Inactivation of the mitotic checkpoint as a determinant of the efficacy of microtubule-targeted drugs in killing human cancer cells

Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are known to invoke the mitotic checkpoint, the factors that determine cancer cell killing remain incompletely characterized. Cells that are relat...

Full description

Saved in:
Bibliographic Details
Published inMolecular cancer therapeutics Vol. 3; no. 6; pp. 661 - 669
Main Authors Lee, Eric A, Keutmann, Michael K, Dowling, Melissa L, Harris, Eleanor, Chan, Gordon, Kao, Gary D
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research 01.06.2004
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are known to invoke the mitotic checkpoint, the factors that determine cancer cell killing remain incompletely characterized. Cells that are relatively resistant to killing by these drugs block robustly in mitosis, whereas cells sensitive to killing block only transiently in mitosis before undergoing nuclear fragmentation and death. Passage through mitosis was an absolute requirement of drug-induced death, because death was markedly reduced in cells blocked at both G 1 -S and G 2 . Cell killing was at least in part linked to the absence or inactivation of BubR1, a kinetochore-associated phosphoprotein that mediates the mitotic checkpoint. Sensitivity to paclitaxel correlated with decreased BubR1 protein expression in human cancer cell lines, including those derived from breast and ovarian cancers. Silencing of BubR1 via RNA interference inactivated the mitotic checkpoint in drug-resistant cells, and reversed resistance to paclitaxel and nocodazole. Together, these results suggest that the mitotic checkpoint is an important determinant of the efficacy of microtubule-targeting drugs in killing cancer cells, potentially providing novel targets for increasing treatment efficacy.
AbstractList Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are known to invoke the mitotic checkpoint, the factors that determine cancer cell killing remain incompletely characterized. Cells that are relatively resistant to killing by these drugs block robustly in mitosis, whereas cells sensitive to killing block only transiently in mitosis before undergoing nuclear fragmentation and death. Passage through mitosis was an absolute requirement of drug-induced death, because death was markedly reduced in cells blocked at both G1-S and G2. Cell killing was at least in part linked to the absence or inactivation of BubR1, a kinetochore-associated phosphoprotein that mediates the mitotic checkpoint. Sensitivity to paclitaxel correlated with decreased BubR1 protein expression in human cancer cell lines, including those derived from breast and ovarian cancers. Silencing of BubR1 via RNA interference inactivated the mitotic checkpoint in drug-resistant cells, and reversed resistance to paclitaxel and nocodazole. Together, these results suggest that the mitotic checkpoint is an important determinant of the efficacy of microtubule-targeting drugs in killing cancer cells, potentially providing novel targets for increasing treatment efficacy.
Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are known to invoke the mitotic checkpoint, the factors that determine cancer cell killing remain incompletely characterized. Cells that are relatively resistant to killing by these drugs block robustly in mitosis, whereas cells sensitive to killing block only transiently in mitosis before undergoing nuclear fragmentation and death. Passage through mitosis was an absolute requirement of drug-induced death, because death was markedly reduced in cells blocked at both G 1 -S and G 2 . Cell killing was at least in part linked to the absence or inactivation of BubR1, a kinetochore-associated phosphoprotein that mediates the mitotic checkpoint. Sensitivity to paclitaxel correlated with decreased BubR1 protein expression in human cancer cell lines, including those derived from breast and ovarian cancers. Silencing of BubR1 via RNA interference inactivated the mitotic checkpoint in drug-resistant cells, and reversed resistance to paclitaxel and nocodazole. Together, these results suggest that the mitotic checkpoint is an important determinant of the efficacy of microtubule-targeting drugs in killing cancer cells, potentially providing novel targets for increasing treatment efficacy.
Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are known to invoke the mitotic checkpoint, the factors that determine cancer cell killing remain incompletely characterized. Cells that are relatively resistant to killing by these drugs block robustly in mitosis, whereas cells sensitive to killing block only transiently in mitosis before undergoing nuclear fragmentation and death. Passage through mitosis was an absolute requirement of drug-induced death, because death was markedly reduced in cells blocked at both G(1)-S and G(2). Cell killing was at least in part linked to the absence or inactivation of BubR1, a kinetochore-associated phosphoprotein that mediates the mitotic checkpoint. Sensitivity to paclitaxel correlated with decreased BubR1 protein expression in human cancer cell lines, including those derived from breast and ovarian cancers. Silencing of BubR1 via RNA interference inactivated the mitotic checkpoint in drug-resistant cells, and reversed resistance to paclitaxel and nocodazole. Together, these results suggest that the mitotic checkpoint is an important determinant of the efficacy of microtubule-targeting drugs in killing cancer cells, potentially providing novel targets for increasing treatment efficacy.
Author Eleanor Harris
Melissa L. Dowling
Gordon Chan
Eric A. Lee
Michael K. Keutmann
Gary D. Kao
Author_xml – sequence: 1
  givenname: Eric A
  surname: Lee
  fullname: Lee, Eric A
  organization: Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
– sequence: 2
  givenname: Michael K
  surname: Keutmann
  fullname: Keutmann, Michael K
– sequence: 3
  givenname: Melissa L
  surname: Dowling
  fullname: Dowling, Melissa L
– sequence: 4
  givenname: Eleanor
  surname: Harris
  fullname: Harris, Eleanor
– sequence: 5
  givenname: Gordon
  surname: Chan
  fullname: Chan, Gordon
– sequence: 6
  givenname: Gary D
  surname: Kao
  fullname: Kao, Gary D
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15210851$$D View this record in MEDLINE/PubMed
BookMark eNpFUE1v1DAQtVBRv-gP4IJ84pYlE8eOe0QVlEqVuMDZGjuTjWniLLYD6pk_jtNdqZfxfLz3xvOu2FlYAjH2HuodgNSfQApZdaDETinYlfiGXZaerrSE9uwlP84v2FVKv-oa9G0D5-wCZAN1AV2yfw8BXfZ_MPsl8GXgeSQ--7xk77gbyT0dFh8yx8SR95Qpzj5gaZygNAzeoXve6tm7uOTVrhNVGeO-oHvex3WfuA_8yU-TD3s-rjMG7jA4itzRNKV37O2AU6Kb03vNfn798uPuW_X4_f7h7vNj5VrR5apDKx3pvlPY17e1QEVSIzUgJGADVltorLO2kc3gqG01lvs7RbYUsrVKXLOPR91DXH6vlLKZfdp-gIGWNRmlVAtC6AKEI7Dck1KkwRyinzE-G6jN5rzZnDWbs4UEpsTC-XASX-1M_SvjZPXr9tHvx78-kjl6ECkRRjduKpua-A9gy5B5
CitedBy_id crossref_primary_10_1002_ijc_26036
crossref_primary_10_1016_j_virol_2010_02_003
crossref_primary_10_1002_pbc_22133
crossref_primary_10_1038_cdd_2012_169
crossref_primary_10_1007_s12010_014_1125_6
crossref_primary_10_1016_j_cbi_2016_10_008
crossref_primary_10_1007_s12032_013_0526_7
crossref_primary_10_1016_j_ccr_2012_12_001
crossref_primary_10_1158_0008_5472_CAN_06_2406
crossref_primary_10_1158_0008_5472_CAN_07_6699
crossref_primary_10_1007_s11010_012_1423_7
crossref_primary_10_1038_onc_2011_211
crossref_primary_10_1158_1535_7163_MCT_05_0126
crossref_primary_10_7554_eLife_12187
crossref_primary_10_1038_s41419_019_1539_8
crossref_primary_10_1158_0008_5472_CAN_06_0343
crossref_primary_10_1371_journal_pone_0128511
crossref_primary_10_3390_cells11091574
crossref_primary_10_1038_sj_bjc_6605161
crossref_primary_10_1053_j_seminoncol_2008_02_010
crossref_primary_10_1517_14728222_12_1_59
crossref_primary_10_3892_or_2012_2117
crossref_primary_10_1124_mol_107_039024
crossref_primary_10_1016_j_chembiol_2004_11_009
crossref_primary_10_1073_pnas_0904343106
crossref_primary_10_1007_s10577_020_09646_x
crossref_primary_10_1186_s12967_023_03998_8
crossref_primary_10_1016_j_clon_2008_06_010
crossref_primary_10_1002_ddr_20267
crossref_primary_10_1016_j_cbi_2015_06_034
crossref_primary_10_1158_0008_5472_CAN_08_3133
crossref_primary_10_1158_1535_7163_MCT_06_0201
crossref_primary_10_1251_bpo116
crossref_primary_10_1016_j_bcp_2018_11_015
crossref_primary_10_1093_jnci_djt168
crossref_primary_10_1016_j_canlet_2022_215591
crossref_primary_10_1186_1475_2867_13_77
crossref_primary_10_1007_s00428_014_1577_7
crossref_primary_10_1002_pros_20783
crossref_primary_10_1091_mbc_e10_02_0125
crossref_primary_10_1128_MCB_25_21_9232_9248_2005
crossref_primary_10_1038_cddis_2017_391
crossref_primary_10_1158_0008_5472_CAN_08_0014
crossref_primary_10_1158_1535_7163_MCT_06_0319
crossref_primary_10_1111_odi_12335
crossref_primary_10_1158_0008_5472_CAN_08_4373
crossref_primary_10_1007_s00018_022_04131_6
crossref_primary_10_4161_cbt_19590
crossref_primary_10_1002_ijc_21927
crossref_primary_10_1111_j_1349_7006_2009_01230_x
crossref_primary_10_1186_1471_2407_12_450
crossref_primary_10_1038_bjc_2013_189
crossref_primary_10_1021_acs_inorgchem_8b00035
crossref_primary_10_1007_s11596_010_0553_y
crossref_primary_10_1021_acsnano_5b05138
crossref_primary_10_1073_pnas_1201911109
crossref_primary_10_1371_journal_pone_0017617
crossref_primary_10_1158_0008_5472_CAN_08_3597
crossref_primary_10_1093_nar_gkz602
crossref_primary_10_3839_jabc_2008_001
crossref_primary_10_1007_s13277_011_0291_1
crossref_primary_10_2165_00063030_200721040_00003
crossref_primary_10_1016_j_ccr_2008_07_002
crossref_primary_10_1124_jpet_110_170415
crossref_primary_10_1093_carcin_bgt133
Cites_doi 10.1242/jcs.102.3.401
10.1016/S0002-9440(10)64194-6
10.1021/bi00567a041
10.1016/S0304-419X(00)00022-6
10.1200/JCO.1993.11.11.2127
10.1016/S0092-8674(03)00115-6
10.1083/jcb.130.3.507
10.1091/mbc.10.4.947
10.1038/sj.onc.1204445
10.1038/sj.onc.1204421
10.1073/pnas.77.3.1561
10.1054/bjoc.2000.1371
10.1172/JCI13275
10.1002/(SICI)1098-2264(199809)23:1<44::AID-GCC7>3.0.CO;2-6
10.1073/pnas.040546297
10.1002/(SICI)1097-0215(19991008)83:2<151::AID-IJC1>3.0.CO;2-5
10.1073/pnas.90.20.9552
10.1083/jcb.200204048
10.1016/S0002-9440(10)63470-0
10.1073/pnas.78.7.4388
10.1124/mol.60.1.225
10.1083/jcb.200209065
10.1002/cm.10032
10.1172/JCI119642
10.1021/jm9900570
10.1083/jcb.200208091
10.1016/0006-291X(76)90524-6
10.2174/1568011033353489
10.1242/jcs.114.24.4385
10.1083/jcb.200303167
10.1038/35048096
10.1002/(SICI)1097-0142(19960815)78:4<741::AID-CNCR8>3.0.CO;2-H
10.1016/S0092-8674(03)00475-6
10.1038/nrm929
10.1083/jcb.146.5.941
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1158/1535-7163.661.3.6
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-8514
EndPage 669
ExternalDocumentID 10_1158_1535_7163_661_3_6
15210851
3_6_661
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID -
123
2WC
34G
39C
3O-
53G
55
5RE
5VS
AAPBV
ABFLS
ABOCM
ACIWK
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
H~9
IH2
KQ8
L7B
MVM
O0-
OK1
P2P
RCR
RHF
RHI
WOQ
X7M
ZA5
ZGI
ZXP
---
.55
18M
2FS
AAJMC
ACGFO
ADCOW
AFHIN
BR6
BTFSW
CGR
CUY
CVF
ECM
EIF
NPM
QTD
TR2
W8F
WHG
YBU
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c437t-7ab5ce8d76ad0903a6e58ae21351a21b8b12bcbb252fce448a15376ebce454b63
ISSN 1535-7163
IngestDate Fri Oct 25 02:24:23 EDT 2024
Thu Nov 21 23:37:46 EST 2024
Sat Sep 28 07:42:58 EDT 2024
Fri Jan 15 19:23:16 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-7ab5ce8d76ad0903a6e58ae21351a21b8b12bcbb252fce448a15376ebce454b63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://aacrjournals.org/mct/article-pdf/3/6/661/1868193/661-669.pdf
PMID 15210851
PQID 66641338
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_66641338
crossref_primary_10_1158_1535_7163_661_3_6
pubmed_primary_15210851
highwire_cancerresearch_3_6_661
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 20040601
2004-Jun
2004-06-01
PublicationDateYYYYMMDD 2004-06-01
PublicationDate_xml – month: 06
  year: 2004
  text: 20040601
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cancer therapeutics
PublicationTitleAlternate Mol Cancer Ther
PublicationYear 2004
Publisher American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research
References 2022060804073866300_BIB21
2022060804073866300_BIB43
2022060804073866300_BIB22
2022060804073866300_BIB44
2022060804073866300_BIB41
2022060804073866300_BIB20
2022060804073866300_BIB42
2022060804073866300_BIB25
2022060804073866300_BIB26
2022060804073866300_BIB23
2022060804073866300_BIB45
2022060804073866300_BIB24
2022060804073866300_BIB29
2022060804073866300_BIB27
2022060804073866300_BIB28
2022060804073866300_BIB1
2022060804073866300_BIB2
2022060804073866300_BIB40
2022060804073866300_BIB10
2022060804073866300_BIB32
2022060804073866300_BIB11
2022060804073866300_BIB33
2022060804073866300_BIB30
2022060804073866300_BIB31
2022060804073866300_BIB14
2022060804073866300_BIB36
2022060804073866300_BIB15
2022060804073866300_BIB37
2022060804073866300_BIB12
2022060804073866300_BIB34
2022060804073866300_BIB13
2022060804073866300_BIB35
2022060804073866300_BIB9
2022060804073866300_BIB18
2022060804073866300_BIB19
2022060804073866300_BIB7
2022060804073866300_BIB16
2022060804073866300_BIB38
2022060804073866300_BIB8
2022060804073866300_BIB17
2022060804073866300_BIB39
2022060804073866300_BIB5
2022060804073866300_BIB6
2022060804073866300_BIB3
2022060804073866300_BIB4
References_xml – ident: 2022060804073866300_BIB7
  doi: 10.1242/jcs.102.3.401
– ident: 2022060804073866300_BIB27
  doi: 10.1016/S0002-9440(10)64194-6
– ident: 2022060804073866300_BIB3
  doi: 10.1021/bi00567a041
– ident: 2022060804073866300_BIB33
  doi: 10.1016/S0304-419X(00)00022-6
– ident: 2022060804073866300_BIB18
  doi: 10.1200/JCO.1993.11.11.2127
– ident: 2022060804073866300_BIB12
  doi: 10.1016/S0092-8674(03)00115-6
– ident: 2022060804073866300_BIB21
  doi: 10.1083/jcb.130.3.507
– ident: 2022060804073866300_BIB11
– ident: 2022060804073866300_BIB8
  doi: 10.1091/mbc.10.4.947
– ident: 2022060804073866300_BIB14
  doi: 10.1038/sj.onc.1204445
– ident: 2022060804073866300_BIB5
– ident: 2022060804073866300_BIB30
  doi: 10.1038/sj.onc.1204421
– ident: 2022060804073866300_BIB1
  doi: 10.1073/pnas.77.3.1561
– ident: 2022060804073866300_BIB39
– ident: 2022060804073866300_BIB40
– ident: 2022060804073866300_BIB16
– ident: 2022060804073866300_BIB44
– ident: 2022060804073866300_BIB37
  doi: 10.1054/bjoc.2000.1371
– ident: 2022060804073866300_BIB28
  doi: 10.1172/JCI13275
– ident: 2022060804073866300_BIB36
  doi: 10.1002/(SICI)1098-2264(199809)23:1<44::AID-GCC7>3.0.CO;2-6
– ident: 2022060804073866300_BIB34
  doi: 10.1073/pnas.040546297
– ident: 2022060804073866300_BIB17
  doi: 10.1002/(SICI)1097-0215(19991008)83:2<151::AID-IJC1>3.0.CO;2-5
– ident: 2022060804073866300_BIB29
– ident: 2022060804073866300_BIB6
  doi: 10.1073/pnas.90.20.9552
– ident: 2022060804073866300_BIB23
  doi: 10.1083/jcb.200204048
– ident: 2022060804073866300_BIB31
– ident: 2022060804073866300_BIB26
  doi: 10.1016/S0002-9440(10)63470-0
– ident: 2022060804073866300_BIB32
  doi: 10.1073/pnas.78.7.4388
– ident: 2022060804073866300_BIB4
  doi: 10.1124/mol.60.1.225
– ident: 2022060804073866300_BIB15
  doi: 10.1083/jcb.200209065
– ident: 2022060804073866300_BIB45
  doi: 10.1002/cm.10032
– ident: 2022060804073866300_BIB35
  doi: 10.1172/JCI119642
– ident: 2022060804073866300_BIB20
  doi: 10.1021/jm9900570
– ident: 2022060804073866300_BIB25
  doi: 10.1083/jcb.200208091
– ident: 2022060804073866300_BIB2
  doi: 10.1016/0006-291X(76)90524-6
– ident: 2022060804073866300_BIB42
  doi: 10.2174/1568011033353489
– ident: 2022060804073866300_BIB9
  doi: 10.1242/jcs.114.24.4385
– ident: 2022060804073866300_BIB13
  doi: 10.1083/jcb.200303167
– ident: 2022060804073866300_BIB38
– ident: 2022060804073866300_BIB19
  doi: 10.1038/35048096
– ident: 2022060804073866300_BIB43
– ident: 2022060804073866300_BIB41
  doi: 10.1002/(SICI)1097-0142(19960815)78:4<741::AID-CNCR8>3.0.CO;2-H
– ident: 2022060804073866300_BIB22
  doi: 10.1016/S0092-8674(03)00475-6
– ident: 2022060804073866300_BIB10
  doi: 10.1038/nrm929
– ident: 2022060804073866300_BIB24
  doi: 10.1083/jcb.146.5.941
SSID ssj0018921
Score 2.110849
Snippet Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are...
Drugs that disrupt microtubule dynamics include some of the most important of cancer chemotherapies. While these drugs, which include paclitaxel (Taxol), are...
SourceID proquest
crossref
pubmed
highwire
SourceType Aggregation Database
Index Database
Publisher
StartPage 661
SubjectTerms Antineoplastic Agents, Phytogenic - pharmacology
Breast Neoplasms - drug therapy
Breast Neoplasms - metabolism
Breast Neoplasms - pathology
CDC2 Protein Kinase - antagonists & inhibitors
CDC2 Protein Kinase - metabolism
Cell Cycle Proteins - metabolism
Cell Death - drug effects
Cell Survival - drug effects
Drug Resistance, Neoplasm
Female
Humans
Interphase - drug effects
Microtubules - drug effects
Mitosis - drug effects
Mitosis - physiology
Nocodazole - pharmacology
Organ Specificity
Ovarian Neoplasms - drug therapy
Ovarian Neoplasms - metabolism
Ovarian Neoplasms - pathology
Paclitaxel - pharmacology
Protein Kinases - metabolism
Protein-Serine-Threonine Kinases
Tumor Cells, Cultured
Title Inactivation of the mitotic checkpoint as a determinant of the efficacy of microtubule-targeted drugs in killing human cancer cells
URI http://mct.aacrjournals.org/content/3/6/661.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15210851
https://search.proquest.com/docview/66641338
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWIiEuiDfL0wdORFmSrO2kx4oWtZTl1Eq9RbbjhVW3SZVNQOLKX-OHMRPbSUpbiXKx8pi1k50v47E9no-Qt7GIDAw74tAIEYWMF1GodJyF2dzobYMZ1DougsUXsX_MPp3wk8nk9yhqqW3UTP-8cl_J_2gVroFecZfsDTTbVwoX4Bj0CyVoGMp_0vFBidsSvvdeHzqRZ_CJYhJWUIY-Pa9WZUclI4NiiHvxogbTRyDdO66xY2Be06p2bUIbHQ6eaFG3X7t42dOVTd1tGf00IqUOcM5_M3ZuF55q10uMNnf1rruL_EH7G-zMBnvfNmeOr9lF8geH_d3d6sfaca8szBqgIoPPs8F21rVNlLC3NrKs6gsTGWwIuOptLw9h-GbtnRnsMTiFbGyw5yNcjo2vsGndXT8uLAXM5S6C47aHvrEZ_GoG5dAf-hiAv7rJPnixGzbxLMcqcqwihypyKG-R25iOERkcdg8O-7WsbDtxWXtti25tHap4f-kpLnpHPmP19aOfzgs6uk_uueEL3bFYfEAmpnxI7ixcgMYj8msMSVotKUCAOkjSAZJUbqikI0h6UQ9JPL8KkrSDJF2V1EGSdpCkFnC0g-Rjcvxx7-jDfuh4PkLN5mkTplJxbbIiFbLAaUMpDM-kSZA8UiaxylScKK1UwpOlNoxlMsYkREbBCWdKzJ-QrbIqzTNCpeRplKY6jdSSGSS0ZTqOCpNEIKwSNSXv_P-bn9t0Lvm1-pySN14DuX0Nl4DrG95FKZDwisnBLONLytJU7QZuCobTP1Py1OpraA4cZhznPL_Jo7wgd4dP5iXZaurWvAJvuFGvO7D9AaontVg
link.rule.ids 314,780,784,27924,27925
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inactivation+of+the+mitotic+checkpoint+as+a+determinant+of+the+efficacy+of+microtubule-targeted+drugs+in+killing+human+cancer+cells&rft.jtitle=Molecular+cancer+therapeutics&rft.au=Lee%2C+Eric+A.&rft.au=Keutmann%2C+Michael+K.&rft.au=Dowling%2C+Melissa+L.&rft.au=Harris%2C+Eleanor&rft.date=2004-06-01&rft.issn=1535-7163&rft.eissn=1538-8514&rft.volume=3&rft.issue=6&rft.spage=661&rft.epage=669&rft_id=info:doi/10.1158%2F1535-7163.661.3.6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1158_1535_7163_661_3_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-7163&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-7163&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-7163&client=summon