A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving
[Display omitted] •Photocatalysis was introduced to NF membrane separation and obtained much improved water flux.•Membrane showed efficient rejection of Na2SO4 and removal of ammonia, antibiotic and bisphenol A.•The membrane exhibited high performance on real aquaculture wastewater treatment.•Lost f...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 224; pp. 204 - 213 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.05.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Photocatalysis was introduced to NF membrane separation and obtained much improved water flux.•Membrane showed efficient rejection of Na2SO4 and removal of ammonia, antibiotic and bisphenol A.•The membrane exhibited high performance on real aquaculture wastewater treatment.•Lost flux of fouled membrane could be recovered under photochemical assistance.
Nanofiltration (NF) provides an effective strategy for rejecting large organic molecules. However, attaining high permeability, antifouling ability and good selectivity simultaneously still remains a crucial task for existing NF technologies. Herein, we built a photo-assisted multifunctional NF membrane assembled with g-C3N4, TiO2, carbon nanotubes (CNTs) and graphene oxide (GO), in which CNTs not only expand the interlayer space between neighbored graphene sheets, but also enhance the stability and strength of GO layer. Benefiting from the photo-assistance, our NF membranes show an enhanced water flux (∼16Lm−2h−1bar−1), while keep a high dye rejection (∼100% for Methyl Orange). The photo-assisted NF membranes also display good rejection ratio for salt ions (i.e., 67% for Na2SO4) due to the layer-by-layer sieving. Meanwhile, the NF membrane coupled with photocatalysis exhibits a multifunctional characteristic for the efficient removal of ammonia (50%), antibiotic (80%) and bisphenol A (82%) in water. Besides, the performance of integrated system is also tested by treating the real aquaculture wastewater to evaluate its practical application ability. The lost flux of the fouled membrane is effectively recovered by the photochemically assisted process. Hence, this work mitigates the longstanding challenge of GO-based NF membranes in large-scale application by integrating photocatalysis and nanofiltration technologies. |
---|---|
AbstractList | Nanofiltration (NF) provides an effective strategy for rejecting large organic molecules. However, attaining high permeability, antifouling ability and good selectivity simultaneously still remains a crucial task for existing NF technologies. Herein, we built a photo-assisted multifunctional NF membrane assembled with g-C3N4, TiO2, carbon nanotubes (CNTs) and graphene oxide (GO), in which CNTs not only expand the interlayer space between neighbored graphene sheets, but also enhance the stability and strength of GO layer. Benefiting from the photo-assistance, our NF membranes show an enhanced water flux (∼16 L m-2 h-1 bar-1), while keep a high dye rejection (∼100% for Methyl Orange). The photo-assisted NF membranes also display good rejection ratio for salt ions (i.e., 67% for Na2SO4) due to the layer-by-layer sieving. Meanwhile, the NF membrane coupled with photocatalysis exhibits a multifunctional characteristic for the efficient removal of ammonia (50%), antibiotic (80%) and bisphenol A (82%) in water. Besides, the performance of integrated system is also tested by treating the real aquaculture wastewater to evaluate its practical application ability. The lost flux of the fouled membrane is effectively recovered by the photochemically assisted process. Hence, this work mitigates the longstanding challenge of GO-based NF membranes in large-scale application by integrating photocatalysis and nanofiltration technologies. [Display omitted] •Photocatalysis was introduced to NF membrane separation and obtained much improved water flux.•Membrane showed efficient rejection of Na2SO4 and removal of ammonia, antibiotic and bisphenol A.•The membrane exhibited high performance on real aquaculture wastewater treatment.•Lost flux of fouled membrane could be recovered under photochemical assistance. Nanofiltration (NF) provides an effective strategy for rejecting large organic molecules. However, attaining high permeability, antifouling ability and good selectivity simultaneously still remains a crucial task for existing NF technologies. Herein, we built a photo-assisted multifunctional NF membrane assembled with g-C3N4, TiO2, carbon nanotubes (CNTs) and graphene oxide (GO), in which CNTs not only expand the interlayer space between neighbored graphene sheets, but also enhance the stability and strength of GO layer. Benefiting from the photo-assistance, our NF membranes show an enhanced water flux (∼16Lm−2h−1bar−1), while keep a high dye rejection (∼100% for Methyl Orange). The photo-assisted NF membranes also display good rejection ratio for salt ions (i.e., 67% for Na2SO4) due to the layer-by-layer sieving. Meanwhile, the NF membrane coupled with photocatalysis exhibits a multifunctional characteristic for the efficient removal of ammonia (50%), antibiotic (80%) and bisphenol A (82%) in water. Besides, the performance of integrated system is also tested by treating the real aquaculture wastewater to evaluate its practical application ability. The lost flux of the fouled membrane is effectively recovered by the photochemically assisted process. Hence, this work mitigates the longstanding challenge of GO-based NF membranes in large-scale application by integrating photocatalysis and nanofiltration technologies. |
Author | Chen, Shuo Fan, Xinfei Quan, Xie Zhang, Qi Zhang, Haiguang Yu, Hongtao |
Author_xml | – sequence: 1 givenname: Qi surname: Zhang fullname: Zhang, Qi – sequence: 2 givenname: Shuo surname: Chen fullname: Chen, Shuo email: shuochen@dlut.edu.cn – sequence: 3 givenname: Xinfei surname: Fan fullname: Fan, Xinfei – sequence: 4 givenname: Haiguang surname: Zhang fullname: Zhang, Haiguang – sequence: 5 givenname: Hongtao surname: Yu fullname: Yu, Hongtao – sequence: 6 givenname: Xie surname: Quan fullname: Quan, Xie |
BookMark | eNqFkE9r3DAQxUVJIJs03yAHQc_aypJXsnsohNB_EOilPYuxPM5qsSVXklP2O_RDV4576qE9zfDmvQfzuyYXPngk5K7i-4pX6u1pD7OF3O0Fr3SR9kV8RXZVoyWTTSMvyI63QjEptbwi1ymdOOdCimZHft3TaRmzGxZvswseRvoUYT6iR9ZBwp568GFwY46w3umEUxfBI118j5HOx5ADg5RcyuAt0iFEiv647j39Cbl4ckTIE_pMt8bSMsIZI-vO7GWhyeGz80-vyeUAY8LbP_OGfP_44dvDZ_b49dOXh_tHZmupM2tb3h3AtkoO2mpQoGWNtm1Q10o0IITtDxVKjUpBDbzXvVCNLqSEHUB3lbwhb7beOYYfC6ZsTmGJ5fdkBBet0lLUh-KqN5eNIaWIg5mjmyCeTcXNyt2czMbdrNxXtYgl9u6vmHX5hV1B6Mb_hd9vYSzvPzuMJlmHK0sX0WbTB_fvgt__wKY_ |
CitedBy_id | crossref_primary_10_1016_j_desal_2023_116480 crossref_primary_10_1016_j_apcatb_2020_118715 crossref_primary_10_1016_j_carbon_2018_07_040 crossref_primary_10_1016_j_scitotenv_2021_148462 crossref_primary_10_1080_10643389_2022_2113319 crossref_primary_10_1016_j_chemosphere_2020_126581 crossref_primary_10_1016_j_jtice_2020_03_015 crossref_primary_10_3390_app10113689 crossref_primary_10_1039_D4RA05273K crossref_primary_10_1039_D2EN00545J crossref_primary_10_1021_acsanm_3c03452 crossref_primary_10_1016_j_apcatb_2019_118548 crossref_primary_10_1016_j_jwpe_2024_105685 crossref_primary_10_1016_j_memsci_2024_122454 crossref_primary_10_1515_psr_2023_0046 crossref_primary_10_1016_j_jece_2021_105762 crossref_primary_10_1039_D0CS01599G crossref_primary_10_1039_D1NR01823J crossref_primary_10_1016_j_memsci_2019_117727 crossref_primary_10_1016_j_jcis_2018_12_090 crossref_primary_10_1016_j_jece_2021_105605 crossref_primary_10_1016_j_cjche_2021_01_011 crossref_primary_10_1016_j_mtchem_2024_102303 crossref_primary_10_1007_s10853_022_07083_1 crossref_primary_10_1016_j_chemosphere_2022_136034 crossref_primary_10_1016_j_envres_2023_115409 crossref_primary_10_1016_j_colsurfa_2023_130974 crossref_primary_10_1016_j_memsci_2019_04_078 crossref_primary_10_1038_s41545_024_00418_2 crossref_primary_10_1016_j_envpol_2019_06_067 crossref_primary_10_1016_j_chemosphere_2021_132735 crossref_primary_10_1016_j_jclepro_2018_09_140 crossref_primary_10_1016_j_jhazmat_2022_129799 crossref_primary_10_3390_membranes10100295 crossref_primary_10_1016_j_seppur_2020_116997 crossref_primary_10_1016_j_jclepro_2021_128982 crossref_primary_10_1039_D0TA09173A crossref_primary_10_1016_j_seppur_2024_128013 crossref_primary_10_1016_j_memsci_2019_05_031 crossref_primary_10_1016_j_apcatb_2024_124118 crossref_primary_10_1016_j_cej_2018_12_014 crossref_primary_10_1016_j_jcis_2024_07_027 crossref_primary_10_1002_aic_18346 crossref_primary_10_1016_j_chemosphere_2022_135590 crossref_primary_10_1016_j_jece_2021_106666 crossref_primary_10_1016_j_cjche_2019_01_001 crossref_primary_10_1016_j_heliyon_2022_e12685 crossref_primary_10_1016_j_jenvman_2024_121437 crossref_primary_10_1016_j_memsci_2020_117871 crossref_primary_10_1016_j_jclepro_2023_136280 crossref_primary_10_1039_D0TA06729F crossref_primary_10_1016_j_jcis_2019_10_078 crossref_primary_10_1016_j_apcatb_2020_119587 crossref_primary_10_1016_j_apcatb_2020_119662 crossref_primary_10_2139_ssrn_4192951 crossref_primary_10_1016_j_memsci_2024_122744 crossref_primary_10_1002_slct_202101338 crossref_primary_10_1016_j_jece_2023_109306 crossref_primary_10_1016_j_jhazmat_2024_133793 crossref_primary_10_1039_C9EN01367A crossref_primary_10_1016_j_jcis_2019_01_105 crossref_primary_10_1016_j_jwpe_2023_104647 crossref_primary_10_1016_j_seppur_2024_130680 crossref_primary_10_1016_j_jmrt_2022_01_140 crossref_primary_10_3390_toxics9080194 crossref_primary_10_1016_j_inoche_2024_113522 crossref_primary_10_1016_j_jece_2020_104930 crossref_primary_10_1039_C8RA03156H crossref_primary_10_1016_j_cej_2021_128663 crossref_primary_10_1016_j_desal_2024_118496 crossref_primary_10_5004_dwt_2018_22829 crossref_primary_10_1021_acs_est_2c00786 crossref_primary_10_1039_D1TA04882A crossref_primary_10_1016_j_memsci_2023_121465 crossref_primary_10_3390_membranes11090699 crossref_primary_10_1016_j_envint_2021_106863 crossref_primary_10_1016_j_watres_2022_119460 crossref_primary_10_1016_j_jhazmat_2019_120806 crossref_primary_10_1016_j_ceja_2022_100269 crossref_primary_10_1016_j_envres_2021_111955 crossref_primary_10_2139_ssrn_4192952 crossref_primary_10_1016_j_seppur_2024_129288 crossref_primary_10_3390_membranes12030340 crossref_primary_10_1016_j_seppur_2024_130472 crossref_primary_10_1016_j_seppur_2023_125225 crossref_primary_10_1021_acs_est_9b01453 crossref_primary_10_1021_acsestwater_2c00359 |
Cites_doi | 10.1016/j.apcatb.2017.04.059 10.1016/j.memsci.2009.10.054 10.1021/es503073z 10.1038/nature06599 10.1016/j.cej.2013.09.059 10.1016/j.chemosphere.2004.10.044 10.1016/j.apcatb.2016.04.042 10.1002/anie.201401061 10.1021/acsami.6b03693 10.1021/ja01539a017 10.1039/c2jm32686h 10.1021/acsami.5b12723 10.1016/S0376-7388(98)00079-9 10.1016/j.apcatb.2015.05.024 10.1111/j.1749-7345.2007.00104.x 10.1021/es5039479 10.1016/j.apcatb.2015.03.058 10.1021/nl1021046 10.1016/j.memsci.2012.08.053 10.1021/nn200222g 10.1002/adfm.201700251 10.1016/j.jhazmat.2012.04.036 10.1016/S1383-5866(98)00070-7 10.1038/nmat2317 10.1002/adfm.201202601 10.1016/j.supflu.2010.10.035 10.1016/j.apcatb.2016.04.009 10.1021/acsami.5b09503 10.1016/j.memsci.2016.10.052 10.1021/nn5062854 10.1038/35102535 10.1038/41233 10.1016/j.polymer.2006.01.042 10.1038/ncomms10891 10.1126/science.1211694 10.1021/nn700036f 10.1126/science.1245711 10.1002/adma.200500418 10.1021/acscatal.5b02036 10.1016/j.jhazmat.2010.11.063 10.1039/c3ta12480k 10.1016/j.memsci.2015.03.054 |
ContentType | Journal Article |
Copyright | 2017 Elsevier B.V. Copyright Elsevier BV May 2018 |
Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier BV May 2018 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2017.10.016 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 213 |
ExternalDocumentID | 10_1016_j_apcatb_2017_10_016 S0926337317309281 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c437t-990b5ac963f7c7a6a734ec98e74628a22cd51e37e66a4a0d7d26871012cfa7b13 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 04:51:12 EDT 2025 Thu Apr 24 22:51:50 EDT 2025 Tue Jul 01 03:10:44 EDT 2025 Sat Mar 02 16:00:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanofiltration Water treatment Enhanced performance Multifunctional membrane Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-990b5ac963f7c7a6a734ec98e74628a22cd51e37e66a4a0d7d26871012cfa7b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2029673245 |
PQPubID | 2045281 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2029673245 crossref_primary_10_1016_j_apcatb_2017_10_016 crossref_citationtrail_10_1016_j_apcatb_2017_10_016 elsevier_sciencedirect_doi_10_1016_j_apcatb_2017_10_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Robel, Bunker, Kamat (bib0090) 2005; 17 Banerjee, Dionysiou, Pillai (bib0145) 2015; 176 Wang, Zhang, Liang, Liu, Xu, Wang, Cao, Pan (bib0035) 2016; 8 Wei, Qiu, Wang, Wang, Tang (bib0125) 2013; 427 Boudreaux, Ferrara, Fontenot (bib0180) 2007; 38 Fan, Zhao, Liu, Quan, Yu, Chen (bib0025) 2015; 49 Lv, Zhang, He, Yang, Wu, Darling, Xu (bib0040) 2017; 27 Qian, Yue, Tian, Reng, Zhu, Kan, Zhang, Zhao (bib0060) 2016; 193 Huang, Liu, Lou, Dong, Shen, Jin (bib0130) 2014; 53 Tan, Ong, Chai, Goh, Mohamed (bib0205) 2015; 179 Han, Xu, Gao (bib0010) 2013; 23 Qian, Ren, Yue, Zhu, Han, Bian, Zhao (bib0055) 2017; 212 Kongkanand, Kamat (bib0095) 2007; 1 Shannon, Bohn, Elimelech, Georgiadis, Marinas, Mayes (bib0005) 2008; 452 Xu, Lin, Du, Zhang, Wu, Xu (bib0020) 2016; 8 Schaep, Van der Bruggen, Vandecasteele, Wilms (bib0070) 1998; 14 Wang, Su, Zhao, Yu, Chen, Zhang, Quan (bib0175) 2014; 48 Sun, Lu, Minter, Chen, Yang, Montagnes (bib0185) 2012; 221 Akbari, Sheath, Martin, Shinde, Shaibani, Banerjee, Tkacz, Bhattacharyya, Majumder (bib0165) 2016; 7 Hu, Gao, Ding, Wang, Jiang, Jin, Jiang (bib0030) 2015; 9 Zhou, Jin, Li, Peng, Wang, Yu, Fang (bib0200) 2012; 22 Barroso, Temtem, Casimiro, Aguiar-Ricardo (bib0155) 2011; 56 Nair, Wu, Jayaram, Grigorieva, Geim (bib0215) 2012; 335 Zhang, Wang, Lopez, Diniz da Costa (bib0100) 2014; 236 Tong, Yang, Shi, Nan, Sun, Jiang (bib0210) 2015; 7 Zhao, Chen, Quan, Yu, Zhao (bib0045) 2016; 194 Hummer, Rasaiah, Noworyta (bib0075) 2001; 414 Majumder, Chopra, Hinds (bib0085) 2011; 5 Wang, Hashimoto, Fujishima, Chikuni, Kojima, Kitamura, Shimohigoshi, Watanabe (bib0065) 1997; 388 Yoon, Kim, Wang, Fang, Hsiao, Chu (bib0110) 2006; 47 Xue, Liu, Chen, Hills, Tyrer, Innocent (bib0160) 2011; 186 Tian, Wang, Goh, Liao, Fane (bib0140) 2015; 486 Falk, Sedlmeier, Joly, Netz, Bocquet (bib0080) 2010; 10 Joshi, Carbone, Wang, Kravets, Su, Grigorieva, Wu, Geim, Nair (bib0015) 2014; 343 van der Marel, Zwijnenburg, Kemperman, Wessling, Temmink, van der Meer (bib0150) 2010; 348 Hummers, Offeman (bib0105) 1958; 80 Wang, Hashimoto, Fujishima, Chikuni, Kojima, Kitamura, Shimohigoshi, Watanabe (bib0135) 1997; 388 Wang, Elma, Motuzas, Hou, Xie, Zhang (bib0050) 2017; 524 Camargo, Alonso, Salamanca (bib0190) 2005; 58 Wang, Maeda, Thomas, Takanabe, Xin, Carlsson, Domen, Antonietti (bib0195) 2009; 8 Peeters, Mulder, Strathmann (bib0170) 1998; 145 Yeh, Wang, Mahajan, Hsiao, Chu (bib0115) 2013; 1 Yuan, Ye, Lu, Hu, Li, Chen, Zhong, Yu, Zou (bib0120) 2016; 6 Yeh (10.1016/j.apcatb.2017.10.016_bib0115) 2013; 1 van der Marel (10.1016/j.apcatb.2017.10.016_bib0150) 2010; 348 Yuan (10.1016/j.apcatb.2017.10.016_bib0120) 2016; 6 Zhang (10.1016/j.apcatb.2017.10.016_bib0100) 2014; 236 Hummer (10.1016/j.apcatb.2017.10.016_bib0075) 2001; 414 Falk (10.1016/j.apcatb.2017.10.016_bib0080) 2010; 10 Peeters (10.1016/j.apcatb.2017.10.016_bib0170) 1998; 145 Barroso (10.1016/j.apcatb.2017.10.016_bib0155) 2011; 56 Boudreaux (10.1016/j.apcatb.2017.10.016_bib0180) 2007; 38 Qian (10.1016/j.apcatb.2017.10.016_bib0055) 2017; 212 Xu (10.1016/j.apcatb.2017.10.016_bib0020) 2016; 8 Wei (10.1016/j.apcatb.2017.10.016_bib0125) 2013; 427 Fan (10.1016/j.apcatb.2017.10.016_bib0025) 2015; 49 Schaep (10.1016/j.apcatb.2017.10.016_bib0070) 1998; 14 Wang (10.1016/j.apcatb.2017.10.016_bib0195) 2009; 8 Hummers (10.1016/j.apcatb.2017.10.016_bib0105) 1958; 80 Wang (10.1016/j.apcatb.2017.10.016_bib0035) 2016; 8 Huang (10.1016/j.apcatb.2017.10.016_bib0130) 2014; 53 Tong (10.1016/j.apcatb.2017.10.016_bib0210) 2015; 7 Han (10.1016/j.apcatb.2017.10.016_bib0010) 2013; 23 Qian (10.1016/j.apcatb.2017.10.016_bib0060) 2016; 193 Hu (10.1016/j.apcatb.2017.10.016_bib0030) 2015; 9 Akbari (10.1016/j.apcatb.2017.10.016_bib0165) 2016; 7 Xue (10.1016/j.apcatb.2017.10.016_bib0160) 2011; 186 Tan (10.1016/j.apcatb.2017.10.016_bib0205) 2015; 179 Yoon (10.1016/j.apcatb.2017.10.016_bib0110) 2006; 47 Sun (10.1016/j.apcatb.2017.10.016_bib0185) 2012; 221 Camargo (10.1016/j.apcatb.2017.10.016_bib0190) 2005; 58 Zhao (10.1016/j.apcatb.2017.10.016_bib0045) 2016; 194 Lv (10.1016/j.apcatb.2017.10.016_bib0040) 2017; 27 Wang (10.1016/j.apcatb.2017.10.016_bib0050) 2017; 524 Wang (10.1016/j.apcatb.2017.10.016_bib0065) 1997; 388 Joshi (10.1016/j.apcatb.2017.10.016_bib0015) 2014; 343 Tian (10.1016/j.apcatb.2017.10.016_bib0140) 2015; 486 Wang (10.1016/j.apcatb.2017.10.016_bib0175) 2014; 48 Kongkanand (10.1016/j.apcatb.2017.10.016_bib0095) 2007; 1 Wang (10.1016/j.apcatb.2017.10.016_bib0135) 1997; 388 Majumder (10.1016/j.apcatb.2017.10.016_bib0085) 2011; 5 Zhou (10.1016/j.apcatb.2017.10.016_bib0200) 2012; 22 Nair (10.1016/j.apcatb.2017.10.016_bib0215) 2012; 335 Robel (10.1016/j.apcatb.2017.10.016_bib0090) 2005; 17 Shannon (10.1016/j.apcatb.2017.10.016_bib0005) 2008; 452 Banerjee (10.1016/j.apcatb.2017.10.016_bib0145) 2015; 176 |
References_xml | – volume: 212 start-page: 1 year: 2017 end-page: 6 ident: bib0055 publication-title: Appl. Catal. B-Environ. – volume: 335 start-page: 442 year: 2012 end-page: 444 ident: bib0215 publication-title: Science – volume: 486 start-page: 151 year: 2015 end-page: 160 ident: bib0140 publication-title: J. Membrane Sci. – volume: 8 start-page: 12588 year: 2016 end-page: 12593 ident: bib0020 publication-title: ACS Appl Mater. Inter. – volume: 49 start-page: 2293 year: 2015 end-page: 2300 ident: bib0025 publication-title: Environ. Sci. Technol. – volume: 9 start-page: 4835 year: 2015 end-page: 4842 ident: bib0030 publication-title: ACS Nano – volume: 8 start-page: 76 year: 2009 end-page: 80 ident: bib0195 publication-title: Nat. Mater. – volume: 56 start-page: 312 year: 2011 end-page: 321 ident: bib0155 publication-title: J. Supercrit. Fluid. – volume: 5 start-page: 3867 year: 2011 end-page: 3877 ident: bib0085 publication-title: ACS Nano – volume: 8 start-page: 6211 year: 2016 end-page: 6218 ident: bib0035 publication-title: ACS Appl. Mater. Inter. – volume: 176 start-page: 396 year: 2015 end-page: 428 ident: bib0145 publication-title: Appl. Catal. B-Environ. – volume: 80 start-page: 1339 year: 1958 ident: bib0105 publication-title: J. Am. Chem. Soc. – volume: 348 start-page: 66 year: 2010 end-page: 74 ident: bib0150 publication-title: J. Membrane Sci. – volume: 1 start-page: 13 year: 2007 end-page: 21 ident: bib0095 publication-title: ACS Nano – volume: 179 start-page: 160 year: 2015 end-page: 170 ident: bib0205 publication-title: Appl. Catal. B-Environ. – volume: 47 start-page: 2434 year: 2006 end-page: 2441 ident: bib0110 publication-title: Polymer – volume: 236 start-page: 314 year: 2014 end-page: 322 ident: bib0100 publication-title: Chem. Eng. J. – volume: 14 start-page: 155 year: 1998 end-page: 162 ident: bib0070 publication-title: Sep. Purif. Technol. – volume: 1 start-page: 12998 year: 2013 end-page: 13003 ident: bib0115 publication-title: J. Mater. Chem. A – volume: 38 start-page: 322 year: 2007 end-page: 325 ident: bib0180 publication-title: J. World Aquacult.e Soc. – volume: 48 start-page: 11984 year: 2014 end-page: 11990 ident: bib0175 publication-title: Environ. Sci. Technol. – volume: 17 start-page: 2458 year: 2005 end-page: 2463 ident: bib0090 publication-title: Adv. Mater. – volume: 427 start-page: 460 year: 2013 end-page: 471 ident: bib0125 publication-title: J. Membrane Sci. – volume: 452 start-page: 301 year: 2008 end-page: 310 ident: bib0005 publication-title: Nature – volume: 27 start-page: 1700251 year: 2017 ident: bib0040 publication-title: Adv. Funct. Mater. – volume: 6 start-page: 532 year: 2016 end-page: 541 ident: bib0120 publication-title: ACS Catal. – volume: 22 start-page: 17900 year: 2012 end-page: 17905 ident: bib0200 publication-title: J. Mater. Chem. – volume: 58 start-page: 1255 year: 2005 end-page: 1267 ident: bib0190 publication-title: Chemosphere – volume: 221 start-page: 213 year: 2012 end-page: 219 ident: bib0185 publication-title: J. Hazard. Mater. – volume: 343 start-page: 752 year: 2014 end-page: 754 ident: bib0015 publication-title: Science – volume: 10 start-page: 4067 year: 2010 end-page: 4073 ident: bib0080 publication-title: Nano Lett. – volume: 388 start-page: 431 year: 1997 end-page: 432 ident: bib0135 publication-title: Nature – volume: 524 start-page: 163 year: 2017 end-page: 173 ident: bib0050 publication-title: J. Membrane Sci. – volume: 23 start-page: 3693 year: 2013 end-page: 3700 ident: bib0010 publication-title: Adv. Funct. Mater. – volume: 194 start-page: 134 year: 2016 end-page: 140 ident: bib0045 publication-title: Appl. Catal. B-Environ. – volume: 193 start-page: 16 year: 2016 end-page: 21 ident: bib0060 publication-title: Appl. Catal. B-Environ. – volume: 7 start-page: 25693 year: 2015 end-page: 25701 ident: bib0210 publication-title: ACS Appl Mater. Inter. – volume: 186 start-page: 765 year: 2011 end-page: 772 ident: bib0160 publication-title: J. Hazard. Mater. – volume: 7 start-page: 10891 year: 2016 ident: bib0165 publication-title: Nat. Commun. – volume: 53 start-page: 6929 year: 2014 end-page: 6932 ident: bib0130 publication-title: Angew. Chem. Int. Edit. – volume: 414 start-page: 188 year: 2001 end-page: 190 ident: bib0075 publication-title: Nature – volume: 145 start-page: 199 year: 1998 end-page: 209 ident: bib0170 publication-title: J. Membrane Sci. – volume: 388 start-page: 431 year: 1997 end-page: 432 ident: bib0065 publication-title: Nature – volume: 212 start-page: 1 year: 2017 ident: 10.1016/j.apcatb.2017.10.016_bib0055 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.04.059 – volume: 348 start-page: 66 year: 2010 ident: 10.1016/j.apcatb.2017.10.016_bib0150 publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2009.10.054 – volume: 48 start-page: 11984 year: 2014 ident: 10.1016/j.apcatb.2017.10.016_bib0175 publication-title: Environ. Sci. Technol. doi: 10.1021/es503073z – volume: 452 start-page: 301 year: 2008 ident: 10.1016/j.apcatb.2017.10.016_bib0005 publication-title: Nature doi: 10.1038/nature06599 – volume: 236 start-page: 314 year: 2014 ident: 10.1016/j.apcatb.2017.10.016_bib0100 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.059 – volume: 58 start-page: 1255 year: 2005 ident: 10.1016/j.apcatb.2017.10.016_bib0190 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2004.10.044 – volume: 194 start-page: 134 year: 2016 ident: 10.1016/j.apcatb.2017.10.016_bib0045 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.04.042 – volume: 53 start-page: 6929 year: 2014 ident: 10.1016/j.apcatb.2017.10.016_bib0130 publication-title: Angew. Chem. Int. Edit. doi: 10.1002/anie.201401061 – volume: 8 start-page: 12588 year: 2016 ident: 10.1016/j.apcatb.2017.10.016_bib0020 publication-title: ACS Appl Mater. Inter. doi: 10.1021/acsami.6b03693 – volume: 80 start-page: 1339 year: 1958 ident: 10.1016/j.apcatb.2017.10.016_bib0105 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01539a017 – volume: 22 start-page: 17900 year: 2012 ident: 10.1016/j.apcatb.2017.10.016_bib0200 publication-title: J. Mater. Chem. doi: 10.1039/c2jm32686h – volume: 8 start-page: 6211 year: 2016 ident: 10.1016/j.apcatb.2017.10.016_bib0035 publication-title: ACS Appl. Mater. Inter. doi: 10.1021/acsami.5b12723 – volume: 145 start-page: 199 year: 1998 ident: 10.1016/j.apcatb.2017.10.016_bib0170 publication-title: J. Membrane Sci. doi: 10.1016/S0376-7388(98)00079-9 – volume: 179 start-page: 160 year: 2015 ident: 10.1016/j.apcatb.2017.10.016_bib0205 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.05.024 – volume: 38 start-page: 322 year: 2007 ident: 10.1016/j.apcatb.2017.10.016_bib0180 publication-title: J. World Aquacult.e Soc. doi: 10.1111/j.1749-7345.2007.00104.x – volume: 49 start-page: 2293 year: 2015 ident: 10.1016/j.apcatb.2017.10.016_bib0025 publication-title: Environ. Sci. Technol. doi: 10.1021/es5039479 – volume: 176 start-page: 396 year: 2015 ident: 10.1016/j.apcatb.2017.10.016_bib0145 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2015.03.058 – volume: 10 start-page: 4067 year: 2010 ident: 10.1016/j.apcatb.2017.10.016_bib0080 publication-title: Nano Lett. doi: 10.1021/nl1021046 – volume: 427 start-page: 460 year: 2013 ident: 10.1016/j.apcatb.2017.10.016_bib0125 publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2012.08.053 – volume: 5 start-page: 3867 year: 2011 ident: 10.1016/j.apcatb.2017.10.016_bib0085 publication-title: ACS Nano doi: 10.1021/nn200222g – volume: 27 start-page: 1700251 year: 2017 ident: 10.1016/j.apcatb.2017.10.016_bib0040 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700251 – volume: 221 start-page: 213 year: 2012 ident: 10.1016/j.apcatb.2017.10.016_bib0185 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2012.04.036 – volume: 14 start-page: 155 year: 1998 ident: 10.1016/j.apcatb.2017.10.016_bib0070 publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(98)00070-7 – volume: 8 start-page: 76 year: 2009 ident: 10.1016/j.apcatb.2017.10.016_bib0195 publication-title: Nat. Mater. doi: 10.1038/nmat2317 – volume: 23 start-page: 3693 year: 2013 ident: 10.1016/j.apcatb.2017.10.016_bib0010 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202601 – volume: 56 start-page: 312 year: 2011 ident: 10.1016/j.apcatb.2017.10.016_bib0155 publication-title: J. Supercrit. Fluid. doi: 10.1016/j.supflu.2010.10.035 – volume: 193 start-page: 16 year: 2016 ident: 10.1016/j.apcatb.2017.10.016_bib0060 publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.04.009 – volume: 7 start-page: 25693 year: 2015 ident: 10.1016/j.apcatb.2017.10.016_bib0210 publication-title: ACS Appl Mater. Inter. doi: 10.1021/acsami.5b09503 – volume: 524 start-page: 163 year: 2017 ident: 10.1016/j.apcatb.2017.10.016_bib0050 publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2016.10.052 – volume: 9 start-page: 4835 year: 2015 ident: 10.1016/j.apcatb.2017.10.016_bib0030 publication-title: ACS Nano doi: 10.1021/nn5062854 – volume: 414 start-page: 188 year: 2001 ident: 10.1016/j.apcatb.2017.10.016_bib0075 publication-title: Nature doi: 10.1038/35102535 – volume: 388 start-page: 431 year: 1997 ident: 10.1016/j.apcatb.2017.10.016_bib0065 publication-title: Nature doi: 10.1038/41233 – volume: 388 start-page: 431 year: 1997 ident: 10.1016/j.apcatb.2017.10.016_bib0135 publication-title: Nature doi: 10.1038/41233 – volume: 47 start-page: 2434 year: 2006 ident: 10.1016/j.apcatb.2017.10.016_bib0110 publication-title: Polymer doi: 10.1016/j.polymer.2006.01.042 – volume: 7 start-page: 10891 year: 2016 ident: 10.1016/j.apcatb.2017.10.016_bib0165 publication-title: Nat. Commun. doi: 10.1038/ncomms10891 – volume: 335 start-page: 442 year: 2012 ident: 10.1016/j.apcatb.2017.10.016_bib0215 publication-title: Science doi: 10.1126/science.1211694 – volume: 1 start-page: 13 year: 2007 ident: 10.1016/j.apcatb.2017.10.016_bib0095 publication-title: ACS Nano doi: 10.1021/nn700036f – volume: 343 start-page: 752 year: 2014 ident: 10.1016/j.apcatb.2017.10.016_bib0015 publication-title: Science doi: 10.1126/science.1245711 – volume: 17 start-page: 2458 year: 2005 ident: 10.1016/j.apcatb.2017.10.016_bib0090 publication-title: Adv. Mater. doi: 10.1002/adma.200500418 – volume: 6 start-page: 532 year: 2016 ident: 10.1016/j.apcatb.2017.10.016_bib0120 publication-title: ACS Catal. doi: 10.1021/acscatal.5b02036 – volume: 186 start-page: 765 year: 2011 ident: 10.1016/j.apcatb.2017.10.016_bib0160 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.11.063 – volume: 1 start-page: 12998 year: 2013 ident: 10.1016/j.apcatb.2017.10.016_bib0115 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12480k – volume: 486 start-page: 151 year: 2015 ident: 10.1016/j.apcatb.2017.10.016_bib0140 publication-title: J. Membrane Sci. doi: 10.1016/j.memsci.2015.03.054 |
SSID | ssj0002328 |
Score | 2.5411153 |
Snippet | [Display omitted]
•Photocatalysis was introduced to NF membrane separation and obtained much improved water flux.•Membrane showed efficient rejection of Na2SO4... Nanofiltration (NF) provides an effective strategy for rejecting large organic molecules. However, attaining high permeability, antifouling ability and good... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 204 |
SubjectTerms | Ammonia Antibiotics Antifouling Antifouling substances Aquaculture Aquaculture effluents Bisphenol A Carbon nanotubes Carbon nitride Dyes Enhanced performance Graphene Interlayers Membranes Multifunctional membrane Nanofiltration Nanotechnology Nanotubes Organic chemistry Permeability Photocatalysis Rejection Sodium sulfate Titanium dioxide Wastewater treatment Water treatment |
Title | A multifunctional graphene-based nanofiltration membrane under photo-assistance for enhanced water treatment based on layer-by-layer sieving |
URI | https://dx.doi.org/10.1016/j.apcatb.2017.10.016 https://www.proquest.com/docview/2029673245 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4IHtSDUdT4JD14LY9tadkjIRLUyEVJuG26pRsxuBBYY7z4C_zRznS7oMaExNs-2maz0873dfebGUKu2krETcsTBlSVMwEYw3RDCCa1NjIJQuCwGI18P5D9obgdtUYl0i1iYVBW6X1_7tOdt_ZX6v5t1ueTSf2hEQaScwUAyOHQhV8LoXCW1z7WMg9gDM4bQ2OGrYvwOafx0nOjsxgFXqqGGi-sev43PP1y1A59evtkz9NG2smf7ICUbFoh292iWluF7H5LLFghx9fr-DXo5hfw8pB8dqiTECKc5V8BqUtZDR6PIaCNaapTrOLts-nSF_sC--nUUgw2W9D50yybMSDcSDthSAqcl9r0yekI6BsQ1wVdaddpPiKMMtXA7Fn8ztwBXU4sfsc4IsPe9WO3z3xBBmYEVxkD5Ipb2sCaTZRRWmrFhTVh2yqMcNVBYMYtMLyyUmqhG2M1DiRsyAADTaJV3OTHpJzOUntCKNDSMDGxCIJmjL9mQxMKFaJAxwIDacpTwgs7RMZnK8eiGdOokKU9R7n1IrQeXm1gL7bqNc-zdWxorwoTRz9mXQSAsqHnRTEjIr_ql3A_CKUCito6-_fA52QHztq5pvKClLPFq70E3pPFVTexq2Src3PXH3wBz4IEKA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbQOAAHBAPEY0AOXMO2Jk3W4zQNjdcugMStSrNUDEE3bUWI_8CPxm7T8RASEreqraOqTvx9TT_bACcdLZO2EylHqiq4RIzhpiUlV8ZYlQYRcljKRr4eqsGdvLgP75egV-XCkKzSx_4yphfR2p9p-rfZnI7HzZtWFCghNAKgwENKv16m6lRhDZa755eD4SIgI2koAjLez8mgyqArZF5mak2ekMZLn5LMixqf_45QP2J1AUBnG7DumSPrlg-3CUsuq8NKr2rYVoe1L7UF67DT_0xhQzO_hudb8N5lhYqQEK3cCGRF1WoMepwwbcQyk1Ejb19Qlz27Z_ykzhyjfLMZmz5M8glHzk3ME4dkSHuZyx4KKQF7Re46Ywv5OitHxFGeDJJ7nrzx4oDNx462Mrbh7qx_2xtw35OBWyl0zhG8ktBYXLapttooo4V0Nuo4TUmuJgjsKETfa6eUkaY10qNA4TcZwqBNjU7aYgdq2SRzu8CQmUapTWQQtBP6OxvZSOqINDoOSUhb7YGo_BBbX7Cc-mY8xZUy7TEuvReT9-hsi6z4wmpaFuz4435duTj-NvFixJQ_LBvVjIj9wp_j9SBSGllquP_vgY9hZXB7fRVfnQ8vD2AVr3RKiWUDavnsxR0iDcqTIz_NPwCsDgbZ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multifunctional+graphene-based+nanofiltration+membrane+under+photo-assistance+for+enhanced+water+treatment+based+on+layer-by-layer+sieving&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhang%2C+Qi&rft.au=Chen%2C+Shuo&rft.au=Fan%2C+Xinfei&rft.au=Zhang%2C+Haiguang&rft.date=2018-05-01&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=224&rft.spage=204&rft_id=info:doi/10.1016%2Fj.apcatb.2017.10.016&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |