ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control
N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP product...
Saved in:
Published in | Cell reports (Cambridge) Vol. 42; no. 10; p. 113163 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
31.10.2023
Cell Press Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
[Display omitted]
•Loss of ALKBH5 attenuates hematopoietic fitness in response to stress•ALKBH5 regulates the stability of Ogdh mRNA and of other metabolic enzymes•L-2-HG accumulates in response to OGDH downregulation and attenuates the energy metabolism•L-2-HG inhibits proliferation of both normal and malignant hematopoietic cells
Gao et al. find that ALKBH5 regulates hematopoietic stem and progenitor cell fitness in response to stress. ALKBH5 modulates energy metabolism by controlling stability of Ogdh and other metabolic enzyme transcripts. Accumulation of L-2-HG further inhibits the energy metabolism of hematopoietic cells. These findings provide insights on ALKBH5 in hematopoiesis. |
---|---|
AbstractList | N
6
-methyladenosine (m
6
A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m
6
A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m
6
A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (
Ogdh
) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells
in vitro
. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of
Mll-AF9
-induced leukemia. Our study uncovers a mechanism whereby the RNA m
6
A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.
•
Loss of ALKBH5 attenuates hematopoietic fitness in response to stress
•
ALKBH5 regulates the stability of
Ogdh
mRNA and of other metabolic enzymes
•
L-2-HG accumulates in response to OGDH downregulation and attenuates the energy metabolism
•
L-2-HG inhibits proliferation of both normal and malignant hematopoietic cells
Gao et al. find that ALKBH5 regulates hematopoietic stem and progenitor cell fitness in response to stress. ALKBH5 modulates energy metabolism by controlling stability of
Ogdh
and other metabolic enzyme transcripts. Accumulation of L-2-HG further inhibits the energy metabolism of hematopoietic cells. These findings provide insights on ALKBH5 in hematopoiesis. N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia. N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia. [Display omitted] •Loss of ALKBH5 attenuates hematopoietic fitness in response to stress•ALKBH5 regulates the stability of Ogdh mRNA and of other metabolic enzymes•L-2-HG accumulates in response to OGDH downregulation and attenuates the energy metabolism•L-2-HG inhibits proliferation of both normal and malignant hematopoietic cells Gao et al. find that ALKBH5 regulates hematopoietic stem and progenitor cell fitness in response to stress. ALKBH5 modulates energy metabolism by controlling stability of Ogdh and other metabolic enzyme transcripts. Accumulation of L-2-HG further inhibits the energy metabolism of hematopoietic cells. These findings provide insights on ALKBH5 in hematopoiesis. N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia. |
ArticleNumber | 113163 |
Author | Song, Yuanbin Liu, Wei Biancon, Giulia Flavell, Richard A. Gao, Yimeng Qi, Zhihong Simon, Matthew D. Kibbey, Richard G. Li, Yaping Li, Hua-Bing Tebaldi, Toma Vasic, Radovan Xiao, Andrew Z. Halene, Stephanie Zimmer, Joshua T. Liu, Chengyang Slavoff, Sarah Nelakanti, Raman Gbyli, Rana Zheng, Shu-Jian Patel, Amisha |
Author_xml | – sequence: 1 givenname: Yimeng surname: Gao fullname: Gao, Yimeng email: gaoym@tongji.edu.cn organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 2 givenname: Joshua T. surname: Zimmer fullname: Zimmer, Joshua T. organization: Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA – sequence: 3 givenname: Radovan surname: Vasic fullname: Vasic, Radovan organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 4 givenname: Chengyang surname: Liu fullname: Liu, Chengyang organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 5 givenname: Rana surname: Gbyli fullname: Gbyli, Rana organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 6 givenname: Shu-Jian surname: Zheng fullname: Zheng, Shu-Jian organization: Institute for Biomolecular Design and Discovery, Yale University, West Haven, CT 06516, USA – sequence: 7 givenname: Amisha surname: Patel fullname: Patel, Amisha organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 8 givenname: Wei surname: Liu fullname: Liu, Wei organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 9 givenname: Zhihong surname: Qi fullname: Qi, Zhihong organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 10 givenname: Yaping surname: Li fullname: Li, Yaping organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 11 givenname: Raman surname: Nelakanti fullname: Nelakanti, Raman organization: Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 12 givenname: Yuanbin surname: Song fullname: Song, Yuanbin organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 13 givenname: Giulia surname: Biancon fullname: Biancon, Giulia organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 14 givenname: Andrew Z. surname: Xiao fullname: Xiao, Andrew Z. organization: Department of Genetics and Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06520, USA – sequence: 15 givenname: Sarah surname: Slavoff fullname: Slavoff, Sarah organization: Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA – sequence: 16 givenname: Richard G. surname: Kibbey fullname: Kibbey, Richard G. organization: Department of Internal Medicine, Yale University, New Haven, CT 06520, USA – sequence: 17 givenname: Richard A. surname: Flavell fullname: Flavell, Richard A. organization: Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 18 givenname: Matthew D. surname: Simon fullname: Simon, Matthew D. organization: Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA – sequence: 19 givenname: Toma surname: Tebaldi fullname: Tebaldi, Toma organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA – sequence: 20 givenname: Hua-Bing surname: Li fullname: Li, Hua-Bing organization: Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China – sequence: 21 givenname: Stephanie orcidid: 0000-0002-2737-9810 surname: Halene fullname: Halene, Stephanie email: stephanie.halene@yale.edu organization: Section of Hematology, Department of Internal Medicine, Yale Cancer Center, and Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT 06520, USA |
BookMark | eNqFkk9v0zAYxiM0xMbYN-DgI5cWv47jOBxA3cTYRAUSgrPl2G9SV0lcbHdSj3zzucuQGAfwxZbt5_f-e14WJ5OfsCheA10CBfF2uzQ4BNwtGWXlEqAEUT4rzhgDWADj9ckf59PiIsYtzUtQgIa_KE7LuuYMGjgrfq3Wny9vKjJ6ux90wkg2OOrkd95hcobEhCPRkyW74HucXPKB5NADwQlDfyAjJt36wcWRpE3w-35DRrE64lznjE7OT4sRrctoS759WWWgbt3g0oEYP6Xgh1fF804PES8e9_Pix_XH71c3i_XXT7dXq_XC8LJOC1mKBhpmgAMtK9SCSt4ZZg3jWneitl3FpbQWTElpY1tpGpBWtKY1nWgqKM-L25lrvd6qXXCjDgfltVMPFz70Sodc8oAKZEe5pHXd8pZTVslO5ABGZmBjeH1kfZhZu32bqzOYK9HDE-jTl8ltVO_vFFBRCkGbTHjzSAj-5x5jUqOLx8bqCf0-KiaFFDnvmuav7-avJvgYA3bKuPTQ2Yx2Q2aqoyfUVs2eUEdPqNkTWcz_Ev9O8j-y97MM80TuHAYVjcPJ5EkGNCm3zP0bcA9MHdS3 |
CitedBy_id | crossref_primary_10_1038_s41594_024_01309_3 crossref_primary_10_1093_nar_gkae707 crossref_primary_10_3389_fimmu_2025_1521196 crossref_primary_10_1038_s41568_024_00750_2 crossref_primary_10_1016_j_lfs_2024_123355 crossref_primary_10_1016_j_tox_2024_153758 crossref_primary_10_1111_cge_14518 crossref_primary_10_1097_JCMA_0000000000001198 crossref_primary_10_3389_fonc_2024_1445794 crossref_primary_10_1186_s12864_024_10537_2 crossref_primary_10_1016_j_molcel_2025_01_006 crossref_primary_10_1073_pnas_2317847121 crossref_primary_10_1242_dev_204226 crossref_primary_10_1038_s41577_025_01130_z crossref_primary_10_1002_mco2_787 crossref_primary_10_3389_fimmu_2024_1374390 crossref_primary_10_3390_biom14081042 crossref_primary_10_1016_j_bbcan_2025_189299 crossref_primary_10_1261_rna_080324_124 |
Cites_doi | 10.1038/nature12730 10.1038/nmeth.4582 10.1016/j.molcel.2012.10.015 10.1038/embor.2011.43 10.1002/immu.200310005 10.1089/ars.2014.5941 10.1038/s41467-019-13668-3 10.1016/j.cmet.2016.09.015 10.18632/oncotarget.8387 10.1101/gad.302695.117 10.1186/s13045-022-01224-4 10.1016/j.ccell.2019.06.003 10.1016/j.cmet.2015.06.023 10.1016/j.yexcr.2019.06.028 10.1001/archneur.62.4.666 10.1182/blood-2007-05-087759 10.1038/ncomms13125 10.1038/s41422-018-0082-y 10.1038/s41392-020-00450-x 10.1182/blood-2018-10-808873 10.1038/nature04980 10.1016/j.stem.2019.03.021 10.1016/j.ccell.2016.11.017 10.1038/nrm3772 10.1242/dev.01558 10.1016/j.molcel.2022.05.029 10.1203/00006450-199309000-00007 10.1073/pnas.1717794115 10.1073/pnas.2203318119 10.1126/science.aau1646 10.1038/s41580-019-0168-5 10.3324/haematol.2021.279739 10.1016/j.celrep.2019.07.032 10.1038/srep15217 10.1016/j.stem.2021.07.009 10.1182/blood.2021011707 10.1126/sciadv.abg0470 10.1038/s41422-018-0062-2 10.1016/j.tcb.2020.09.010 10.1038/nature23883 10.1038/nchembio.2307 10.1158/2159-8290.CD-13-0609 10.1016/j.stem.2021.09.014 10.1073/pnas.1918986117 10.1016/j.xpro.2020.100245 10.1016/j.stem.2017.11.002 10.1016/j.molcel.2020.12.026 10.1016/j.cell.2017.05.045 10.1016/j.ccell.2016.05.018 10.1038/s41556-019-0318-1 10.1038/s41589-019-0231-8 10.3324/haematol.2021.279300 10.1126/science.aax4468 10.1038/nchembio.687 10.1016/j.trecan.2017.12.005 10.1158/0008-5472.CAN-21-1456 10.1038/cr.2017.143 10.1038/ncb3529 10.1016/j.stem.2020.04.001 10.1016/j.immuni.2020.05.003 10.1038/nature21022 10.1016/j.ccr.2010.12.014 10.1016/j.cmet.2015.06.021 10.1093/nar/gkab415 10.1038/s41467-022-31698-2 10.1016/j.stem.2020.04.009 10.1016/j.stem.2022.06.004 10.1016/j.tig.2019.10.011 10.1007/s40778-020-00178-y 10.1111/cbdd.14051 10.1038/s41591-018-0233-1 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. 2023 The Author(s) 2023 |
Copyright_xml | – notice: 2023 The Author(s) – notice: Copyright © 2023 The Author(s). Published by Elsevier Inc. All rights reserved. – notice: 2023 The Author(s) 2023 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.celrep.2023.113163 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: Acceso a contenido Full Text - Doaj url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
ExternalDocumentID | oai_doaj_org_article_18f048077b4b40258f667dc818d9c471 PMC10636609 10_1016_j_celrep_2023_113163 S2211124723011750 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ABMYL ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG AKRWK ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION HZ~ IPNFZ RIG 7X8 5PM |
ID | FETCH-LOGICAL-c437t-8369192c141035ea6084fc2dc24aaf67df5488dd1c3009db8c918d6bcbcf69513 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:20:32 EDT 2025 Thu Aug 21 18:36:23 EDT 2025 Fri Jul 11 15:11:53 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Tue Jul 01 02:59:38 EDT 2025 Sat Mar 23 16:29:49 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | RNA stability leukemia m6A modification ALKBH5 stress hematopoiesis CP: Stem cell research hematopoietic stem and progenitor cells CP: Molecular biology ATP production OXPHOS energy metabolism oxidative phosphorylation |
Language | English |
License | This is an open access article under the CC BY license. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-8369192c141035ea6084fc2dc24aaf67df5488dd1c3009db8c918d6bcbcf69513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China Lead contact |
ORCID | 0000-0002-2737-9810 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124723011750 |
PMID | 37742191 |
PQID | 2868669570 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_18f048077b4b40258f667dc818d9c471 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10636609 proquest_miscellaneous_2868669570 crossref_citationtrail_10_1016_j_celrep_2023_113163 crossref_primary_10_1016_j_celrep_2023_113163 elsevier_sciencedirect_doi_10_1016_j_celrep_2023_113163 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-31 |
PublicationDateYYYYMMDD | 2023-10-31 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Cell reports (Cambridge) |
PublicationYear | 2023 |
Publisher | Elsevier Inc Cell Press Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Cell Press – name: Elsevier |
References | Intlekofer, Wang, Liu, Shah, Carmona-Fontaine, Rustenburg, Salah, Gunner, Chodera, Cross, Thompson (bib40) 2017; 13 Qing, Dong, Gao, Li, Li, Han, Prince, Tan, Deng, Wetzel (bib23) 2021; 81 Dong, Qin, Wang, Li, Hu, Cheng, Guo, Cheng, Fang, Tan (bib49) 2021; 81 Gao, Vasic, Song, Teng, Liu, Gbyli, Biancon, Nelakanti, Lobben, Kudo (bib7) 2020; 52 Cheng, Xiong, Huang, Ma, Ci, Feng, Yuan (bib45) 2015; 5 Tang, Klukovich, Peng, Wang, Yu, Zhang, Zheng, Klungland, Yan (bib53) 2018; 115 Zhou, Zhang, Hu, Qu, Yu, Xu, Chen, Yan, Ding, Zou (bib55) 2021; 7 Filippi, Ghaffari (bib58) 2019; 133 Ma, Cao, Zhou, Lu, Li, Jin, Chen, Wang, Ge, Chen (bib56) 2022; 13 Paris, Morgan, Campos, Spencer, Shmakova, Ivanova, Mapperley, Lawson, Wotherspoon, Sepulveda (bib14) 2019; 25 Li, Weng, Su, Weng, Zuo, Li, Huang, Nachtergaele, Dong, Hu (bib22) 2017; 31 Shen, Sheng, Zhu, Robinson, Jiang, Dong, Chen, Su, Yin, Li (bib26) 2020; 27 Yin, Chang, Li, Gao, Qiu, Wang, Han, Chai, Feng, Wang (bib18) 2022; 29 Ding, Xu, Yu, Roulis, Qu, Zhou, Oh, Crawford, Gao, Jackson (bib37) 2022; 119 Vasic, Gao, Liu, Halene (bib31) 2020; 6 Stadtfeld, Graf (bib32) 2005; 132 Wang, Feng, Han, Yin, Li, Yao, Lu, Wang, Zhang (bib6) 2021; 9 Mauer, Sindelar, Despic, Guez, Hawley, Vasseur, Rentmeister, Gross, Pellizzoni, Debart (bib21) 2019; 15 Baccelli, Gareau, Lehnertz, Gingras, Spinella, Corneau, Mayotte, Girard, Frechette, Blouin-Chagnon (bib68) 2019; 36 Krivtsov, Twomey, Feng, Stubbs, Wang, Faber, Levine, Wang, Hahn, Gilliland (bib52) 2006; 442 Qu, Yan, Hou, Cao, Liu, Zhang, He, Cai (bib67) 2022; 15 Liu, You, Lu, Yang, Li, Liu, Xu, Niu, Cao (bib25) 2019; 365 Oldham, Clish, Yang, Loscalzo (bib41) 2015; 22 Schofield, Duffy, Kiefer, Sullivan, Simon (bib36) 2018; 15 Jia, Fu, Zhao, Dai, Zheng, Yang, Yi, Lindahl, Pan, Yang, He (bib19) 2011; 7 Lee, Bao, Qian, Geula, Leslie, Zhang, Hanna, Ding (bib9) 2019; 21 Zhang, Samanta, Lu, Bullen, Zhang, Chen, He, Semenza (bib50) 2016; 113 Zaccara, Ries, Jaffrey (bib1) 2019; 20 Kruta, Sunshine, Chua, Fu, Chawla, Dillingham, Hidalgo San Jose, De Jong, Zhou, Signer (bib65) 2021; 28 Intlekofer, Dematteo, Venneti, Finley, Lu, Judkins, Rustenburg, Grinaway, Chodera, Cross, Thompson (bib47) 2015; 22 Zheng, Dahl, Niu, Fedorcsak, Huang, Li, Vågbø, Shi, Wang, Song (bib24) 2013; 49 Ye, Guan, Xiong (bib46) 2018; 4 Huang, Weng, Chen (bib3) 2020; 36 Gibson, ten Brink, Schor, Kok, Bootsma, Hoffmann, Jakobs (bib44) 1993; 34 Ludin, Gur-Cohen, Golan, Kaufmann, Itkin, Medaglia, Lu, Ledergor, Kollet, Lapidot (bib64) 2014; 21 Pan, Hogdal, Benito, Bucci, Han, Borthakur, Cortes, DeAngelo, Debose, Mu (bib70) 2014; 4 de Boer, Williams, Skavdis, Harker, Coles, Tolaini, Norton, Williams, Roderick, Potocnik, Kioussis (bib33) 2003; 33 Vannini, Girotra, Naveiras, Nikitin, Campos, Giger, Roch, Auwerx, Lutolf (bib61) 2016; 7 Yu, Wei, Cui, Yu, Ni, Bungert, Wu, He, Qian (bib62) 2021; 49 Pollyea, Stevens, Jones, Winters, Pei, Minhajuddin, D'Alessandro, Culp-Hill, Riemondy, Gillen (bib69) 2018; 24 de Almeida, Luchsinger, Corrigan, Williams, Snoeck (bib60) 2017; 21 Inoue, Li, Tseng, Beerman, Elia, Bendall, Lemonnier, Kron, Cescon, Hao (bib43) 2016; 30 Wang, Li, Wang, Han, Zhang, Chang, Yin, Shan, Wen, Xie (bib27) 2020; 27 Gu, Ma, Liu, Wan (bib38) 2021; 2 Dang, Wu, Yu, Sheng, Yu, Song, Paulsen, Lyu, Qian (bib16) 2022; 107 Li, Kang, Wang, Huff, Tang, Hui, Agrawal, Gonzalez, Wang, Patel, Rana (bib54) 2020; 117 Wang, Zuo, Liu, Wen, Gao, Zhu, Liu, Xiao, Wang, Huang (bib13) 2018; 28 Baksh, Finley (bib57) 2021; 31 Xu, Yang, Liu, Yang, Wang, Kim, Ito, Yang, Wang, Xiao (bib42) 2011; 19 Cheng, Luo, Izzo, Pickering, Nguyen, Myers, Schurer, Gourkanti, Brüning, Vu (bib8) 2019; 28 Lv, Zhang, Gao, Zhang, Chen, Li, Yang, Zhou, Liu (bib12) 2018; 28 Frye, Harada, Behm, He (bib2) 2018; 361 Martínez-Reyes, Chandel (bib28) 2020; 11 Zhang, Cong, Wei, Zhong, Wang, Sun, Wang, Xu, Zhu, Jiang, Wang (bib15) 2022; 107 Mauer, Luo, Blanjoie, Jiao, Grozhik, Patil, Linder, Pickering, Vasseur, Chen (bib20) 2017; 541 Takahashi, Hase, Yoshida, Tashiro, Hirade, Kitae, Tsujikawa (bib71) 2022; 100 Roundtree, Evans, Pan, He (bib30) 2017; 169 Ansó, Weinberg, Diebold, Thompson, Malinge, Schumacker, Liu, Zhang, Shao, Steadman (bib59) 2017; 19 Zhang, Chen, Sun, Wang, Yang, Ma, Lv, Heng, Ding, Xue (bib10) 2017; 549 Li, Wu, Li, Chen, Ye, Tian, Wang, Xu, Pan, Zheng (bib66) 2022; 29 Yao, Sang, Lin, Yin, Dong, Gong, Zhou (bib11) 2018; 28 Burr, Costa, Grice, Timms, Lobb, Freisinger, Dodd, Dougan, Lehner, Frezza, Nathan (bib39) 2016; 24 Jang, Sharkis (bib63) 2007; 110 Jiang, Liu, Nie, Duan, Xiong, Jin, Yang, Chen (bib4) 2021; 6 Wang, Lu, Gomez, Hon, Yue, Han, Fu, Parisien, Dai, Jia (bib34) 2014; 505 Lu, Yang, Zhao, Jiang, Hu, Ouyang, Zeng, Wu (bib72) 2019; 382 Seijo-Martínez, Navarro, Castro del Río, Vila, Puig, Ribes, Butron (bib51) 2005; 62 Bunik, Mkrtchyan, Grabarska, Oppermann, Daloso, Araujo, Juszczak, Rzeski, Bettendorff, Fernie (bib73) 2016; 7 Chowdhury, Yeoh, Tian, Hillringhaus, Bagg, Rose, Leung, Li, Woon, Yang (bib48) 2011; 12 Sheng, Wei, Yu, Xu, Yu, Wu, Liu, Li, Cui, Gu (bib17) 2021; 138 Murakami, Jaffrey (bib5) 2022; 82 Ito, Suda (bib29) 2014; 15 Rosa-Mercado, Withers, Steitz (bib35) 2017; 31 Ansó (10.1016/j.celrep.2023.113163_bib59) 2017; 19 Pan (10.1016/j.celrep.2023.113163_bib70) 2014; 4 Tang (10.1016/j.celrep.2023.113163_bib53) 2018; 115 Jia (10.1016/j.celrep.2023.113163_bib19) 2011; 7 Xu (10.1016/j.celrep.2023.113163_bib42) 2011; 19 Li (10.1016/j.celrep.2023.113163_bib66) 2022; 29 Pollyea (10.1016/j.celrep.2023.113163_bib69) 2018; 24 Yin (10.1016/j.celrep.2023.113163_bib18) 2022; 29 Dang (10.1016/j.celrep.2023.113163_bib16) 2022; 107 Wang (10.1016/j.celrep.2023.113163_bib27) 2020; 27 Dong (10.1016/j.celrep.2023.113163_bib49) 2021; 81 Wang (10.1016/j.celrep.2023.113163_bib13) 2018; 28 Oldham (10.1016/j.celrep.2023.113163_bib41) 2015; 22 Yao (10.1016/j.celrep.2023.113163_bib11) 2018; 28 Sheng (10.1016/j.celrep.2023.113163_bib17) 2021; 138 Stadtfeld (10.1016/j.celrep.2023.113163_bib32) 2005; 132 Zhang (10.1016/j.celrep.2023.113163_bib15) 2022; 107 Ito (10.1016/j.celrep.2023.113163_bib29) 2014; 15 Zhang (10.1016/j.celrep.2023.113163_bib50) 2016; 113 Li (10.1016/j.celrep.2023.113163_bib54) 2020; 117 Paris (10.1016/j.celrep.2023.113163_bib14) 2019; 25 Zhou (10.1016/j.celrep.2023.113163_bib55) 2021; 7 Cheng (10.1016/j.celrep.2023.113163_bib45) 2015; 5 Seijo-Martínez (10.1016/j.celrep.2023.113163_bib51) 2005; 62 Chowdhury (10.1016/j.celrep.2023.113163_bib48) 2011; 12 Martínez-Reyes (10.1016/j.celrep.2023.113163_bib28) 2020; 11 Ding (10.1016/j.celrep.2023.113163_bib37) 2022; 119 Gu (10.1016/j.celrep.2023.113163_bib38) 2021; 2 Mauer (10.1016/j.celrep.2023.113163_bib20) 2017; 541 Wang (10.1016/j.celrep.2023.113163_bib34) 2014; 505 Lv (10.1016/j.celrep.2023.113163_bib12) 2018; 28 Ma (10.1016/j.celrep.2023.113163_bib56) 2022; 13 Jang (10.1016/j.celrep.2023.113163_bib63) 2007; 110 Lu (10.1016/j.celrep.2023.113163_bib72) 2019; 382 de Boer (10.1016/j.celrep.2023.113163_bib33) 2003; 33 Qu (10.1016/j.celrep.2023.113163_bib67) 2022; 15 Gao (10.1016/j.celrep.2023.113163_bib7) 2020; 52 Li (10.1016/j.celrep.2023.113163_bib22) 2017; 31 Inoue (10.1016/j.celrep.2023.113163_bib43) 2016; 30 Kruta (10.1016/j.celrep.2023.113163_bib65) 2021; 28 Murakami (10.1016/j.celrep.2023.113163_bib5) 2022; 82 Ludin (10.1016/j.celrep.2023.113163_bib64) 2014; 21 Zheng (10.1016/j.celrep.2023.113163_bib24) 2013; 49 Shen (10.1016/j.celrep.2023.113163_bib26) 2020; 27 de Almeida (10.1016/j.celrep.2023.113163_bib60) 2017; 21 Bunik (10.1016/j.celrep.2023.113163_bib73) 2016; 7 Burr (10.1016/j.celrep.2023.113163_bib39) 2016; 24 Gibson (10.1016/j.celrep.2023.113163_bib44) 1993; 34 Yu (10.1016/j.celrep.2023.113163_bib62) 2021; 49 Roundtree (10.1016/j.celrep.2023.113163_bib30) 2017; 169 Wang (10.1016/j.celrep.2023.113163_bib6) 2021; 9 Cheng (10.1016/j.celrep.2023.113163_bib8) 2019; 28 Baccelli (10.1016/j.celrep.2023.113163_bib68) 2019; 36 Jiang (10.1016/j.celrep.2023.113163_bib4) 2021; 6 Liu (10.1016/j.celrep.2023.113163_bib25) 2019; 365 Schofield (10.1016/j.celrep.2023.113163_bib36) 2018; 15 Baksh (10.1016/j.celrep.2023.113163_bib57) 2021; 31 Vannini (10.1016/j.celrep.2023.113163_bib61) 2016; 7 Zhang (10.1016/j.celrep.2023.113163_bib10) 2017; 549 Ye (10.1016/j.celrep.2023.113163_bib46) 2018; 4 Zaccara (10.1016/j.celrep.2023.113163_bib1) 2019; 20 Lee (10.1016/j.celrep.2023.113163_bib9) 2019; 21 Qing (10.1016/j.celrep.2023.113163_bib23) 2021; 81 Intlekofer (10.1016/j.celrep.2023.113163_bib40) 2017; 13 Intlekofer (10.1016/j.celrep.2023.113163_bib47) 2015; 22 Filippi (10.1016/j.celrep.2023.113163_bib58) 2019; 133 Takahashi (10.1016/j.celrep.2023.113163_bib71) 2022; 100 Frye (10.1016/j.celrep.2023.113163_bib2) 2018; 361 Huang (10.1016/j.celrep.2023.113163_bib3) 2020; 36 Mauer (10.1016/j.celrep.2023.113163_bib21) 2019; 15 Rosa-Mercado (10.1016/j.celrep.2023.113163_bib35) 2017; 31 Krivtsov (10.1016/j.celrep.2023.113163_bib52) 2006; 442 Vasic (10.1016/j.celrep.2023.113163_bib31) 2020; 6 |
References_xml | – volume: 15 start-page: 340 year: 2019 end-page: 347 ident: bib21 article-title: FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis publication-title: Nat. Chem. Biol. – volume: 113 start-page: E2047 year: 2016 end-page: E2056 ident: bib50 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA publication-title: Proc. Natl. Acad. Sci. USA. – volume: 31 start-page: 24 year: 2021 end-page: 36 ident: bib57 article-title: Metabolic Coordination of Cell Fate by alpha-Ketoglutarate-Dependent Dioxygenases publication-title: Trends Cell Biol. – volume: 13 start-page: 494 year: 2017 end-page: 500 ident: bib40 article-title: L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH publication-title: Nat. Chem. Biol. – volume: 24 start-page: 1859 year: 2018 end-page: 1866 ident: bib69 article-title: Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia publication-title: Nat. Med. – volume: 133 start-page: 1943 year: 2019 end-page: 1952 ident: bib58 article-title: Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities publication-title: Blood – volume: 27 start-page: 81 year: 2020 end-page: 97.e8 ident: bib27 article-title: Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL Signaling Axis publication-title: Cell Stem Cell – volume: 29 start-page: 149 year: 2022 end-page: 159.e7 ident: bib18 article-title: Differential m(6)A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function publication-title: Cell Stem Cell – volume: 169 start-page: 1187 year: 2017 end-page: 1200 ident: bib30 article-title: Dynamic RNA Modifications in Gene Expression Regulation publication-title: Cell – volume: 505 start-page: 117 year: 2014 end-page: 120 ident: bib34 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature – volume: 13 start-page: 4148 year: 2022 ident: bib56 article-title: N(6)-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis publication-title: Nat. Commun. – volume: 82 start-page: 2236 year: 2022 end-page: 2251 ident: bib5 article-title: Hidden codes in mRNA: Control of gene expression by m(6)A publication-title: Mol. Cell – volume: 49 start-page: 5779 year: 2021 end-page: 5797 ident: bib62 article-title: Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response publication-title: Nucleic Acids Res. – volume: 21 start-page: 1605 year: 2014 end-page: 1619 ident: bib64 article-title: Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment publication-title: Antioxid. Redox Signal. – volume: 5 year: 2015 ident: bib45 article-title: Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis publication-title: Sci. Rep. – volume: 107 start-page: 2381 year: 2022 end-page: 2394 ident: bib15 article-title: YTHDF3 modulates hematopoietic stem cells by recognizing RNA m(6)A modification on Ccnd1 publication-title: Haematologica – volume: 549 start-page: 273 year: 2017 end-page: 276 ident: bib10 article-title: m(6)A modulates haematopoietic stem and progenitor cell specification publication-title: Nature – volume: 382 year: 2019 ident: bib72 article-title: OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer publication-title: Exp. Cell Res. – volume: 110 start-page: 3056 year: 2007 end-page: 3063 ident: bib63 article-title: A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche publication-title: Blood – volume: 36 start-page: 84 year: 2019 end-page: 99.e8 ident: bib68 article-title: Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia publication-title: Cancer Cell – volume: 28 start-page: 249 year: 2018 end-page: 252 ident: bib12 article-title: Endothelial-specific m(6)A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling publication-title: Cell Res. – volume: 132 start-page: 203 year: 2005 end-page: 213 ident: bib32 article-title: Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing publication-title: Development – volume: 81 start-page: 5876 year: 2021 end-page: 5888 ident: bib49 article-title: ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment publication-title: Cancer Res. – volume: 115 start-page: E325 year: 2018 end-page: E333 ident: bib53 article-title: ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells publication-title: Proc. Natl. Acad. Sci. USA. – volume: 49 start-page: 18 year: 2013 end-page: 29 ident: bib24 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell – volume: 30 start-page: 337 year: 2016 end-page: 348 ident: bib43 article-title: Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage Independent of TET2 publication-title: Cancer Cell – volume: 21 start-page: 725 year: 2017 end-page: 729.e4 ident: bib60 article-title: Dye-Independent Methods Reveal Elevated Mitochondrial Mass in Hematopoietic Stem Cells publication-title: Cell Stem Cell – volume: 33 start-page: 314 year: 2003 end-page: 325 ident: bib33 article-title: Transgenic mice with hematopoietic and lymphoid specific expression of Cre publication-title: Eur. J. Immunol. – volume: 21 start-page: 700 year: 2019 end-page: 709 ident: bib9 article-title: Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation publication-title: Nat. Cell Biol. – volume: 27 start-page: 64 year: 2020 end-page: 80.e9 ident: bib26 article-title: RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia publication-title: Cell Stem Cell – volume: 36 start-page: 44 year: 2020 end-page: 52 ident: bib3 article-title: The Biogenesis and Precise Control of RNA m(6)A Methylation publication-title: Trends Genet. – volume: 22 start-page: 291 year: 2015 end-page: 303 ident: bib41 article-title: Hypoxia-Mediated Increases in L-2-hydroxyglutarate Coordinate the Metabolic Response to Reductive Stress publication-title: Cell Metab. – volume: 117 start-page: 20159 year: 2020 end-page: 20170 ident: bib54 article-title: ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment publication-title: Proc. Natl. Acad. Sci. USA. – volume: 541 start-page: 371 year: 2017 end-page: 375 ident: bib20 article-title: Reversible methylation of m(6)Am in the 5’ cap controls mRNA stability publication-title: Nature – volume: 7 year: 2021 ident: bib55 article-title: m(6)A demethylase ALKBH5 controls CD4(+) T cell pathogenicity and promotes autoimmunity publication-title: Sci. Adv. – volume: 119 year: 2022 ident: bib37 article-title: RNA m(6)A demethylase ALKBH5 regulates the development of gammadelta T cells publication-title: Proc. Natl. Acad. Sci. USA. – volume: 19 start-page: 17 year: 2011 end-page: 30 ident: bib42 article-title: Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of alpha-Ketoglutarate-Dependent Dioxygenases publication-title: Cancer Cell – volume: 9 year: 2021 ident: bib6 article-title: RNA m(6)A Modification Plays a Key Role in Maintaining Stem Cell Function in Normal and Malignant Hematopoiesis publication-title: Front. Cell Dev. Biol. – volume: 31 start-page: 127 year: 2017 end-page: 141 ident: bib22 article-title: FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N-6-Methyladenosine RNA Demethylase publication-title: Cancer Cell – volume: 365 start-page: 1171 year: 2019 end-page: 1176 ident: bib25 article-title: N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication publication-title: Science – volume: 15 start-page: 8 year: 2022 ident: bib67 article-title: RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential publication-title: J. Hematol. Oncol. – volume: 28 start-page: 1035 year: 2018 end-page: 1038 ident: bib13 article-title: Loss of YTHDF2-mediated m(6)A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration publication-title: Cell Res. – volume: 6 start-page: 74 year: 2021 ident: bib4 article-title: The role of m6A modification in the biological functions and diseases publication-title: Signal Transduct Tar – volume: 138 start-page: 2838 year: 2021 end-page: 2852 ident: bib17 article-title: A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication publication-title: Blood – volume: 31 start-page: 957 year: 2017 end-page: 958 ident: bib35 article-title: Settling the m(6)A debate: methylation of mature mRNA is not dynamic but accelerates turnover publication-title: Genes Dev. – volume: 29 start-page: 1119 year: 2022 end-page: 1134.e7 ident: bib66 article-title: Amino acid catabolism regulates hematopoietic stem cell proteostasis via a GCN2-eIF2alpha axis publication-title: Cell Stem Cell – volume: 2 year: 2021 ident: bib38 article-title: Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test publication-title: STAR Protoc. – volume: 28 start-page: 1950 year: 2021 end-page: 1965.e6 ident: bib65 article-title: Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging publication-title: Cell Stem Cell – volume: 20 start-page: 608 year: 2019 end-page: 624 ident: bib1 article-title: Reading, writing and erasing mRNA methylation publication-title: Nat. Rev. Mol. Cell Biol. – volume: 107 start-page: 1922 year: 2022 end-page: 1927 ident: bib16 article-title: m(6)A reader Ythdf3 protects hematopoietic stem cell integrity under stress by promoting the translation of Foxm1 and Asxl1 transcripts publication-title: Haematologica – volume: 52 start-page: 1007 year: 2020 end-page: 1021.e8 ident: bib7 article-title: m(6)A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development publication-title: Immunity – volume: 22 start-page: 304 year: 2015 end-page: 311 ident: bib47 article-title: Hypoxia Induces Production of L-2-Hydroxyglutarate publication-title: Cell Metab. – volume: 28 start-page: 952 year: 2018 end-page: 954 ident: bib11 article-title: Mettl3-Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells publication-title: Cell Res. – volume: 12 start-page: 463 year: 2011 end-page: 469 ident: bib48 article-title: The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases publication-title: EMBO Rep. – volume: 6 start-page: 144 year: 2020 end-page: 155 ident: bib31 article-title: The role of RNA epigenetic modification in normal and malignant hematopoiesis publication-title: Curr. Stem Cell Rep. – volume: 15 start-page: 221 year: 2018 end-page: 225 ident: bib36 article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding publication-title: Nat. Methods – volume: 7 start-page: 885 year: 2011 end-page: 887 ident: bib19 article-title: N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat. Chem. Biol. – volume: 24 start-page: 740 year: 2016 end-page: 752 ident: bib39 article-title: Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1alpha Stability in Aerobic Conditions publication-title: Cell Metab. – volume: 7 start-page: 26400 year: 2016 end-page: 26421 ident: bib73 article-title: Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner publication-title: Oncotarget – volume: 11 start-page: 102 year: 2020 ident: bib28 article-title: Mitochondrial TCA cycle metabolites control physiology and disease publication-title: Nat. Commun. – volume: 4 start-page: 151 year: 2018 end-page: 165 ident: bib46 article-title: Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates publication-title: Trends Cancer – volume: 7 year: 2016 ident: bib61 article-title: Specification of haematopoietic stem cell fate via modulation of mitochondrial activity publication-title: Nat. Commun. – volume: 361 start-page: 1346 year: 2018 end-page: 1349 ident: bib2 article-title: RNA modifications modulate gene expression during development publication-title: Science – volume: 19 start-page: 614 year: 2017 end-page: 625 ident: bib59 article-title: The mitochondrial respiratory chain is essential for haematopoietic stem cell function publication-title: Nat. Cell Biol. – volume: 25 start-page: 137 year: 2019 end-page: 148.e6 ident: bib14 article-title: Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia publication-title: Cell Stem Cell – volume: 34 start-page: 277 year: 1993 end-page: 280 ident: bib44 article-title: Stable-isotope dilution analysis of D- and L-2-hydroxyglutaric acid: application to the detection and prenatal diagnosis of D- and L-2-hydroxyglutaric acidemias publication-title: Pediatr. Res. – volume: 4 start-page: 362 year: 2014 end-page: 375 ident: bib70 article-title: Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia publication-title: Cancer Discov. – volume: 15 start-page: 243 year: 2014 end-page: 256 ident: bib29 article-title: Metabolic requirements for the maintenance of self-renewing stem cells publication-title: Nat. Rev. Mol. Cell Biol. – volume: 62 start-page: 666 year: 2005 end-page: 670 ident: bib51 article-title: L-2-hydroxyglutaric aciduria: clinical, neuroimaging, and neuropathological findings publication-title: Arch. Neurol. – volume: 28 start-page: 1703 year: 2019 end-page: 1716.e6 ident: bib8 article-title: m(6)A RNA Methylation Maintains Hematopoietic Stem Cell Identity and Symmetric Commitment publication-title: Cell Rep. – volume: 442 start-page: 818 year: 2006 end-page: 822 ident: bib52 article-title: Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9 publication-title: Nature – volume: 81 start-page: 922 year: 2021 end-page: 939.e9 ident: bib23 article-title: R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis publication-title: Mol. Cell – volume: 100 start-page: 1 year: 2022 end-page: 12 ident: bib71 article-title: Discovery of two novel ALKBH5 selective inhibitors that exhibit uncompetitive or competitive type and suppress the growth activity of glioblastoma multiforme publication-title: Chem. Biol. Drug Des. – volume: 505 start-page: 117 year: 2014 ident: 10.1016/j.celrep.2023.113163_bib34 article-title: N6-methyladenosine-dependent regulation of messenger RNA stability publication-title: Nature doi: 10.1038/nature12730 – volume: 15 start-page: 221 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib36 article-title: TimeLapse-seq: adding a temporal dimension to RNA sequencing through nucleoside recoding publication-title: Nat. Methods doi: 10.1038/nmeth.4582 – volume: 49 start-page: 18 year: 2013 ident: 10.1016/j.celrep.2023.113163_bib24 article-title: ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.10.015 – volume: 12 start-page: 463 year: 2011 ident: 10.1016/j.celrep.2023.113163_bib48 article-title: The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases publication-title: EMBO Rep. doi: 10.1038/embor.2011.43 – volume: 33 start-page: 314 year: 2003 ident: 10.1016/j.celrep.2023.113163_bib33 article-title: Transgenic mice with hematopoietic and lymphoid specific expression of Cre publication-title: Eur. J. Immunol. doi: 10.1002/immu.200310005 – volume: 21 start-page: 1605 year: 2014 ident: 10.1016/j.celrep.2023.113163_bib64 article-title: Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment publication-title: Antioxid. Redox Signal. doi: 10.1089/ars.2014.5941 – volume: 11 start-page: 102 year: 2020 ident: 10.1016/j.celrep.2023.113163_bib28 article-title: Mitochondrial TCA cycle metabolites control physiology and disease publication-title: Nat. Commun. doi: 10.1038/s41467-019-13668-3 – volume: 24 start-page: 740 year: 2016 ident: 10.1016/j.celrep.2023.113163_bib39 article-title: Mitochondrial Protein Lipoylation and the 2-Oxoglutarate Dehydrogenase Complex Controls HIF1alpha Stability in Aerobic Conditions publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.09.015 – volume: 7 start-page: 26400 year: 2016 ident: 10.1016/j.celrep.2023.113163_bib73 article-title: Inhibition of mitochondrial 2-oxoglutarate dehydrogenase impairs viability of cancer cells in a cell-specific metabolism-dependent manner publication-title: Oncotarget doi: 10.18632/oncotarget.8387 – volume: 31 start-page: 957 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib35 article-title: Settling the m(6)A debate: methylation of mature mRNA is not dynamic but accelerates turnover publication-title: Genes Dev. doi: 10.1101/gad.302695.117 – volume: 15 start-page: 8 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib67 article-title: RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential publication-title: J. Hematol. Oncol. doi: 10.1186/s13045-022-01224-4 – volume: 36 start-page: 84 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib68 article-title: Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia publication-title: Cancer Cell doi: 10.1016/j.ccell.2019.06.003 – volume: 22 start-page: 304 year: 2015 ident: 10.1016/j.celrep.2023.113163_bib47 article-title: Hypoxia Induces Production of L-2-Hydroxyglutarate publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.023 – volume: 382 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib72 article-title: OGDH mediates the inhibition of SIRT5 on cell proliferation and migration of gastric cancer publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2019.06.028 – volume: 62 start-page: 666 year: 2005 ident: 10.1016/j.celrep.2023.113163_bib51 article-title: L-2-hydroxyglutaric aciduria: clinical, neuroimaging, and neuropathological findings publication-title: Arch. Neurol. doi: 10.1001/archneur.62.4.666 – volume: 110 start-page: 3056 year: 2007 ident: 10.1016/j.celrep.2023.113163_bib63 article-title: A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche publication-title: Blood doi: 10.1182/blood-2007-05-087759 – volume: 7 year: 2016 ident: 10.1016/j.celrep.2023.113163_bib61 article-title: Specification of haematopoietic stem cell fate via modulation of mitochondrial activity publication-title: Nat. Commun. doi: 10.1038/ncomms13125 – volume: 28 start-page: 1035 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib13 article-title: Loss of YTHDF2-mediated m(6)A-dependent mRNA clearance facilitates hematopoietic stem cell regeneration publication-title: Cell Res. doi: 10.1038/s41422-018-0082-y – volume: 6 start-page: 74 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib4 article-title: The role of m6A modification in the biological functions and diseases publication-title: Signal Transduct Tar doi: 10.1038/s41392-020-00450-x – volume: 133 start-page: 1943 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib58 article-title: Mitochondria in the maintenance of hematopoietic stem cells: new perspectives and opportunities publication-title: Blood doi: 10.1182/blood-2018-10-808873 – volume: 442 start-page: 818 year: 2006 ident: 10.1016/j.celrep.2023.113163_bib52 article-title: Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9 publication-title: Nature doi: 10.1038/nature04980 – volume: 25 start-page: 137 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib14 article-title: Targeting the RNA m(6)A Reader YTHDF2 Selectively Compromises Cancer Stem Cells in Acute Myeloid Leukemia publication-title: Cell Stem Cell doi: 10.1016/j.stem.2019.03.021 – volume: 31 start-page: 127 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib22 article-title: FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N-6-Methyladenosine RNA Demethylase publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.11.017 – volume: 15 start-page: 243 year: 2014 ident: 10.1016/j.celrep.2023.113163_bib29 article-title: Metabolic requirements for the maintenance of self-renewing stem cells publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3772 – volume: 132 start-page: 203 year: 2005 ident: 10.1016/j.celrep.2023.113163_bib32 article-title: Assessing the role of hematopoietic plasticity for endothelial and hepatocyte development by non-invasive lineage tracing publication-title: Development doi: 10.1242/dev.01558 – volume: 82 start-page: 2236 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib5 article-title: Hidden codes in mRNA: Control of gene expression by m(6)A publication-title: Mol. Cell doi: 10.1016/j.molcel.2022.05.029 – volume: 34 start-page: 277 year: 1993 ident: 10.1016/j.celrep.2023.113163_bib44 article-title: Stable-isotope dilution analysis of D- and L-2-hydroxyglutaric acid: application to the detection and prenatal diagnosis of D- and L-2-hydroxyglutaric acidemias publication-title: Pediatr. Res. doi: 10.1203/00006450-199309000-00007 – volume: 115 start-page: E325 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib53 article-title: ALKBH5-dependent m6A demethylation controls splicing and stability of long 3’-UTR mRNAs in male germ cells publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1717794115 – volume: 119 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib37 article-title: RNA m(6)A demethylase ALKBH5 regulates the development of gammadelta T cells publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.2203318119 – volume: 361 start-page: 1346 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib2 article-title: RNA modifications modulate gene expression during development publication-title: Science doi: 10.1126/science.aau1646 – volume: 20 start-page: 608 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib1 article-title: Reading, writing and erasing mRNA methylation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/s41580-019-0168-5 – volume: 107 start-page: 2381 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib15 article-title: YTHDF3 modulates hematopoietic stem cells by recognizing RNA m(6)A modification on Ccnd1 publication-title: Haematologica doi: 10.3324/haematol.2021.279739 – volume: 28 start-page: 1703 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib8 article-title: m(6)A RNA Methylation Maintains Hematopoietic Stem Cell Identity and Symmetric Commitment publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.07.032 – volume: 5 year: 2015 ident: 10.1016/j.celrep.2023.113163_bib45 article-title: Sensitive Determination of Onco-metabolites of D- and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis publication-title: Sci. Rep. doi: 10.1038/srep15217 – volume: 28 start-page: 1950 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib65 article-title: Hsf1 promotes hematopoietic stem cell fitness and proteostasis in response to ex vivo culture stress and aging publication-title: Cell Stem Cell doi: 10.1016/j.stem.2021.07.009 – volume: 138 start-page: 2838 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib17 article-title: A critical role of nuclear m6A reader YTHDC1 in leukemogenesis by regulating MCM complex-mediated DNA replication publication-title: Blood doi: 10.1182/blood.2021011707 – volume: 7 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib55 article-title: m(6)A demethylase ALKBH5 controls CD4(+) T cell pathogenicity and promotes autoimmunity publication-title: Sci. Adv. doi: 10.1126/sciadv.abg0470 – volume: 28 start-page: 952 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib11 article-title: Mettl3-Mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells publication-title: Cell Res. doi: 10.1038/s41422-018-0062-2 – volume: 31 start-page: 24 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib57 article-title: Metabolic Coordination of Cell Fate by alpha-Ketoglutarate-Dependent Dioxygenases publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.09.010 – volume: 549 start-page: 273 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib10 article-title: m(6)A modulates haematopoietic stem and progenitor cell specification publication-title: Nature doi: 10.1038/nature23883 – volume: 13 start-page: 494 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib40 article-title: L-2-Hydroxyglutarate production arises from noncanonical enzyme function at acidic pH publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.2307 – volume: 4 start-page: 362 year: 2014 ident: 10.1016/j.celrep.2023.113163_bib70 article-title: Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-13-0609 – volume: 29 start-page: 149 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib18 article-title: Differential m(6)A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function publication-title: Cell Stem Cell doi: 10.1016/j.stem.2021.09.014 – volume: 117 start-page: 20159 year: 2020 ident: 10.1016/j.celrep.2023.113163_bib54 article-title: ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment publication-title: Proc. Natl. Acad. Sci. USA. doi: 10.1073/pnas.1918986117 – volume: 2 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib38 article-title: Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 Cell Mito Stress Test publication-title: STAR Protoc. doi: 10.1016/j.xpro.2020.100245 – volume: 21 start-page: 725 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib60 article-title: Dye-Independent Methods Reveal Elevated Mitochondrial Mass in Hematopoietic Stem Cells publication-title: Cell Stem Cell doi: 10.1016/j.stem.2017.11.002 – volume: 81 start-page: 922 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib23 article-title: R-2-hydroxyglutarate attenuates aerobic glycolysis in leukemia by targeting the FTO/m(6)A/PFKP/LDHB axis publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.12.026 – volume: 169 start-page: 1187 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib30 article-title: Dynamic RNA Modifications in Gene Expression Regulation publication-title: Cell doi: 10.1016/j.cell.2017.05.045 – volume: 30 start-page: 337 year: 2016 ident: 10.1016/j.celrep.2023.113163_bib43 article-title: Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage Independent of TET2 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.05.018 – volume: 21 start-page: 700 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib9 article-title: Stage-specific requirement for Mettl3-dependent m(6)A mRNA methylation during haematopoietic stem cell differentiation publication-title: Nat. Cell Biol. doi: 10.1038/s41556-019-0318-1 – volume: 15 start-page: 340 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib21 article-title: FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-019-0231-8 – volume: 107 start-page: 1922 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib16 article-title: m(6)A reader Ythdf3 protects hematopoietic stem cell integrity under stress by promoting the translation of Foxm1 and Asxl1 transcripts publication-title: Haematologica doi: 10.3324/haematol.2021.279300 – volume: 365 start-page: 1171 year: 2019 ident: 10.1016/j.celrep.2023.113163_bib25 article-title: N (6)-methyladenosine RNA modification-mediated cellular metabolism rewiring inhibits viral replication publication-title: Science doi: 10.1126/science.aax4468 – volume: 7 start-page: 885 year: 2011 ident: 10.1016/j.celrep.2023.113163_bib19 article-title: N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.687 – volume: 4 start-page: 151 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib46 article-title: Metabolism, Activity, and Targeting of D- and L-2-Hydroxyglutarates publication-title: Trends Cancer doi: 10.1016/j.trecan.2017.12.005 – volume: 81 start-page: 5876 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib49 article-title: ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-21-1456 – volume: 28 start-page: 249 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib12 article-title: Endothelial-specific m(6)A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling publication-title: Cell Res. doi: 10.1038/cr.2017.143 – volume: 19 start-page: 614 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib59 article-title: The mitochondrial respiratory chain is essential for haematopoietic stem cell function publication-title: Nat. Cell Biol. doi: 10.1038/ncb3529 – volume: 27 start-page: 81 year: 2020 ident: 10.1016/j.celrep.2023.113163_bib27 article-title: Leukemogenic Chromatin Alterations Promote AML Leukemia Stem Cells via a KDM4C-ALKBH5-AXL Signaling Axis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.04.001 – volume: 52 start-page: 1007 year: 2020 ident: 10.1016/j.celrep.2023.113163_bib7 article-title: m(6)A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development publication-title: Immunity doi: 10.1016/j.immuni.2020.05.003 – volume: 541 start-page: 371 year: 2017 ident: 10.1016/j.celrep.2023.113163_bib20 article-title: Reversible methylation of m(6)Am in the 5’ cap controls mRNA stability publication-title: Nature doi: 10.1038/nature21022 – volume: 19 start-page: 17 year: 2011 ident: 10.1016/j.celrep.2023.113163_bib42 article-title: Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of alpha-Ketoglutarate-Dependent Dioxygenases publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.12.014 – volume: 22 start-page: 291 year: 2015 ident: 10.1016/j.celrep.2023.113163_bib41 article-title: Hypoxia-Mediated Increases in L-2-hydroxyglutarate Coordinate the Metabolic Response to Reductive Stress publication-title: Cell Metab. doi: 10.1016/j.cmet.2015.06.021 – volume: 49 start-page: 5779 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib62 article-title: Post-translational modification of RNA m6A demethylase ALKBH5 regulates ROS-induced DNA damage response publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab415 – volume: 13 start-page: 4148 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib56 article-title: N(6)-methyladenosine modification-mediated mRNA metabolism is essential for human pancreatic lineage specification and islet organogenesis publication-title: Nat. Commun. doi: 10.1038/s41467-022-31698-2 – volume: 27 start-page: 64 year: 2020 ident: 10.1016/j.celrep.2023.113163_bib26 article-title: RNA Demethylase ALKBH5 Selectively Promotes Tumorigenesis and Cancer Stem Cell Self-Renewal in Acute Myeloid Leukemia publication-title: Cell Stem Cell doi: 10.1016/j.stem.2020.04.009 – volume: 29 start-page: 1119 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib66 article-title: Amino acid catabolism regulates hematopoietic stem cell proteostasis via a GCN2-eIF2alpha axis publication-title: Cell Stem Cell doi: 10.1016/j.stem.2022.06.004 – volume: 9 year: 2021 ident: 10.1016/j.celrep.2023.113163_bib6 article-title: RNA m(6)A Modification Plays a Key Role in Maintaining Stem Cell Function in Normal and Malignant Hematopoiesis publication-title: Front. Cell Dev. Biol. – volume: 36 start-page: 44 year: 2020 ident: 10.1016/j.celrep.2023.113163_bib3 article-title: The Biogenesis and Precise Control of RNA m(6)A Methylation publication-title: Trends Genet. doi: 10.1016/j.tig.2019.10.011 – volume: 6 start-page: 144 year: 2020 ident: 10.1016/j.celrep.2023.113163_bib31 article-title: The role of RNA epigenetic modification in normal and malignant hematopoiesis publication-title: Curr. Stem Cell Rep. doi: 10.1007/s40778-020-00178-y – volume: 100 start-page: 1 year: 2022 ident: 10.1016/j.celrep.2023.113163_bib71 article-title: Discovery of two novel ALKBH5 selective inhibitors that exhibit uncompetitive or competitive type and suppress the growth activity of glioblastoma multiforme publication-title: Chem. Biol. Drug Des. doi: 10.1111/cbdd.14051 – volume: 24 start-page: 1859 year: 2018 ident: 10.1016/j.celrep.2023.113163_bib69 article-title: Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia publication-title: Nat. Med. doi: 10.1038/s41591-018-0233-1 – volume: 113 start-page: E2047 year: 2016 ident: 10.1016/j.celrep.2023.113163_bib50 article-title: Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA publication-title: Proc. Natl. Acad. Sci. USA. |
SSID | ssj0000601194 |
Score | 2.4801612 |
Snippet | N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in... N 6 -methyladenosine (m 6 A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 113163 |
SubjectTerms | ALKBH5 ATP production CP: Molecular biology CP: Stem cell research energy metabolism hematopoietic stem and progenitor cells leukemia m6A modification oxidative phosphorylation OXPHOS RNA stability stress hematopoiesis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQSkhcECwgysfKSFwjmtgZO8cuYlXtwh4QK-3Ncvwhitpk1XYPe-SfM2Mnq-bUC9c0dRzPuPPGffOGsc9zT1FDIXLzdHRjoSy0jmWByYS0CrzSqbbqxzUsb-TlbX170OqLOGFZHjgv3JdSx1T2rFrZYq5T6wigvMM44xsnU_V4hTHvIJnKv8GkZUZ_KVcVcbZwOmPdXCJ3ubDeBpKrrAR1NSlBTOJSku-fhKcD-DklTx5Eo4sX7PkAI_kiT_8lexK6U_Y0N5Z8eMX-Lr5fnS9rvuk9tecKO560Wfu7fkVFi5zUm7ntPCd6VqBdveV0hM9DKgXkm7BH51ivdhs-NPLhG1jQcMQsSsYsUs0J4lX-83qBA2a97wc-cN9fs5uLb7--Louh2ULhpFD7QgtoEO054n2KOliYaxld5V0lrY245BFzG-196QTCMt9q16AJoHWti4AwTbxhJ13fhbeMY0pXO4vIUYkgnYuNDi3UlYsSgq-tnzExLrVxgxI5NcRYm5Fy9sdkAxkykMkGmrHi8Vt3WYnjyP3nZMXHe0lHO11A7zKDd5lj3jVjavQBM0CSDDVwqNWRx38aXcbgjiUb2i709ztTadCAS6bmM6YnvjSZ6_STbvU7aX9jBi8A5s27__F279kzmnEOxR_YyX57Hz4ixtq3Z2k7_QMlxCNX priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect Free and Delayed Access Titles dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhUOil9Em3aYsKuZpdW7IkH3dDw9I2OSQN7E3IerQuu_ayuznk2H_eGVle4lOgR9uyLGtGmm_EzDeEnM8cWg0JyM3h0Y0ReaZUyDNwJriRwkkVc6uursXyjn9blasTcjHkwmBYZdr7-z097tbpzjTN5nTbNNPbAnyX-B0W-SbRb2dcxSS-1eJ4zoJ8I3msh4jtM3xhyKCLYV7Wr3ceiSsLhvVNcsFGFioS-Y8M1SMgOg6jfGSXLl-SFwlQ0nk_5lfkxLevybO-xOTDG_J3_uP7YlnSTeewUJff08jS2m27BtMXKfI4U9M6ioFaHtf3juJhPvUxKZBu_AHUZN3sNzSV9KEbMcfuMMYoijWL2SeAXOnN9Rw67Jm_H2iKgn9L7i6__rxYZqnsQmY5k4dMMVEB7rMYAcpKb8RM8WALZwtuTBDSBfBylHO5ZQDQXK1slSsnalvbIACwsXfktO1a_55QcO5KawBDSua5taFSvhZlYQMX3pXGTQgbplrbxEmOpTHWegg--6N7AWkUkO4FNCHZ8a1tz8nxRPsFSvHYFhm1441u90snldK5CjG9Xta8Bp-6VEHAr1rAM66yYMEnRA46oEcKCl01T3z-y6AyGtYuytC0vrvf60IJJWDK5GxC1EiXRmMdP2mb35EFHHx5JsSs-vDfAzsjz_Gqt8Qfyelhd-8_AcQ61J_jGvoHm3glmg priority: 102 providerName: Elsevier |
Title | ALKBH5 modulates hematopoietic stem and progenitor cell energy metabolism through m6A modification-mediated RNA stability control |
URI | https://dx.doi.org/10.1016/j.celrep.2023.113163 https://www.proquest.com/docview/2868669570 https://pubmed.ncbi.nlm.nih.gov/PMC10636609 https://doaj.org/article/18f048077b4b40258f667dc818d9c471 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF7SlEIvoU_qpAlb6FXFeu2uDqHYocF9JIdSg2_Lah-tiy2lsgP1sf-8M7urNIKW0ItBlrSSdmY036xmviHk9dig1-CA3Awu3SiWJkK4NIFgolCcGS58bdXFJZvNiw-LcrFH-p6tcQI3fw3tsJ_UvFu9-flj9xYM_vRPrpa2q84i-2SWY5MSwBj3yH3wTRxN9SIC_vBuRo4z_NScZZjLBbfZ19P9Y6CBv_K0_gO3dQuWDpMqb3mp80fkIMJLOgn68Jjs2eYJeRAaTu6ekl-TTx-ns5KuW4Ntu-yGes7W9qpdYjEjRVZnqhpDMW3LorV3FJf2qfUlgnRtt6A0q-VmTWODH7pmExwOM468kBNfiwI4ln6-nMCAgQd8R2NO_DMyP3_35WyWxCYMiS5yvk1EzipAgRrzQfPSKjYWhdOZ0VmhlGPcOIh5hDGpzgGumVroKhWG1brWjgF8y5-T_aZt7AtCIdQrtQJEyXNbaO0qYWtWZtoVzJpSmRHJ-6mWOjKUY6OMlexT0b7LICCJApJBQCOS3Jx1FRg67jh-ilK8ORb5tf0fbfdVRnOVqXC-2J7XRQ0Rdikcg0fVgG5MpcGfjwjvdUBGqBIgCAy1vOPyr3qVkWDJKEPV2PZ6IzPBBIMp4-MREQNdGtzrcE-z_OY5wSGyzxkbV4f_ORtH5CFuBW_8kuxvu2t7DDBrW5_45Qn4fb-Ynngr-g1yWSg8 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b9swECaCFEW7FH2i7pMFugq2RImkRjto4DSOhzYBvBEUH60KWzJsZ8jYf947ijKiKUBXUaQo3pH3HXH3HSFfJxathgDkZvHqRvM0kdKnCTgTuRbcChlyq66WfH6Tf18VqxNy1ufCYFhlPPu7Mz2c1vHJOK7meFvX458Z-C7hOyzwTYLf_gjQgMD6DRer2fGiBQlH0lAQETsk2KNPoQtxXsatdw6ZKzOGBU5SzgYmKjD5DyzVPSQ6jKO8Z5jOn5NnEVHSaTfpF-TENS_J467G5N0r8ne6uJzNC7ppLVbqcnsaaFrbbVtj_iJFImeqG0sxUsvhBt9RvM2nLmQF0o07gJ6s6_2Gxpo-dMOnOBwGGQW5JiH9BKAr_bGcwoAd9fcdjWHwr8nN-bfrs3kS6y4kJmfikEjGSwB-BkNAWeE0n8jcm8yaLNfac2E9uDnS2tQwQGi2kqZMpeWVqYzngNjYG3LatI17Syh4d4XRACIFc7kxvpSu4kVmfM6dLbQdEdYvtTKRlBxrY6xVH332R3UCUigg1QloRJJjr21HyvHA-zOU4vFdpNQOD9rdLxV1SqXSh_x6UeUVONWF9Bx-1QCgsaUBEz4iotcBNdBQGKp-4PNfepVRsHlRhrpx7e1eZZJLDksmJiMiB7o0mOuwpal_BxpwcOYZ55Py3X9P7DN5Mr--WqjFxfLyPXmKLZ1Z_kBOD7tb9xHw1qH6FPbTP1NxKLk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ALKBH5+modulates+hematopoietic+stem+and+progenitor+cell+energy+metabolism+through+m6A+modification-mediated+RNA+stability+control&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Gao%2C+Yimeng&rft.au=Zimmer%2C+Joshua+T.&rft.au=Vasic%2C+Radovan&rft.au=Liu%2C+Chengyang&rft.date=2023-10-31&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=42&rft.issue=10&rft.spage=113163&rft_id=info:doi/10.1016%2Fj.celrep.2023.113163&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_celrep_2023_113163 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |