Vertically Weighted Averages in Hilbert Spaces and Applications to Imaging: Fixed-Sample Asymptotics and Efficient Sequential Two-Stage Estimation

We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observati...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 34; no. 3; pp. 295 - 323
Main Author Steland, Ansgar
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 03.07.2015
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0747-4946
1532-4176
DOI10.1080/07474946.2015.1063257

Cover

Abstract We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observations without corrupting details (such as jumps in a time series or object boundaries in an image), detect those details, and design segmentation procedures. In addition to their extensive use in imaging, they have been also successfully applied in signal processing and financial data analysis. This article extends this approach to general functional data taking values in a Hilbert space and establishes the related asymptotic distribution theory in terms of central limit theorems and their sequential generalizations. In addition, focusing on real-valued data, the problems of variance estimation by the jackknife and two-stage estimation are studied. We show that the jackknife is consistent and asymptotically unbiased, thus providing an easy-to-use approach to evaluate the estimator's precision. Because the inhomogeneous variance of vertically weighted averages is a drawback when denoising data, we study the construction of fixed-width confidence intervals based on a two-stage sampling procedure in the spirit of Stein's (1945) seminal article. The proposed procedure can be shown to be consistent for the asymptotic optimal fixed-sample solution as well as asymptotically first-order efficient.
AbstractList We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observations without corrupting details (such as jumps in a time series or object boundaries in an image), detect those details, and design segmentation procedures. In addition to their extensive use in imaging, they have been also successfully applied in signal processing and financial data analysis. This article extends this approach to general functional data taking values in a Hilbert space and establishes the related asymptotic distribution theory in terms of central limit theorems and their sequential generalizations. In addition, focusing on real-valued data, the problems of variance estimation by the jackknife and two-stage estimation are studied. We show that the jackknife is consistent and asymptotically unbiased, thus providing an easy-to-use approach to evaluate the estimator's precision. Because the inhomogeneous variance of vertically weighted averages is a drawback when denoising data, we study the construction of fixed-width confidence intervals based on a two-stage sampling procedure in the spirit of Stein's (1945) seminal article. The proposed procedure can be shown to be consistent for the asymptotic optimal fixed-sample solution as well as asymptotically first-order efficient.
We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage confidence intervals. Those vertically weighted averages represent a class of nonlinear smoothers that are commonly applied to denoise observations without corrupting details (such as jumps in a time series or object boundaries in an image), detect those details, and design segmentation procedures. In addition to their extensive use in imaging, they have been also successfully applied in signal processing and financial data analysis. This article extends this approach to general functional data taking values in a Hilbert space and establishes the related asymptotic distribution theory in terms of central limit theorems and their sequential generalizations. In addition, focusing on real-valued data, the problems of variance estimation by the jackknife and two-stage estimation are studied. We show that the jackknife is consistent and asymptotically unbiased, thus providing an easy-touse approach to evaluate the estimator's precision. Because the inhomogeneous variance of vertically weighted averages is a drawback when denoising data, we study the construction of fixed-width confidence intervals based on a two-stage sampling procedure in the spirit of Stein's (1945) seminal article. The proposed procedure can be shown to be consistent for the asymptotic optimal fixed-sample solution as well as asymptotically first-order efficient.
Author Steland, Ansgar
Author_xml – sequence: 1
  givenname: Ansgar
  surname: Steland
  fullname: Steland, Ansgar
  organization: Institute of Statistics, RWTH Aachen University
BookMark eNqFkc1uUzEQhS1UJNLCIyBZYsPmFv9d-wY2RFVKK1VikQJLa-LYwZWvfbEdSl6DJ8ZpyqYLWI00_s6ZGZ9TdBJTtAi9puSckoG8I0ooMRfynBHat5bkrFfP0Iz2nHWCKnmCZgemO0Av0Gkpd4TQgRI1Q7-_2ly9gRD2-Jv12-_VbvDip82wtQX7iK98WDcEryYwrQOxPU9TaJLqUyy4Jnw9wtbH7Xt86X_ZTbeCcQoWL8p-nGpq5kfV0jlvvI3Nyv7Yteoh4Nv71K1qm4WXpfrxwfMleu4gFPvqsZ6hL5fL24ur7ubzp-uLxU1nBFe1U5QBB6JgEEoKaZmgbs42_TBI2QNTnDnHCTeECCPnAIJRwblzA1NWrtc9P0Nvj75TTm2hUvXoi7EhQLRpVzRVQrQhgtKGvnmC3qVdjm27RhFFBi7VvFEfjpTJqZRsnTa-PpxUM_igKdGHvPTfvPQhL_2YV1P3T9RTbj-S9__VfTzqfHQpj3CfctjoCvuQsssQjS-a_9viD6cern0
CitedBy_id crossref_primary_10_3233_ICA_180588
crossref_primary_10_1080_15598608_2016_1263809
crossref_primary_10_1007_s42081_019_00034_2
crossref_primary_10_1080_07474946_2021_1847966
Cites_doi 10.1214/aos/1176345462
10.1109/TIT.2010.2048443
10.1007/s101820000039
10.2478/v10006-008-0005-z
10.1007/978-1-4614-3655-3
10.1214/aoms/1177700156
10.1109/NDS.2007.4509548
10.1080/01621459.1998.10473702
10.1080/02331880802379405
10.1109/TPAMI.1987.4767894
10.1007/978-1-4757-2545-2
10.1214/aos/1024691468
10.1214/009053606000000588
10.1016/S0304-4149(99)00060-5
10.1111/j.2517-6161.1985.tb01330.x
10.1214/aos/1176350494
10.1002/9781118165928
10.1214/aos/1069362319
10.1007/BF01893607
10.1093/biomet/81.3.425
10.1109/TPAMI.2006.140
10.1016/j.spl.2004.10.016
10.1214/aoms/1177731088
10.1214/aoms/1177706647
10.1016/0047-259X(73)90020-1
10.1016/0734-189X(83)90047-6
10.1080/07474940903479482
10.1109/ICCV.1998.710815
10.1524/stnd.21.4.343.25348
10.1080/10485250410001656435
10.1111/j.2517-6161.1949.tb00023.x
10.1214/aos/1046294457
10.1214/aos/1176347263
10.1007/978-0-387-87835-5
10.1023/A:1007963824710
10.1080/07474946.2013.774609
10.1098/rspa.2010.0671
ContentType Journal Article
Copyright Copyright Taylor & Francis 2015
Copyright Taylor & Francis Ltd. 2015
Copyright_xml – notice: Copyright Taylor & Francis 2015
– notice: Copyright Taylor & Francis Ltd. 2015
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/07474946.2015.1063257
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4176
EndPage 323
ExternalDocumentID 3788270921
10_1080_07474946_2015_1063257
1063257
Genre Article
Feature
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c437t-712a3a07a847646e241f92d588665a2732ff303c004c69aa421433ff827e6bb53
ISSN 0747-4946
IngestDate Fri Sep 05 09:58:56 EDT 2025
Wed Aug 13 06:21:58 EDT 2025
Thu Jul 03 08:19:24 EDT 2025
Thu Apr 24 23:01:48 EDT 2025
Wed Dec 25 09:04:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-712a3a07a847646e241f92d588665a2732ff303c004c69aa421433ff827e6bb53
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1707083679
PQPubID 216170
PageCount 29
ParticipantIDs proquest_journals_1707083679
proquest_miscellaneous_1744712411
informaworld_taylorfrancis_310_1080_07474946_2015_1063257
crossref_citationtrail_10_1080_07474946_2015_1063257
crossref_primary_10_1080_07474946_2015_1063257
PublicationCentury 2000
PublicationDate 2015-07-03
PublicationDateYYYYMMDD 2015-07-03
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-03
  day: 03
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Sequential analysis
PublicationYear 2015
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Gut A. (CIT0011) 2012; 31
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0033
Quenouille M. (CIT0030) 1949; 11
CIT0014
CIT0036
CIT0013
CIT0035
CIT0016
CIT0038
CIT0015
CIT0037
CIT0018
CIT0017
Mukhopadhyay N. (CIT0023) 1997; 59
CIT0039
CIT0041
Mukhopadhyay N. (CIT0021) 2012; 31
CIT0043
CIT0020
CIT0042
CIT0001
CIT0022
Steland A. (CIT0040) 2012; 31
Miller R. H. (CIT0019) 1974; 61
CIT0003
CIT0025
CIT0002
CIT0005
CIT0027
CIT0004
CIT0026
CIT0029
CIT0006
Parr M. (CIT0024) 1985; 47
CIT0028
Ferraty F. (CIT0007) 2006
CIT0009
CIT0008
References_xml – ident: CIT0006
  doi: 10.1214/aos/1176345462
– ident: CIT0032
  doi: 10.1109/TIT.2010.2048443
– ident: CIT0025
  doi: 10.1007/s101820000039
– ident: CIT0027
  doi: 10.2478/v10006-008-0005-z
– ident: CIT0012
  doi: 10.1007/978-1-4614-3655-3
– ident: CIT0004
  doi: 10.1214/aoms/1177700156
– volume: 61
  start-page: 1
  year: 1974
  ident: CIT0019
  publication-title: Biometrika
– ident: CIT0031
  doi: 10.1109/NDS.2007.4509548
– ident: CIT0003
  doi: 10.1080/01621459.1998.10473702
– ident: CIT0033
  doi: 10.1080/02331880802379405
– ident: CIT0001
  doi: 10.1109/TPAMI.1987.4767894
– ident: CIT0043
  doi: 10.1007/978-1-4757-2545-2
– ident: CIT0029
  doi: 10.1214/aos/1024691468
– ident: CIT0017
  doi: 10.1214/009053606000000588
– ident: CIT0016
  doi: 10.1016/S0304-4149(99)00060-5
– volume: 47
  start-page: 56
  year: 1985
  ident: CIT0024
  publication-title: Journal of Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1985.tb01330.x
– volume: 59
  start-page: 435
  year: 1997
  ident: CIT0023
  publication-title: Sankhya, Series A
– ident: CIT0036
  doi: 10.1214/aos/1176350494
– ident: CIT0009
  doi: 10.1002/9781118165928
– ident: CIT0015
  doi: 10.1214/aos/1069362319
– ident: CIT0020
  doi: 10.1007/BF01893607
– ident: CIT0005
  doi: 10.1093/biomet/81.3.425
– ident: CIT0008
  doi: 10.1109/TPAMI.2006.140
– ident: CIT0039
  doi: 10.1016/j.spl.2004.10.016
– volume: 31
  start-page: 326
  year: 2012
  ident: CIT0040
  publication-title: Sequential Analysis
– ident: CIT0037
  doi: 10.1214/aoms/1177731088
– ident: CIT0042
  doi: 10.1214/aoms/1177706647
– ident: CIT0013
  doi: 10.1016/0047-259X(73)90020-1
– volume-title: Nonparametric Functional Data Analysis
  year: 2006
  ident: CIT0007
– volume: 31
  start-page: 265
  year: 2012
  ident: CIT0021
  publication-title: Sequential Analysis
– ident: CIT0014
  doi: 10.1016/0734-189X(83)90047-6
– ident: CIT0022
  doi: 10.1080/07474940903479482
– ident: CIT0041
  doi: 10.1109/ICCV.1998.710815
– ident: CIT0038
  doi: 10.1524/stnd.21.4.343.25348
– ident: CIT0026
  doi: 10.1080/10485250410001656435
– volume: 11
  start-page: 68
  year: 1949
  ident: CIT0030
  publication-title: Journal of Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1949.tb00023.x
– ident: CIT0028
  doi: 10.1214/aos/1046294457
– ident: CIT0034
  doi: 10.1214/aos/1176347263
– ident: CIT0010
  doi: 10.1007/978-0-387-87835-5
– ident: CIT0035
  doi: 10.1023/A:1007963824710
– ident: CIT0002
  doi: 10.1080/07474946.2013.774609
– volume: 31
  start-page: 368
  year: 2012
  ident: CIT0011
  publication-title: Sequential Analysis
– ident: CIT0018
  doi: 10.1098/rspa.2010.0671
SSID ssj0018107
Score 1.9967833
Snippet We discuss fixed-sample asymptotics and jackknife variance estimation for vertically weighted averages and the construction of related sequential two-stage...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 295
SubjectTerms Asymptotic methods
Asymptotic properties
Confidence intervals
Construction
Edge detection
Estimating techniques
Functional data
Hilbert space
Image processing
Imaging
Invariance principle
Jackknife
Resampling
Sampling
Sequential estimation
Signal processing
Theorems
Time series
Variance
Title Vertically Weighted Averages in Hilbert Spaces and Applications to Imaging: Fixed-Sample Asymptotics and Efficient Sequential Two-Stage Estimation
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2015.1063257
https://www.proquest.com/docview/1707083679
https://www.proquest.com/docview/1744712411
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FcoED4ilCC1okbtFW2Ydf3CKUKiC1l6TQm7V21lGkxI4aR9Be-Qf8YmYfXju0opSLFTne9WM-z36enf0GoQ9cqJiqnJNhpkuYhZQSqYKYABlmmQpFTgsdhzw9Cyfn4stFcNHr_exkLe3q7Di_vnVdyf9YFfaBXfUq2XtY1ncKO-A32Be2YGHY_pONv5qkaLlaXQ2-mRAnsMcR3IVcmDSrwWSpFazqwXRjEq90jHzUmbDWvPPz2pQp0oGBk-UPNSdTqfWCwWxX601deRHnsZGa0IkDU5N8XetI--x7RYCtLtRgDJ5i3RrZsd3OodKJn_iITq3anMrtQl52ww80MKmqvOOl4HuEiMTFEVXjRRkR1BZ2adysi1kuu1_h1mfaKptu-OV2-fENz-5SIeFs-mQ6Jy-AnSFnVt96X0n7jxHO5x3SRhDVdZPqblLXzQP0kEWRmevnwzM_FRVTu-a-uc9mGZgWaL_tavYIzp787Y3h3nCY2VP0xH184JFF0jPUU-Vz9PjUK_duX6BfLaZwgyncYAovS-wwhS2mMNgQdzGF6wo7TH3EXUThDqJMK48o3MIEe0ThFlEv0fnJePZpQlzdDpILHtUkokxyOYwkMJ9QhApIYpGweRBrbUUJfJkVBTCnHN7kPEykFAxIOy-KmEUqzLKAv0IHZVWq1whr1VPGM6pUDs8ahgsFhFMm8zmnNJkPaR-J5mGnuRO117VVVulfTd1Hx77Zxqq63NUg6VoyrU04rbC1b1J-R9ujxuypcx7blEYw1sY8jJI-eu__Bteu5-tkqaqdPkYAdYSnR9_c93oP0aP2ZT1CB_XlTr0F9lxn7wy6fwNP9rtw
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwENaU9gA9QHkNgVLUmV4VIkuWbW4ZJpn0kVySQm8aWZaZDKmdaZyB8jP4xezKdiaFYXro1fL6sd7HZ2n1LSEnQrqYOytYL8UWZopzZlwYMwDDQeqUtDzHecjxRI0u5dlVeLW1FwbLKvEfOq-JInysRufGyei2JO4jkr7LRGKFAQ_hkBJgeI_IXgjYHa1c9CablYSY11umQYShTLuL53-XuZOf7rCX_hOtfQoaPiO2ffi68uR7d12lXfvrL17Hh73dAXnaIFTar03qOdlxxQuyP97Qu65ekt9ffDW2WSxu6Vc_t-oy2gengOC0ovOCjuZInVXR6RIrvig8C-1vrZTTqqSn174_0ic6nP90GZsapCmm_dXt9bIq8TZeauAZLiAx0qmv-YZ4tKCzHyUDkPzN0QEEqHrv5StyORzMPo9Y09yBWSmiikU8MML0IgPpUUnlAEnkSZCFMRLwGQBVQZ5DerXgxFYlxsgAkJ3I8ziInErTULwmu0VZuDeEIjVmIFLunAXVQUxxgEpMkmWC8yTr8Q6R7SfVtmE-xwYcC81bgtRG5RpVrhuVd0h3I7asqT_uE0i27UVXfs4lrxukaHGP7GFrXLqJIivNIwjIsVBR0iHHm2Hwf1zUMYUr13iOBHwB2uNvH3D7D-TxaDa-0Benk_N35AkO-ZpkcUh2q5u1ew_Iq0qPvGv9ATK7HgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZgSAgeYOOHKBvDk3h1qWPHSfZWjVYdbNWkbsCb5SQ2quiSiqSC7c_YX7w7J6k2ENrDXpNckl58d1_tz98R8kFIG3ObCTZIsYWZ4pwZG8YMwHCQWiUz7nAe8niqJmfy8_ewYxNWLa0S_0O7RijC52oM7mXuOkbcR9R8l4lEggEP4ZASMO4ekkcK4Amy-sRgul5IiHmzYxpMGNp0m3j-d5tb5emWeOk_ydpXoPFzknbv3hBPfvZXddrPLv-SdbzXj9skz1p8SofNgNoiD2zxgjw9Xou7Vi_J1VfPxTaLxQX95mdWbU6HEBKQmio6L-hkjsJZNZ0tke9F4VXo8MY6Oa1LenjuuyPt0_H8j83ZzKBIMR1WF-fLusTHeKuR17eAskhnnvEN2WhBT3-XDCDyD0tHkJ6anZevyNl4dHowYW1rB5ZJEdUs4oERZhAZKI5KKgs4wiVBHsYov2cAUgXOQXHNIIQzlRgjA8B1wrk4iKxK01C8JhtFWdg3hKIwZiBSbm0GroOMYgGTmCTPBedJPuA9IrsvqrNW9xzbbyw07-RRW5drdLluXd4j_bXZshH-uMsguTlcdO1nXFzTHkWLO2x3urGl2xxSaR5BOo6FipIe2VufhujHJR1T2HKF10hAF-A9_vYej39PHp98Guujw-mXbfIEz3hCstghG_WvlX0HsKtOd31gXQOGrxyo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vertically+Weighted+Averages+in+Hilbert+Spaces+and+Applications+to+Imaging%3A+Fixed-Sample+Asymptotics+and+Efficient+Sequential+Two-Stage+Estimation&rft.jtitle=Sequential+analysis&rft.au=Steland%2C+Ansgar&rft.date=2015-07-03&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=34&rft.issue=3&rft.spage=295&rft.epage=323&rft_id=info:doi/10.1080%2F07474946.2015.1063257&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07474946_2015_1063257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon