Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode
Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO 3−x ultralong nanobelts. This film has low sheet r...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 6; pp. 2897 - 2903 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2050-7488 2050-7496 2050-7496 |
DOI | 10.1039/C6TA10433A |
Cover
Loading…
Abstract | Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated
via
vacuum filtration using highly conductive MoO
3−x
ultralong nanobelts. This film has low sheet resistance of 5.1 Ω sq
−1
and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm
−3
. Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion. |
---|---|
AbstractList | Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO3-x ultralong nanobelts. This film has low sheet resistance of 5.1 Omega sq-1 and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm-3. Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion. Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO₃₋ₓ ultralong nanobelts. This film has low sheet resistance of 5.1 Ω sq⁻¹ and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm⁻³. Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion. Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO 3−x ultralong nanobelts. This film has low sheet resistance of 5.1 Ω sq −1 and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm −3 . Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion. |
Author | Huang, Liang Wu, Jiabin Zhou, Jun Gao, Xiang Yao, Bin Wan, Jun Sun, Jiyu Li, Tianqi Hu, Zhimi |
Author_xml | – sequence: 1 givenname: Liang orcidid: 0000-0002-0892-6831 surname: Huang fullname: Huang, Liang organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 2 givenname: Bin surname: Yao fullname: Yao, Bin organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 3 givenname: Jiyu surname: Sun fullname: Sun, Jiyu organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 4 givenname: Xiang surname: Gao fullname: Gao, Xiang organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 5 givenname: Jiabin surname: Wu fullname: Wu, Jiabin organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 6 givenname: Jun surname: Wan fullname: Wan, Jun organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 7 givenname: Tianqi surname: Li fullname: Li, Tianqi organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 8 givenname: Zhimi surname: Hu fullname: Hu, Zhimi organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China – sequence: 9 givenname: Jun surname: Zhou fullname: Zhou, Jun organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China |
BookMark | eNqNkUtLBDEQhIMo-NqLvyBHEVaTSTaTHJfFFwhe9j5kMh03kknGZEbcf29kRUEE7Us11Fd96DpG-yEGQOiMkktKmLpaifWSEs7Ycg8dVWRB5jVXYv9rl_IQzXJ-JmUkIUKpI2Tv3NPGb7GJoZvM6F4B69Bh6-HNtR5wH_227SBMPY5vrgMcdIiDHiBhGxPelDR-jX7qYUzO4DwVx-hBGzcWGzyYMcUOTtGB1T7D7FNP0Prmer26mz883t6vlg9zw1k9zuVCa8oJtMZC1eqOCkIt00TIjtWVssQqVkQo0AswuhVMMEU7zrhSshbsBJ3vzg4pvkyQx6Z32YD3OkCcclNVNZWLSom_USolL8-UFf8HWleSMU5pQS92qEkx5wS2GZLrddo2lDQfJTXfJRWY_IDL1_ToYhiTdv63yDtlnJZM |
CitedBy_id | crossref_primary_10_1039_D1RA04902J crossref_primary_10_1021_acssuschemeng_9b06831 crossref_primary_10_1021_acsnano_7b01880 crossref_primary_10_1016_j_electacta_2022_140378 crossref_primary_10_1021_acsaelm_9b00666 crossref_primary_10_1021_acsami_4c05031 crossref_primary_10_1039_C8RA02951B crossref_primary_10_34133_2021_6742715 crossref_primary_10_1016_j_est_2024_113083 crossref_primary_10_1142_S1793292020500149 crossref_primary_10_1002_adfm_202407120 crossref_primary_10_1016_j_jallcom_2018_10_246 crossref_primary_10_1016_j_jechem_2017_11_031 crossref_primary_10_1016_j_apsusc_2020_145648 crossref_primary_10_1039_C7DT04895E crossref_primary_10_1016_j_carbpol_2020_116287 crossref_primary_10_1016_j_jcat_2018_03_010 crossref_primary_10_1007_s10853_018_2654_0 crossref_primary_10_1039_C8TA04218G crossref_primary_10_1088_2399_1984_aad9b8 crossref_primary_10_1016_j_cej_2020_125672 crossref_primary_10_1039_C9TA04835A crossref_primary_10_1002_adfm_201704274 crossref_primary_10_1021_acsami_8b15456 crossref_primary_10_1016_j_apcata_2023_119143 crossref_primary_10_1039_C8TA10892G crossref_primary_10_1016_j_apsusc_2020_148676 crossref_primary_10_1016_j_jics_2021_100169 crossref_primary_10_1002_adma_201701619 crossref_primary_10_1021_acsanm_8b02342 crossref_primary_10_1002_asia_201801173 crossref_primary_10_1016_j_susmat_2023_e00738 crossref_primary_10_1039_D0TC03640D crossref_primary_10_1039_C8QI00148K crossref_primary_10_1016_j_est_2022_105693 crossref_primary_10_1016_j_nanoen_2019_01_071 crossref_primary_10_1002_er_7170 crossref_primary_10_1016_j_est_2025_115868 crossref_primary_10_3390_nano13152272 crossref_primary_10_1039_C8RA06102E crossref_primary_10_1016_j_jallcom_2024_174026 crossref_primary_10_1002_admi_201800438 crossref_primary_10_1016_j_jpowsour_2021_230816 crossref_primary_10_1039_C7EE02390A crossref_primary_10_1016_j_jallcom_2019_151790 crossref_primary_10_1002_asia_202100654 crossref_primary_10_1080_21663831_2018_1477848 crossref_primary_10_1021_acsami_1c16248 crossref_primary_10_1016_j_ccr_2023_215102 crossref_primary_10_1016_j_electacta_2022_141389 crossref_primary_10_1016_j_est_2023_109065 crossref_primary_10_1016_j_cej_2017_06_096 crossref_primary_10_1007_s40820_019_0340_7 crossref_primary_10_1016_j_mtener_2021_100774 crossref_primary_10_1002_cey2_72 crossref_primary_10_1016_j_jechem_2022_12_030 crossref_primary_10_1016_j_cscee_2024_100812 crossref_primary_10_1016_j_jiec_2020_01_019 crossref_primary_10_1016_j_scib_2018_02_013 crossref_primary_10_1016_j_ssi_2024_116618 crossref_primary_10_1007_s10853_020_05284_0 crossref_primary_10_1039_D2DT03467K crossref_primary_10_1002_advs_201700107 crossref_primary_10_3390_batteries10090317 crossref_primary_10_1016_j_jallcom_2021_161998 crossref_primary_10_1016_j_actphy_2025_100063 crossref_primary_10_1002_adfm_201908486 crossref_primary_10_1016_j_cej_2020_124197 crossref_primary_10_1016_j_cej_2018_07_055 crossref_primary_10_1039_C7NR04656A crossref_primary_10_1021_acsami_1c20922 crossref_primary_10_1002_slct_201901816 crossref_primary_10_1039_C8RA05298K crossref_primary_10_1557_s43581_022_00034_y crossref_primary_10_1016_j_apsusc_2020_147384 crossref_primary_10_1002_aenm_201702787 crossref_primary_10_1002_ente_202300608 crossref_primary_10_1016_j_est_2023_110350 crossref_primary_10_1016_j_apsadv_2022_100326 crossref_primary_10_1016_j_ceramint_2019_05_150 crossref_primary_10_1016_j_materresbull_2018_08_036 crossref_primary_10_1039_C9TA03471D crossref_primary_10_2139_ssrn_3960446 crossref_primary_10_1016_j_jpowsour_2021_229538 crossref_primary_10_1039_D0TA10504J crossref_primary_10_1016_j_carbpol_2019_03_101 crossref_primary_10_1016_j_cej_2020_126713 crossref_primary_10_1002_smll_202402998 crossref_primary_10_1016_j_microc_2022_107216 crossref_primary_10_1007_s42452_019_1163_3 crossref_primary_10_1002_cssc_201902394 crossref_primary_10_1016_j_electacta_2019_03_141 crossref_primary_10_1002_adhm_202101331 crossref_primary_10_1021_acssuschemeng_1c03823 crossref_primary_10_1007_s12043_022_02372_5 crossref_primary_10_1007_s10853_020_04881_3 crossref_primary_10_1021_acsaem_0c00399 crossref_primary_10_1016_j_electacta_2021_138774 crossref_primary_10_34133_2021_5130420 crossref_primary_10_1039_C9CE00742C crossref_primary_10_1016_j_cej_2018_04_207 crossref_primary_10_1088_2053_1591_ab3dfb |
Cites_doi | 10.1039/c1cc14030b 10.1038/nmat2297 10.1016/j.nanoen.2012.08.008 10.1039/c3ta12902k 10.1038/nnano.2015.40 10.1039/C5NR01505G 10.1038/nature13970 10.1002/anie.201602631 10.1002/ange.201509033 10.1016/j.nanoen.2014.04.007 10.1038/nmat2612 10.1021/nn2041279 10.1016/j.ensm.2015.05.001 10.1002/adma.201501310 10.1016/j.ijhydene.2013.08.112 10.1126/science.1249625 10.1021/nl1019672 10.1002/adma.201004692 10.1039/c2ee23977a 10.1002/adfm.201404378 10.1016/j.elecom.2008.12.050 10.1073/pnas.0908858106 10.1021/nl102725k 10.1126/science.1239089 10.1126/science.1241488 10.1002/adma.201404140 10.1002/aenm.201600185 10.1002/adma.200700883 10.1039/c2ee24203f 10.1016/j.jpowsour.2015.03.079 10.1039/c3ee44164d 10.1038/ncomms1067 10.1039/C5TA02851E 10.1002/adfm201301851 10.1021/am404724u 10.1039/c0jm03500a 10.1002/adfm.201601811 10.1039/c1cc13474d 10.1021/nl300173j 10.1039/c0ee00759e 10.1021/nl101432r 10.1039/C5TA05251C 10.1016/j.nanoen.2013.09.002 10.1002/adma.201600529 10.1111/jace.12096 10.1021/nl101944e 10.1063/1.4921367 10.1002/aenm.201200380 10.1021/nl2023433 10.1016/j.nanoen.2015.01.017 10.1016/j.nanoen.2016.05.004 10.1039/C2EE23635D 10.1002/anie.201109142 10.1016/j.matlet.2005.09.026 10.1016/j.nanoen.2014.02.014 10.1039/C5NR03363B 10.1002/admi.201400117 |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/C6TA10433A |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Materials Research Database AGRICOLA Environment Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 2050-7496 |
EndPage | 2903 |
ExternalDocumentID | 10_1039_C6TA10433A |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c437t-85aa140ebcfe2bad1601f3a068d3729f0f9329f69ea5ecab636391d434998763 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 08:13:15 EDT 2025 Fri Jul 11 04:33:53 EDT 2025 Fri Jul 11 15:56:13 EDT 2025 Thu Apr 24 23:06:18 EDT 2025 Tue Jul 01 03:13:35 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-85aa140ebcfe2bad1601f3a068d3729f0f9329f69ea5ecab636391d434998763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0892-6831 |
PQID | 1872833411 |
PQPubID | 23462 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2271852966 proquest_miscellaneous_1884104824 proquest_miscellaneous_1872833411 crossref_primary_10_1039_C6TA10433A crossref_citationtrail_10_1039_C6TA10433A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-00-00 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017-00-00 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2017 |
References | Xiao (C6TA10433A-(cit24)/*[position()=1]) 2012; 2 Ballav (C6TA10433A-(cit39)/*[position()=1]) 2006; 60 Zhang (C6TA10433A-(cit41)/*[position()=1]) 2014; 6 Yuan (C6TA10433A-(cit18)/*[position()=1]) 2012; 6 Acerce (C6TA10433A-(cit40)/*[position()=1]) 2015; 10 Hu (C6TA10433A-(cit7)/*[position()=1]) 2013; 6 Chen (C6TA10433A-(cit3)/*[position()=1]) 2011; 11 Huang (C6TA10433A-(cit32)/*[position()=1]) 2015; 3 Moon (C6TA10433A-(cit33)/*[position()=1]) 2010; 1 Wang (C6TA10433A-(cit9)/*[position()=1]) 2011; 4 Reeja-Jayan (C6TA10433A-(cit30)/*[position()=1]) 2014; 1 Javed (C6TA10433A-(cit57)/*[position()=1]) 2015; 285 Liu (C6TA10433A-(cit25)/*[position()=1]) 2013; 1 Ji (C6TA10433A-(cit42)/*[position()=1]) 2015; 25 Tobjörk (C6TA10433A-(cit11)/*[position()=1]) 2011; 23 Cong (C6TA10433A-(cit34)/*[position()=1]) 2013; 6 Cao (C6TA10433A-(cit27)/*[position()=1]) 2015; 27 Lu (C6TA10433A-(cit21)/*[position()=1]) 2012; 12 Meng (C6TA10433A-(cit55)/*[position()=1]) 2010; 10 Jiang (C6TA10433A-(cit49)/*[position()=1]) 2014; 7 Hu (C6TA10433A-(cit10)/*[position()=1]) 2009; 106 Li (C6TA10433A-(cit37)/*[position()=1]) 2016; 128 Zhao (C6TA10433A-(cit52)/*[position()=1]) 2015; 27 Hu (C6TA10433A-(cit8)/*[position()=1]) 2013; 2 Ma (C6TA10433A-(cit48)/*[position()=1]) 2015; 3 Simon (C6TA10433A-(cit1)/*[position()=1]) 2008; 7 Lee (C6TA10433A-(cit47)/*[position()=1]) 2013; 96 Ghidiu (C6TA10433A-(cit15)/*[position()=1]) 2014; 516 Li (C6TA10433A-(cit31)/*[position()=1]) 2016; 26 Wu (C6TA10433A-(cit19)/*[position()=1]) 2016; 26 Yao (C6TA10433A-(cit17)/*[position()=1]) 2016; 28 Yao (C6TA10433A-(cit53)/*[position()=1]) 2013; 2 Xiao (C6TA10433A-(cit13)/*[position()=1]) 2014; 6 Yu (C6TA10433A-(cit20)/*[position()=1]) 2016; 55 Mai (C6TA10433A-(cit23)/*[position()=1]) 2007; 19 Kumar (C6TA10433A-(cit50)/*[position()=1]) 2015; 7 Javed (C6TA10433A-(cit56)/*[position()=1]) 2015; 7 Schoen (C6TA10433A-(cit5)/*[position()=1]) 2010; 10 Huang (C6TA10433A-(cit46)/*[position()=1]) 2013; 38 Zhou (C6TA10433A-(cit29)/*[position()=1]) 2015; 12 Simon (C6TA10433A-(cit2)/*[position()=1]) 2014; 343 Wu (C6TA10433A-(cit4)/*[position()=1]) 2010; 10 Chang (C6TA10433A-(cit28)/*[position()=1]) 2013; 23 Rajeswari (C6TA10433A-(cit45)/*[position()=1]) 2009; 11 Liang (C6TA10433A-(cit43)/*[position()=1]) 2011; 47 Augustyn (C6TA10433A-(cit16)/*[position()=1]) 2014; 7 Li (C6TA10433A-(cit26)/*[position()=1]) 2011; 21 Jeong (C6TA10433A-(cit6)/*[position()=1]) 2010; 10 Fernandes Cauduro (C6TA10433A-(cit38)/*[position()=1]) 2015; 106 Wang (C6TA10433A-(cit51)/*[position()=1]) 2016; 6 Yang (C6TA10433A-(cit12)/*[position()=1]) 2013; 341 Yuan (C6TA10433A-(cit54)/*[position()=1]) 2013; 6 Tang (C6TA10433A-(cit44)/*[position()=1]) 2011; 47 Brezesinski (C6TA10433A-(cit22)/*[position()=1]) 2010; 9 Xiao (C6TA10433A-(cit35)/*[position()=1]) 2015; 1 Yuan (C6TA10433A-(cit36)/*[position()=1]) 2012; 51 Lukatskaya (C6TA10433A-(cit14)/*[position()=1]) 2013; 341 |
References_xml | – volume: 47 start-page: 10305 year: 2011 ident: C6TA10433A-(cit43)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc14030b – volume: 7 start-page: 845 year: 2008 ident: C6TA10433A-(cit1)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 2 start-page: 138 year: 2013 ident: C6TA10433A-(cit8)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.08.008 – volume: 1 start-page: 13582 year: 2013 ident: C6TA10433A-(cit25)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta12902k – volume: 10 start-page: 313 year: 2015 ident: C6TA10433A-(cit40)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.40 – volume: 7 start-page: 11777 year: 2015 ident: C6TA10433A-(cit50)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR01505G – volume: 516 start-page: 78 year: 2014 ident: C6TA10433A-(cit15)/*[position()=1] publication-title: Nature doi: 10.1038/nature13970 – volume: 55 start-page: 6762 year: 2016 ident: C6TA10433A-(cit20)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602631 – volume: 128 start-page: 991 year: 2016 ident: C6TA10433A-(cit37)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.201509033 – volume: 7 start-page: 72 year: 2014 ident: C6TA10433A-(cit49)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.04.007 – volume: 9 start-page: 146 year: 2010 ident: C6TA10433A-(cit22)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2612 – volume: 6 start-page: 656 year: 2012 ident: C6TA10433A-(cit18)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn2041279 – volume: 1 start-page: 1 year: 2015 ident: C6TA10433A-(cit35)/*[position()=1] publication-title: Energy Storage Materials doi: 10.1016/j.ensm.2015.05.001 – volume: 27 start-page: 4695 year: 2015 ident: C6TA10433A-(cit27)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201501310 – volume: 38 start-page: 14027 year: 2013 ident: C6TA10433A-(cit46)/*[position()=1] publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.08.112 – volume: 343 start-page: 1210 year: 2014 ident: C6TA10433A-(cit2)/*[position()=1] publication-title: Science doi: 10.1126/science.1249625 – volume: 10 start-page: 4025 year: 2010 ident: C6TA10433A-(cit55)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl1019672 – volume: 23 start-page: 1935 year: 2011 ident: C6TA10433A-(cit11)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201004692 – volume: 6 start-page: 470 year: 2013 ident: C6TA10433A-(cit54)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee23977a – volume: 25 start-page: 1886 year: 2015 ident: C6TA10433A-(cit42)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201404378 – volume: 11 start-page: 572 year: 2009 ident: C6TA10433A-(cit45)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2008.12.050 – volume: 106 start-page: 21490 year: 2009 ident: C6TA10433A-(cit10)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0908858106 – volume: 10 start-page: 4242 year: 2010 ident: C6TA10433A-(cit4)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl102725k – volume: 341 start-page: 534 year: 2013 ident: C6TA10433A-(cit12)/*[position()=1] publication-title: Science doi: 10.1126/science.1239089 – volume: 341 start-page: 1502 year: 2013 ident: C6TA10433A-(cit14)/*[position()=1] publication-title: Science doi: 10.1126/science.1241488 – volume: 27 start-page: 339 year: 2015 ident: C6TA10433A-(cit52)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201404140 – volume: 6 start-page: 1600185 year: 2016 ident: C6TA10433A-(cit51)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600185 – volume: 19 start-page: 3712 year: 2007 ident: C6TA10433A-(cit23)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.200700883 – volume: 6 start-page: 1185 year: 2013 ident: C6TA10433A-(cit34)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee24203f – volume: 285 start-page: 63 year: 2015 ident: C6TA10433A-(cit57)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.079 – volume: 7 start-page: 1597 year: 2014 ident: C6TA10433A-(cit16)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44164d – volume: 1 start-page: 73 year: 2010 ident: C6TA10433A-(cit33)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms1067 – volume: 3 start-page: 14617 year: 2015 ident: C6TA10433A-(cit48)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02851E – volume: 23 start-page: 5074 year: 2013 ident: C6TA10433A-(cit28)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm201301851 – volume: 6 start-page: 1125 year: 2014 ident: C6TA10433A-(cit41)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am404724u – volume: 21 start-page: 4217 year: 2011 ident: C6TA10433A-(cit26)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm03500a – volume: 26 start-page: 6114 year: 2016 ident: C6TA10433A-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601811 – volume: 47 start-page: 10058 year: 2011 ident: C6TA10433A-(cit44)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c1cc13474d – volume: 12 start-page: 1690 year: 2012 ident: C6TA10433A-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl300173j – volume: 4 start-page: 1704 year: 2011 ident: C6TA10433A-(cit9)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00759e – volume: 10 start-page: 2989 year: 2010 ident: C6TA10433A-(cit6)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101432r – volume: 3 start-page: 17217 year: 2015 ident: C6TA10433A-(cit32)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05251C – volume: 2 start-page: 1071 year: 2013 ident: C6TA10433A-(cit53)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.09.002 – volume: 28 start-page: 6353 year: 2016 ident: C6TA10433A-(cit17)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600529 – volume: 96 start-page: 37 year: 2013 ident: C6TA10433A-(cit47)/*[position()=1] publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12096 – volume: 10 start-page: 3628 year: 2010 ident: C6TA10433A-(cit5)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101944e – volume: 106 start-page: 202101 year: 2015 ident: C6TA10433A-(cit38)/*[position()=1] publication-title: Appl. Phys. Lett. doi: 10.1063/1.4921367 – volume: 2 start-page: 1328 year: 2012 ident: C6TA10433A-(cit24)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200380 – volume: 11 start-page: 5165 year: 2011 ident: C6TA10433A-(cit3)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl2023433 – volume: 12 start-page: 510 year: 2015 ident: C6TA10433A-(cit29)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.017 – volume: 26 start-page: 100 year: 2016 ident: C6TA10433A-(cit31)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.05.004 – volume: 6 start-page: 513 year: 2013 ident: C6TA10433A-(cit7)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/C2EE23635D – volume: 51 start-page: 4934 year: 2012 ident: C6TA10433A-(cit36)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201109142 – volume: 60 start-page: 514 year: 2006 ident: C6TA10433A-(cit39)/*[position()=1] publication-title: Mater. Lett. doi: 10.1016/j.matlet.2005.09.026 – volume: 6 start-page: 1 year: 2014 ident: C6TA10433A-(cit13)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.02.014 – volume: 7 start-page: 13610 year: 2015 ident: C6TA10433A-(cit56)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR03363B – volume: 1 start-page: 1400117 year: 2014 ident: C6TA10433A-(cit30)/*[position()=1] publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201400117 |
SSID | ssj0000800699 |
Score | 2.5075965 |
Snippet | Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 2897 |
SubjectTerms | Assembling Capacitance chemistry Devices Electrodes electronic equipment energy Filtration molybdenum Molybdenum oxides nanomaterials Nanostructure Renewable energy |
Title | Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode |
URI | https://www.proquest.com/docview/1872833411 https://www.proquest.com/docview/1884104824 https://www.proquest.com/docview/2271852966 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLxnBBUVZEidxk2NYdVlQWQ5kpd4ix3FWlUq66iYS5S_wp5mx46QRC1q4RJXjOq3ni2c8nvmGkDesiiSPmXDB9pZuqGDPGmOuTMSEAvUQikCia-DzGT89Dz8to-Vk8nMvaqltiiP549q8kv-RKrSBXDFL9h8k2w8KDfAZ5AtXkDBcbyRjDNJY7zByHFlbMQYI3eAVclxiQtS3zXpXlDrWffN9VSqnFjXskS_VVgcXIlOxY1YnpOl3rlq4I0F5SnjLt05XIKccxwoN9iuYuuY_OtIWjTtyUpP_Y-9oPnGTXagd9DZbCwNydwOiOp_1AqB60S9DQjtx36969H5tTR7Jatfapg-m07L_Yue_MImaZoFjXuQhl6lZf9V-m6lya1foaA-Io9U2NrG9neZmiaZL-F0reAGSqkreCB_52vZ0nz3vP_uSn5wvFnk2X2a3yAGDPYc3JQfpPPu46F12aFxzXZG0_-WW8DZI3g3Dj02csYbXZkt2j9zt5EVTA577ZKLqB-TOHgvlQ1IZGNEBRhSERS2M6AAjqmFEexhRkC9FGNEBRnQMI9rD6BHJTubZ8anbld9wZRjMGjeOhIDttypkpVghSh_27lUgPB6XeNZbeRXY_knFEyUiJUXBA7B2_TIMYBONPIePybTe1OoJoYngTApVilLKsIgl1iRQnowSTWfHvEPy1k5YLjtqeqyQss51iESQ5Mc8S_Xkpofkdd_30hCyXNvrlZ33HN4APAQTtdq0V7kfz8CiBtvN_1ufOIRxYhb-uQ9jM-QdSDh_eoNnPSO3EfvGd_ecTJttq16ANdsULzuU_QJvRKhZ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+conductive+and+flexible+molybdenum+oxide+nanopaper+for+high+volumetric+supercapacitor+electrode&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Huang%2C+Liang&rft.au=Yao%2C+Bin&rft.au=Sun%2C+Jiyu&rft.au=Gao%2C+Xiang&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=6&rft.spage=2897&rft.epage=2903&rft_id=info:doi/10.1039%2Fc6ta10433a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |