Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation

In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylind...

Full description

Saved in:
Bibliographic Details
Published inFuel (Guildford) Vol. 132; pp. 36 - 43
Main Authors Pan, Mingzhang, Shu, Gequn, Pan, Jiaying, Wei, Haiqiao, Feng, Dengquan, Guo, Yubin, Liang, Youcai
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 15.09.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0016-2361
1873-7153
DOI10.1016/j.fuel.2014.04.054

Cover

Loading…
Abstract In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylinder spark-ignition (SI) research engine, under stoichiometric conditions, MF could produce higher cylinder pressure, knocking intensity, combustion temperature, and nitrogen oxides (NOx) emissions than gasoline at higher CRs. However, an appropriate level of cool EGR improved the combustion and emissions, particularly through knock suppression and reduced NOx emissions. When the cooled EGR rate reached 15%, the NOx emissions from the gasoline at a compression ratio of 10 was reduced by about 20.6g/kWh (>72.5%) compared with 0% EGR. With a low EGR rate, there was only a slight improvement in the indicated thermal efficiency; however, when the EGR reaches 15%, the MF results in 31.2% higher indicated thermal efficiency when compared to gasoline with a CR of 10. This work further advances the knowledge of how to improve the overall performance of MF as an alternative fuel for internal combustion engines.
AbstractList In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylinder spark-ignition (SI) research engine, under stoichiometric conditions, MF could produce higher cylinder pressure, knocking intensity, combustion temperature, and nitrogen oxides (NO sub(x) sub()) emissions than gasoline at higher CRs. However, an appropriate level of cool EGR improved the combustion and emissions, particularly through knock suppression and reduced NO sub(x) emissions. When the cooled EGR rate reached 15%, the NO sub(x) emissions from the gasoline at a compression ratio of 10 was reduced by about 20.6 g/kW h (>72.5%) compared with 0% EGR. With a low EGR rate, there was only a slight improvement in the indicated thermal efficiency; however, when the EGR reaches 15%, the MF results in 31.2% higher indicated thermal efficiency when compared to gasoline with a CR of 10. This work further advances the knowledge of how to improve the overall performance of MF as an alternative fuel for internal combustion engines.
In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion characteristics and emission performance of 2-methylfuran (MF) and gasoline were studied. Experiments were carried out on a Ricardo E6 single-cylinder spark-ignition (SI) research engine, under stoichiometric conditions, MF could produce higher cylinder pressure, knocking intensity, combustion temperature, and nitrogen oxides (NOx) emissions than gasoline at higher CRs. However, an appropriate level of cool EGR improved the combustion and emissions, particularly through knock suppression and reduced NOx emissions. When the cooled EGR rate reached 15%, the NOx emissions from the gasoline at a compression ratio of 10 was reduced by about 20.6g/kWh (>72.5%) compared with 0% EGR. With a low EGR rate, there was only a slight improvement in the indicated thermal efficiency; however, when the EGR reaches 15%, the MF results in 31.2% higher indicated thermal efficiency when compared to gasoline with a CR of 10. This work further advances the knowledge of how to improve the overall performance of MF as an alternative fuel for internal combustion engines.
Author Feng, Dengquan
Wei, Haiqiao
Liang, Youcai
Shu, Gequn
Pan, Jiaying
Guo, Yubin
Pan, Mingzhang
Author_xml – sequence: 1
  givenname: Mingzhang
  surname: Pan
  fullname: Pan, Mingzhang
– sequence: 2
  givenname: Gequn
  surname: Shu
  fullname: Shu, Gequn
– sequence: 3
  givenname: Jiaying
  surname: Pan
  fullname: Pan, Jiaying
– sequence: 4
  givenname: Haiqiao
  surname: Wei
  fullname: Wei, Haiqiao
  email: whq@tju.edu.cn
– sequence: 5
  givenname: Dengquan
  surname: Feng
  fullname: Feng, Dengquan
– sequence: 6
  givenname: Yubin
  surname: Guo
  fullname: Guo, Yubin
– sequence: 7
  givenname: Youcai
  surname: Liang
  fullname: Liang, Youcai
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28522351$$DView record in Pascal Francis
BookMark eNqFkUuLFDEUhYOMYM_oH3CVjeCm2ryqKgVuZPAxMKALXYfbqZvutKmkTap05t-bsseNixEuBJLvnCTnXJKLmCIS8pKzLWe8e3PcugXDVjCutqxOq56QDde9bHreyguyYZVqhOz4M3JZypEx1utWbcjyBbNLeYJokdo0nSD7kiJNjopmwvlwH9ySIVKII91DScFHpBUAWir7vfH76GdfNzDu16Nffj5UoxRwpHh3gKXMq45mtD7bJcAKPydPHYSCLx7WK_Ltw_uv15-a288fb67f3TZWyX6ubxctE0K5DgRi11mH0HENgxisBW53wAc5SO56FEJzUG6n9QCi16PksAN5RV6ffU85_ViwzGbyxWIIEDEtxfCu5129QLf_R1ulGBtULyv66gGFYiG4Go_1xZyynyDfG6FbIWTLK6fPnM2plIzOWD__-f-cwQfDmVnLM0ezlmfW8gyr06oqFf9I_7o_Knp7FmGN9KfHbIr1WIsdfU1_NmPyj8l_A4vYtqY
CitedBy_id crossref_primary_10_3390_en11030512
crossref_primary_10_1016_j_rser_2023_114242
crossref_primary_10_1039_D3TA03813K
crossref_primary_10_1002_anie_201607257
crossref_primary_10_1016_j_fuel_2018_09_146
crossref_primary_10_1016_j_fuel_2021_120825
crossref_primary_10_1115_1_4041316
crossref_primary_10_1016_j_energy_2016_11_134
crossref_primary_10_1016_j_biombioe_2018_10_008
crossref_primary_10_1016_j_combustflame_2015_02_013
crossref_primary_10_53941_ijamm_2024_100006
crossref_primary_10_1016_j_energy_2018_08_109
crossref_primary_10_1134_S0010508222040050
crossref_primary_10_1016_j_cej_2023_144093
crossref_primary_10_1177_0954407019858279
crossref_primary_10_1039_C9CP05937G
crossref_primary_10_1002_chem_201803319
crossref_primary_10_1016_j_combustflame_2019_05_023
crossref_primary_10_1016_j_fuel_2021_121748
crossref_primary_10_1088_1757_899X_263_6_062069
crossref_primary_10_1016_j_proci_2024_105366
crossref_primary_10_1002_ange_201607257
crossref_primary_10_1016_j_combustflame_2021_111509
crossref_primary_10_1016_j_rser_2021_111265
crossref_primary_10_1016_j_fuel_2022_123173
crossref_primary_10_1016_j_fuel_2018_07_005
crossref_primary_10_1002_cjoc_201900467
crossref_primary_10_1021_acs_energyfuels_0c00492
crossref_primary_10_1021_acs_energyfuels_9b03375
crossref_primary_10_1007_s10494_015_9635_z
crossref_primary_10_1021_acscatal_6b01861
crossref_primary_10_1016_j_fuel_2016_08_104
Cites_doi 10.1016/j.enconman.2012.05.015
10.4271/2003-01-3123
10.1021/ef201021a
10.1016/j.fuel.2012.05.043
10.1016/j.fuel.2010.10.008
10.1126/science.1141199
10.1016/j.fuel.2011.11.057
10.1016/j.apenergy.2012.05.011
10.1016/j.apenergy.2009.11.022
10.1016/j.combustflame.2010.10.006
10.1016/j.apenergy.2012.02.073
10.1016/j.fuel.2012.01.053
10.1021/ef100452c
10.1021/ef901575a
10.1016/j.ijhydene.2012.07.080
10.1039/b807094f
10.4271/2011-01-1989
10.4271/841359
10.1038/nature05923
10.1146/annurev-chembioeng-073009-100935
10.1021/ja808537j
10.1016/j.fuel.2011.11.040
10.1021/cr068360d
10.1016/j.fuel.2012.03.049
10.1021/ef2010089
10.1016/j.ijhydene.2012.11.138
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7ST
C1K
SOI
7SU
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1016/j.fuel.2014.04.054
DatabaseName CrossRef
Pascal-Francis
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Environment Abstracts

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-7153
EndPage 43
ExternalDocumentID 28522351
10_1016_j_fuel_2014_04_054
S0016236114003895
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACIWK
ACNCT
ACPRK
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSJ
SSK
SSR
SSZ
T5K
TWZ
WH7
ZMT
~02
~G-
29H
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDEX
ABEFU
ABWVN
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SCB
SEW
SSH
VH1
WUQ
XPP
ZY4
ABTAH
IQODW
7ST
C1K
SOI
7SU
7TB
8FD
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c437t-71250224f6a2ee66cfea618a929cca1cba193931f7e2281a4fb889a278d31aba3
IEDL.DBID .~1
ISSN 0016-2361
IngestDate Fri Jul 11 10:42:56 EDT 2025
Fri Jul 11 02:09:35 EDT 2025
Wed Apr 02 07:25:13 EDT 2025
Tue Jul 01 00:43:45 EDT 2025
Thu Apr 24 22:58:38 EDT 2025
Fri Feb 23 02:18:36 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Biofuel
Exhaust gas recirculation
Compression ratio
2-Methylfuran
Gasoline
Flue gas recirculation
Spark ignition engine
Performance
Comparative study
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-71250224f6a2ee66cfea618a929cca1cba193931f7e2281a4fb889a278d31aba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1544009473
PQPubID 23462
PageCount 8
ParticipantIDs proquest_miscellaneous_1671622485
proquest_miscellaneous_1544009473
pascalfrancis_primary_28522351
crossref_citationtrail_10_1016_j_fuel_2014_04_054
crossref_primary_10_1016_j_fuel_2014_04_054
elsevier_sciencedirect_doi_10_1016_j_fuel_2014_04_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-15
PublicationDateYYYYMMDD 2014-09-15
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-15
  day: 15
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Fuel (Guildford)
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Tian, Daniel, Li, Xu, Shuai, Richards (b0055) 2010; 24
David, Jamie, Jennings (b0080) 2012; 98
Serrano-Ruiz, West, Dumesic (b0015) 2010; 1
Wu, Li, Fu, Tang, Huang, Daniel (b0045) 2012; 95
Daniel, Xu, Wang, Riahardoson, Shuai (b0090) 2012; 98
Luque, Lorenzo, Campelo, Clark, Hidalgo, Luna (b0005) 2008; 1
Amann MF, Alger T, Metha DR. The effect of EGR on low-speed pre-ignition in boosted engines. SAE Technical Paper 2011–01-0339; 2011.
Gu, Huang, Cai, Gong, Wu, Lee (b0105) 2012; 93
Thewes, Muether, Pischinger, Budde, Sehr, Adomeit (b0060) 2011; 25
Daniel, Tian, Xu, Wyszynski, Wu, Huang (b0085) 2011; 90
Binder, Raines (b0035) 2009; 131
Galloni (b0145) 2012; 64
Daniel, Tian, Xu, Shuai (b0075) 2012; 99
Wu, Huang, Wang, Jin, Tang, Wei (b0050) 2011; 158
Elmqvist C, Lindstrm F, Ångström HE, Grandin B, Kalghatgi G. Optimizing engine concepts by using a simple model for knock prediction. SAE Technical Paper 2003–01-3123; 2003.
Gatowski JA, Balles EN, Chun KM, Nelson FE, Ekchian JA, Heywood JB. Heat release analysis of engine pressure data. SAE Paper 841359; 1984.
Wang, Xu, Daniel, Ghafourian, Herreros, Shuai (b0070) 2013; 103
Roman-Leshkov, Barrett, Liu, Dumesic (b0025) 2007; 447
Christensen, Yanowitz, Ratcliff, McCormick (b0020) 2011; 25
Verhelst, Vancoillie, Naganu, Paepe, Dierickx, Huyghebaert (b0115) 2013; 38
Zhao, Holladay, Brown, Zhang (b0040) 2007; 316
Dumesic JA, Roman-Leshkov Y, Chheda JN. Catalytic process for producing furan derivatives from carbohydrates in a biphasic reactor, US; 2007.
Ohtomo M, Nishikawa K, Suzuoki T, Miyagawa H, Koike M. Auto-ignition characteristics of biofuel blends for SI engines. SAE Technical Paper 011989; 2011.
Fontana, Galloni (b0100) 2010; 87
Wei, Zhu, Shu, Tan, Wang (b0110) 2012; 99
Huber, Iborra, Corma (b0010) 2006; 106
Zhong, Daniel, Xu, Zhang, Turner, Wyszynski (b0065) 2010; 24
Heywood (b0125) 1988
Park, Park, Kim, Lee (b0120) 2012; 37
Zhong (10.1016/j.fuel.2014.04.054_b0065) 2010; 24
Huber (10.1016/j.fuel.2014.04.054_b0010) 2006; 106
Wang (10.1016/j.fuel.2014.04.054_b0070) 2013; 103
10.1016/j.fuel.2014.04.054_b0030
David (10.1016/j.fuel.2014.04.054_b0080) 2012; 98
10.1016/j.fuel.2014.04.054_b0130
Tian (10.1016/j.fuel.2014.04.054_b0055) 2010; 24
Roman-Leshkov (10.1016/j.fuel.2014.04.054_b0025) 2007; 447
10.1016/j.fuel.2014.04.054_b0095
Wei (10.1016/j.fuel.2014.04.054_b0110) 2012; 99
Daniel (10.1016/j.fuel.2014.04.054_b0090) 2012; 98
Christensen (10.1016/j.fuel.2014.04.054_b0020) 2011; 25
Wu (10.1016/j.fuel.2014.04.054_b0050) 2011; 158
Thewes (10.1016/j.fuel.2014.04.054_b0060) 2011; 25
Gu (10.1016/j.fuel.2014.04.054_b0105) 2012; 93
Zhao (10.1016/j.fuel.2014.04.054_b0040) 2007; 316
Heywood (10.1016/j.fuel.2014.04.054_b0125) 1988
Verhelst (10.1016/j.fuel.2014.04.054_b0115) 2013; 38
Park (10.1016/j.fuel.2014.04.054_b0120) 2012; 37
Daniel (10.1016/j.fuel.2014.04.054_b0085) 2011; 90
Fontana (10.1016/j.fuel.2014.04.054_b0100) 2010; 87
Binder (10.1016/j.fuel.2014.04.054_b0035) 2009; 131
Luque (10.1016/j.fuel.2014.04.054_b0005) 2008; 1
10.1016/j.fuel.2014.04.054_b0140
Wu (10.1016/j.fuel.2014.04.054_b0045) 2012; 95
Daniel (10.1016/j.fuel.2014.04.054_b0075) 2012; 99
10.1016/j.fuel.2014.04.054_b0135
Serrano-Ruiz (10.1016/j.fuel.2014.04.054_b0015) 2010; 1
Galloni (10.1016/j.fuel.2014.04.054_b0145) 2012; 64
References_xml – reference: Elmqvist C, Lindstrm F, Ångström HE, Grandin B, Kalghatgi G. Optimizing engine concepts by using a simple model for knock prediction. SAE Technical Paper 2003–01-3123; 2003.
– volume: 103
  start-page: 200
  year: 2013
  end-page: 211
  ident: b0070
  article-title: Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine
  publication-title: Fuel
– volume: 98
  start-page: 59
  year: 2012
  end-page: 68
  ident: b0090
  article-title: Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine
  publication-title: Appl Energy
– volume: 24
  start-page: 3898
  year: 2010
  end-page: 3905
  ident: b0055
  article-title: Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline
  publication-title: Energy Fuels
– volume: 25
  start-page: 5549
  year: 2011
  end-page: 5561
  ident: b0060
  article-title: Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine
  publication-title: Energy Fuels
– reference: Dumesic JA, Roman-Leshkov Y, Chheda JN. Catalytic process for producing furan derivatives from carbohydrates in a biphasic reactor, US; 2007.
– volume: 99
  start-page: 72
  year: 2012
  end-page: 82
  ident: b0075
  article-title: Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine
  publication-title: Fuel
– volume: 98
  start-page: 203
  year: 2012
  end-page: 212
  ident: b0080
  article-title: Study of the knocking propensity of 2,5-dimethylfuran–gasoline and ethanol–gasoline blends
  publication-title: Fuel
– reference: Amann MF, Alger T, Metha DR. The effect of EGR on low-speed pre-ignition in boosted engines. SAE Technical Paper 2011–01-0339; 2011.
– volume: 1
  start-page: 79
  year: 2010
  end-page: 100
  ident: b0015
  article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals
  publication-title: Annu Rev Chem Biomol Eng
– volume: 106
  start-page: 4044
  year: 2006
  end-page: 4098
  ident: b0010
  article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
  publication-title: Chem Rev
– volume: 90
  start-page: 449
  year: 2011
  end-page: 458
  ident: b0085
  article-title: Effect of spark timing and load on a DISI engine fueled with 2,5-dimethylfuran
  publication-title: Fuel
– reference: Gatowski JA, Balles EN, Chun KM, Nelson FE, Ekchian JA, Heywood JB. Heat release analysis of engine pressure data. SAE Paper 841359; 1984.
– reference: Ohtomo M, Nishikawa K, Suzuoki T, Miyagawa H, Koike M. Auto-ignition characteristics of biofuel blends for SI engines. SAE Technical Paper 011989; 2011.
– volume: 37
  start-page: 14640
  year: 2012
  end-page: 14648
  ident: b0120
  article-title: Effects of EGR on performance of engines with spark gap projection and fueled by biogas hydrogen blends
  publication-title: Hydrogen Energy
– volume: 1
  start-page: 542
  year: 2008
  end-page: 564
  ident: b0005
  article-title: Biofuels: a technological perspective
  publication-title: Energy Environ Sci
– volume: 447
  start-page: 982
  year: 2007
  end-page: 985
  ident: b0025
  article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
  publication-title: Nature
– volume: 93
  start-page: 611
  year: 2012
  end-page: 617
  ident: b0105
  article-title: Emission characteristics of a spark-ignition engine fueled with gasoline-n-butanol blends in combination with EGR
  publication-title: Fuel
– volume: 24
  start-page: 2891
  year: 2010
  end-page: 2899
  ident: b0065
  article-title: Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine
  publication-title: Energy Fuels
– year: 1988
  ident: b0125
  article-title: Internal Combustion Engine Fundamentals
– volume: 316
  start-page: 1597
  year: 2007
  end-page: 1600
  ident: b0040
  article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural
  publication-title: Science
– volume: 158
  start-page: 539
  year: 2011
  end-page: 546
  ident: b0050
  article-title: Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures
  publication-title: Combust Flame
– volume: 131
  start-page: 1979
  year: 2009
  end-page: 1985
  ident: b0035
  article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals
  publication-title: J Am Chem Soc
– volume: 64
  start-page: 256
  year: 2012
  end-page: 262
  ident: b0145
  article-title: Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method
  publication-title: Energy Convers Manage
– volume: 95
  start-page: 234
  year: 2012
  end-page: 240
  ident: b0045
  article-title: Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures
  publication-title: Fuel
– volume: 99
  start-page: 534
  year: 2012
  end-page: 544
  ident: b0110
  article-title: Gasoline engine exhaust gas recirculation–a review
  publication-title: Appl Energy
– volume: 87
  start-page: 2187
  year: 2010
  end-page: 2193
  ident: b0100
  article-title: Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation
  publication-title: Appl Energy
– volume: 38
  start-page: 2490
  year: 2013
  end-page: 2503
  ident: b0115
  article-title: Setting a best practice for determining the EGR rate in hydrogen internal combustion engines
  publication-title: Hydrogen Energy
– volume: 25
  start-page: 4723
  year: 2011
  end-page: 4733
  ident: b0020
  article-title: Renewable oxygenate blending effects on gasoline properties
  publication-title: Energy Fuels
– volume: 64
  start-page: 256
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0145
  article-title: Dynamic knock detection and quantification in a spark ignition engine by means of a pressure based method
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2012.05.015
– ident: 10.1016/j.fuel.2014.04.054_b0140
  doi: 10.4271/2003-01-3123
– volume: 25
  start-page: 5549
  issue: 12
  year: 2011
  ident: 10.1016/j.fuel.2014.04.054_b0060
  article-title: Analysis of the impact of 2-methylfuran on mixture formation and combustion in a direct-injection spark-ignition engine
  publication-title: Energy Fuels
  doi: 10.1021/ef201021a
– volume: 103
  start-page: 200
  year: 2013
  ident: 10.1016/j.fuel.2014.04.054_b0070
  article-title: Combustion characteristics and emissions of 2-methylfuran compared to 2,5-dimethylfuran, gasoline and ethanol in a DISI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.05.043
– volume: 90
  start-page: 449
  year: 2011
  ident: 10.1016/j.fuel.2014.04.054_b0085
  article-title: Effect of spark timing and load on a DISI engine fueled with 2,5-dimethylfuran
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.10.008
– volume: 316
  start-page: 1597
  year: 2007
  ident: 10.1016/j.fuel.2014.04.054_b0040
  article-title: Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural
  publication-title: Science
  doi: 10.1126/science.1141199
– volume: 95
  start-page: 234
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0045
  article-title: Laminar burning characteristics of 2,5-dimethylfuran and iso-octane blend at elevated temperatures and pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.11.057
– volume: 99
  start-page: 534
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0110
  article-title: Gasoline engine exhaust gas recirculation–a review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.05.011
– volume: 87
  start-page: 2187
  year: 2010
  ident: 10.1016/j.fuel.2014.04.054_b0100
  article-title: Experimental analysis of a spark-ignition engine using exhaust gas recycle at WOT operation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2009.11.022
– volume: 158
  start-page: 539
  year: 2011
  ident: 10.1016/j.fuel.2014.04.054_b0050
  article-title: Laminar burning velocities and flame instabilities of 2,5-dimethylfuran–air mixtures at elevated pressures
  publication-title: Combust Flame
  doi: 10.1016/j.combustflame.2010.10.006
– volume: 98
  start-page: 59
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0090
  article-title: Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2012.02.073
– ident: 10.1016/j.fuel.2014.04.054_b0135
– volume: 99
  start-page: 72
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0075
  article-title: Ignition timing sensitivities of oxygenated biofuels compared to gasoline in a direct-injection SI engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.01.053
– volume: 24
  start-page: 3898
  year: 2010
  ident: 10.1016/j.fuel.2014.04.054_b0055
  article-title: Laminar burning velocities of 2,5-dimethylfuran compared with ethanol and gasoline
  publication-title: Energy Fuels
  doi: 10.1021/ef100452c
– volume: 24
  start-page: 2891
  year: 2010
  ident: 10.1016/j.fuel.2014.04.054_b0065
  article-title: Combustion and emissions of 2,5-dimethylfuran in a direct-injection spark-ignition engine
  publication-title: Energy Fuels
  doi: 10.1021/ef901575a
– volume: 37
  start-page: 14640
  issue: 19
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0120
  article-title: Effects of EGR on performance of engines with spark gap projection and fueled by biogas hydrogen blends
  publication-title: Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.07.080
– volume: 1
  start-page: 542
  year: 2008
  ident: 10.1016/j.fuel.2014.04.054_b0005
  article-title: Biofuels: a technological perspective
  publication-title: Energy Environ Sci
  doi: 10.1039/b807094f
– ident: 10.1016/j.fuel.2014.04.054_b0095
  doi: 10.4271/2011-01-1989
– ident: 10.1016/j.fuel.2014.04.054_b0130
  doi: 10.4271/841359
– volume: 447
  start-page: 982
  year: 2007
  ident: 10.1016/j.fuel.2014.04.054_b0025
  article-title: Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates
  publication-title: Nature
  doi: 10.1038/nature05923
– volume: 1
  start-page: 79
  issue: 1
  year: 2010
  ident: 10.1016/j.fuel.2014.04.054_b0015
  article-title: Catalytic conversion of renewable biomass resources to fuels and chemicals
  publication-title: Annu Rev Chem Biomol Eng
  doi: 10.1146/annurev-chembioeng-073009-100935
– ident: 10.1016/j.fuel.2014.04.054_b0030
– volume: 131
  start-page: 1979
  year: 2009
  ident: 10.1016/j.fuel.2014.04.054_b0035
  article-title: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals
  publication-title: J Am Chem Soc
  doi: 10.1021/ja808537j
– year: 1988
  ident: 10.1016/j.fuel.2014.04.054_b0125
– volume: 93
  start-page: 611
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0105
  article-title: Emission characteristics of a spark-ignition engine fueled with gasoline-n-butanol blends in combination with EGR
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.11.040
– volume: 106
  start-page: 4044
  issue: 9
  year: 2006
  ident: 10.1016/j.fuel.2014.04.054_b0010
  article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering
  publication-title: Chem Rev
  doi: 10.1021/cr068360d
– volume: 98
  start-page: 203
  year: 2012
  ident: 10.1016/j.fuel.2014.04.054_b0080
  article-title: Study of the knocking propensity of 2,5-dimethylfuran–gasoline and ethanol–gasoline blends
  publication-title: Fuel
  doi: 10.1016/j.fuel.2012.03.049
– volume: 25
  start-page: 4723
  year: 2011
  ident: 10.1016/j.fuel.2014.04.054_b0020
  article-title: Renewable oxygenate blending effects on gasoline properties
  publication-title: Energy Fuels
  doi: 10.1021/ef2010089
– volume: 38
  start-page: 2490
  issue: 5
  year: 2013
  ident: 10.1016/j.fuel.2014.04.054_b0115
  article-title: Setting a best practice for determining the EGR rate in hydrogen internal combustion engines
  publication-title: Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.11.138
SSID ssj0007854
Score 2.2814064
Snippet In the present study, the impact of exhaust gas recirculation (EGR) rates, from 0% to 15%, and compression ratio (CR) of 8, 9, and 10 on the combustion...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 36
SubjectTerms 2-Methylfuran
Applied sciences
Biofuel
Combustion
Compression ratio
Cylinders
Emissions control
Energy
Energy. Thermal use of fuels
Engines
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Exhaust
Exhaust gas recirculation
Fuels
Gasoline
Thermal efficiency
Title Performance comparison of 2-methylfuran and gasoline on a spark-ignition engine with cooled exhaust gas recirculation
URI https://dx.doi.org/10.1016/j.fuel.2014.04.054
https://www.proquest.com/docview/1544009473
https://www.proquest.com/docview/1671622485
Volume 132
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA-lvigifmK1PSL4JrHNxya5x1JaTsXig4W-hdlsomePvePuFtoX__bO7MfVIt6DsC8bZpKQyc7MJjO_Yew9VAZcqbSwR2UUaI-t8NlFUWJ78g7KWNF5x9dzO7kwny-Lyx12MuTCUFhlr_s7nd5q677lsF_Nw8V0Sjm-0hJ0CP4iEEocJZob42iXf_x9F-bhfNEhMUsriLpPnOlivHKT6PpBmhbutDD_Mk6PF7DCJctdrYu_1HZri86esie9E8mPu3k-Yzupfs4e_QEt-II13-4yAnjcFBvk88yVoLLRN7Pc4EAc6or_gBXV7kkcCYCjjlleiWkbVoQNqe2W04EtdjSfpYqn658EF0R8nNAxlrEvAvaSXZydfj-ZiL7EgohGu7Vw6N-QFc8WVErWxpzASg_oNKFoZSwBHbyxltklpbwEk0vvx6Ccr7SEEvQrtlvP6_SacaXGiS4xvYkEW58AtahVFUHeQdba7DE5rG2IPf44lcGYhSHQ7FcgeQSSRzjCp0CeDxueRYe-sZW6GEQW7u2hgOZhK9_onnw3QymP3qku5B57Nwg84NdHVypQp3mzCoRlRMGZTm-hsYTSRdBxb_5zgm_ZQ3qjMBVZ7LPd9bJJB-gLrctRu9lH7MHxpy-T81st7gp0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdG9wAIIb4mBmwYiTdkbbbjjz5OE1PHtoqHTdqb5Tg2lFVp1TbS9t9zlziFCa0PSHm6-GzL59xd7LvfEfLZV4U3pZBMH5aBgT3WzCYTWAn0aI0vQ4XnHRdjPboqvl2r6y1y3OfCYFhl1v2dTm-1daYc5NU8mE8mmOPLNUKHwC8CosSpR2Qb0anUgGwfnZ6NxmuFbKzqwJi5ZsiQc2e6MK_URLyB4EWLeKqKh-zTs7lfwqqlrtzFP5q7NUcnL8jz7EfSo26qL8lWrF-Rp3-hC74mzfc_SQE0rOsN0lmigmHl6LtpamAg6uuK_vBLLN8TKTTwFNTM4oZN2sgiIMS2W4pnttDRbBorGm9_ImIQ8lEEyFiEXAfsDbk6-Xp5PGK5ygILhTQrZsDFQUOetBcxah1S9JpbD34TSJeH0oOPN5Q8mSiE5b5IpbVDL4ytJPellztkUM_q-JZQIYYR7zFtERC5PnpQpFpUiHrnk5TFLuH92rqQIcixEsbU9bFmvxzKw6E83CE8Cni-rHnmHQDHxtaqF5m7t40cWIiNfPv35LseSlhwUKXiu-RTL3AHHyDeqvg6zpqlQzgjjM80ckMbjUBdiB737j8n-JE8Hl1enLvz0_HZe_IE32DUClcfyGC1aOIeuEarcj9v_d9DCQ0l
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+comparison+of+2-methylfuran+and+gasoline+on+a+spark-ignition+engine+with+cooled+exhaust+gas+recirculation&rft.jtitle=Fuel+%28Guildford%29&rft.au=Pan%2C+Mingzhang&rft.au=Shu%2C+Gequn&rft.au=Pan%2C+Jiaying&rft.au=Wei%2C+Haiqiao&rft.date=2014-09-15&rft.issn=0016-2361&rft.volume=132&rft.spage=36&rft.epage=43&rft_id=info:doi/10.1016%2Fj.fuel.2014.04.054&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fuel_2014_04_054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-2361&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-2361&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-2361&client=summon