Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode

Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO 3−x ultralong nanobelts. This film has low sheet r...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 5; no. 6; pp. 2897 - 2903
Main Authors Huang, Liang, Yao, Bin, Sun, Jiyu, Gao, Xiang, Wu, Jiabin, Wan, Jun, Li, Tianqi, Hu, Zhimi, Zhou, Jun
Format Journal Article
LanguageEnglish
Published 2017
Subjects
Online AccessGet full text
ISSN2050-7488
2050-7496
2050-7496
DOI10.1039/C6TA10433A

Cover

Loading…
Abstract Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO 3−x ultralong nanobelts. This film has low sheet resistance of 5.1 Ω sq −1 and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm −3 . Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion.
AbstractList Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO3-x ultralong nanobelts. This film has low sheet resistance of 5.1 Omega sq-1 and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm-3. Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion.
Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO₃₋ₓ ultralong nanobelts. This film has low sheet resistance of 5.1 Ω sq⁻¹ and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm⁻³. Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion.
Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a flexible conductive film was fabricated via vacuum filtration using highly conductive MoO 3−x ultralong nanobelts. This film has low sheet resistance of 5.1 Ω sq −1 and exhibits a stable three-dimensional structure even under 1000 times of bending test. Significantly, this free-standing film has a high volumetric capacitance of 652 F cm −3 . Moreover, a symmetric device based on this electrode demonstrates good cycling stability with a capacitance retention of 85.7% after 25 000 cycles. We anticipate that this strategy can also be applied to other three-dimensional flexible porous films based on one-dimensional conductive nanostructure, which could open up new opportunities for energy storage and conversion.
Author Huang, Liang
Wu, Jiabin
Zhou, Jun
Gao, Xiang
Yao, Bin
Wan, Jun
Sun, Jiyu
Li, Tianqi
Hu, Zhimi
Author_xml – sequence: 1
  givenname: Liang
  orcidid: 0000-0002-0892-6831
  surname: Huang
  fullname: Huang, Liang
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 2
  givenname: Bin
  surname: Yao
  fullname: Yao, Bin
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 3
  givenname: Jiyu
  surname: Sun
  fullname: Sun, Jiyu
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 4
  givenname: Xiang
  surname: Gao
  fullname: Gao, Xiang
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 5
  givenname: Jiabin
  surname: Wu
  fullname: Wu, Jiabin
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 6
  givenname: Jun
  surname: Wan
  fullname: Wan, Jun
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 7
  givenname: Tianqi
  surname: Li
  fullname: Li, Tianqi
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 8
  givenname: Zhimi
  surname: Hu
  fullname: Hu, Zhimi
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
– sequence: 9
  givenname: Jun
  surname: Zhou
  fullname: Zhou, Jun
  organization: Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
BookMark eNqNkUtLBDEQhIMo-NqLvyBHEVaTSTaTHJfFFwhe9j5kMh03kknGZEbcf29kRUEE7Us11Fd96DpG-yEGQOiMkktKmLpaifWSEs7Ycg8dVWRB5jVXYv9rl_IQzXJ-JmUkIUKpI2Tv3NPGb7GJoZvM6F4B69Bh6-HNtR5wH_227SBMPY5vrgMcdIiDHiBhGxPelDR-jX7qYUzO4DwVx-hBGzcWGzyYMcUOTtGB1T7D7FNP0Prmer26mz883t6vlg9zw1k9zuVCa8oJtMZC1eqOCkIt00TIjtWVssQqVkQo0AswuhVMMEU7zrhSshbsBJ3vzg4pvkyQx6Z32YD3OkCcclNVNZWLSom_USolL8-UFf8HWleSMU5pQS92qEkx5wS2GZLrddo2lDQfJTXfJRWY_IDL1_ToYhiTdv63yDtlnJZM
CitedBy_id crossref_primary_10_1039_D1RA04902J
crossref_primary_10_1021_acssuschemeng_9b06831
crossref_primary_10_1021_acsnano_7b01880
crossref_primary_10_1016_j_electacta_2022_140378
crossref_primary_10_1021_acsaelm_9b00666
crossref_primary_10_1021_acsami_4c05031
crossref_primary_10_1039_C8RA02951B
crossref_primary_10_34133_2021_6742715
crossref_primary_10_1016_j_est_2024_113083
crossref_primary_10_1142_S1793292020500149
crossref_primary_10_1002_adfm_202407120
crossref_primary_10_1016_j_jallcom_2018_10_246
crossref_primary_10_1016_j_jechem_2017_11_031
crossref_primary_10_1016_j_apsusc_2020_145648
crossref_primary_10_1039_C7DT04895E
crossref_primary_10_1016_j_carbpol_2020_116287
crossref_primary_10_1016_j_jcat_2018_03_010
crossref_primary_10_1007_s10853_018_2654_0
crossref_primary_10_1039_C8TA04218G
crossref_primary_10_1088_2399_1984_aad9b8
crossref_primary_10_1016_j_cej_2020_125672
crossref_primary_10_1039_C9TA04835A
crossref_primary_10_1002_adfm_201704274
crossref_primary_10_1021_acsami_8b15456
crossref_primary_10_1016_j_apcata_2023_119143
crossref_primary_10_1039_C8TA10892G
crossref_primary_10_1016_j_apsusc_2020_148676
crossref_primary_10_1016_j_jics_2021_100169
crossref_primary_10_1002_adma_201701619
crossref_primary_10_1021_acsanm_8b02342
crossref_primary_10_1002_asia_201801173
crossref_primary_10_1016_j_susmat_2023_e00738
crossref_primary_10_1039_D0TC03640D
crossref_primary_10_1039_C8QI00148K
crossref_primary_10_1016_j_est_2022_105693
crossref_primary_10_1016_j_nanoen_2019_01_071
crossref_primary_10_1002_er_7170
crossref_primary_10_1016_j_est_2025_115868
crossref_primary_10_3390_nano13152272
crossref_primary_10_1039_C8RA06102E
crossref_primary_10_1016_j_jallcom_2024_174026
crossref_primary_10_1002_admi_201800438
crossref_primary_10_1016_j_jpowsour_2021_230816
crossref_primary_10_1039_C7EE02390A
crossref_primary_10_1016_j_jallcom_2019_151790
crossref_primary_10_1002_asia_202100654
crossref_primary_10_1080_21663831_2018_1477848
crossref_primary_10_1021_acsami_1c16248
crossref_primary_10_1016_j_ccr_2023_215102
crossref_primary_10_1016_j_electacta_2022_141389
crossref_primary_10_1016_j_est_2023_109065
crossref_primary_10_1016_j_cej_2017_06_096
crossref_primary_10_1007_s40820_019_0340_7
crossref_primary_10_1016_j_mtener_2021_100774
crossref_primary_10_1002_cey2_72
crossref_primary_10_1016_j_jechem_2022_12_030
crossref_primary_10_1016_j_cscee_2024_100812
crossref_primary_10_1016_j_jiec_2020_01_019
crossref_primary_10_1016_j_scib_2018_02_013
crossref_primary_10_1016_j_ssi_2024_116618
crossref_primary_10_1007_s10853_020_05284_0
crossref_primary_10_1039_D2DT03467K
crossref_primary_10_1002_advs_201700107
crossref_primary_10_3390_batteries10090317
crossref_primary_10_1016_j_jallcom_2021_161998
crossref_primary_10_1016_j_actphy_2025_100063
crossref_primary_10_1002_adfm_201908486
crossref_primary_10_1016_j_cej_2020_124197
crossref_primary_10_1016_j_cej_2018_07_055
crossref_primary_10_1039_C7NR04656A
crossref_primary_10_1021_acsami_1c20922
crossref_primary_10_1002_slct_201901816
crossref_primary_10_1039_C8RA05298K
crossref_primary_10_1557_s43581_022_00034_y
crossref_primary_10_1016_j_apsusc_2020_147384
crossref_primary_10_1002_aenm_201702787
crossref_primary_10_1002_ente_202300608
crossref_primary_10_1016_j_est_2023_110350
crossref_primary_10_1016_j_apsadv_2022_100326
crossref_primary_10_1016_j_ceramint_2019_05_150
crossref_primary_10_1016_j_materresbull_2018_08_036
crossref_primary_10_1039_C9TA03471D
crossref_primary_10_2139_ssrn_3960446
crossref_primary_10_1016_j_jpowsour_2021_229538
crossref_primary_10_1039_D0TA10504J
crossref_primary_10_1016_j_carbpol_2019_03_101
crossref_primary_10_1016_j_cej_2020_126713
crossref_primary_10_1002_smll_202402998
crossref_primary_10_1016_j_microc_2022_107216
crossref_primary_10_1007_s42452_019_1163_3
crossref_primary_10_1002_cssc_201902394
crossref_primary_10_1016_j_electacta_2019_03_141
crossref_primary_10_1002_adhm_202101331
crossref_primary_10_1021_acssuschemeng_1c03823
crossref_primary_10_1007_s12043_022_02372_5
crossref_primary_10_1007_s10853_020_04881_3
crossref_primary_10_1021_acsaem_0c00399
crossref_primary_10_1016_j_electacta_2021_138774
crossref_primary_10_34133_2021_5130420
crossref_primary_10_1039_C9CE00742C
crossref_primary_10_1016_j_cej_2018_04_207
crossref_primary_10_1088_2053_1591_ab3dfb
Cites_doi 10.1039/c1cc14030b
10.1038/nmat2297
10.1016/j.nanoen.2012.08.008
10.1039/c3ta12902k
10.1038/nnano.2015.40
10.1039/C5NR01505G
10.1038/nature13970
10.1002/anie.201602631
10.1002/ange.201509033
10.1016/j.nanoen.2014.04.007
10.1038/nmat2612
10.1021/nn2041279
10.1016/j.ensm.2015.05.001
10.1002/adma.201501310
10.1016/j.ijhydene.2013.08.112
10.1126/science.1249625
10.1021/nl1019672
10.1002/adma.201004692
10.1039/c2ee23977a
10.1002/adfm.201404378
10.1016/j.elecom.2008.12.050
10.1073/pnas.0908858106
10.1021/nl102725k
10.1126/science.1239089
10.1126/science.1241488
10.1002/adma.201404140
10.1002/aenm.201600185
10.1002/adma.200700883
10.1039/c2ee24203f
10.1016/j.jpowsour.2015.03.079
10.1039/c3ee44164d
10.1038/ncomms1067
10.1039/C5TA02851E
10.1002/adfm201301851
10.1021/am404724u
10.1039/c0jm03500a
10.1002/adfm.201601811
10.1039/c1cc13474d
10.1021/nl300173j
10.1039/c0ee00759e
10.1021/nl101432r
10.1039/C5TA05251C
10.1016/j.nanoen.2013.09.002
10.1002/adma.201600529
10.1111/jace.12096
10.1021/nl101944e
10.1063/1.4921367
10.1002/aenm.201200380
10.1021/nl2023433
10.1016/j.nanoen.2015.01.017
10.1016/j.nanoen.2016.05.004
10.1039/C2EE23635D
10.1002/anie.201109142
10.1016/j.matlet.2005.09.026
10.1016/j.nanoen.2014.02.014
10.1039/C5NR03363B
10.1002/admi.201400117
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/C6TA10433A
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Materials Research Database
AGRICOLA
Environment Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 2050-7496
EndPage 2903
ExternalDocumentID 10_1039_C6TA10433A
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c437t-85aa140ebcfe2bad1601f3a068d3729f0f9329f69ea5ecab636391d434998763
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 08:13:15 EDT 2025
Fri Jul 11 04:33:53 EDT 2025
Fri Jul 11 15:56:13 EDT 2025
Thu Apr 24 23:06:18 EDT 2025
Tue Jul 01 03:13:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-85aa140ebcfe2bad1601f3a068d3729f0f9329f69ea5ecab636391d434998763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0892-6831
PQID 1872833411
PQPubID 23462
PageCount 7
ParticipantIDs proquest_miscellaneous_2271852966
proquest_miscellaneous_1884104824
proquest_miscellaneous_1872833411
crossref_primary_10_1039_C6TA10433A
crossref_citationtrail_10_1039_C6TA10433A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-00-00
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017-00-00
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2017
References Xiao (C6TA10433A-(cit24)/*[position()=1]) 2012; 2
Ballav (C6TA10433A-(cit39)/*[position()=1]) 2006; 60
Zhang (C6TA10433A-(cit41)/*[position()=1]) 2014; 6
Yuan (C6TA10433A-(cit18)/*[position()=1]) 2012; 6
Acerce (C6TA10433A-(cit40)/*[position()=1]) 2015; 10
Hu (C6TA10433A-(cit7)/*[position()=1]) 2013; 6
Chen (C6TA10433A-(cit3)/*[position()=1]) 2011; 11
Huang (C6TA10433A-(cit32)/*[position()=1]) 2015; 3
Moon (C6TA10433A-(cit33)/*[position()=1]) 2010; 1
Wang (C6TA10433A-(cit9)/*[position()=1]) 2011; 4
Reeja-Jayan (C6TA10433A-(cit30)/*[position()=1]) 2014; 1
Javed (C6TA10433A-(cit57)/*[position()=1]) 2015; 285
Liu (C6TA10433A-(cit25)/*[position()=1]) 2013; 1
Ji (C6TA10433A-(cit42)/*[position()=1]) 2015; 25
Tobjörk (C6TA10433A-(cit11)/*[position()=1]) 2011; 23
Cong (C6TA10433A-(cit34)/*[position()=1]) 2013; 6
Cao (C6TA10433A-(cit27)/*[position()=1]) 2015; 27
Lu (C6TA10433A-(cit21)/*[position()=1]) 2012; 12
Meng (C6TA10433A-(cit55)/*[position()=1]) 2010; 10
Jiang (C6TA10433A-(cit49)/*[position()=1]) 2014; 7
Hu (C6TA10433A-(cit10)/*[position()=1]) 2009; 106
Li (C6TA10433A-(cit37)/*[position()=1]) 2016; 128
Zhao (C6TA10433A-(cit52)/*[position()=1]) 2015; 27
Hu (C6TA10433A-(cit8)/*[position()=1]) 2013; 2
Ma (C6TA10433A-(cit48)/*[position()=1]) 2015; 3
Simon (C6TA10433A-(cit1)/*[position()=1]) 2008; 7
Lee (C6TA10433A-(cit47)/*[position()=1]) 2013; 96
Ghidiu (C6TA10433A-(cit15)/*[position()=1]) 2014; 516
Li (C6TA10433A-(cit31)/*[position()=1]) 2016; 26
Wu (C6TA10433A-(cit19)/*[position()=1]) 2016; 26
Yao (C6TA10433A-(cit17)/*[position()=1]) 2016; 28
Yao (C6TA10433A-(cit53)/*[position()=1]) 2013; 2
Xiao (C6TA10433A-(cit13)/*[position()=1]) 2014; 6
Yu (C6TA10433A-(cit20)/*[position()=1]) 2016; 55
Mai (C6TA10433A-(cit23)/*[position()=1]) 2007; 19
Kumar (C6TA10433A-(cit50)/*[position()=1]) 2015; 7
Javed (C6TA10433A-(cit56)/*[position()=1]) 2015; 7
Schoen (C6TA10433A-(cit5)/*[position()=1]) 2010; 10
Huang (C6TA10433A-(cit46)/*[position()=1]) 2013; 38
Zhou (C6TA10433A-(cit29)/*[position()=1]) 2015; 12
Simon (C6TA10433A-(cit2)/*[position()=1]) 2014; 343
Wu (C6TA10433A-(cit4)/*[position()=1]) 2010; 10
Chang (C6TA10433A-(cit28)/*[position()=1]) 2013; 23
Rajeswari (C6TA10433A-(cit45)/*[position()=1]) 2009; 11
Liang (C6TA10433A-(cit43)/*[position()=1]) 2011; 47
Augustyn (C6TA10433A-(cit16)/*[position()=1]) 2014; 7
Li (C6TA10433A-(cit26)/*[position()=1]) 2011; 21
Jeong (C6TA10433A-(cit6)/*[position()=1]) 2010; 10
Fernandes Cauduro (C6TA10433A-(cit38)/*[position()=1]) 2015; 106
Wang (C6TA10433A-(cit51)/*[position()=1]) 2016; 6
Yang (C6TA10433A-(cit12)/*[position()=1]) 2013; 341
Yuan (C6TA10433A-(cit54)/*[position()=1]) 2013; 6
Tang (C6TA10433A-(cit44)/*[position()=1]) 2011; 47
Brezesinski (C6TA10433A-(cit22)/*[position()=1]) 2010; 9
Xiao (C6TA10433A-(cit35)/*[position()=1]) 2015; 1
Yuan (C6TA10433A-(cit36)/*[position()=1]) 2012; 51
Lukatskaya (C6TA10433A-(cit14)/*[position()=1]) 2013; 341
References_xml – volume: 47
  start-page: 10305
  year: 2011
  ident: C6TA10433A-(cit43)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc14030b
– volume: 7
  start-page: 845
  year: 2008
  ident: C6TA10433A-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 2
  start-page: 138
  year: 2013
  ident: C6TA10433A-(cit8)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.08.008
– volume: 1
  start-page: 13582
  year: 2013
  ident: C6TA10433A-(cit25)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta12902k
– volume: 10
  start-page: 313
  year: 2015
  ident: C6TA10433A-(cit40)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.40
– volume: 7
  start-page: 11777
  year: 2015
  ident: C6TA10433A-(cit50)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR01505G
– volume: 516
  start-page: 78
  year: 2014
  ident: C6TA10433A-(cit15)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature13970
– volume: 55
  start-page: 6762
  year: 2016
  ident: C6TA10433A-(cit20)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602631
– volume: 128
  start-page: 991
  year: 2016
  ident: C6TA10433A-(cit37)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.201509033
– volume: 7
  start-page: 72
  year: 2014
  ident: C6TA10433A-(cit49)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.04.007
– volume: 9
  start-page: 146
  year: 2010
  ident: C6TA10433A-(cit22)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2612
– volume: 6
  start-page: 656
  year: 2012
  ident: C6TA10433A-(cit18)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn2041279
– volume: 1
  start-page: 1
  year: 2015
  ident: C6TA10433A-(cit35)/*[position()=1]
  publication-title: Energy Storage Materials
  doi: 10.1016/j.ensm.2015.05.001
– volume: 27
  start-page: 4695
  year: 2015
  ident: C6TA10433A-(cit27)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501310
– volume: 38
  start-page: 14027
  year: 2013
  ident: C6TA10433A-(cit46)/*[position()=1]
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.08.112
– volume: 343
  start-page: 1210
  year: 2014
  ident: C6TA10433A-(cit2)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 10
  start-page: 4025
  year: 2010
  ident: C6TA10433A-(cit55)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl1019672
– volume: 23
  start-page: 1935
  year: 2011
  ident: C6TA10433A-(cit11)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004692
– volume: 6
  start-page: 470
  year: 2013
  ident: C6TA10433A-(cit54)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee23977a
– volume: 25
  start-page: 1886
  year: 2015
  ident: C6TA10433A-(cit42)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201404378
– volume: 11
  start-page: 572
  year: 2009
  ident: C6TA10433A-(cit45)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2008.12.050
– volume: 106
  start-page: 21490
  year: 2009
  ident: C6TA10433A-(cit10)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0908858106
– volume: 10
  start-page: 4242
  year: 2010
  ident: C6TA10433A-(cit4)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl102725k
– volume: 341
  start-page: 534
  year: 2013
  ident: C6TA10433A-(cit12)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1239089
– volume: 341
  start-page: 1502
  year: 2013
  ident: C6TA10433A-(cit14)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1241488
– volume: 27
  start-page: 339
  year: 2015
  ident: C6TA10433A-(cit52)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404140
– volume: 6
  start-page: 1600185
  year: 2016
  ident: C6TA10433A-(cit51)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600185
– volume: 19
  start-page: 3712
  year: 2007
  ident: C6TA10433A-(cit23)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200700883
– volume: 6
  start-page: 1185
  year: 2013
  ident: C6TA10433A-(cit34)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee24203f
– volume: 285
  start-page: 63
  year: 2015
  ident: C6TA10433A-(cit57)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.079
– volume: 7
  start-page: 1597
  year: 2014
  ident: C6TA10433A-(cit16)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
– volume: 1
  start-page: 73
  year: 2010
  ident: C6TA10433A-(cit33)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1067
– volume: 3
  start-page: 14617
  year: 2015
  ident: C6TA10433A-(cit48)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02851E
– volume: 23
  start-page: 5074
  year: 2013
  ident: C6TA10433A-(cit28)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm201301851
– volume: 6
  start-page: 1125
  year: 2014
  ident: C6TA10433A-(cit41)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am404724u
– volume: 21
  start-page: 4217
  year: 2011
  ident: C6TA10433A-(cit26)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03500a
– volume: 26
  start-page: 6114
  year: 2016
  ident: C6TA10433A-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601811
– volume: 47
  start-page: 10058
  year: 2011
  ident: C6TA10433A-(cit44)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c1cc13474d
– volume: 12
  start-page: 1690
  year: 2012
  ident: C6TA10433A-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl300173j
– volume: 4
  start-page: 1704
  year: 2011
  ident: C6TA10433A-(cit9)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00759e
– volume: 10
  start-page: 2989
  year: 2010
  ident: C6TA10433A-(cit6)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101432r
– volume: 3
  start-page: 17217
  year: 2015
  ident: C6TA10433A-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05251C
– volume: 2
  start-page: 1071
  year: 2013
  ident: C6TA10433A-(cit53)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.09.002
– volume: 28
  start-page: 6353
  year: 2016
  ident: C6TA10433A-(cit17)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600529
– volume: 96
  start-page: 37
  year: 2013
  ident: C6TA10433A-(cit47)/*[position()=1]
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12096
– volume: 10
  start-page: 3628
  year: 2010
  ident: C6TA10433A-(cit5)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101944e
– volume: 106
  start-page: 202101
  year: 2015
  ident: C6TA10433A-(cit38)/*[position()=1]
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4921367
– volume: 2
  start-page: 1328
  year: 2012
  ident: C6TA10433A-(cit24)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200380
– volume: 11
  start-page: 5165
  year: 2011
  ident: C6TA10433A-(cit3)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl2023433
– volume: 12
  start-page: 510
  year: 2015
  ident: C6TA10433A-(cit29)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.017
– volume: 26
  start-page: 100
  year: 2016
  ident: C6TA10433A-(cit31)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.05.004
– volume: 6
  start-page: 513
  year: 2013
  ident: C6TA10433A-(cit7)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE23635D
– volume: 51
  start-page: 4934
  year: 2012
  ident: C6TA10433A-(cit36)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201109142
– volume: 60
  start-page: 514
  year: 2006
  ident: C6TA10433A-(cit39)/*[position()=1]
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2005.09.026
– volume: 6
  start-page: 1
  year: 2014
  ident: C6TA10433A-(cit13)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.02.014
– volume: 7
  start-page: 13610
  year: 2015
  ident: C6TA10433A-(cit56)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR03363B
– volume: 1
  start-page: 1400117
  year: 2014
  ident: C6TA10433A-(cit30)/*[position()=1]
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201400117
SSID ssj0000800699
Score 2.5075965
Snippet Paper-like electrodes with high conductivity and flexibility hold great potential for assembling high-performance flexible electronic devices. In this study, a...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2897
SubjectTerms Assembling
Capacitance
chemistry
Devices
Electrodes
electronic equipment
energy
Filtration
molybdenum
Molybdenum oxides
nanomaterials
Nanostructure
Renewable energy
Title Highly conductive and flexible molybdenum oxide nanopaper for high volumetric supercapacitor electrode
URI https://www.proquest.com/docview/1872833411
https://www.proquest.com/docview/1884104824
https://www.proquest.com/docview/2271852966
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsLxnBBUVZEidxk2NYdVlQWQ5kpd4ix3FWlUq66iYS5S_wp5mx46QRC1q4RJXjOq3ni2c8nvmGkDesiiSPmXDB9pZuqGDPGmOuTMSEAvUQikCia-DzGT89Dz8to-Vk8nMvaqltiiP549q8kv-RKrSBXDFL9h8k2w8KDfAZ5AtXkDBcbyRjDNJY7zByHFlbMQYI3eAVclxiQtS3zXpXlDrWffN9VSqnFjXskS_VVgcXIlOxY1YnpOl3rlq4I0F5SnjLt05XIKccxwoN9iuYuuY_OtIWjTtyUpP_Y-9oPnGTXagd9DZbCwNydwOiOp_1AqB60S9DQjtx36969H5tTR7Jatfapg-m07L_Yue_MImaZoFjXuQhl6lZf9V-m6lya1foaA-Io9U2NrG9neZmiaZL-F0reAGSqkreCB_52vZ0nz3vP_uSn5wvFnk2X2a3yAGDPYc3JQfpPPu46F12aFxzXZG0_-WW8DZI3g3Dj02csYbXZkt2j9zt5EVTA577ZKLqB-TOHgvlQ1IZGNEBRhSERS2M6AAjqmFEexhRkC9FGNEBRnQMI9rD6BHJTubZ8anbld9wZRjMGjeOhIDttypkpVghSh_27lUgPB6XeNZbeRXY_knFEyUiJUXBA7B2_TIMYBONPIePybTe1OoJoYngTApVilLKsIgl1iRQnowSTWfHvEPy1k5YLjtqeqyQss51iESQ5Mc8S_Xkpofkdd_30hCyXNvrlZ33HN4APAQTtdq0V7kfz8CiBtvN_1ufOIRxYhb-uQ9jM-QdSDh_eoNnPSO3EfvGd_ecTJttq16ANdsULzuU_QJvRKhZ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Highly+conductive+and+flexible+molybdenum+oxide+nanopaper+for+high+volumetric+supercapacitor+electrode&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Huang%2C+Liang&rft.au=Yao%2C+Bin&rft.au=Sun%2C+Jiyu&rft.au=Gao%2C+Xiang&rft.date=2017&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=5&rft.issue=6&rft.spage=2897&rft.epage=2903&rft_id=info:doi/10.1039%2Fc6ta10433a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon