Vertically Weighted Averages in Hilbert Spaces and Applications to Imaging: Fixed-Sample Asymptotics and Efficient Sequential Two-Stage Estimation
We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observati...
Saved in:
Published in | Sequential analysis Vol. 34; no. 3; pp. 295 - 323 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
03.07.2015
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0747-4946 1532-4176 |
DOI | 10.1080/07474946.2015.1063257 |
Cover
Abstract | We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observations without corrupting details (such as jumps in a time series or object boundaries in an image), detect those details, and design segmentation procedures. In addition to their extensive use in imaging, they have been also successfully applied in signal processing and financial data analysis. This article extends this approach to general functional data taking values in a Hilbert space and establishes the related asymptotic distribution theory in terms of central limit theorems and their sequential generalizations. In addition, focusing on real-valued data, the problems of variance estimation by the jackknife and two-stage estimation are studied. We show that the jackknife is consistent and asymptotically unbiased, thus providing an easy-to-use approach to evaluate the estimator's precision. Because the inhomogeneous variance of vertically weighted averages is a drawback when denoising data, we study the construction of fixed-width confidence intervals based on a two-stage sampling procedure in the spirit of Stein's (1945) seminal article. The proposed procedure can be shown to be consistent for the asymptotic optimal fixed-sample solution as well as asymptotically first-order efficient. |
---|---|
AbstractList | We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observations without corrupting details (such as jumps in a time series or object boundaries in an image), detect those details, and design segmentation procedures. In addition to their extensive use in imaging, they have been also successfully applied in signal processing and financial data analysis. This article extends this approach to general functional data taking values in a Hilbert space and establishes the related asymptotic distribution theory in terms of central limit theorems and their sequential generalizations. In addition, focusing on real-valued data, the problems of variance estimation by the jackknife and two-stage estimation are studied. We show that the jackknife is consistent and asymptotically unbiased, thus providing an easy-to-use approach to evaluate the estimator's precision. Because the inhomogeneous variance of vertically weighted averages is a drawback when denoising data, we study the construction of fixed-width confidence intervals based on a two-stage sampling procedure in the spirit of Stein's (1945) seminal article. The proposed procedure can be shown to be consistent for the asymptotic optimal fixed-sample solution as well as asymptotically first-order efficient. We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observations without corrupting details (such as jumps in a time series or object boundaries in an image), detect those details, and design segmentation procedures. In addition to their extensive use in imaging, they have been also successfully applied in signal processing and financial data analysis. This article extends this approach to general functional data taking values in a Hilbert space and establishes the related asymptotic distribution theory in terms of central limit theorems and their sequential generalizations. In addition, focusing on real-valued data, the problems of variance estimation by the jackknife and two-stage estimation are studied. We show that the jackknife is consistent and asymptotically unbiased, thus providing an easy-touse approach to evaluate the estimator's precision. Because the inhomogeneous variance of vertically weighted averages is a drawback when denoising data, we study the construction of fixed-width confidence intervals based on a two-stage sampling procedure in the spirit of Stein's (1945) seminal article. The proposed procedure can be shown to be consistent for the asymptotic optimal fixed-sample solution as well as asymptotically first-order efficient. |
Author | Steland, Ansgar |
Author_xml | – sequence: 1 givenname: Ansgar surname: Steland fullname: Steland, Ansgar organization: Institute of Statistics, RWTH Aachen University |
BookMark | eNqFkc1uUzEQhS1UJNLCIyBZYsPmFv9d-wY2RFVKK1VikQJLa-LYwZWvfbEdSl6DJ8ZpyqYLWI00_s6ZGZ9TdBJTtAi9puSckoG8I0ooMRfynBHat5bkrFfP0Iz2nHWCKnmCZgemO0Av0Gkpd4TQgRI1Q7-_2ly9gRD2-Jv12-_VbvDip82wtQX7iK98WDcEryYwrQOxPU9TaJLqUyy4Jnw9wtbH7Xt86X_ZTbeCcQoWL8p-nGpq5kfV0jlvvI3Nyv7Yteoh4Nv71K1qm4WXpfrxwfMleu4gFPvqsZ6hL5fL24ur7ubzp-uLxU1nBFe1U5QBB6JgEEoKaZmgbs42_TBI2QNTnDnHCTeECCPnAIJRwblzA1NWrtc9P0Nvj75TTm2hUvXoi7EhQLRpVzRVQrQhgtKGvnmC3qVdjm27RhFFBi7VvFEfjpTJqZRsnTa-PpxUM_igKdGHvPTfvPQhL_2YV1P3T9RTbj-S9__VfTzqfHQpj3CfctjoCvuQsssQjS-a_9viD6cern0 |
CitedBy_id | crossref_primary_10_3233_ICA_180588 crossref_primary_10_1080_15598608_2016_1263809 crossref_primary_10_1007_s42081_019_00034_2 crossref_primary_10_1080_07474946_2021_1847966 |
Cites_doi | 10.1214/aos/1176345462 10.1109/TIT.2010.2048443 10.1007/s101820000039 10.2478/v10006-008-0005-z 10.1007/978-1-4614-3655-3 10.1214/aoms/1177700156 10.1109/NDS.2007.4509548 10.1080/01621459.1998.10473702 10.1080/02331880802379405 10.1109/TPAMI.1987.4767894 10.1007/978-1-4757-2545-2 10.1214/aos/1024691468 10.1214/009053606000000588 10.1016/S0304-4149(99)00060-5 10.1111/j.2517-6161.1985.tb01330.x 10.1214/aos/1176350494 10.1002/9781118165928 10.1214/aos/1069362319 10.1007/BF01893607 10.1093/biomet/81.3.425 10.1109/TPAMI.2006.140 10.1016/j.spl.2004.10.016 10.1214/aoms/1177731088 10.1214/aoms/1177706647 10.1016/0047-259X(73)90020-1 10.1016/0734-189X(83)90047-6 10.1080/07474940903479482 10.1109/ICCV.1998.710815 10.1524/stnd.21.4.343.25348 10.1080/10485250410001656435 10.1111/j.2517-6161.1949.tb00023.x 10.1214/aos/1046294457 10.1214/aos/1176347263 10.1007/978-0-387-87835-5 10.1023/A:1007963824710 10.1080/07474946.2013.774609 10.1098/rspa.2010.0671 |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis 2015 Copyright Taylor & Francis Ltd. 2015 |
Copyright_xml | – notice: Copyright Taylor & Francis 2015 – notice: Copyright Taylor & Francis Ltd. 2015 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1080/07474946.2015.1063257 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1532-4176 |
EndPage | 323 |
ExternalDocumentID | 3788270921 10_1080_07474946_2015_1063257 1063257 |
Genre | Article Feature |
GroupedDBID | .7F .QJ 0BK 0R~ 123 30N 4.4 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS EJD E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UT5 UU3 ZGOLN ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 8FD JQ2 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c437t-712a3a07a847646e241f92d588665a2732ff303c004c69aa421433ff827e6bb53 |
ISSN | 0747-4946 |
IngestDate | Fri Sep 05 09:58:56 EDT 2025 Wed Aug 13 06:21:58 EDT 2025 Thu Jul 03 08:19:24 EDT 2025 Thu Apr 24 23:01:48 EDT 2025 Wed Dec 25 09:04:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-712a3a07a847646e241f92d588665a2732ff303c004c69aa421433ff827e6bb53 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 1707083679 |
PQPubID | 216170 |
PageCount | 29 |
ParticipantIDs | proquest_journals_1707083679 proquest_miscellaneous_1744712411 informaworld_taylorfrancis_310_1080_07474946_2015_1063257 crossref_citationtrail_10_1080_07474946_2015_1063257 crossref_primary_10_1080_07474946_2015_1063257 |
PublicationCentury | 2000 |
PublicationDate | 2015-07-03 |
PublicationDateYYYYMMDD | 2015-07-03 |
PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-03 day: 03 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Sequential analysis |
PublicationYear | 2015 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Gut A. (CIT0011) 2012; 31 CIT0010 CIT0032 CIT0031 CIT0012 CIT0034 CIT0033 Quenouille M. (CIT0030) 1949; 11 CIT0014 CIT0036 CIT0013 CIT0035 CIT0016 CIT0038 CIT0015 CIT0037 CIT0018 CIT0017 Mukhopadhyay N. (CIT0023) 1997; 59 CIT0039 CIT0041 Mukhopadhyay N. (CIT0021) 2012; 31 CIT0043 CIT0020 CIT0042 CIT0001 CIT0022 Steland A. (CIT0040) 2012; 31 Miller R. H. (CIT0019) 1974; 61 CIT0003 CIT0025 CIT0002 CIT0005 CIT0027 CIT0004 CIT0026 CIT0029 CIT0006 Parr M. (CIT0024) 1985; 47 CIT0028 Ferraty F. (CIT0007) 2006 CIT0009 CIT0008 |
References_xml | – ident: CIT0006 doi: 10.1214/aos/1176345462 – ident: CIT0032 doi: 10.1109/TIT.2010.2048443 – ident: CIT0025 doi: 10.1007/s101820000039 – ident: CIT0027 doi: 10.2478/v10006-008-0005-z – ident: CIT0012 doi: 10.1007/978-1-4614-3655-3 – ident: CIT0004 doi: 10.1214/aoms/1177700156 – volume: 61 start-page: 1 year: 1974 ident: CIT0019 publication-title: Biometrika – ident: CIT0031 doi: 10.1109/NDS.2007.4509548 – ident: CIT0003 doi: 10.1080/01621459.1998.10473702 – ident: CIT0033 doi: 10.1080/02331880802379405 – ident: CIT0001 doi: 10.1109/TPAMI.1987.4767894 – ident: CIT0043 doi: 10.1007/978-1-4757-2545-2 – ident: CIT0029 doi: 10.1214/aos/1024691468 – ident: CIT0017 doi: 10.1214/009053606000000588 – ident: CIT0016 doi: 10.1016/S0304-4149(99)00060-5 – volume: 47 start-page: 56 year: 1985 ident: CIT0024 publication-title: Journal of Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1985.tb01330.x – volume: 59 start-page: 435 year: 1997 ident: CIT0023 publication-title: Sankhya, Series A – ident: CIT0036 doi: 10.1214/aos/1176350494 – ident: CIT0009 doi: 10.1002/9781118165928 – ident: CIT0015 doi: 10.1214/aos/1069362319 – ident: CIT0020 doi: 10.1007/BF01893607 – ident: CIT0005 doi: 10.1093/biomet/81.3.425 – ident: CIT0008 doi: 10.1109/TPAMI.2006.140 – ident: CIT0039 doi: 10.1016/j.spl.2004.10.016 – volume: 31 start-page: 326 year: 2012 ident: CIT0040 publication-title: Sequential Analysis – ident: CIT0037 doi: 10.1214/aoms/1177731088 – ident: CIT0042 doi: 10.1214/aoms/1177706647 – ident: CIT0013 doi: 10.1016/0047-259X(73)90020-1 – volume-title: Nonparametric Functional Data Analysis year: 2006 ident: CIT0007 – volume: 31 start-page: 265 year: 2012 ident: CIT0021 publication-title: Sequential Analysis – ident: CIT0014 doi: 10.1016/0734-189X(83)90047-6 – ident: CIT0022 doi: 10.1080/07474940903479482 – ident: CIT0041 doi: 10.1109/ICCV.1998.710815 – ident: CIT0038 doi: 10.1524/stnd.21.4.343.25348 – ident: CIT0026 doi: 10.1080/10485250410001656435 – volume: 11 start-page: 68 year: 1949 ident: CIT0030 publication-title: Journal of Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1949.tb00023.x – ident: CIT0028 doi: 10.1214/aos/1046294457 – ident: CIT0034 doi: 10.1214/aos/1176347263 – ident: CIT0010 doi: 10.1007/978-0-387-87835-5 – ident: CIT0035 doi: 10.1023/A:1007963824710 – ident: CIT0002 doi: 10.1080/07474946.2013.774609 – volume: 31 start-page: 368 year: 2012 ident: CIT0011 publication-title: Sequential Analysis – ident: CIT0018 doi: 10.1098/rspa.2010.0671 |
SSID | ssj0018107 |
Score | 1.9967833 |
Snippet | We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 295 |
SubjectTerms | Asymptotic methods Asymptotic properties Confidence intervals Construction Edge detection Estimating techniques Functional data Hilbert space Image processing Imaging Invariance principle Jackknife Resampling Sampling Sequential estimation Signal processing Theorems Time series Variance |
Title | Vertically Weighted Averages in Hilbert Spaces and Applications to Imaging: Fixed-Sample Asymptotics and Efficient Sequential Two-Stage Estimation |
URI | https://www.tandfonline.com/doi/abs/10.1080/07474946.2015.1063257 https://www.proquest.com/docview/1707083679 https://www.proquest.com/docview/1744712411 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ilCC1okbtFW2Ydf3CKUKiC1l6TQm7V21lGkxI4aR9Be-Qf8YmYfXju0opSLFTne9WM-z36enf0GoQ9cqJiqnJNhpkuYhZQSqYKYABlmmQpFTgsdhzw9Cyfn4stFcNHr_exkLe3q7Di_vnVdyf9YFfaBXfUq2XtY1ncKO-A32Be2YGHY_pONv5qkaLlaXQ2-mRAnsMcR3IVcmDSrwWSpFazqwXRjEq90jHzUmbDWvPPz2pQp0oGBk-UPNSdTqfWCwWxX601deRHnsZGa0IkDU5N8XetI--x7RYCtLtRgDJ5i3RrZsd3OodKJn_iITq3anMrtQl52ww80MKmqvOOl4HuEiMTFEVXjRRkR1BZ2adysi1kuu1_h1mfaKptu-OV2-fENz-5SIeFs-mQ6Jy-AnSFnVt96X0n7jxHO5x3SRhDVdZPqblLXzQP0kEWRmevnwzM_FRVTu-a-uc9mGZgWaL_tavYIzp787Y3h3nCY2VP0xH184JFF0jPUU-Vz9PjUK_duX6BfLaZwgyncYAovS-wwhS2mMNgQdzGF6wo7TH3EXUThDqJMK48o3MIEe0ThFlEv0fnJePZpQlzdDpILHtUkokxyOYwkMJ9QhApIYpGweRBrbUUJfJkVBTCnHN7kPEykFAxIOy-KmEUqzLKAv0IHZVWq1whr1VPGM6pUDs8ahgsFhFMm8zmnNJkPaR-J5mGnuRO117VVVulfTd1Hx77Zxqq63NUg6VoyrU04rbC1b1J-R9ujxuypcx7blEYw1sY8jJI-eu__Bteu5-tkqaqdPkYAdYSnR9_c93oP0aP2ZT1CB_XlTr0F9lxn7wy6fwNP9rtw |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENaU9gA9QHkNgVLUmV4VIkuWbW4ZJpn0kVySQm8aWZaZDKmdaZyB8jP4xezKdiaFYXro1fL6sd7HZ2n1LSEnQrqYOytYL8UWZopzZlwYMwDDQeqUtDzHecjxRI0u5dlVeLW1FwbLKvEfOq-JInysRufGyei2JO4jkr7LRGKFAQ_hkBJgeI_IXgjYHa1c9CablYSY11umQYShTLuL53-XuZOf7rCX_hOtfQoaPiO2ffi68uR7d12lXfvrL17Hh73dAXnaIFTar03qOdlxxQuyP97Qu65ekt9ffDW2WSxu6Vc_t-oy2gengOC0ovOCjuZInVXR6RIrvig8C-1vrZTTqqSn174_0ic6nP90GZsapCmm_dXt9bIq8TZeauAZLiAx0qmv-YZ4tKCzHyUDkPzN0QEEqHrv5StyORzMPo9Y09yBWSmiikU8MML0IgPpUUnlAEnkSZCFMRLwGQBVQZ5DerXgxFYlxsgAkJ3I8ziInErTULwmu0VZuDeEIjVmIFLunAXVQUxxgEpMkmWC8yTr8Q6R7SfVtmE-xwYcC81bgtRG5RpVrhuVd0h3I7asqT_uE0i27UVXfs4lrxukaHGP7GFrXLqJIivNIwjIsVBR0iHHm2Hwf1zUMYUr13iOBHwB2uNvH3D7D-TxaDa-0Benk_N35AkO-ZpkcUh2q5u1ew_Iq0qPvGv9ATK7HgQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgSAgeYOOHKBvDk3h1qWPHSfZWjVYdbNWkbsCb5SQ2quiSiqSC7c_YX7w7J6k2ENrDXpNckl58d1_tz98R8kFIG3ObCTZIsYWZ4pwZG8YMwHCQWiUz7nAe8niqJmfy8_ewYxNWLa0S_0O7RijC52oM7mXuOkbcR9R8l4lEggEP4ZASMO4ekkcK4Amy-sRgul5IiHmzYxpMGNp0m3j-d5tb5emWeOk_ydpXoPFzknbv3hBPfvZXddrPLv-SdbzXj9skz1p8SofNgNoiD2zxgjw9Xou7Vi_J1VfPxTaLxQX95mdWbU6HEBKQmio6L-hkjsJZNZ0tke9F4VXo8MY6Oa1LenjuuyPt0_H8j83ZzKBIMR1WF-fLusTHeKuR17eAskhnnvEN2WhBT3-XDCDyD0tHkJ6anZevyNl4dHowYW1rB5ZJEdUs4oERZhAZKI5KKgs4wiVBHsYov2cAUgXOQXHNIIQzlRgjA8B1wrk4iKxK01C8JhtFWdg3hKIwZiBSbm0GroOMYgGTmCTPBedJPuA9IrsvqrNW9xzbbyw07-RRW5drdLluXd4j_bXZshH-uMsguTlcdO1nXFzTHkWLO2x3urGl2xxSaR5BOo6FipIe2VufhujHJR1T2HKF10hAF-A9_vYej39PHp98Guujw-mXbfIEz3hCstghG_WvlX0HsKtOd31gXQOGrxyo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertically+Weighted+Averages+in+Hilbert+Spaces+and+Applications+to+Imaging%3A+Fixed-Sample+Asymptotics+and+Efficient+Sequential+Two-Stage+Estimation&rft.jtitle=Sequential+analysis&rft.au=Steland%2C+Ansgar&rft.date=2015-07-03&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=34&rft.issue=3&rft.spage=295&rft.epage=323&rft_id=info:doi/10.1080%2F07474946.2015.1063257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2015_1063257 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon |