nanoarchitectonics, where peptides with a simple molecular structure can modulate the assembly of various species in a flexible and controllable way and efficiently construct nanoarchitectonics with desired functionalities. Our recent findings regarding the applications of self-assembling peptides in the fields of biomimetic photosystems, oriented microtubes for optical waveguiding, and phototherapy are discussed in detail. In addition, the self-assembly mechanism and the effects of peptides on self-assembly are reviewed. This review is expected to provide an understanding of the role of peptides in the assembly of nanoarchitectonics and guidance towards the future design and application of novel functional peptide-modulated self-assembling materials. Peptides, as a versatile building block, hold significant promises for creation of biology-friendly nanoarchitectonics. In this review article, we will make an overview on how peptides are designed for modulating intermolecular interactions for formation of various nanoarchitectonics and their applications towards biomimetic photosystem, optical waveguiding and phototherapy. These examples will present the newest advances of biomolecules-based nanoarchitectonics and the related nanotechnology. |
Author | Zou, Qianli Yan, Xuehai Zhao, Luyang |
Author_xml | – sequence: 1 givenname: Luyang surname: Zhao fullname: Zhao, Luyang – sequence: 2 givenname: Qianli surname: Zou fullname: Zou, Qianli – sequence: 3 givenname: Xuehai surname: Yan fullname: Yan, Xuehai |
BookMark | eNp1kE1LAzEQhoNUsFaP3gueU5NsNpv1VotfUFRQz0s2O7FZtsmapIf-e7e0IoiehoHnmXl5T9HIeQcIXVAyo4yLq1rHdsYIlYRxeYTGNOMSE5HxERoTQkrMRJGdoNMY22GVOS_HiLxCZ_A8RljXnXUf0xfok20A36gIzfRJOa-CXtkEOnlndTxDx0Z1Ec4Pc4Le727fFg94-Xz_uJgvseZZkbBqNHDgVBkJmWpobQwU1Aiui6YmRkvRGE4KXita0LLhIAuTy1IJxiE3ILIJutzf7YP_3EBMVes3wQ0vK8ZYKSinIh-obE_p4GMMYCptk0rWuxSU7SpKql011a6a6ruawcK_rD7YtQrbf_nrA7-CtdVDBq8tpG2reuV-cv0tfwGSuHxH |
CitedBy_id | crossref_primary_10_1039_D0MA00744G crossref_primary_10_3762_bjnano_11_36 crossref_primary_10_1002_sstr_202100006 crossref_primary_10_1021_acsabm_9b01138 crossref_primary_10_1039_D2CS00675H crossref_primary_10_1002_adfm_201910475 crossref_primary_10_1002_anie_202012470 crossref_primary_10_1021_acsami_1c11794 crossref_primary_10_1039_C9RA06130D crossref_primary_10_1002_ange_201909424 crossref_primary_10_1002_anie_202015340 crossref_primary_10_1002_anie_202000802 crossref_primary_10_1007_s10118_021_2599_7 crossref_primary_10_1021_acsabm_0c00340 crossref_primary_10_1080_24701556_2020_1862217 crossref_primary_10_1016_j_jcis_2022_04_122 crossref_primary_10_1002_cnma_201900207 crossref_primary_10_1021_acs_chemrev_1c00754 crossref_primary_10_1093_bulcsj_bcsj_20230224 crossref_primary_10_1039_D1NA00637A crossref_primary_10_1016_j_apmt_2021_100989 crossref_primary_10_1002_smsc_202000032 crossref_primary_10_1016_j_actbio_2019_07_024 crossref_primary_10_1002_advs_202101101 crossref_primary_10_1002_cmdc_202100236 crossref_primary_10_1080_17425247_2022_2093855 crossref_primary_10_1016_j_colsurfa_2019_04_020 crossref_primary_10_1021_acs_langmuir_0c01023 crossref_primary_10_1002_chem_202000789 crossref_primary_10_1002_asia_201900627 crossref_primary_10_1002_smtd_202000500 crossref_primary_10_1111_1541_4337_13171 crossref_primary_10_1007_s10904_019_01294_x crossref_primary_10_1039_D3TB03004K crossref_primary_10_3390_pharmaceutics12100907 crossref_primary_10_1002_aisy_201900157 crossref_primary_10_1016_j_jcis_2021_04_062 crossref_primary_10_1016_j_jcis_2021_04_100 crossref_primary_10_1002_smll_201903948 crossref_primary_10_1063_1_5134530 crossref_primary_10_1039_C9CS00309F crossref_primary_10_1039_D0RA04529B crossref_primary_10_1002_ange_202000802 crossref_primary_10_1080_10717544_2022_2058647 crossref_primary_10_1515_revic_2020_0015 crossref_primary_10_1002_cnma_202000137 crossref_primary_10_1007_s10904_021_01891_9 crossref_primary_10_3390_nano11082146 crossref_primary_10_3390_ma13102280 crossref_primary_10_3762_bjnano_10_153 crossref_primary_10_1016_j_colsurfa_2020_125753 crossref_primary_10_1246_bcsj_20190215 crossref_primary_10_1016_j_mtbio_2020_100075 crossref_primary_10_1039_D0QM00615G crossref_primary_10_1007_s10853_020_04831_z crossref_primary_10_1016_j_advmem_2022_100031 crossref_primary_10_1246_bcsj_20200362 crossref_primary_10_1134_S1990793121100079 crossref_primary_10_1002_anie_202005575 crossref_primary_10_1016_j_ccr_2022_214481 crossref_primary_10_3762_bjnano_13_23 crossref_primary_10_1002_ijch_202200008 crossref_primary_10_1002_ange_202012470 crossref_primary_10_1002_ange_202015340 crossref_primary_10_1007_s10904_021_02002_4 crossref_primary_10_1039_D1CP04669A crossref_primary_10_1039_D1RA03424C crossref_primary_10_1246_bcsj_20200012 crossref_primary_10_3762_bjnano_10_173 crossref_primary_10_1021_acsami_2c10497 crossref_primary_10_1039_C9NR06266A crossref_primary_10_1002_ange_202103507 crossref_primary_10_1007_s12668_024_01582_y crossref_primary_10_1016_j_microc_2021_106218 crossref_primary_10_3762_bjnano_11_11 crossref_primary_10_1039_C9MH01300H crossref_primary_10_1002_anbr_202100087 crossref_primary_10_6023_A23050240 crossref_primary_10_1002_chem_201905075 crossref_primary_10_1039_D2NR02537J crossref_primary_10_1002_VIW_20200020 crossref_primary_10_1021_acsanm_0c03280 crossref_primary_10_1007_s11051_022_05577_2 crossref_primary_10_3762_bjnano_10_184 crossref_primary_10_1016_j_cis_2021_102489 crossref_primary_10_1039_D0SM01107J crossref_primary_10_1016_j_bioorg_2022_105842 crossref_primary_10_1002_anie_202103507 crossref_primary_10_1021_acsami_0c01803 crossref_primary_10_1039_D0NH00680G crossref_primary_10_1007_s00216_021_03737_2 crossref_primary_10_1002_anie_201909424 crossref_primary_10_1002_admi_202001395 crossref_primary_10_3390_molecules26154636 crossref_primary_10_1002_adma_201905657 crossref_primary_10_1002_psc_3305 crossref_primary_10_1016_j_cocis_2019_08_004 crossref_primary_10_3390_c7040073 crossref_primary_10_1021_acs_langmuir_0c01044 crossref_primary_10_3390_molecules26061621 crossref_primary_10_1002_asia_202001445 crossref_primary_10_1016_j_jcis_2021_05_117 crossref_primary_10_3390_molecules27134115 crossref_primary_10_3762_bjnano_10_198 crossref_primary_10_1021_acs_langmuir_0c02370 crossref_primary_10_1002_ange_202005575 crossref_primary_10_1002_smll_202304675 crossref_primary_10_1016_j_mcat_2019_110492 |
Cites_doi | 10.1038/nnano.2007.387 10.1016/j.colsurfa.2017.09.026 10.1002/adfm.201703553 10.1021/acsbiomaterials.7b00624 10.1021/acscentsci.7b00115 10.1002/asia.201800825 10.1007/s10904-014-0144-7 10.1038/35015043 10.1016/j.gee.2016.12.005 10.1021/acsnano.8b03529 10.1021/jacs.8b05359 10.1039/C6CP01358A 10.6023/A17060272 10.1021/jacs.6b03811 10.1039/C8CS00115D 10.1007/978-3-540-74252-4 10.1246/bcsj.20180084 10.1038/nchembio.1555 10.1038/nnano.2011.50 10.1021/jacs.8b04912 10.1002/smll.201600230 10.1016/j.cis.2017.04.008 10.1021/acsami.6b00011 10.1038/nature19764 10.1002/adma.201502868 10.1038/nmat4538 10.1021/acs.accounts.7b00434 10.1002/adma.201505715 10.3866/PKU.WHXB20170615 10.1021/acsnano.5b06567 10.1021/acsami.6b10754 10.1039/C5CC00501A 10.1038/natrevmats.2016.24 10.1021/acsbiomaterials.8b00283 10.1246/bcsj.20170184 10.1039/C7CS00522A 10.1021/ja4086353 10.1016/j.colsurfa.2016.12.042 10.1038/nmat2496 10.1021/jacs.5b09974 10.1021/acs.chemrev.7b00552 10.1080/10610278.2010.550685 10.1039/C7CS90088K 10.1021/acsami.8b09511 10.1021/acs.jpcc.8b02392 10.1021/acsnano.5b00168 10.1021/acs.biomac.7b01437 10.1002/anie.201409149 10.1016/j.colsurfa.2017.03.048 10.1002/anie.201308792 10.1002/wnan.1275 10.1016/j.gee.2016.11.009 10.1002/anie.201103941 10.1002/adma.201100353 10.1073/pnas.0702336104 10.1038/nbt874 10.1002/anie.201704678 10.1038/nmat2558 10.1016/j.cocis.2018.01.007 10.1016/j.colsurfa.2016.10.003 10.1039/C6CS00176A 10.1016/j.colsurfa.2016.06.048 10.1038/nature10720 10.1021/acsanm.7b00344 10.1021/acs.chemrev.5b00140 10.1016/j.cocis.2017.12.004 10.1002/smll.201600328 10.1039/C7CS00121E 10.1002/adma.201707083 10.1007/s11120-013-9869-3 10.1039/C4NR04340E 10.1039/C5CC01996F 10.1126/science.aam9756 10.1002/anie.201803859 10.1039/c8nr05949g 10.1021/acsnano.8b01146 10.1039/C7CP06575B 10.1002/adma.201201544 10.1002/advs.201701001 10.1016/j.colsurfa.2017.04.003 10.1021/acsabm.8b00214 10.1038/srep16070 10.1021/cm4021172 10.1021/ja206742m 10.1021/acschemneuro 10.1016/j.colsurfa.2017.07.044 10.1021/am501673x 10.1002/cplu.201600450 10.1126/science.1082387 10.1021/acsnano.8b03118 10.1038/nature10513 10.1039/C5MH00012B 10.1021/acsami.7b17933 10.3390/polym8050181 10.1039/C6CP06150H 10.1016/j.colsurfa.2016.07.014 10.1021/acs.biomac.7b00787 10.1002/anie.201606795 10.1002/chem.201704032 10.1016/j.colsurfa.2017.03.060 10.1126/science.286.5438.287 10.1021/nl802813f 10.1021/cm702931b 10.1021/jacs.6b11382 10.1002/anie.201509810 10.1016/j.colsurfa.2016.11.019 10.1002/anie.201710642 10.1039/C7CS00594F 10.1039/C5CS00470E 10.1002/smll.201702175 10.1039/C6CS00542J |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan Copyright Chemical Society of Japan 2019 |
Copyright_xml | – notice: The Chemical Society of Japan – notice: Copyright Chemical Society of Japan 2019 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1246/bcsj.20180248 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Self-Assembling Peptide-Based Nanoarchitectonics |
EISSN | 1348-0634 |
EndPage | 79 |
ExternalDocumentID | 10_1246_bcsj_20180248 |
FullText_t_NoSnippeting | true |
GroupedDBID | 02 23N 5GY ABEFU ABFLS ABZEH ACCUC ACIWK ACNCT AENEX AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS EJD F20 F5P GX1 JSI JSP P0W P2P RAD RJT RZJ SC5 TN5 TWZ UPT WH7 X XPZ -~X 0R~ 6J9 AAUAY AAYXX ABDFA ABEJV ABGNP ABJNI ABVGC ABXVV ACGFO ADIPN ADNBA ADVOB AGMDO AGORE AJNCP BCRHZ CITATION KOP NU- OJZSN OWPYF ROX ~02 7SR 8BQ 8FD H13 JG9 |
ID | FETCH-LOGICAL-c437t-adce4e41af8e3ad1bffe71f64c7db0fc86df4074ba1719d4e87f589a624e5fe63 |
ISSN | 0009-2673 |
IngestDate | Wed Aug 13 06:05:38 EDT 2025 Tue Jul 01 00:34:44 EDT 2025 Thu Apr 24 23:12:45 EDT 2025 Tue Jan 05 20:23:50 EST 2021 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Nanoarchitectonics Peptide Self-assembly |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-adce4e41af8e3ad1bffe71f64c7db0fc86df4074ba1719d4e87f589a624e5fe63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://dx.doi.org/10.1246/bcsj.20180248 |
PQID | 2229614165 |
PQPubID | 1996365 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2229614165 crossref_citationtrail_10_1246_bcsj_20180248 crossref_primary_10_1246_bcsj_20180248 chemicalsocietyjapan_journals_10_1246_bcsj_20180248 |
ProviderPackageCode | RAD CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationYear | 2019 |
Publisher | The Chemical Society of Japan Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan – name: Chemical Society of Japan |
References | 77S. Li, R. Xing, R. Chang, Q. Zou, X. Yan, Curr. Opin. Colloid Interface Sci. 2018, 35, 17. 10.1016/j.cocis.2017.12.004 19A. Panchal, G. Fakhrullina, R. Fakhrullin, Y. Lvov, Nanoscale 2018, 10, 18205. 10.1039/c8nr05949g30211430 87K. Liu, R. Xing, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 3036. 10.1002/anie.201509810 5B. V. V. Prasad, M. E. Hardy, T. Dokland, J. Bella, M. G. Rossmannn, M. K. Estes, Science 1999, 286, 287. 10.1126/science.286.5438.28710514371 81X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174. 10.1039/C7CS00594F29334090 25A. Levin, T. C. T. Michaels, T. O. Mason, T. Müller, L. Adler-abramovich, L. Mahadevan, M. E. Cates, E. Gazit, T. P. J. Knowles, ACS Appl. Mater. Interfaces 2018, 10, 27578. 10.1021/acsami.8b0951130080033 46A. C. Mendes, T. Strohmenger, F. Goycoolea, I. S. Chronakis, Colloids Surf., A 2017, 531, 182. 10.1016/j.colsurfa.2017.07.044 36R. Xing, S. Li, N. Zhang, G. Shen, H. Möhwald, X. Yan, Biomacromolecules 2017, 18, 3514. 10.1021/acs.biomac.7b0078728721731 74M. P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K. F. Jensen, Nature 2016, 538, 183. 10.1038/nature1976427734871 2R. R. Naik, S. Singamaneni, Chem. Rev. 2017, 117, 12581. 10.1021/acs.chemrev.7b0055229065691 109R. Xing, C. Yuan, S. Li, J. Song, J. Li, X. Yan, Angew. Chem., Int. Ed. 2018, 57, 1537. 10.1002/anie.201710642 41K. J. Nagy, M. C. Giano, A. Jin, D. J. Pochan, J. P. Schneider, J. Am. Chem. Soc. 2011, 133, 14975. 10.1021/ja206742m21863803 110H. Zhang, K. Liu, S. Li, X. Xin, S. Yuan, G. Ma, X. Yan, ACS Nano 2018, 12, 8266. 10.1021/acsnano.8b0352930091901 16M. Pandeeswar, H. Khare, S. Ramakumar, T. Govindaraju, Chem. Commun. 2015, 51, 8315. 10.1039/C5CC01996F 55K. Liu, R. Xing, Y. Li, Q. Zou, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 12503. 10.1002/anie.201606795 61H. Liang, G. Whited, C. Nguyen, G. D. Stucky, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8212. 10.1073/pnas.070233610417488827 9K. Ariga, J. Li, Adv. Mater. 2016, 28, 987. 10.1002/adma.20150571526849665 40M. B. Avinash, T. Govindaraju, Nanoscale 2014, 6, 13348. 10.1039/C4NR04340E25287110 35N. Hauptstein, L. M. De Leon-Rodriguez, A. K. Mitra, Y. Hemar, I. Kavianinia, N. Li, V. Castelletto, I. W. Hamley, M. A. Brimble, ACS Biomater. Sci. Eng. 2018, 4, 2733. 10.1021/acsbiomaterials.8b00283 91H.-Y. Kim, B. R. Novak, B. Shrestha, S. E. Lee, D. Moldovan, Colloids Surf., A 2017, 523, 9. 10.1016/j.colsurfa.2017.03.060 63G. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga, Chem. Soc. Rev. 2017, 46, 4661. 10.1039/C6CS00542J28530745 28S. Khanra, M. Abdullah-Al Mamun, F. F. Ferreira, K. Ghosh, S. Guha, ACS Appl. Nano Mater. 2018, 1, 1175. 10.1021/acsanm.7b00344 24Y. Mo, S. Brahmachari, J. Lei, S. Gilead, Y. Tang, E. Gazit, G. Wei, ACS Chem. Neurosci. 2018, 9, 2741. 10.1021/acschemneuro29697126 73D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751. 10.1038/nnano.2007.38718654426 30C. Meier, T. Weil, F. Kirchhoff, J. Münch, WIREs Nanomed. Nanobiotechnol. 2014, 6, 438. 10.1002/wnan.1275 18D. A. Prishchenko, E. V. Zenkov, V. V. Mazurenko, R. F. Fakhrullin, Y. M. Lvov, V. G. Mazurenko, Phys. Chem. Chem. Phys. 2018, 20, 5841. 10.1039/C7CP06575B29412207 78H. Cheng, Y.-J. Cheng, S. Bhasin, J.-Y. Zhu, X.-D. Xu, R.-X. Zhuo, X.-Z. Zhang, Chem. Commun. 2015, 51, 6936. 10.1039/C5CC00501A 10K. Ariga, Q. Ji, W. Nakanishi, J. P. Hill, M. Aono, Mater. Horiz. 2015, 2, 406. 10.1039/C5MH00012B 69X. Yan, J. Li, H. Möhwald, Adv. Mater. 2011, 23, 2796. 10.1002/adma.20110035321495089 3W.-J. Chung, J.-W. Oh, K. Kwak, B. Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.-W. Lee, Nature 2011, 478, 364. 10.1038/nature1051322012394 79C. Chen, S. Li, K. Liu, G. Ma, X. Yan, Small 2016, 12, 4719. 10.1002/smll.20160032827043722 86X. Yan, Y. Cui, Q. He, K. Wang, J. Li, Chem. Mater. 2008, 20, 1522. 10.1021/cm702931b 95S. Debnath, S. Roy, R. V. Ulijn, J. Am. Chem. Soc. 2013, 135, 16789. 10.1021/ja408635324147566 56X. Yan, Green Energy Environ. 2017, 2, 66. 10.1016/j.gee.2016.11.009 75M. W. Tibbitt, J. E. Dahlman, R. Langer, J. Am. Chem. Soc. 2016, 138, 704. 10.1021/jacs.5b0997426741786 84C. Wang, F. Tang, X. Wang, L. Li, Colloids Surf., A 2016, 506, 425. 10.1016/j.colsurfa.2016.07.014 13I. Saptiama, Y. V. Kaneti, Y. Suzuki, Y. Suzuki, K. Tsuchiya, T. Sakae, K. Takai, N. Fukumitsu, Z. A. Alothman, M. S. A. Hossain, K. Ariga, Y. Yamauchi, Bull. Chem. Soc. Jpn. 2017, 90, 1174. 10.1246/bcsj.20170184 1P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature 2012, 481, 492. 10.1038/nature1072022258506 103S. Haldar, K. Karmakar, Colloids Surf., A 2017, 516, 394. 10.1016/j.colsurfa.2016.12.042 58K. Liu, X. Ren, J. Sun, Q. Zou, X. Yan, Adv. Sci. 2018, 5, 1701001. 10.1002/advs.201701001 27J. Wang, Q. Zou, X. Yan, Acta Chimi. Sin. 2017, 75, 933. 10.6023/A17060272 52N. M. Bedford, H. Ramezani-Dakhel, J. M. Slocik, B. D. Briggs, Y. Ren, A. I. Frenkel, V. Petkov, H. Heinz, R. R. Naik, M. R. Knecht, ACS Nano 2015, 9, 5082. 10.1021/acsnano.5b0016825905675 22D. M. Raymond, B. L. Nilsson, Chem. Soc. Rev. 2018, 47, 3659. 10.1039/C8CS00115D29697126 85E. Csapó, D. Ungor, Á. Juhász, G. K. Tóth, I. Dékány, Colloids Surf., A 2016, 511, 264. 10.1016/j.colsurfa.2016.10.003 44R. F. Alves, M. T. P. Favaro, T. A. Balbino, M. A. S. de Toledo, L. G. de la Torre, A. R. Azzoni, Colloids Surf., A 2017, 513, 1. 10.1016/j.colsurfa.2016.11.019 62S. Zhang, Nat. Biotechnol. 2003, 21, 1171. 10.1038/nbt87414520402 21M. Reches, E. Gazit, Science 2003, 300, 625. 10.1126/science.108238712714741 70X. Yan, Y. Su, J. Li, J. Früh, H. Möhwald, Angew. Chem., Int. Ed. 2011, 50, 11186. 10.1002/anie.201103941 49S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature 2000, 405, 665. 10.1038/3501504310864319 15M. Pandeeswar, T. Govindaraju, J. Inorg. Organomet. Polym. Mater. 2015, 25, 293. 10.1007/s10904-014-0144-7 7M. B. Avinash, K. Swathi, K. S. Narayan, T. Govindaraju, ACS Appl. Mater. Interfaces 2016, 8, 8678. 10.1021/acsami.6b0001127002593 45X. Wang, X. Jiang, S. Zhu, L. Liu, J. Xia, L. Li, Colloids Surf., A 2017, 535, 69. 10.1016/j.colsurfa.2017.09.026 89Y. Liu, L. Zhao, R. Xing, T. Jiao, W. Song, X. Yan, Chem.—Asian J. 2018, 13, 3526. 10.1002/asia.201800825 33D. G. Fatouros, D. A. Lamprou, A. J. Urquhart, S. N. Yannopoulos, I. S. Vizirianakis, S. Zhang, S. Koutsopoulos, ACS Appl. Mater. Interfaces 2014, 6, 8184. 10.1021/am501673x24821330 60N. L. Nerurkar, B. M. Baker, S. Sen, E. E. Wible, D. M. Elliott, R. L. Mauck, Nat. Mater. 2009, 8, 986. 10.1038/nmat255819855383 48Z. Xie, K. Liu, X. Ren, H. Zhang, X. Xin, Q. Zou, X. Yan, ACS Appl. Bio Mater. 2018, 1, 748. 10.1021/acsabm.8b00214 82H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280. 10.1039/C7CS00522A29528360 100J. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589. 10.1039/C6CS00176A27487936 43E. R. Cross, S. Sproules, R. Schweins, E. R. Draper, D. J. Adams, J. Am. Chem. Soc. 2018, 140, 8667. 10.1021/jacs.8b0535929944359 57K. Liu, C. Yuan, Q. Zou, Z. Xie, X. Yan, Angew. Chem., Int. Ed. 2017, 56, 7876. 10.1002/anie.201704678 88K. Ma, R. Xing, T. Jiao, G. Shen, C. Chen, J. Li, X. Yan, ACS Appl. Mater. Interfaces 2016, 8, 30759. 10.1021/acsami.6b1075427778498 37M. Abbas, R. Xing, N. Zhang, Q. Zou, X. Yan, ACS Biomater. Sci. Eng. 2018, 4, 2046. 10.1021/acsbiomaterials.7b00624 47R. Croce, H. van Amerongen, Nat. Chem. Biol. 2014, 10, 492. 10.1038/nchembio.155524937067 106J. Wang, K. Liu, L. Yan, A. Wang, S. Bai, X. Yan, ACS Nano 2016, 10, 2138. 10.1021/acsnano.5b0656726756339 50E. S. Kang, Y.-T. Kim, Y.-S. Ko, N. H. Kim, G. Cho, Y. H. Huh, J.-H. Kim, J. Nam, T. T. Thach, D. Youn, Y. D. Kim, W. S. Yun, W. F. DeGrado, S. Y. Kim, P. T. Hammond, J. Lee, Y.-U. Kwon, D.-H. Ha, Y. H. Kim, ACS Nano 2018, 12, 6554. 10.1021/acsnano.8b0114629842775 97A. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476. 10.1039/C7CS00121E28349143 64K. Tao, P. Makam, R. Aizen, E. Gazit, Science 2017, 358, eaam9756. 10.1126/science.aam9756 29J.-H. Lee, K. Heo, K. Schulz-Schönhagen, J. H. Lee, M. S. Desai, H.-E. Jin, S.-W. Lee, ACS Nano 2018, 12, 8138. 10.1021/acsnano.8b0311830071165 31J. M. Khan, M. S. Khan, A. Qadeer, M. A. Alsenaidy, A. Ahmed, N. A. Al-Shabib, R. H. Khan, Colloids Surf., A 2017, 522, 494. 10.1016/j.colsurfa.2017.03.048 23E. De Santis, M. G. Ryadnov, Chem. Soc. Rev. 2015, 44, 8288. 10.1039/C5CS00470E26272066 93J. H. van Esch, R. Klajn, S. Otto, Chem. Soc. Rev. 2017, 46, 5474. 10.1039/C7CS90088K28884760 38M. Pandeeswar, S. P. Senanayak, K. S. Narayan, T. Govindaraju, J. Am. Chem. Soc. 2016, 138, 8259. 10.1021/jacs.6b0381127305598 98B. Han, Wuli Huaxue Xuebao 2017, 33, 2125. 10.3866/PKU.WHXB20170615 83K. K. Ng, G. Zheng, Chem. Rev. 2015, 115, 11012. 10.1021/acs.chemrev.5b0014026244706 111S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, J. Am. Chem. Soc. 2018, 140, 10794. 10.1021/jacs.8b0491230102029 8L. K. Shrestha, T. Mori, K. Ariga, Curr. Opin. Colloid Interface Sci. 2018, 35, 68. 10.1016/j.cocis.2018.01.007 12T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L. K. Shrestha, H. Sakamoto, K. Itami, K. Ariga, Angew. Chem., Int. Ed. 2018, 57, 9679. 10.1002/anie.201803859 90Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921. 10.1021/jacs.6b1138228103663 68T. Govindaraju, M. Pandeeswar, K. Jayaramulu, G. Jaipuria, H. S. Atreya, Supramol. Chem. 2011, 23, 487. 10.1080/10610278.2010.550685 4G. S. Orf, R. E. Blankenship, Photosynth. Res. 2013, 116, 315. 10.1007/s11120-013-9869-323761131 6M. B. Avinash, T. Govindaraju, Acc. Chem. Res. 2018, 51, 414. 10.1021/acs.accounts.7b0043429364649 66P. Xue, Y. Wei, H. Wu, X. Wang, T. He, R. Shen, F. Yue, J. Wang, Y. Zhang, Colloids Surf., A 2016, 506, 514. 10.1016/j.colsurfa.2016.06.048 11M. Aono, K. Ariga, Adv. Mater. 2016, 28, 989. 10.1002/a Kang (2024012219305813300_r50) 2018; 12 Alves (2024012219305813300_r44) 2017; 513 Han (2024012219305813300_r98) 2017; 33 Li (2024012219305813300_r111) 2018; 140 Li (2024012219305813300_r81) 2018; 47 Komiyama (2024012219305813300_r14) 2018; 91 Levin (2024012219305813300_r25) 2018; 10 Tibbitt (2024012219305813300_r75) 2016; 138 Nagy (2024012219305813300_r41) 2011; 133 Shrestha (2024012219305813300_r8) 2018; 35 2024012219305813300_r96 Chronopoulou (2024012219305813300_r92) 2017; 532 Wang (2024012219305813300_r107) 2017; 13 Korevaar (2024012219305813300_r1) 2012; 481 Mendes (2024012219305813300_r46) 2017; 531 Li (2024012219305813300_r71) 2016; 12 Xing (2024012219305813300_r36) 2017; 18 Prishchenko (2024012219305813300_r18) 2018; 20 Wei (2024012219305813300_r63) 2017; 46 Ng (2024012219305813300_r83) 2015; 115 Saptiama (2024012219305813300_r13) 2017; 90 Korevaar (2024012219305813300_r99) 2014; 26 Tao (2024012219305813300_r64) 2017; 358 Wang (2024012219305813300_r100) 2016; 45 Avinash (2024012219305813300_r39) 2012; 24 Aono (2024012219305813300_r11) 2016; 28 Prasad (2024012219305813300_r5) 1999; 286 Yan (2024012219305813300_r56) 2017; 2 Tantakitti (2024012219305813300_r94) 2016; 15 Yan (2024012219305813300_r69) 2011; 23 Ma (2024012219305813300_r88) 2016; 8 Naik (2024012219305813300_r2) 2017; 117 Jung (2024012219305813300_r82) 2018; 47 Liu (2024012219305813300_r89) 2018; 13 Nguyen (2024012219305813300_r51) 2018; 122 Govindaraju (2024012219305813300_r68) 2011; 23 Hauptstein (2024012219305813300_r35) 2018; 4 Liu (2024012219305813300_r54) 2017; 2 Avinash (2024012219305813300_r67) 2015; 5 Zhao (2024012219305813300_r76) 2017; 249 Zou (2024012219305813300_r104) 2014; 53 Pandeeswar (2024012219305813300_r38) 2016; 138 Amit (2024012219305813300_r26) 2018; 30 Lee (2024012219305813300_r29) 2018; 12 Lutz (2024012219305813300_r20) 2016; 1 Raymond (2024012219305813300_r22) 2018; 47 Debnath (2024012219305813300_r95) 2013; 135 De Santis (2024012219305813300_r23) 2015; 44 Wang (2024012219305813300_r27) 2017; 75 Mann (2024012219305813300_r65) 2009; 8 Abbas (2024012219305813300_r37) 2018; 4 Nagy-Smith (2024012219305813300_r42) 2017; 3 Li (2024012219305813300_r77) 2018; 35 Liu (2024012219305813300_r105) 2015; 54 Liu (2024012219305813300_r87) 2016; 55 Micó-Vicent (2024012219305813300_r17) 2018; 28 Liu (2024012219305813300_r58) 2018; 5 Croce (2024012219305813300_r47) 2014; 10 Ariga (2024012219305813300_r9) 2016; 28 Dang (2024012219305813300_r59) 2011; 6 Zhang (2024012219305813300_r62) 2003; 21 Avinash (2024012219305813300_r7) 2016; 8 Chen (2024012219305813300_r79) 2016; 12 Liu (2024012219305813300_r57) 2017; 56 Pandeeswar (2024012219305813300_r15) 2015; 25 Avinash (2024012219305813300_r6) 2018; 51 Haldar (2024012219305813300_r103) 2017; 516 Yan (2024012219305813300_r70) 2011; 50 Csapó (2024012219305813300_r85) 2016; 511 Liang (2024012219305813300_r61) 2007; 104 Orf (2024012219305813300_r4) 2013; 116 Cheng (2024012219305813300_r78) 2015; 51 Xing (2024012219305813300_r80) 2016; 8 Avinash (2024012219305813300_r40) 2014; 6 Wang (2024012219305813300_r106) 2016; 10 Panchal (2024012219305813300_r19) 2018; 10 Xing (2024012219305813300_r109) 2018; 57 Bedford (2024012219305813300_r52) 2015; 9 Xue (2024012219305813300_r66) 2016; 506 Zou (2024012219305813300_r53) 2018; 24 Ariga (2024012219305813300_r10) 2015; 2 Liu (2024012219305813300_r102) 2016; 18 Song (2024012219305813300_r108) 2018; 10 Pandeeswar (2024012219305813300_r16) 2015; 51 Stewart (2024012219305813300_r74) 2016; 538 Wang (2024012219305813300_r45) 2017; 535 Cross (2024012219305813300_r43) 2018; 140 Khan (2024012219305813300_r31) 2017; 522 van Esch (2024012219305813300_r93) 2017; 46 Reches (2024012219305813300_r21) 2003; 300 Mori (2024012219305813300_r12) 2018; 57 Cui (2024012219305813300_r34) 2009; 9 Wang (2024012219305813300_r84) 2016; 506 Nerurkar (2024012219305813300_r60) 2009; 8 Xie (2024012219305813300_r48) 2018; 1 Liu (2024012219305813300_r55) 2016; 55 Mo (2024012219305813300_r24) 2018; 9 Fatouros (2024012219305813300_r33) 2014; 6 Kim (2024012219305813300_r91) 2017; 523 Zou (2024012219305813300_r90) 2017; 139 Meier (2024012219305813300_r30) 2014; 6 Sorrenti (2024012219305813300_r97) 2017; 46 Zhang (2024012219305813300_r110) 2018; 12 Khanra (2024012219305813300_r28) 2018; 1 Chung (2024012219305813300_r3) 2011; 478 Whaley (2024012219305813300_r49) 2000; 405 Manchineella (2024012219305813300_r32) 2017; 82 Yan (2024012219305813300_r72) 2017; 18 Wang (2024012219305813300_r101) 2016; 18 Peer (2024012219305813300_r73) 2007; 2 Yan (2024012219305813300_r86) 2008; 20 |
References_xml | – reference: 82H. S. Jung, P. Verwilst, A. Sharma, J. Shin, J. L. Sessler, J. S. Kim, Chem. Soc. Rev. 2018, 47, 2280. 10.1039/C7CS00522A29528360 – reference: 92L. Chronopoulou, Y. Toumia, B. Cerroni, A. Gentili, G. Paradossi, C. Palocci, Colloids Surf., A 2017, 532, 535. 10.1016/j.colsurfa.2017.04.003 – reference: 55K. Liu, R. Xing, Y. Li, Q. Zou, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 12503. 10.1002/anie.201606795 – reference: 47R. Croce, H. van Amerongen, Nat. Chem. Biol. 2014, 10, 492. 10.1038/nchembio.155524937067 – reference: 51M. A. Nguyen, Z. E. Hughes, Y. Liu, Y. Li, M. T. Swihart, M. R. Knecht, T. R. Walsh, J. Phys. Chem. C 2018, 122, 11532. 10.1021/acs.jpcc.8b02392 – reference: 49S. R. Whaley, D. S. English, E. L. Hu, P. F. Barbara, A. M. Belcher, Nature 2000, 405, 665. 10.1038/3501504310864319 – reference: 56X. Yan, Green Energy Environ. 2017, 2, 66. 10.1016/j.gee.2016.11.009 – reference: 32S. Manchineella, T. Govindaraju, ChemPlusChem 2017, 82, 88. 10.1002/cplu.201600450 – reference: 54K. Liu, M. Abass, Q. Zou, X. Yan, Green Energy Environ. 2017, 2, 58. 10.1016/j.gee.2016.12.005 – reference: 28S. Khanra, M. Abdullah-Al Mamun, F. F. Ferreira, K. Ghosh, S. Guha, ACS Appl. Nano Mater. 2018, 1, 1175. 10.1021/acsanm.7b00344 – reference: 88K. Ma, R. Xing, T. Jiao, G. Shen, C. Chen, J. Li, X. Yan, ACS Appl. Mater. Interfaces 2016, 8, 30759. 10.1021/acsami.6b1075427778498 – reference: 90Q. Zou, M. Abbas, L. Zhao, S. Li, G. Shen, X. Yan, J. Am. Chem. Soc. 2017, 139, 1921. 10.1021/jacs.6b1138228103663 – reference: 104Q. Zou, L. Zhang, X. Yan, A. Wang, G. Ma, J. Li, H. Möhwald, S. Mann, Angew. Chem., Int. Ed. 2014, 53, 2366. 10.1002/anie.201308792 – reference: 21M. Reches, E. Gazit, Science 2003, 300, 625. 10.1126/science.108238712714741 – reference: 1P. A. Korevaar, S. J. George, A. J. Markvoort, M. M. J. Smulders, P. A. J. Hilbers, A. P. H. J. Schenning, T. F. A. De Greef, E. W. Meijer, Nature 2012, 481, 492. 10.1038/nature1072022258506 – reference: 72X. Yan, H. Möhwald, Biomacromolecules 2017, 18, 3469. 10.1021/acs.biomac.7b0143729129072 – reference: 48Z. Xie, K. Liu, X. Ren, H. Zhang, X. Xin, Q. Zou, X. Yan, ACS Appl. Bio Mater. 2018, 1, 748. 10.1021/acsabm.8b00214 – reference: 42K. Nagy-Smith, P. J. Beltramo, E. Moore, R. Tycko, E. M. Furst, J. P. Schneider, ACS Cent. Sci. 2017, 3, 586. 10.1021/acscentsci.7b0011528691070 – reference: 18D. A. Prishchenko, E. V. Zenkov, V. V. Mazurenko, R. F. Fakhrullin, Y. M. Lvov, V. G. Mazurenko, Phys. Chem. Chem. Phys. 2018, 20, 5841. 10.1039/C7CP06575B29412207 – reference: 62S. Zhang, Nat. Biotechnol. 2003, 21, 1171. 10.1038/nbt87414520402 – reference: 40M. B. Avinash, T. Govindaraju, Nanoscale 2014, 6, 13348. 10.1039/C4NR04340E25287110 – reference: 66P. Xue, Y. Wei, H. Wu, X. Wang, T. He, R. Shen, F. Yue, J. Wang, Y. Zhang, Colloids Surf., A 2016, 506, 514. 10.1016/j.colsurfa.2016.06.048 – reference: 15M. Pandeeswar, T. Govindaraju, J. Inorg. Organomet. Polym. Mater. 2015, 25, 293. 10.1007/s10904-014-0144-7 – reference: 111S. Li, Q. Zou, Y. Li, C. Yuan, R. Xing, X. Yan, J. Am. Chem. Soc. 2018, 140, 10794. 10.1021/jacs.8b0491230102029 – reference: 25A. Levin, T. C. T. Michaels, T. O. Mason, T. Müller, L. Adler-abramovich, L. Mahadevan, M. E. Cates, E. Gazit, T. P. J. Knowles, ACS Appl. Mater. Interfaces 2018, 10, 27578. 10.1021/acsami.8b0951130080033 – reference: 75M. W. Tibbitt, J. E. Dahlman, R. Langer, J. Am. Chem. Soc. 2016, 138, 704. 10.1021/jacs.5b0997426741786 – reference: 74M. P. Stewart, A. Sharei, X. Ding, G. Sahay, R. Langer, K. F. Jensen, Nature 2016, 538, 183. 10.1038/nature1976427734871 – reference: 58K. Liu, X. Ren, J. Sun, Q. Zou, X. Yan, Adv. Sci. 2018, 5, 1701001. 10.1002/advs.201701001 – reference: 108J. Song, R. Xing, T. Jiao, Q. Peng, C. Yuan, H. Möhwald, X. Yan, ACS Appl. Mater. Interfaces 2018, 10, 2368. 10.1021/acsami.7b1793329285927 – reference: 64K. Tao, P. Makam, R. Aizen, E. Gazit, Science 2017, 358, eaam9756. 10.1126/science.aam9756 – reference: 84C. Wang, F. Tang, X. Wang, L. Li, Colloids Surf., A 2016, 506, 425. 10.1016/j.colsurfa.2016.07.014 – reference: 41K. J. Nagy, M. C. Giano, A. Jin, D. J. Pochan, J. P. Schneider, J. Am. Chem. Soc. 2011, 133, 14975. 10.1021/ja206742m21863803 – reference: 16M. Pandeeswar, H. Khare, S. Ramakumar, T. Govindaraju, Chem. Commun. 2015, 51, 8315. 10.1039/C5CC01996F – reference: 61H. Liang, G. Whited, C. Nguyen, G. D. Stucky, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8212. 10.1073/pnas.070233610417488827 – reference: 22D. M. Raymond, B. L. Nilsson, Chem. Soc. Rev. 2018, 47, 3659. 10.1039/C8CS00115D29697126 – reference: 103S. Haldar, K. Karmakar, Colloids Surf., A 2017, 516, 394. 10.1016/j.colsurfa.2016.12.042 – reference: 35N. Hauptstein, L. M. De Leon-Rodriguez, A. K. Mitra, Y. Hemar, I. Kavianinia, N. Li, V. Castelletto, I. W. Hamley, M. A. Brimble, ACS Biomater. Sci. Eng. 2018, 4, 2733. 10.1021/acsbiomaterials.8b00283 – reference: 4G. S. Orf, R. E. Blankenship, Photosynth. Res. 2013, 116, 315. 10.1007/s11120-013-9869-323761131 – reference: 8L. K. Shrestha, T. Mori, K. Ariga, Curr. Opin. Colloid Interface Sci. 2018, 35, 68. 10.1016/j.cocis.2018.01.007 – reference: 11M. Aono, K. Ariga, Adv. Mater. 2016, 28, 989. 10.1002/adma.20150286826331278 – reference: 46A. C. Mendes, T. Strohmenger, F. Goycoolea, I. S. Chronakis, Colloids Surf., A 2017, 531, 182. 10.1016/j.colsurfa.2017.07.044 – reference: 67M. B. Avinash, D. Raut, M. K. Mishra, U. Ramamurty, T. Govindaraju, Sci. Rep. 2015, 5, 16070. 10.1038/srep1607026525957 – reference: 98B. Han, Wuli Huaxue Xuebao 2017, 33, 2125. 10.3866/PKU.WHXB20170615 – reference: 60N. L. Nerurkar, B. M. Baker, S. Sen, E. E. Wible, D. M. Elliott, R. L. Mauck, Nat. Mater. 2009, 8, 986. 10.1038/nmat255819855383 – reference: 107J. Wang, C. Yuan, Y. Han, Y. Wang, X. Liu, S. Zhang, X. Yan, Small 2017, 13, 1702175. 10.1002/smll.201702175 – reference: 63G. Wei, Z. Su, N. P. Reynolds, P. Arosio, I. W. Hamley, E. Gazit, R. Mezzenga, Chem. Soc. Rev. 2017, 46, 4661. 10.1039/C6CS00542J28530745 – reference: 96G. Lebon, D. Jou, J. Casas-Vázquez, Understanding Non-Equilibrium Thermodynamics, Springer-Verlag, Berlin Heidelberg, 2008. doi:10.1007/978-3-540-74252-4. 10.1007/978-3-540-74252-4 – reference: 52N. M. Bedford, H. Ramezani-Dakhel, J. M. Slocik, B. D. Briggs, Y. Ren, A. I. Frenkel, V. Petkov, H. Heinz, R. R. Naik, M. R. Knecht, ACS Nano 2015, 9, 5082. 10.1021/acsnano.5b0016825905675 – reference: 69X. Yan, J. Li, H. Möhwald, Adv. Mater. 2011, 23, 2796. 10.1002/adma.20110035321495089 – reference: 9K. Ariga, J. Li, Adv. Mater. 2016, 28, 987. 10.1002/adma.20150571526849665 – reference: 31J. M. Khan, M. S. Khan, A. Qadeer, M. A. Alsenaidy, A. Ahmed, N. A. Al-Shabib, R. H. Khan, Colloids Surf., A 2017, 522, 494. 10.1016/j.colsurfa.2017.03.048 – reference: 53Q. Zou, X. Yan, Chem.—Eur. J. 2018, 24, 755. 10.1002/chem.20170403229076199 – reference: 94F. Tantakitti, J. Boekhoven, X. Wang, R. V. Kazantsev, T. Yu, J. Li, E. Zhuang, R. Zandi, J. H. Ortony, C. J. Newcomb, L. C. Palmer, G. S. Shekhawat, M. O. de la Cruz, G. C. Schatz, S. I. Stupp, Nat. Mater. 2016, 15, 469. 10.1038/nmat453826779883 – reference: 71Y. Li, L. Yan, K. Liu, J. Wang, A. Wang, S. Bai, X. Yan, Small 2016, 12, 2575. 10.1002/smll.20160023027028848 – reference: 37M. Abbas, R. Xing, N. Zhang, Q. Zou, X. Yan, ACS Biomater. Sci. Eng. 2018, 4, 2046. 10.1021/acsbiomaterials.7b00624 – reference: 3W.-J. Chung, J.-W. Oh, K. Kwak, B. Y. Lee, J. Meyer, E. Wang, A. Hexemer, S.-W. Lee, Nature 2011, 478, 364. 10.1038/nature1051322012394 – reference: 86X. Yan, Y. Cui, Q. He, K. Wang, J. Li, Chem. Mater. 2008, 20, 1522. 10.1021/cm702931b – reference: 30C. Meier, T. Weil, F. Kirchhoff, J. Münch, WIREs Nanomed. Nanobiotechnol. 2014, 6, 438. 10.1002/wnan.1275 – reference: 33D. G. Fatouros, D. A. Lamprou, A. J. Urquhart, S. N. Yannopoulos, I. S. Vizirianakis, S. Zhang, S. Koutsopoulos, ACS Appl. Mater. Interfaces 2014, 6, 8184. 10.1021/am501673x24821330 – reference: 99P. A. Korevaar, T. F. A. De Greef, E. W. Meijer, Chem. Mater. 2014, 26, 576. 10.1021/cm4021172 – reference: 68T. Govindaraju, M. Pandeeswar, K. Jayaramulu, G. Jaipuria, H. S. Atreya, Supramol. Chem. 2011, 23, 487. 10.1080/10610278.2010.550685 – reference: 10K. Ariga, Q. Ji, W. Nakanishi, J. P. Hill, M. Aono, Mater. Horiz. 2015, 2, 406. 10.1039/C5MH00012B – reference: 7M. B. Avinash, K. Swathi, K. S. Narayan, T. Govindaraju, ACS Appl. Mater. Interfaces 2016, 8, 8678. 10.1021/acsami.6b0001127002593 – reference: 26M. Amit, S. Yuran, E. Gazit, M. Reches, N. Ashkenasy, Adv. Mater. 2018, 30, 1707083. 10.1002/adma.201707083 – reference: 80R. Xing, T. Jiao, Y. Liu, K. Ma, Q. Zou, G. Ma, X. Yan, Polymers 2016, 8, 181. 10.3390/polym8050181 – reference: 19A. Panchal, G. Fakhrullina, R. Fakhrullin, Y. Lvov, Nanoscale 2018, 10, 18205. 10.1039/c8nr05949g30211430 – reference: 29J.-H. Lee, K. Heo, K. Schulz-Schönhagen, J. H. Lee, M. S. Desai, H.-E. Jin, S.-W. Lee, ACS Nano 2018, 12, 8138. 10.1021/acsnano.8b0311830071165 – reference: 38M. Pandeeswar, S. P. Senanayak, K. S. Narayan, T. Govindaraju, J. Am. Chem. Soc. 2016, 138, 8259. 10.1021/jacs.6b0381127305598 – reference: 59X. Dang, H. Yi, M.-H. Ham, J. Qi, D. S. Yun, R. Ladewski, M. S. Strano, P. T. Hammond, A. M. Belcher, Nat. Nanotechnol. 2011, 6, 377. 10.1038/nnano.2011.5021516089 – reference: 78H. Cheng, Y.-J. Cheng, S. Bhasin, J.-Y. Zhu, X.-D. Xu, R.-X. Zhuo, X.-Z. Zhang, Chem. Commun. 2015, 51, 6936. 10.1039/C5CC00501A – reference: 102K. Liu, Y. Kang, G. Ma, H. Möhwald, X. Yan, Phys. Chem. Chem. Phys. 2016, 18, 16738. 10.1039/C6CP01358A27270974 – reference: 2R. R. Naik, S. Singamaneni, Chem. Rev. 2017, 117, 12581. 10.1021/acs.chemrev.7b0055229065691 – reference: 110H. Zhang, K. Liu, S. Li, X. Xin, S. Yuan, G. Ma, X. Yan, ACS Nano 2018, 12, 8266. 10.1021/acsnano.8b0352930091901 – reference: 5B. V. V. Prasad, M. E. Hardy, T. Dokland, J. Bella, M. G. Rossmannn, M. K. Estes, Science 1999, 286, 287. 10.1126/science.286.5438.28710514371 – reference: 13I. Saptiama, Y. V. Kaneti, Y. Suzuki, Y. Suzuki, K. Tsuchiya, T. Sakae, K. Takai, N. Fukumitsu, Z. A. Alothman, M. S. A. Hossain, K. Ariga, Y. Yamauchi, Bull. Chem. Soc. Jpn. 2017, 90, 1174. 10.1246/bcsj.20170184 – reference: 39M. B. Avinash, T. Govindaraju, Adv. Mater. 2012, 24, 3905. 10.1002/adma.20120154422714652 – reference: 27J. Wang, Q. Zou, X. Yan, Acta Chimi. Sin. 2017, 75, 933. 10.6023/A17060272 – reference: 101J. Wang, G. Shen, K. Ma, T. Jiao, K. Liu, X. Yan, Phys. Chem. Chem. Phys. 2016, 18, 30926. 10.1039/C6CP06150H27722335 – reference: 12T. Mori, H. Tanaka, A. Dalui, N. Mitoma, K. Suzuki, M. Matsumoto, N. Aggarwal, A. Patnaik, S. Acharya, L. K. Shrestha, H. Sakamoto, K. Itami, K. Ariga, Angew. Chem., Int. Ed. 2018, 57, 9679. 10.1002/anie.201803859 – reference: 97A. Sorrenti, J. Leira-Iglesias, A. J. Markvoort, T. F. A. de Greef, T. M. Hermans, Chem. Soc. Rev. 2017, 46, 5476. 10.1039/C7CS00121E28349143 – reference: 17B. Micó-Vicent, F. M. Martínez-Verdú, A. Novikov, A. Stavitskaya, V. Vinokurov, E. Rozhina, R. Fakhrullin, R. Yendluri, Y. Lvov, Adv. Funct. Mater. 2018, 28, 1703553. 10.1002/adfm.201703553 – reference: 23E. De Santis, M. G. Ryadnov, Chem. Soc. Rev. 2015, 44, 8288. 10.1039/C5CS00470E26272066 – reference: 57K. Liu, C. Yuan, Q. Zou, Z. Xie, X. Yan, Angew. Chem., Int. Ed. 2017, 56, 7876. 10.1002/anie.201704678 – reference: 95S. Debnath, S. Roy, R. V. Ulijn, J. Am. Chem. Soc. 2013, 135, 16789. 10.1021/ja408635324147566 – reference: 6M. B. Avinash, T. Govindaraju, Acc. Chem. Res. 2018, 51, 414. 10.1021/acs.accounts.7b0043429364649 – reference: 20J.-F. Lutz, J.-M. Lehn, E. W. Meijer, K. Matyjaszewski, Nat. Rev. Mater. 2016, 1, 16024. 10.1038/natrevmats.2016.24 – reference: 36R. Xing, S. Li, N. Zhang, G. Shen, H. Möhwald, X. Yan, Biomacromolecules 2017, 18, 3514. 10.1021/acs.biomac.7b0078728721731 – reference: 89Y. Liu, L. Zhao, R. Xing, T. Jiao, W. Song, X. Yan, Chem.—Asian J. 2018, 13, 3526. 10.1002/asia.201800825 – reference: 65S. Mann, Nat. Mater. 2009, 8, 781. 10.1038/nmat249619734883 – reference: 81X. Li, S. Lee, J. Yoon, Chem. Soc. Rev. 2018, 47, 1174. 10.1039/C7CS00594F29334090 – reference: 87K. Liu, R. Xing, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2016, 55, 3036. 10.1002/anie.201509810 – reference: 109R. Xing, C. Yuan, S. Li, J. Song, J. Li, X. Yan, Angew. Chem., Int. Ed. 2018, 57, 1537. 10.1002/anie.201710642 – reference: 24Y. Mo, S. Brahmachari, J. Lei, S. Gilead, Y. Tang, E. Gazit, G. Wei, ACS Chem. Neurosci. 2018, 9, 2741. 10.1021/acschemneuro29697126 – reference: 43E. R. Cross, S. Sproules, R. Schweins, E. R. Draper, D. J. Adams, J. Am. Chem. Soc. 2018, 140, 8667. 10.1021/jacs.8b0535929944359 – reference: 70X. Yan, Y. Su, J. Li, J. Früh, H. Möhwald, Angew. Chem., Int. Ed. 2011, 50, 11186. 10.1002/anie.201103941 – reference: 79C. Chen, S. Li, K. Liu, G. Ma, X. Yan, Small 2016, 12, 4719. 10.1002/smll.20160032827043722 – reference: 91H.-Y. Kim, B. R. Novak, B. Shrestha, S. E. Lee, D. Moldovan, Colloids Surf., A 2017, 523, 9. 10.1016/j.colsurfa.2017.03.060 – reference: 76L. Zhao, G. Shen, G. Ma, X. Yan, Adv. Colloid Interface Sci. 2017, 249, 308. 10.1016/j.cis.2017.04.00828456289 – reference: 105K. Liu, R. Xing, C. Chen, G. Shen, L. Yan, Q. Zou, G. Ma, H. Möhwald, X. Yan, Angew. Chem., Int. Ed. 2015, 54, 500. 10.1002/anie.201409149 – reference: 34H. Cui, T. Muraoka, A. G. Cheetham, S. I. Stupp, Nano Lett. 2009, 9, 945. 10.1021/nl802813f19193022 – reference: 44R. F. Alves, M. T. P. Favaro, T. A. Balbino, M. A. S. de Toledo, L. G. de la Torre, A. R. Azzoni, Colloids Surf., A 2017, 513, 1. 10.1016/j.colsurfa.2016.11.019 – reference: 85E. Csapó, D. Ungor, Á. Juhász, G. K. Tóth, I. Dékány, Colloids Surf., A 2016, 511, 264. 10.1016/j.colsurfa.2016.10.003 – reference: 14M. Komiyama, T. Mori, K. Ariga, Bull. Chem. Soc. Jpn. 2018, 91, 1075. 10.1246/bcsj.20180084 – reference: 83K. K. Ng, G. Zheng, Chem. Rev. 2015, 115, 11012. 10.1021/acs.chemrev.5b0014026244706 – reference: 77S. Li, R. Xing, R. Chang, Q. Zou, X. Yan, Curr. Opin. Colloid Interface Sci. 2018, 35, 17. 10.1016/j.cocis.2017.12.004 – reference: 100J. Wang, K. Liu, R. Xing, X. Yan, Chem. Soc. Rev. 2016, 45, 5589. 10.1039/C6CS00176A27487936 – reference: 50E. S. Kang, Y.-T. Kim, Y.-S. Ko, N. H. Kim, G. Cho, Y. H. Huh, J.-H. Kim, J. Nam, T. T. Thach, D. Youn, Y. D. Kim, W. S. Yun, W. F. DeGrado, S. Y. Kim, P. T. Hammond, J. Lee, Y.-U. Kwon, D.-H. Ha, Y. H. Kim, ACS Nano 2018, 12, 6554. 10.1021/acsnano.8b0114629842775 – reference: 45X. Wang, X. Jiang, S. Zhu, L. Liu, J. Xia, L. Li, Colloids Surf., A 2017, 535, 69. 10.1016/j.colsurfa.2017.09.026 – reference: 73D. Peer, J. M. Karp, S. Hong, O. C. Farokhzad, R. Margalit, R. Langer, Nat. Nanotechnol. 2007, 2, 751. 10.1038/nnano.2007.38718654426 – reference: 106J. Wang, K. Liu, L. Yan, A. Wang, S. Bai, X. Yan, ACS Nano 2016, 10, 2138. 10.1021/acsnano.5b0656726756339 – reference: 93J. H. van Esch, R. Klajn, S. Otto, Chem. Soc. Rev. 2017, 46, 5474. 10.1039/C7CS90088K28884760 – volume: 2 start-page: 751 year: 2007 ident: 2024012219305813300_r73 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.387 – volume: 535 start-page: 69 year: 2017 ident: 2024012219305813300_r45 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2017.09.026 – volume: 28 start-page: 1703553 year: 2018 ident: 2024012219305813300_r17 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703553 – volume: 4 start-page: 2046 year: 2018 ident: 2024012219305813300_r37 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.7b00624 – volume: 3 start-page: 586 year: 2017 ident: 2024012219305813300_r42 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.7b00115 – volume: 13 start-page: 3526 year: 2018 ident: 2024012219305813300_r89 publication-title: Chem.—Asian J. doi: 10.1002/asia.201800825 – volume: 25 start-page: 293 year: 2015 ident: 2024012219305813300_r15 publication-title: J. Inorg. Organomet. Polym. Mater. doi: 10.1007/s10904-014-0144-7 – volume: 405 start-page: 665 year: 2000 ident: 2024012219305813300_r49 publication-title: Nature doi: 10.1038/35015043 – volume: 2 start-page: 58 year: 2017 ident: 2024012219305813300_r54 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2016.12.005 – volume: 12 start-page: 8266 year: 2018 ident: 2024012219305813300_r110 publication-title: ACS Nano doi: 10.1021/acsnano.8b03529 – volume: 140 start-page: 8667 year: 2018 ident: 2024012219305813300_r43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b05359 – volume: 18 start-page: 16738 year: 2016 ident: 2024012219305813300_r102 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01358A – volume: 75 start-page: 933 year: 2017 ident: 2024012219305813300_r27 publication-title: Acta Chimi. Sin. doi: 10.6023/A17060272 – volume: 138 start-page: 8259 year: 2016 ident: 2024012219305813300_r38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03811 – volume: 47 start-page: 3659 year: 2018 ident: 2024012219305813300_r22 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00115D – ident: 2024012219305813300_r96 doi: 10.1007/978-3-540-74252-4 – volume: 91 start-page: 1075 year: 2018 ident: 2024012219305813300_r14 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20180084 – volume: 10 start-page: 492 year: 2014 ident: 2024012219305813300_r47 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1555 – volume: 6 start-page: 377 year: 2011 ident: 2024012219305813300_r59 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2011.50 – volume: 140 start-page: 10794 year: 2018 ident: 2024012219305813300_r111 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04912 – volume: 12 start-page: 2575 year: 2016 ident: 2024012219305813300_r71 publication-title: Small doi: 10.1002/smll.201600230 – volume: 249 start-page: 308 year: 2017 ident: 2024012219305813300_r76 publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2017.04.008 – volume: 8 start-page: 8678 year: 2016 ident: 2024012219305813300_r7 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b00011 – volume: 538 start-page: 183 year: 2016 ident: 2024012219305813300_r74 publication-title: Nature doi: 10.1038/nature19764 – volume: 28 start-page: 989 year: 2016 ident: 2024012219305813300_r11 publication-title: Adv. Mater. doi: 10.1002/adma.201502868 – volume: 15 start-page: 469 year: 2016 ident: 2024012219305813300_r94 publication-title: Nat. Mater. doi: 10.1038/nmat4538 – volume: 51 start-page: 414 year: 2018 ident: 2024012219305813300_r6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00434 – volume: 28 start-page: 987 year: 2016 ident: 2024012219305813300_r9 publication-title: Adv. Mater. doi: 10.1002/adma.201505715 – volume: 33 start-page: 2125 year: 2017 ident: 2024012219305813300_r98 publication-title: Wuli Huaxue Xuebao doi: 10.3866/PKU.WHXB20170615 – volume: 10 start-page: 2138 year: 2016 ident: 2024012219305813300_r106 publication-title: ACS Nano doi: 10.1021/acsnano.5b06567 – volume: 8 start-page: 30759 year: 2016 ident: 2024012219305813300_r88 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10754 – volume: 51 start-page: 6936 year: 2015 ident: 2024012219305813300_r78 publication-title: Chem. Commun. doi: 10.1039/C5CC00501A – volume: 1 start-page: 16024 year: 2016 ident: 2024012219305813300_r20 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.24 – volume: 4 start-page: 2733 year: 2018 ident: 2024012219305813300_r35 publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00283 – volume: 90 start-page: 1174 year: 2017 ident: 2024012219305813300_r13 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20170184 – volume: 47 start-page: 2280 year: 2018 ident: 2024012219305813300_r82 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00522A – volume: 135 start-page: 16789 year: 2013 ident: 2024012219305813300_r95 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4086353 – volume: 516 start-page: 394 year: 2017 ident: 2024012219305813300_r103 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2016.12.042 – volume: 8 start-page: 781 year: 2009 ident: 2024012219305813300_r65 publication-title: Nat. Mater. doi: 10.1038/nmat2496 – volume: 138 start-page: 704 year: 2016 ident: 2024012219305813300_r75 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09974 – volume: 117 start-page: 12581 year: 2017 ident: 2024012219305813300_r2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00552 – volume: 23 start-page: 487 year: 2011 ident: 2024012219305813300_r68 publication-title: Supramol. Chem. doi: 10.1080/10610278.2010.550685 – volume: 46 start-page: 5474 year: 2017 ident: 2024012219305813300_r93 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS90088K – volume: 10 start-page: 27578 year: 2018 ident: 2024012219305813300_r25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b09511 – volume: 122 start-page: 11532 year: 2018 ident: 2024012219305813300_r51 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b02392 – volume: 9 start-page: 5082 year: 2015 ident: 2024012219305813300_r52 publication-title: ACS Nano doi: 10.1021/acsnano.5b00168 – volume: 18 start-page: 3469 year: 2017 ident: 2024012219305813300_r72 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01437 – volume: 54 start-page: 500 year: 2015 ident: 2024012219305813300_r105 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409149 – volume: 522 start-page: 494 year: 2017 ident: 2024012219305813300_r31 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2017.03.048 – volume: 53 start-page: 2366 year: 2014 ident: 2024012219305813300_r104 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201308792 – volume: 6 start-page: 438 year: 2014 ident: 2024012219305813300_r30 publication-title: WIREs Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1275 – volume: 2 start-page: 66 year: 2017 ident: 2024012219305813300_r56 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2016.11.009 – volume: 50 start-page: 11186 year: 2011 ident: 2024012219305813300_r70 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201103941 – volume: 23 start-page: 2796 year: 2011 ident: 2024012219305813300_r69 publication-title: Adv. Mater. doi: 10.1002/adma.201100353 – volume: 104 start-page: 8212 year: 2007 ident: 2024012219305813300_r61 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0702336104 – volume: 21 start-page: 1171 year: 2003 ident: 2024012219305813300_r62 publication-title: Nat. Biotechnol. doi: 10.1038/nbt874 – volume: 56 start-page: 7876 year: 2017 ident: 2024012219305813300_r57 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201704678 – volume: 8 start-page: 986 year: 2009 ident: 2024012219305813300_r60 publication-title: Nat. Mater. doi: 10.1038/nmat2558 – volume: 35 start-page: 68 year: 2018 ident: 2024012219305813300_r8 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2018.01.007 – volume: 511 start-page: 264 year: 2016 ident: 2024012219305813300_r85 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2016.10.003 – volume: 45 start-page: 5589 year: 2016 ident: 2024012219305813300_r100 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00176A – volume: 506 start-page: 514 year: 2016 ident: 2024012219305813300_r66 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2016.06.048 – volume: 481 start-page: 492 year: 2012 ident: 2024012219305813300_r1 publication-title: Nature doi: 10.1038/nature10720 – volume: 1 start-page: 1175 year: 2018 ident: 2024012219305813300_r28 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.7b00344 – volume: 115 start-page: 11012 year: 2015 ident: 2024012219305813300_r83 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00140 – volume: 35 start-page: 17 year: 2018 ident: 2024012219305813300_r77 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.12.004 – volume: 12 start-page: 4719 year: 2016 ident: 2024012219305813300_r79 publication-title: Small doi: 10.1002/smll.201600328 – volume: 46 start-page: 5476 year: 2017 ident: 2024012219305813300_r97 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00121E – volume: 30 start-page: 1707083 year: 2018 ident: 2024012219305813300_r26 publication-title: Adv. Mater. doi: 10.1002/adma.201707083 – volume: 116 start-page: 315 year: 2013 ident: 2024012219305813300_r4 publication-title: Photosynth. Res. doi: 10.1007/s11120-013-9869-3 – volume: 6 start-page: 13348 year: 2014 ident: 2024012219305813300_r40 publication-title: Nanoscale doi: 10.1039/C4NR04340E – volume: 51 start-page: 8315 year: 2015 ident: 2024012219305813300_r16 publication-title: Chem. Commun. doi: 10.1039/C5CC01996F – volume: 358 year: 2017 ident: 2024012219305813300_r64 publication-title: Science doi: 10.1126/science.aam9756 – volume: 57 start-page: 9679 year: 2018 ident: 2024012219305813300_r12 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201803859 – volume: 10 start-page: 18205 year: 2018 ident: 2024012219305813300_r19 publication-title: Nanoscale doi: 10.1039/c8nr05949g – volume: 12 start-page: 6554 year: 2018 ident: 2024012219305813300_r50 publication-title: ACS Nano doi: 10.1021/acsnano.8b01146 – volume: 20 start-page: 5841 year: 2018 ident: 2024012219305813300_r18 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP06575B – volume: 24 start-page: 3905 year: 2012 ident: 2024012219305813300_r39 publication-title: Adv. Mater. doi: 10.1002/adma.201201544 – volume: 5 start-page: 1701001 year: 2018 ident: 2024012219305813300_r58 publication-title: Adv. Sci. doi: 10.1002/advs.201701001 – volume: 532 start-page: 535 year: 2017 ident: 2024012219305813300_r92 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2017.04.003 – volume: 1 start-page: 748 year: 2018 ident: 2024012219305813300_r48 publication-title: ACS Appl. Bio Mater. doi: 10.1021/acsabm.8b00214 – volume: 5 start-page: 16070 year: 2015 ident: 2024012219305813300_r67 publication-title: Sci. Rep. doi: 10.1038/srep16070 – volume: 26 start-page: 576 year: 2014 ident: 2024012219305813300_r99 publication-title: Chem. Mater. doi: 10.1021/cm4021172 – volume: 133 start-page: 14975 year: 2011 ident: 2024012219305813300_r41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206742m – volume: 9 start-page: 2741 year: 2018 ident: 2024012219305813300_r24 publication-title: ACS Chem. Neurosci. doi: 10.1021/acschemneuro – volume: 531 start-page: 182 year: 2017 ident: 2024012219305813300_r46 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2017.07.044 – volume: 6 start-page: 8184 year: 2014 ident: 2024012219305813300_r33 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am501673x – volume: 82 start-page: 88 year: 2017 ident: 2024012219305813300_r32 publication-title: ChemPlusChem doi: 10.1002/cplu.201600450 – volume: 300 start-page: 625 year: 2003 ident: 2024012219305813300_r21 publication-title: Science doi: 10.1126/science.1082387 – volume: 12 start-page: 8138 year: 2018 ident: 2024012219305813300_r29 publication-title: ACS Nano doi: 10.1021/acsnano.8b03118 – volume: 478 start-page: 364 year: 2011 ident: 2024012219305813300_r3 publication-title: Nature doi: 10.1038/nature10513 – volume: 2 start-page: 406 year: 2015 ident: 2024012219305813300_r10 publication-title: Mater. Horiz. doi: 10.1039/C5MH00012B – volume: 10 start-page: 2368 year: 2018 ident: 2024012219305813300_r108 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b17933 – volume: 8 start-page: 181 year: 2016 ident: 2024012219305813300_r80 publication-title: Polymers doi: 10.3390/polym8050181 – volume: 18 start-page: 30926 year: 2016 ident: 2024012219305813300_r101 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06150H – volume: 506 start-page: 425 year: 2016 ident: 2024012219305813300_r84 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2016.07.014 – volume: 18 start-page: 3514 year: 2017 ident: 2024012219305813300_r36 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00787 – volume: 55 start-page: 12503 year: 2016 ident: 2024012219305813300_r55 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201606795 – volume: 24 start-page: 755 year: 2018 ident: 2024012219305813300_r53 publication-title: Chem.—Eur. J. doi: 10.1002/chem.201704032 – volume: 523 start-page: 9 year: 2017 ident: 2024012219305813300_r91 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2017.03.060 – volume: 286 start-page: 287 year: 1999 ident: 2024012219305813300_r5 publication-title: Science doi: 10.1126/science.286.5438.287 – volume: 9 start-page: 945 year: 2009 ident: 2024012219305813300_r34 publication-title: Nano Lett. doi: 10.1021/nl802813f – volume: 20 start-page: 1522 year: 2008 ident: 2024012219305813300_r86 publication-title: Chem. Mater. doi: 10.1021/cm702931b – volume: 139 start-page: 1921 year: 2017 ident: 2024012219305813300_r90 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11382 – volume: 55 start-page: 3036 year: 2016 ident: 2024012219305813300_r87 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201509810 – volume: 513 start-page: 1 year: 2017 ident: 2024012219305813300_r44 publication-title: Colloids Surf., A doi: 10.1016/j.colsurfa.2016.11.019 – volume: 57 start-page: 1537 year: 2018 ident: 2024012219305813300_r109 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710642 – volume: 47 start-page: 1174 year: 2018 ident: 2024012219305813300_r81 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00594F – volume: 44 start-page: 8288 year: 2015 ident: 2024012219305813300_r23 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00470E – volume: 13 start-page: 1702175 year: 2017 ident: 2024012219305813300_r107 publication-title: Small doi: 10.1002/smll.201702175 – volume: 46 start-page: 4661 year: 2017 ident: 2024012219305813300_r63 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00542J |
SSID | ssj0008549 |
Score | 2.5501037 |
Snippet | Self-assembly is omnipresent in nature. While natural self-assembly systems are complicated in structure, the simplification of natural systems while... |
SourceID | proquest crossref chemicalsocietyjapan |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 70 |
SubjectTerms | Assembling Biomimetics Biomolecules Light therapy Materials Innovation Molecular structure Nanotechnology Peptides Self-assembly |
Title | Self-Assembling Peptide-Based Nanoarchitectonics |
URI | http://dx.doi.org/10.1246/bcsj.20180248 https://www.proquest.com/docview/2229614165 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKOAAHBAy0sYF6QJzwqGMndi6TxrRpmsoA0UoRl8if2qbSTmtzYH89z3GcNnSbgEtUOZYbv_fT-7DfB0LvqCFEGZ5jTVXqHRSLQS0IbFLQxc4xm3OfO_z5LDsZs9MiLXq9_ZWopWqh9vTNrXkl_8NVGAO--izZf-BsuygMwG_gLzyBw_D8Kx5_txOH_bXtT1VnlX_1ISrG4k-gmowXnLP2nsBXwJ13bnCbutsxSKCtHBDjOGH8FDRpC54f57I-Vh1Wv2Sj7vzorPKD3wBlk4tWhIRT1aKy5_Ji9VzBpzJ1zhXu_9coTXOcZKEVyZ4NApQygcHsYasSNk_WkBTEZegZsibFk7p8sdLzSx97J3zZtaW6ilf0Z1_K4_FwWI6OitED9DABN6FO9i6WIT4ije5P-M6mxios_7Gz-BO0qZvtzsNuL_1Ou6ZKV1PX5sfoGXra-A39gwCC56hnpy_Qo8PYrm8TDf4AQ78Dhv46GF6i8fHR6PAEN-0wsGaUL7A02jLLiHTCUmmIcs5y4jKmuVEDp0VmHLjnTEnCSW6YFdylIpdZwmzqbEZfoY3pbGq3UJ84rqUkmmvglBUGvGZqc5qxfMC5E4NtRG8jSNlgf1561xHIWHoylpGM2-hDpFepmwrzvtHJ5K7p79vpV6G0yl0TdyPxl1_g-9CDaUmy9PX9r3fQ4yW8d9HG4rqyb8CQXKi3NVp-A3yFdX8 |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-Assembling+Peptide-Based+Nanoarchitectonics&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.au=Zhao%2C+Luyang&rft.au=Zou%2C+Qianli&rft.au=Yan%2C+Xuehai&rft.date=2019-01-01&rft.pub=Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=92&rft.issue=1&rft.spage=70&rft_id=info:doi/10.1246%2Fbcsj.20180248&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |