Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation
In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylind...
Saved in:
Published in | Fuel (Guildford) Vol. 132; pp. 36 - 43 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
15.09.2014
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0016-2361 1873-7153 |
DOI | 10.1016/j.fuel.2014.04.054 |
Cover
Loading…
Abstract | In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylinder spark-ignition (SI) research engine, under stoichiometric conditions, MF could produce higher cylinder pressure, knocking intensity, combustion temperature, and nitrogen oxides (NOx) emissions than gasoline at higher CRs. However, an appropriate level of cool EGR improved the combustion and emissions, particularly through knock suppression and reduced NOx emissions. When the cooled EGR rate reached 15%, the NOx emissions from the gasoline at a compression ratio of 10 was reduced by about 20.6g/kWh (>72.5%) compared with 0% EGR. With a low EGR rate, there was only a slight improvement in the indicated thermal efficiency; however, when the EGR reaches 15%, the MF results in 31.2% higher indicated thermal efficiency when compared to gasoline with a CR of 10. This work further advances the knowledge of how to improve the overall performance of MF as an alternative fuel for internal combustion engines. |
---|---|
AbstractList | In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylinder spark-ignition (SI) research engine, under stoichiometric conditions, MF could produce higher cylinder pressure, knocking intensity, combustion temperature, and nitrogen oxides (NO sub(x) sub()) emissions than gasoline at higher CRs. However, an appropriate level of cool EGR improved the combustion and emissions, particularly through knock suppression and reduced NO sub(x) emissions. When the cooled EGR rate reached 15%, the NO sub(x) emissions from the gasoline at a compression ratio of 10 was reduced by about 20.6 g/kW h (>72.5%) compared with 0% EGR. With a low EGR rate, there was only a slight improvement in the indicated thermal efficiency; however, when the EGR reaches 15%, the MF results in 31.2% higher indicated thermal efficiency when compared to gasoline with a CR of 10. This work further advances the knowledge of how to improve the overall performance of MF as an alternative fuel for internal combustion engines. In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylinder spark-ignition (SI) research engine, under stoichiometric conditions, MF could produce higher cylinder pressure, knocking intensity, combustion temperature, and nitrogen oxides (NOx) emissions than gasoline at higher CRs. However, an appropriate level of cool EGR improved the combustion and emissions, particularly through knock suppression and reduced NOx emissions. When the cooled EGR rate reached 15%, the NOx emissions from the gasoline at a compression ratio of 10 was reduced by about 20.6g/kWh (>72.5%) compared with 0% EGR. With a low EGR rate, there was only a slight improvement in the indicated thermal efficiency; however, when the EGR reaches 15%, the MF results in 31.2% higher indicated thermal efficiency when compared to gasoline with a CR of 10. This work further advances the knowledge of how to improve the overall performance of MF as an alternative fuel for internal combustion engines. |
Author | Feng, Dengquan Wei, Haiqiao Liang, Youcai Shu, Gequn Pan, Jiaying Guo, Yubin Pan, Mingzhang |
Author_xml | – sequence: 1 givenname: Mingzhang surname: Pan fullname: Pan, Mingzhang – sequence: 2 givenname: Gequn surname: Shu fullname: Shu, Gequn – sequence: 3 givenname: Jiaying surname: Pan fullname: Pan, Jiaying – sequence: 4 givenname: Haiqiao surname: Wei fullname: Wei, Haiqiao email: whq@tju.edu.cn – sequence: 5 givenname: Dengquan surname: Feng fullname: Feng, Dengquan – sequence: 6 givenname: Yubin surname: Guo fullname: Guo, Yubin – sequence: 7 givenname: Youcai surname: Liang fullname: Liang, Youcai |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28522351$$DView record in Pascal Francis |
BookMark | eNqFkUuLFDEUhYOMYM_oH3CVjeCm2ryqKgVuZPAxMKALXYfbqZvutKmkTap05t-bsseNixEuBJLvnCTnXJKLmCIS8pKzLWe8e3PcugXDVjCutqxOq56QDde9bHreyguyYZVqhOz4M3JZypEx1utWbcjyBbNLeYJokdo0nSD7kiJNjopmwvlwH9ySIVKII91DScFHpBUAWir7vfH76GdfNzDu16Nffj5UoxRwpHh3gKXMq45mtD7bJcAKPydPHYSCLx7WK_Ltw_uv15-a288fb67f3TZWyX6ubxctE0K5DgRi11mH0HENgxisBW53wAc5SO56FEJzUG6n9QCi16PksAN5RV6ffU85_ViwzGbyxWIIEDEtxfCu5129QLf_R1ulGBtULyv66gGFYiG4Go_1xZyynyDfG6FbIWTLK6fPnM2plIzOWD__-f-cwQfDmVnLM0ezlmfW8gyr06oqFf9I_7o_Knp7FmGN9KfHbIr1WIsdfU1_NmPyj8l_A4vYtqY |
CitedBy_id | crossref_primary_10_3390_en11030512 crossref_primary_10_1016_j_rser_2023_114242 crossref_primary_10_1039_D3TA03813K crossref_primary_10_1002_anie_201607257 crossref_primary_10_1016_j_fuel_2018_09_146 crossref_primary_10_1016_j_fuel_2021_120825 crossref_primary_10_1115_1_4041316 crossref_primary_10_1016_j_energy_2016_11_134 crossref_primary_10_1016_j_biombioe_2018_10_008 crossref_primary_10_1016_j_combustflame_2015_02_013 crossref_primary_10_53941_ijamm_2024_100006 crossref_primary_10_1016_j_energy_2018_08_109 crossref_primary_10_1134_S0010508222040050 crossref_primary_10_1016_j_cej_2023_144093 crossref_primary_10_1177_0954407019858279 crossref_primary_10_1039_C9CP05937G crossref_primary_10_1002_chem_201803319 crossref_primary_10_1016_j_combustflame_2019_05_023 crossref_primary_10_1016_j_fuel_2021_121748 crossref_primary_10_1088_1757_899X_263_6_062069 crossref_primary_10_1016_j_proci_2024_105366 crossref_primary_10_1002_ange_201607257 crossref_primary_10_1016_j_combustflame_2021_111509 crossref_primary_10_1016_j_rser_2021_111265 crossref_primary_10_1016_j_fuel_2022_123173 crossref_primary_10_1016_j_fuel_2018_07_005 crossref_primary_10_1002_cjoc_201900467 crossref_primary_10_1021_acs_energyfuels_0c00492 crossref_primary_10_1021_acs_energyfuels_9b03375 crossref_primary_10_1007_s10494_015_9635_z crossref_primary_10_1021_acscatal_6b01861 crossref_primary_10_1016_j_fuel_2016_08_104 |
Cites_doi | 10.1016/j.enconman.2012.05.015 10.4271/2003-01-3123 10.1021/ef201021a 10.1016/j.fuel.2012.05.043 10.1016/j.fuel.2010.10.008 10.1126/science.1141199 10.1016/j.fuel.2011.11.057 10.1016/j.apenergy.2012.05.011 10.1016/j.apenergy.2009.11.022 10.1016/j.combustflame.2010.10.006 10.1016/j.apenergy.2012.02.073 10.1016/j.fuel.2012.01.053 10.1021/ef100452c 10.1021/ef901575a 10.1016/j.ijhydene.2012.07.080 10.1039/b807094f 10.4271/2011-01-1989 10.4271/841359 10.1038/nature05923 10.1146/annurev-chembioeng-073009-100935 10.1021/ja808537j 10.1016/j.fuel.2011.11.040 10.1021/cr068360d 10.1016/j.fuel.2012.03.049 10.1021/ef2010089 10.1016/j.ijhydene.2012.11.138 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7ST C1K SOI 7SU 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1016/j.fuel.2014.04.054 |
DatabaseName | CrossRef Pascal-Francis Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Environment Abstracts Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-7153 |
EndPage | 43 |
ExternalDocumentID | 28522351 10_1016_j_fuel_2014_04_054 S0016236114003895 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACIWK ACNCT ACPRK ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSJ SSK SSR SSZ T5K TWZ WH7 ZMT ~02 ~G- 29H 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABDEX ABEFU ABWVN ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SCB SEW SSH VH1 WUQ XPP ZY4 ABTAH IQODW 7ST C1K SOI 7SU 7TB 8FD F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c437t-71250224f6a2ee66cfea618a929cca1cba193931f7e2281a4fb889a278d31aba3 |
IEDL.DBID | .~1 |
ISSN | 0016-2361 |
IngestDate | Fri Jul 11 10:42:56 EDT 2025 Fri Jul 11 02:09:35 EDT 2025 Wed Apr 02 07:25:13 EDT 2025 Tue Jul 01 00:43:45 EDT 2025 Thu Apr 24 22:58:38 EDT 2025 Fri Feb 23 02:18:36 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Biofuel Exhaust gas recirculation Compression ratio 2-Methylfuran Gasoline Flue gas recirculation Spark ignition engine Performance Comparative study |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-71250224f6a2ee66cfea618a929cca1cba193931f7e2281a4fb889a278d31aba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1544009473 |
PQPubID | 23462 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_1671622485 proquest_miscellaneous_1544009473 pascalfrancis_primary_28522351 crossref_citationtrail_10_1016_j_fuel_2014_04_054 crossref_primary_10_1016_j_fuel_2014_04_054 elsevier_sciencedirect_doi_10_1016_j_fuel_2014_04_054 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-09-15 |
PublicationDateYYYYMMDD | 2014-09-15 |
PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Fuel (Guildford) |
PublicationYear | 2014 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Tian, Daniel, Li, Xu, Shuai, Richards (b0055) 2010; 24 David, Jamie, Jennings (b0080) 2012; 98 Serrano-Ruiz, West, Dumesic (b0015) 2010; 1 Wu, Li, Fu, Tang, Huang, Daniel (b0045) 2012; 95 Daniel, Xu, Wang, Riahardoson, Shuai (b0090) 2012; 98 Luque, Lorenzo, Campelo, Clark, Hidalgo, Luna (b0005) 2008; 1 Amann MF, Alger T, Metha DR. The effect of EGR on low-speed pre-ignition in boosted engines. SAE Technical Paper 2011–01-0339; 2011. Gu, Huang, Cai, Gong, Wu, Lee (b0105) 2012; 93 Thewes, Muether, Pischinger, Budde, Sehr, Adomeit (b0060) 2011; 25 Daniel, Tian, Xu, Wyszynski, Wu, Huang (b0085) 2011; 90 Binder, Raines (b0035) 2009; 131 Galloni (b0145) 2012; 64 Daniel, Tian, Xu, Shuai (b0075) 2012; 99 Wu, Huang, Wang, Jin, Tang, Wei (b0050) 2011; 158 Elmqvist C, Lindstrm F, Ångström HE, Grandin B, Kalghatgi G. Optimizing engine concepts by using a simple model for knock prediction. SAE Technical Paper 2003–01-3123; 2003. Gatowski JA, Balles EN, Chun KM, Nelson FE, Ekchian JA, Heywood JB. Heat release analysis of engine pressure data. SAE Paper 841359; 1984. Wang, Xu, Daniel, Ghafourian, Herreros, Shuai (b0070) 2013; 103 Roman-Leshkov, Barrett, Liu, Dumesic (b0025) 2007; 447 Christensen, Yanowitz, Ratcliff, McCormick (b0020) 2011; 25 Verhelst, Vancoillie, Naganu, Paepe, Dierickx, Huyghebaert (b0115) 2013; 38 Zhao, Holladay, Brown, Zhang (b0040) 2007; 316 Dumesic JA, Roman-Leshkov Y, Chheda JN. Catalytic process for producing furan derivatives from carbohydrates in a biphasic reactor, US; 2007. Ohtomo M, Nishikawa K, Suzuoki T, Miyagawa H, Koike M. Auto-ignition characteristics of biofuel blends for SI engines. SAE Technical Paper 011989; 2011. Fontana, Galloni (b0100) 2010; 87 Wei, Zhu, Shu, Tan, Wang (b0110) 2012; 99 Huber, Iborra, Corma (b0010) 2006; 106 Zhong, Daniel, Xu, Zhang, Turner, Wyszynski (b0065) 2010; 24 Heywood (b0125) 1988 Park, Park, Kim, Lee (b0120) 2012; 37 Zhong (10.1016/j.fuel.2014.04.054_b0065) 2010; 24 Huber (10.1016/j.fuel.2014.04.054_b0010) 2006; 106 Wang (10.1016/j.fuel.2014.04.054_b0070) 2013; 103 10.1016/j.fuel.2014.04.054_b0030 David (10.1016/j.fuel.2014.04.054_b0080) 2012; 98 10.1016/j.fuel.2014.04.054_b0130 Tian (10.1016/j.fuel.2014.04.054_b0055) 2010; 24 Roman-Leshkov (10.1016/j.fuel.2014.04.054_b0025) 2007; 447 10.1016/j.fuel.2014.04.054_b0095 Wei (10.1016/j.fuel.2014.04.054_b0110) 2012; 99 Daniel (10.1016/j.fuel.2014.04.054_b0090) 2012; 98 Christensen (10.1016/j.fuel.2014.04.054_b0020) 2011; 25 Wu (10.1016/j.fuel.2014.04.054_b0050) 2011; 158 Thewes (10.1016/j.fuel.2014.04.054_b0060) 2011; 25 Gu (10.1016/j.fuel.2014.04.054_b0105) 2012; 93 Zhao (10.1016/j.fuel.2014.04.054_b0040) 2007; 316 Heywood (10.1016/j.fuel.2014.04.054_b0125) 1988 Verhelst (10.1016/j.fuel.2014.04.054_b0115) 2013; 38 Park (10.1016/j.fuel.2014.04.054_b0120) 2012; 37 Daniel (10.1016/j.fuel.2014.04.054_b0085) 2011; 90 Fontana (10.1016/j.fuel.2014.04.054_b0100) 2010; 87 Binder (10.1016/j.fuel.2014.04.054_b0035) 2009; 131 Luque (10.1016/j.fuel.2014.04.054_b0005) 2008; 1 10.1016/j.fuel.2014.04.054_b0140 Wu (10.1016/j.fuel.2014.04.054_b0045) 2012; 95 Daniel (10.1016/j.fuel.2014.04.054_b0075) 2012; 99 10.1016/j.fuel.2014.04.054_b0135 Serrano-Ruiz (10.1016/j.fuel.2014.04.054_b0015) 2010; 1 Galloni (10.1016/j.fuel.2014.04.054_b0145) 2012; 64 |
References_xml | – reference: Elmqvist C, Lindstrm F, Ångström HE, Grandin B, Kalghatgi G. Optimizing engine concepts by using a simple model for knock prediction. SAE Technical Paper 2003–01-3123; 2003. – volume: 103 start-page: 200 year: 2013 end-page: 211 ident: b0070 article-title: Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine publication-title: Fuel – volume: 98 start-page: 59 year: 2012 end-page: 68 ident: b0090 article-title: Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine publication-title: Appl Energy – volume: 24 start-page: 3898 year: 2010 end-page: 3905 ident: b0055 article-title: Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline publication-title: Energy Fuels – volume: 25 start-page: 5549 year: 2011 end-page: 5561 ident: b0060 article-title: Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine publication-title: Energy Fuels – reference: Dumesic JA, Roman-Leshkov Y, Chheda JN. Catalytic process for producing furan derivatives from carbohydrates in a biphasic reactor, US; 2007. – volume: 99 start-page: 72 year: 2012 end-page: 82 ident: b0075 article-title: Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine publication-title: Fuel – volume: 98 start-page: 203 year: 2012 end-page: 212 ident: b0080 article-title: Study of the knocking propensity of 2,5-dimethylfuran–gasoline and ethanol–gasoline blends publication-title: Fuel – reference: Amann MF, Alger T, Metha DR. The effect of EGR on low-speed pre-ignition in boosted engines. SAE Technical Paper 2011–01-0339; 2011. – volume: 1 start-page: 79 year: 2010 end-page: 100 ident: b0015 article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals publication-title: Annu Rev Chem Biomol Eng – volume: 106 start-page: 4044 year: 2006 end-page: 4098 ident: b0010 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem Rev – volume: 90 start-page: 449 year: 2011 end-page: 458 ident: b0085 article-title: Effect of spark timing and load on a DISI engine fueled with 2,5-dimethylfuran publication-title: Fuel – reference: Gatowski JA, Balles EN, Chun KM, Nelson FE, Ekchian JA, Heywood JB. Heat release analysis of engine pressure data. SAE Paper 841359; 1984. – reference: Ohtomo M, Nishikawa K, Suzuoki T, Miyagawa H, Koike M. Auto-ignition characteristics of biofuel blends for SI engines. SAE Technical Paper 011989; 2011. – volume: 37 start-page: 14640 year: 2012 end-page: 14648 ident: b0120 article-title: Effects of EGR on performance of engines with spark gap projection and fueled by biogas hydrogen blends publication-title: Hydrogen Energy – volume: 1 start-page: 542 year: 2008 end-page: 564 ident: b0005 article-title: Biofuels: a technological perspective publication-title: Energy Environ Sci – volume: 447 start-page: 982 year: 2007 end-page: 985 ident: b0025 article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates publication-title: Nature – volume: 93 start-page: 611 year: 2012 end-page: 617 ident: b0105 article-title: Emission characteristics of a spark-ignition engine fueled with gasoline-n-butanol blends in combination with EGR publication-title: Fuel – volume: 24 start-page: 2891 year: 2010 end-page: 2899 ident: b0065 article-title: Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine publication-title: Energy Fuels – year: 1988 ident: b0125 article-title: Internal Combustion Engine Fundamentals – volume: 316 start-page: 1597 year: 2007 end-page: 1600 ident: b0040 article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural publication-title: Science – volume: 158 start-page: 539 year: 2011 end-page: 546 ident: b0050 article-title: Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures publication-title: Combust Flame – volume: 131 start-page: 1979 year: 2009 end-page: 1985 ident: b0035 article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals publication-title: J Am Chem Soc – volume: 64 start-page: 256 year: 2012 end-page: 262 ident: b0145 article-title: Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method publication-title: Energy Convers Manage – volume: 95 start-page: 234 year: 2012 end-page: 240 ident: b0045 article-title: Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures publication-title: Fuel – volume: 99 start-page: 534 year: 2012 end-page: 544 ident: b0110 article-title: Gasoline engine exhaust gas recirculation–a review publication-title: Appl Energy – volume: 87 start-page: 2187 year: 2010 end-page: 2193 ident: b0100 article-title: Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation publication-title: Appl Energy – volume: 38 start-page: 2490 year: 2013 end-page: 2503 ident: b0115 article-title: Setting a best practice for determining the EGR rate in hydrogen internal combustion engines publication-title: Hydrogen Energy – volume: 25 start-page: 4723 year: 2011 end-page: 4733 ident: b0020 article-title: Renewable oxygenate blending effects on gasoline properties publication-title: Energy Fuels – volume: 64 start-page: 256 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0145 article-title: Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2012.05.015 – ident: 10.1016/j.fuel.2014.04.054_b0140 doi: 10.4271/2003-01-3123 – volume: 25 start-page: 5549 issue: 12 year: 2011 ident: 10.1016/j.fuel.2014.04.054_b0060 article-title: Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine publication-title: Energy Fuels doi: 10.1021/ef201021a – volume: 103 start-page: 200 year: 2013 ident: 10.1016/j.fuel.2014.04.054_b0070 article-title: Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine publication-title: Fuel doi: 10.1016/j.fuel.2012.05.043 – volume: 90 start-page: 449 year: 2011 ident: 10.1016/j.fuel.2014.04.054_b0085 article-title: Effect of spark timing and load on a DISI engine fueled with 2,5-dimethylfuran publication-title: Fuel doi: 10.1016/j.fuel.2010.10.008 – volume: 316 start-page: 1597 year: 2007 ident: 10.1016/j.fuel.2014.04.054_b0040 article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural publication-title: Science doi: 10.1126/science.1141199 – volume: 95 start-page: 234 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0045 article-title: Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures publication-title: Fuel doi: 10.1016/j.fuel.2011.11.057 – volume: 99 start-page: 534 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0110 article-title: Gasoline engine exhaust gas recirculation–a review publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.05.011 – volume: 87 start-page: 2187 year: 2010 ident: 10.1016/j.fuel.2014.04.054_b0100 article-title: Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation publication-title: Appl Energy doi: 10.1016/j.apenergy.2009.11.022 – volume: 158 start-page: 539 year: 2011 ident: 10.1016/j.fuel.2014.04.054_b0050 article-title: Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures publication-title: Combust Flame doi: 10.1016/j.combustflame.2010.10.006 – volume: 98 start-page: 59 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0090 article-title: Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine publication-title: Appl Energy doi: 10.1016/j.apenergy.2012.02.073 – ident: 10.1016/j.fuel.2014.04.054_b0135 – volume: 99 start-page: 72 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0075 article-title: Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine publication-title: Fuel doi: 10.1016/j.fuel.2012.01.053 – volume: 24 start-page: 3898 year: 2010 ident: 10.1016/j.fuel.2014.04.054_b0055 article-title: Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline publication-title: Energy Fuels doi: 10.1021/ef100452c – volume: 24 start-page: 2891 year: 2010 ident: 10.1016/j.fuel.2014.04.054_b0065 article-title: Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine publication-title: Energy Fuels doi: 10.1021/ef901575a – volume: 37 start-page: 14640 issue: 19 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0120 article-title: Effects of EGR on performance of engines with spark gap projection and fueled by biogas hydrogen blends publication-title: Hydrogen Energy doi: 10.1016/j.ijhydene.2012.07.080 – volume: 1 start-page: 542 year: 2008 ident: 10.1016/j.fuel.2014.04.054_b0005 article-title: Biofuels: a technological perspective publication-title: Energy Environ Sci doi: 10.1039/b807094f – ident: 10.1016/j.fuel.2014.04.054_b0095 doi: 10.4271/2011-01-1989 – ident: 10.1016/j.fuel.2014.04.054_b0130 doi: 10.4271/841359 – volume: 447 start-page: 982 year: 2007 ident: 10.1016/j.fuel.2014.04.054_b0025 article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates publication-title: Nature doi: 10.1038/nature05923 – volume: 1 start-page: 79 issue: 1 year: 2010 ident: 10.1016/j.fuel.2014.04.054_b0015 article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals publication-title: Annu Rev Chem Biomol Eng doi: 10.1146/annurev-chembioeng-073009-100935 – ident: 10.1016/j.fuel.2014.04.054_b0030 – volume: 131 start-page: 1979 year: 2009 ident: 10.1016/j.fuel.2014.04.054_b0035 article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals publication-title: J Am Chem Soc doi: 10.1021/ja808537j – year: 1988 ident: 10.1016/j.fuel.2014.04.054_b0125 – volume: 93 start-page: 611 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0105 article-title: Emission characteristics of a spark-ignition engine fueled with gasoline-n-butanol blends in combination with EGR publication-title: Fuel doi: 10.1016/j.fuel.2011.11.040 – volume: 106 start-page: 4044 issue: 9 year: 2006 ident: 10.1016/j.fuel.2014.04.054_b0010 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem Rev doi: 10.1021/cr068360d – volume: 98 start-page: 203 year: 2012 ident: 10.1016/j.fuel.2014.04.054_b0080 article-title: Study of the knocking propensity of 2,5-dimethylfuran–gasoline and ethanol–gasoline blends publication-title: Fuel doi: 10.1016/j.fuel.2012.03.049 – volume: 25 start-page: 4723 year: 2011 ident: 10.1016/j.fuel.2014.04.054_b0020 article-title: Renewable oxygenate blending effects on gasoline properties publication-title: Energy Fuels doi: 10.1021/ef2010089 – volume: 38 start-page: 2490 issue: 5 year: 2013 ident: 10.1016/j.fuel.2014.04.054_b0115 article-title: Setting a best practice for determining the EGR rate in hydrogen internal combustion engines publication-title: Hydrogen Energy doi: 10.1016/j.ijhydene.2012.11.138 |
SSID | ssj0007854 |
Score | 2.2814064 |
Snippet | In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion... |
SourceID | proquest pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 36 |
SubjectTerms | 2-Methylfuran Applied sciences Biofuel Combustion Compression ratio Cylinders Emissions control Energy Energy. Thermal use of fuels Engines Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Exhaust Exhaust gas recirculation Fuels Gasoline Thermal efficiency |
Title | Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation |
URI | https://dx.doi.org/10.1016/j.fuel.2014.04.054 https://www.proquest.com/docview/1544009473 https://www.proquest.com/docview/1671622485 |
Volume | 132 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lvigifmK1PSL4JrHNxya5x1JaTsXig4W-hdlsomePvePuFtoX__bO7MfVIt6DsC8bZpKQyc7MJjO_Yew9VAZcqbSwR2UUaI-t8NlFUWJ78g7KWNF5x9dzO7kwny-Lyx12MuTCUFhlr_s7nd5q677lsF_Nw8V0Sjm-0hJ0CP4iEEocJZob42iXf_x9F-bhfNEhMUsriLpPnOlivHKT6PpBmhbutDD_Mk6PF7DCJctdrYu_1HZri86esie9E8mPu3k-Yzupfs4e_QEt-II13-4yAnjcFBvk88yVoLLRN7Pc4EAc6or_gBXV7kkcCYCjjlleiWkbVoQNqe2W04EtdjSfpYqn658EF0R8nNAxlrEvAvaSXZydfj-ZiL7EgohGu7Vw6N-QFc8WVErWxpzASg_oNKFoZSwBHbyxltklpbwEk0vvx6Ccr7SEEvQrtlvP6_SacaXGiS4xvYkEW58AtahVFUHeQdba7DE5rG2IPf44lcGYhSHQ7FcgeQSSRzjCp0CeDxueRYe-sZW6GEQW7u2hgOZhK9_onnw3QymP3qku5B57Nwg84NdHVypQp3mzCoRlRMGZTm-hsYTSRdBxb_5zgm_ZQ3qjMBVZ7LPd9bJJB-gLrctRu9lH7MHxpy-T81st7gp0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wAIIb4mBmwYiTdkbbbjjz5OE1PHtoqHTdqb5Tg2lFVp1TbS9t9zlziFCa0PSHm6-GzL59xd7LvfEfLZV4U3pZBMH5aBgT3WzCYTWAn0aI0vQ4XnHRdjPboqvl2r6y1y3OfCYFhl1v2dTm-1daYc5NU8mE8mmOPLNUKHwC8CosSpR2Qb0anUgGwfnZ6NxmuFbKzqwJi5ZsiQc2e6MK_URLyB4EWLeKqKh-zTs7lfwqqlrtzFP5q7NUcnL8jz7EfSo26qL8lWrF-Rp3-hC74mzfc_SQE0rOsN0lmigmHl6LtpamAg6uuK_vBLLN8TKTTwFNTM4oZN2sgiIMS2W4pnttDRbBorGm9_ImIQ8lEEyFiEXAfsDbk6-Xp5PGK5ygILhTQrZsDFQUOetBcxah1S9JpbD34TSJeH0oOPN5Q8mSiE5b5IpbVDL4ytJPellztkUM_q-JZQIYYR7zFtERC5PnpQpFpUiHrnk5TFLuH92rqQIcixEsbU9bFmvxzKw6E83CE8Cni-rHnmHQDHxtaqF5m7t40cWIiNfPv35LseSlhwUKXiu-RTL3AHHyDeqvg6zpqlQzgjjM80ckMbjUBdiB737j8n-JE8Hl1enLvz0_HZe_IE32DUClcfyGC1aOIeuEarcj9v_d9DCQ0l |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+comparison+of+2-methylfuran+and+gasoline+on+a+spark-ignition+engine+with+cooled+exhaust+gas+recirculation&rft.jtitle=Fuel+%28Guildford%29&rft.au=Pan%2C+Mingzhang&rft.au=Shu%2C+Gequn&rft.au=Pan%2C+Jiaying&rft.au=Wei%2C+Haiqiao&rft.date=2014-09-15&rft.issn=0016-2361&rft.volume=132&rft.spage=36&rft.epage=43&rft_id=info:doi/10.1016%2Fj.fuel.2014.04.054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2014_04_054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon |