Maximum likelihood estimation for semiparametric transformation models with interval-censored data
Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-ce...
Saved in:
Published in | Biometrika Vol. 103; no. 2; p. 253 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.06.2016
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject. We devise an EM-type algorithm that converges stably, even in the presence of time-dependent covariates, and show that the estimators for the regression parameters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated covariance matrix. Finally, we demonstrate the performance of our procedures through simulation studies and application to an HIV/AIDS study conducted in Thailand. |
---|---|
AbstractList | Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject. We devise an EM-type algorithm that converges stably, even in the presence of time-dependent covariates, and show that the estimators for the regression parameters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated covariance matrix. Finally, we demonstrate the performance of our procedures through simulation studies and application to an HIV/AIDS study conducted in Thailand. |
Author | Lin, D Y Zeng, Donglin Mao, Lu |
Author_xml | – sequence: 1 givenname: Donglin surname: Zeng fullname: Zeng, Donglin email: dzeng@bios.unc.edu, lmao@live.unc.edu organization: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A. , dzeng@bios.unc.edu , lmao@live.unc.edu – sequence: 2 givenname: Lu surname: Mao fullname: Mao, Lu email: dzeng@bios.unc.edu, lmao@live.unc.edu organization: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A. , dzeng@bios.unc.edu , lmao@live.unc.edu – sequence: 3 givenname: D Y surname: Lin fullname: Lin, D Y email: dzeng@bios.unc.edu, lmao@live.unc.edu organization: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A. , dzeng@bios.unc.edu , lmao@live.unc.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27279656$$D View this record in MEDLINE/PubMed |
BookMark | eNo1jztPwzAUhT0U0QeMrMh_INR2HCcZUcVLKmKBubqxr1VDHEe2S-HfE0SZzkNHn3SWZDaEAQm54uyGs7Zcdy54zGtIR8bLGVkwxlRRSinnZJnS-29UlTonc1GLup3sgnTP8OX8wdPefWDv9iEYiik7D9mFgdoQaULvRogwoaPTNEcY0tSfFj4Y7BM9urynbsgYP6EvNA4pRDTUQIYLcmahT3h50hV5u7973TwW25eHp83tttCyrHOh2pbLCrRWTWtRcMmZFNwqZjurdKUBkEmJ0PCai84o0yC2jda60bWF2ogVuf7jjofOo9mNcXoRv3f_Z8UPWbFbMw |
CitedBy_id | crossref_primary_10_1007_s11222_023_10306_3 crossref_primary_10_1002_bimj_201700304 crossref_primary_10_1007_s11222_024_10472_y crossref_primary_10_1111_biom_13879 crossref_primary_10_1007_s10260_023_00734_w crossref_primary_10_1111_biom_13599 crossref_primary_10_1111_biom_12664 crossref_primary_10_1111_biom_13760 crossref_primary_10_1214_21_EJS1820 crossref_primary_10_1007_s42952_024_00299_8 crossref_primary_10_1080_10485252_2021_1929219 crossref_primary_10_1214_24_EJS2298 crossref_primary_10_1177_0962280220975064 crossref_primary_10_1007_s11424_024_3549_6 crossref_primary_10_1007_s12561_023_09391_9 crossref_primary_10_1177_0962280219884720 crossref_primary_10_1080_00031305_2024_2407495 crossref_primary_10_1515_ijb_2023_0130 crossref_primary_10_1177_0962280219856238 crossref_primary_10_1214_24_AOAS1881 crossref_primary_10_1002_sim_10225 crossref_primary_10_3390_math11224576 crossref_primary_10_1080_10485252_2019_1687892 crossref_primary_10_1093_biomet_asw067 crossref_primary_10_1002_sim_9035 crossref_primary_10_1007_s42952_023_00224_5 crossref_primary_10_1080_24709360_2018_1529347 crossref_primary_10_1080_03610918_2023_2266158 crossref_primary_10_1007_s12561_023_09372_y crossref_primary_10_1093_biomet_asad073 crossref_primary_10_1111_sjos_12768 crossref_primary_10_1007_s42952_022_00197_x crossref_primary_10_1002_sim_10035 crossref_primary_10_1177_1471082X19859949 crossref_primary_10_1093_biostatistics_kxz002 crossref_primary_10_1002_qre_2503 crossref_primary_10_1016_j_csda_2019_06_006 crossref_primary_10_1007_s42952_020_00051_y crossref_primary_10_1080_03610926_2022_2155791 crossref_primary_10_3233_MAS_221408 crossref_primary_10_1002_sim_9724 crossref_primary_10_1016_j_csda_2018_09_008 crossref_primary_10_1214_21_AOS2117 crossref_primary_10_1002_sta4_628 crossref_primary_10_1177_0962280219829892 crossref_primary_10_1111_cts_70088 crossref_primary_10_1007_s10985_022_09550_y crossref_primary_10_1093_biomet_asaa091 crossref_primary_10_1111_biom_12914 crossref_primary_10_1007_s10114_021_0151_x crossref_primary_10_1111_biom_12911 crossref_primary_10_3150_23_BEJ1713 crossref_primary_10_1080_10618600_2024_2365740 crossref_primary_10_1111_biom_13565 crossref_primary_10_1080_00401706_2023_2241523 crossref_primary_10_1111_biom_13057 crossref_primary_10_3390_children11111350 crossref_primary_10_1002_sim_9732 crossref_primary_10_1001_jamapediatrics_2023_6770 crossref_primary_10_1007_s42952_023_00204_9 crossref_primary_10_1002_sim_9331 crossref_primary_10_1093_biomtc_ujae078 crossref_primary_10_1111_bju_15918 crossref_primary_10_1177_09622802221133552 crossref_primary_10_1093_biostatistics_kxab014 crossref_primary_10_29220_CSAM_2023_30_4_389 crossref_primary_10_1080_03610926_2019_1601221 crossref_primary_10_1007_s10985_019_09477_x crossref_primary_10_1177_09622802231181233 crossref_primary_10_1007_s42519_024_00406_2 crossref_primary_10_1016_j_csda_2024_108090 crossref_primary_10_1080_10485252_2022_2138383 crossref_primary_10_1111_biom_12744 crossref_primary_10_1002_sim_9869 crossref_primary_10_1080_03610926_2024_2400163 crossref_primary_10_1016_j_csda_2020_107157 crossref_primary_10_1016_j_csda_2024_107957 crossref_primary_10_1016_j_csda_2019_106848 crossref_primary_10_1002_sim_9184 crossref_primary_10_1097_QAD_0000000000001292 crossref_primary_10_1080_10485252_2023_2280016 crossref_primary_10_1007_s11424_021_0209_y crossref_primary_10_1681_ASN_0000000000000147 crossref_primary_10_1080_02664763_2021_1944996 crossref_primary_10_1038_s41598_024_63389_x crossref_primary_10_1111_biom_13548 crossref_primary_10_3390_economies10090218 crossref_primary_10_1002_sim_8544 crossref_primary_10_1080_02664763_2023_2263819 crossref_primary_10_1177_09622802241268601 crossref_primary_10_1080_03610926_2021_1887241 crossref_primary_10_1111_rssb_12499 crossref_primary_10_1080_03610926_2021_2012195 crossref_primary_10_1016_j_jclinepi_2024_111458 crossref_primary_10_1093_biomet_asae006 crossref_primary_10_1016_j_csda_2018_07_001 crossref_primary_10_1016_j_apm_2024_115758 crossref_primary_10_1093_biomet_asx029 crossref_primary_10_1002_sim_9927 crossref_primary_10_1007_s40304_022_00322_6 crossref_primary_10_1111_biom_12840 crossref_primary_10_1111_biom_13895 crossref_primary_10_1111_biom_12970 crossref_primary_10_1111_biom_13266 crossref_primary_10_1002_sim_8310 crossref_primary_10_1186_s12874_023_01903_x crossref_primary_10_1002_sim_9645 crossref_primary_10_1080_10618600_2024_2330523 crossref_primary_10_1093_ije_dyx134 crossref_primary_10_1093_biomet_asaa037 crossref_primary_10_1093_biomet_asac059 crossref_primary_10_1007_s12561_023_09392_8 crossref_primary_10_1080_03610926_2019_1662046 crossref_primary_10_1007_s11222_024_10523_4 crossref_primary_10_1007_s40304_023_00335_9 crossref_primary_10_1007_s10985_022_09552_w crossref_primary_10_1111_sjos_12319 crossref_primary_10_1007_s10985_023_09613_8 crossref_primary_10_1080_10705511_2024_2368023 crossref_primary_10_1016_j_dsx_2024_103155 crossref_primary_10_1186_s12889_020_09193_4 crossref_primary_10_1002_sim_8201 crossref_primary_10_1002_sim_9013 crossref_primary_10_3233_JAD_240285 crossref_primary_10_1016_j_csda_2021_107306 crossref_primary_10_1080_03610918_2020_1790600 crossref_primary_10_1177_09622802211023985 crossref_primary_10_1214_24_EJS2341 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1093/biomet/asw013 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Statistics Biology |
ExternalDocumentID | 27279656 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P01 CA142538 – fundername: NIGMS NIH HHS grantid: R01 GM047845 – fundername: NIAID NIH HHS grantid: R37 AI029168 – fundername: NIAID NIH HHS grantid: R01 AI029168 – fundername: NIAID NIH HHS grantid: P30 AI050410 – fundername: NCI NIH HHS grantid: R01 CA082659 |
GroupedDBID | -DZ -E4 -~X ..I .2P .55 .DC .GJ .I3 0R~ 1TH 23N 3R3 4.4 482 48X 53G 5GY 5RE 5VS 5WA 6J9 6OB 70D 79B 8U8 AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT AAWIL ABAWQ ABBHK ABDFA ABDTM ABEJV ABEUO ABFAN ABGNP ABIME ABIXL ABJNI ABLJU ABNGD ABNKS ABPFR ABPIB ABPPZ ABPQH ABPQP ABPTD ABQLI ABSMQ ABVGC ABWST ABXSQ ABXVV ABYWD ABZBJ ABZEO ACBEA ACFRR ACGFO ACGFS ACGOD ACHJO ACIPB ACIWK ACMTB ACNCT ACPQN ACPRK ACTMH ACUBG ACUFI ACUKT ACUTJ ACUXJ ACVCV ACYTK ACZBC ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADLSF ADMHC ADNBA ADOCK ADODI ADQBN ADRDM ADRTK ADULT ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEHUL AEJOX AEKKA AEKPW AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFIYH AFOFC AFRAH AFSHK AFVYC AFXHP AFYAG AGINJ AGKEF AGKRT AGLNM AGMDO AGORE AGQPQ AGQXC AGSYK AHGBF AHXPO AIAGR AIHAF AIJHB AJBYB AJDVS AJEEA AJEUX AJNCP ALMA_UNASSIGNED_HOLDINGS ALRMG ALTZX ALUQC ALXQX AMVHM ANAKG ANFBD APIBT APJGH APWMN AQDSO ASAOO ASPBG AS~ ATDFG ATGXG ATTQO AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BEYMZ BHONS BQUQU BTQHN C45 CAG CDBKE COF CS3 CXTWN CZ4 DAKXR DFGAJ DILTD DQDLB DSRWC DU5 D~K EBS ECEWR EE~ EJD ELUNK F5P F9B FEDTE FLIZI FLUFQ FOEOM FQBLK FVMVE GAUVT GJXCC H13 H5~ HAR HGD HQ6 HVGLF HW0 HZ~ H~9 IOX IPSME J21 JAAYA JAS JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST JXSIZ KAQDR KBUDW KOP KSI KSN M-Z MBTAY ML0 MVM N9A NGC NMDNZ NOMLY NPM NTWIH NU- NVLIB O0~ O9- ODMLO OJQWA OJZSN OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QBD R44 RD5 RNI RNS ROL ROX ROZ RUSNO RW1 RXO RZF RZO SA0 TCN TEORI TJP TN5 UAP WH7 X7H X7M XSW YAYTL YKOAZ YXANX ZCG ZGI ZKX ~02 ~91 |
ID | FETCH-LOGICAL-c437t-699145acc689fe21410421f60fbf6c5caae044ea81712bd6d8ee98ccc8c7fa7d2 |
ISSN | 0006-3444 |
IngestDate | Mon Jul 21 06:01:49 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Interval censoring Current-status data Proportional odds Nonparametric likelihood Time-dependent covariate Linear transformation model Semiparametric efficiency Proportional hazards EM algorithm |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-699145acc689fe21410421f60fbf6c5caae044ea81712bd6d8ee98ccc8c7fa7d2 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4890294 |
PMID | 27279656 |
ParticipantIDs | pubmed_primary_27279656 |
PublicationCentury | 2000 |
PublicationDate | 2016-06-01 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Biometrika |
PublicationTitleAlternate | Biometrika |
PublicationYear | 2016 |
SSID | ssj0006656 |
Score | 2.5237563 |
Snippet | Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 253 |
Title | Maximum likelihood estimation for semiparametric transformation models with interval-censored data |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27279656 |
Volume | 103 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELyI77fk4E2qaZum7VFcRcT1pCBeJElTKG53BVd8_Hpnktju-kK9lNKUkOb7Os2kM98QshtyJZiKdQBr7STgqkiCvEAlzCiTLC9jpe2ebvdCnF7xs-vkui2XarNLhmpfv36ZV_IfVOEa4IpZsn9AtukULsA54AtHQBiOv8K4K5-r-rHe61V3pldZgWIUzajbAMIHU1eo7l1j4SyNBSGaZSrcYcvg-Py2ygY_yl6gwbEdYFS6T1tr__lipj50c9dY8hvjLEVngMnADc260u6_nj820T5OqKDjjb3fZAhFGwzVGE4RxNxJNTaGk8UjDIlGzaATAP5knp10lRUWGOJH6OGJhWN3wvze1xatCBZWuXCi4z-3ftDLfm-aJJPgOWApVNy_8d9mIWw93-ZxvOoqjOvAjerAjQk1on0_H_wNu-64nCdz3mGghw79BTJh-otkxpUQfVkks-gtOLHtJaI8IWhLCNoSggLwdJwQdJwQ1BGCIiHoJ0JQJMQyuTo5vjw6DXwRjUDzOB0GAhwAnkitRZaXJsKwXh6FpWClKoVOtJSGcW5kFqZhpApRZMbkmdY602kp0yJaIVP9Qd-sESp5xgQzeahEyiVK40VhXMAbnYEhEDFbJ6tupm7vnVLK7fscbnzbsklmW75tkekSXk2zDeu8odqx0L0BbehWdA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+semiparametric+transformation+models+with+interval-censored+data&rft.jtitle=Biometrika&rft.au=Zeng%2C+Donglin&rft.au=Mao%2C+Lu&rft.au=Lin%2C+D+Y&rft.date=2016-06-01&rft.issn=0006-3444&rft.volume=103&rft.issue=2&rft.spage=253&rft_id=info:doi/10.1093%2Fbiomet%2Fasw013&rft_id=info%3Apmid%2F27279656&rft_id=info%3Apmid%2F27279656&rft.externalDocID=27279656 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon |