Maximum likelihood estimation for semiparametric transformation models with interval-censored data

Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-ce...

Full description

Saved in:
Bibliographic Details
Published inBiometrika Vol. 103; no. 2; p. 253
Main Authors Zeng, Donglin, Mao, Lu, Lin, D Y
Format Journal Article
LanguageEnglish
Published England 01.06.2016
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject. We devise an EM-type algorithm that converges stably, even in the presence of time-dependent covariates, and show that the estimators for the regression parameters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated covariance matrix. Finally, we demonstrate the performance of our procedures through simulation studies and application to an HIV/AIDS study conducted in Thailand.
AbstractList Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to occur within an interval induced by periodic monitoring. We formulate the effects of potentially time-dependent covariates on the interval-censored failure time through a broad class of semiparametric transformation models that encompasses proportional hazards and proportional odds models. We consider nonparametric maximum likelihood estimation for this class of models with an arbitrary number of monitoring times for each subject. We devise an EM-type algorithm that converges stably, even in the presence of time-dependent covariates, and show that the estimators for the regression parameters are consistent, asymptotically normal, and asymptotically efficient with an easily estimated covariance matrix. Finally, we demonstrate the performance of our procedures through simulation studies and application to an HIV/AIDS study conducted in Thailand.
Author Lin, D Y
Zeng, Donglin
Mao, Lu
Author_xml – sequence: 1
  givenname: Donglin
  surname: Zeng
  fullname: Zeng, Donglin
  email: dzeng@bios.unc.edu, lmao@live.unc.edu
  organization: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A. , dzeng@bios.unc.edu , lmao@live.unc.edu
– sequence: 2
  givenname: Lu
  surname: Mao
  fullname: Mao, Lu
  email: dzeng@bios.unc.edu, lmao@live.unc.edu
  organization: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A. , dzeng@bios.unc.edu , lmao@live.unc.edu
– sequence: 3
  givenname: D Y
  surname: Lin
  fullname: Lin, D Y
  email: dzeng@bios.unc.edu, lmao@live.unc.edu
  organization: Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina 27599, U.S.A. , dzeng@bios.unc.edu , lmao@live.unc.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27279656$$D View this record in MEDLINE/PubMed
BookMark eNo1jztPwzAUhT0U0QeMrMh_INR2HCcZUcVLKmKBubqxr1VDHEe2S-HfE0SZzkNHn3SWZDaEAQm54uyGs7Zcdy54zGtIR8bLGVkwxlRRSinnZJnS-29UlTonc1GLup3sgnTP8OX8wdPefWDv9iEYiik7D9mFgdoQaULvRogwoaPTNEcY0tSfFj4Y7BM9urynbsgYP6EvNA4pRDTUQIYLcmahT3h50hV5u7973TwW25eHp83tttCyrHOh2pbLCrRWTWtRcMmZFNwqZjurdKUBkEmJ0PCai84o0yC2jda60bWF2ogVuf7jjofOo9mNcXoRv3f_Z8UPWbFbMw
CitedBy_id crossref_primary_10_1007_s11222_023_10306_3
crossref_primary_10_1002_bimj_201700304
crossref_primary_10_1007_s11222_024_10472_y
crossref_primary_10_1111_biom_13879
crossref_primary_10_1007_s10260_023_00734_w
crossref_primary_10_1111_biom_13599
crossref_primary_10_1111_biom_12664
crossref_primary_10_1111_biom_13760
crossref_primary_10_1214_21_EJS1820
crossref_primary_10_1007_s42952_024_00299_8
crossref_primary_10_1080_10485252_2021_1929219
crossref_primary_10_1214_24_EJS2298
crossref_primary_10_1177_0962280220975064
crossref_primary_10_1007_s11424_024_3549_6
crossref_primary_10_1007_s12561_023_09391_9
crossref_primary_10_1177_0962280219884720
crossref_primary_10_1080_00031305_2024_2407495
crossref_primary_10_1515_ijb_2023_0130
crossref_primary_10_1177_0962280219856238
crossref_primary_10_1214_24_AOAS1881
crossref_primary_10_1002_sim_10225
crossref_primary_10_3390_math11224576
crossref_primary_10_1080_10485252_2019_1687892
crossref_primary_10_1093_biomet_asw067
crossref_primary_10_1002_sim_9035
crossref_primary_10_1007_s42952_023_00224_5
crossref_primary_10_1080_24709360_2018_1529347
crossref_primary_10_1080_03610918_2023_2266158
crossref_primary_10_1007_s12561_023_09372_y
crossref_primary_10_1093_biomet_asad073
crossref_primary_10_1111_sjos_12768
crossref_primary_10_1007_s42952_022_00197_x
crossref_primary_10_1002_sim_10035
crossref_primary_10_1177_1471082X19859949
crossref_primary_10_1093_biostatistics_kxz002
crossref_primary_10_1002_qre_2503
crossref_primary_10_1016_j_csda_2019_06_006
crossref_primary_10_1007_s42952_020_00051_y
crossref_primary_10_1080_03610926_2022_2155791
crossref_primary_10_3233_MAS_221408
crossref_primary_10_1002_sim_9724
crossref_primary_10_1016_j_csda_2018_09_008
crossref_primary_10_1214_21_AOS2117
crossref_primary_10_1002_sta4_628
crossref_primary_10_1177_0962280219829892
crossref_primary_10_1111_cts_70088
crossref_primary_10_1007_s10985_022_09550_y
crossref_primary_10_1093_biomet_asaa091
crossref_primary_10_1111_biom_12914
crossref_primary_10_1007_s10114_021_0151_x
crossref_primary_10_1111_biom_12911
crossref_primary_10_3150_23_BEJ1713
crossref_primary_10_1080_10618600_2024_2365740
crossref_primary_10_1111_biom_13565
crossref_primary_10_1080_00401706_2023_2241523
crossref_primary_10_1111_biom_13057
crossref_primary_10_3390_children11111350
crossref_primary_10_1002_sim_9732
crossref_primary_10_1001_jamapediatrics_2023_6770
crossref_primary_10_1007_s42952_023_00204_9
crossref_primary_10_1002_sim_9331
crossref_primary_10_1093_biomtc_ujae078
crossref_primary_10_1111_bju_15918
crossref_primary_10_1177_09622802221133552
crossref_primary_10_1093_biostatistics_kxab014
crossref_primary_10_29220_CSAM_2023_30_4_389
crossref_primary_10_1080_03610926_2019_1601221
crossref_primary_10_1007_s10985_019_09477_x
crossref_primary_10_1177_09622802231181233
crossref_primary_10_1007_s42519_024_00406_2
crossref_primary_10_1016_j_csda_2024_108090
crossref_primary_10_1080_10485252_2022_2138383
crossref_primary_10_1111_biom_12744
crossref_primary_10_1002_sim_9869
crossref_primary_10_1080_03610926_2024_2400163
crossref_primary_10_1016_j_csda_2020_107157
crossref_primary_10_1016_j_csda_2024_107957
crossref_primary_10_1016_j_csda_2019_106848
crossref_primary_10_1002_sim_9184
crossref_primary_10_1097_QAD_0000000000001292
crossref_primary_10_1080_10485252_2023_2280016
crossref_primary_10_1007_s11424_021_0209_y
crossref_primary_10_1681_ASN_0000000000000147
crossref_primary_10_1080_02664763_2021_1944996
crossref_primary_10_1038_s41598_024_63389_x
crossref_primary_10_1111_biom_13548
crossref_primary_10_3390_economies10090218
crossref_primary_10_1002_sim_8544
crossref_primary_10_1080_02664763_2023_2263819
crossref_primary_10_1177_09622802241268601
crossref_primary_10_1080_03610926_2021_1887241
crossref_primary_10_1111_rssb_12499
crossref_primary_10_1080_03610926_2021_2012195
crossref_primary_10_1016_j_jclinepi_2024_111458
crossref_primary_10_1093_biomet_asae006
crossref_primary_10_1016_j_csda_2018_07_001
crossref_primary_10_1016_j_apm_2024_115758
crossref_primary_10_1093_biomet_asx029
crossref_primary_10_1002_sim_9927
crossref_primary_10_1007_s40304_022_00322_6
crossref_primary_10_1111_biom_12840
crossref_primary_10_1111_biom_13895
crossref_primary_10_1111_biom_12970
crossref_primary_10_1111_biom_13266
crossref_primary_10_1002_sim_8310
crossref_primary_10_1186_s12874_023_01903_x
crossref_primary_10_1002_sim_9645
crossref_primary_10_1080_10618600_2024_2330523
crossref_primary_10_1093_ije_dyx134
crossref_primary_10_1093_biomet_asaa037
crossref_primary_10_1093_biomet_asac059
crossref_primary_10_1007_s12561_023_09392_8
crossref_primary_10_1080_03610926_2019_1662046
crossref_primary_10_1007_s11222_024_10523_4
crossref_primary_10_1007_s40304_023_00335_9
crossref_primary_10_1007_s10985_022_09552_w
crossref_primary_10_1111_sjos_12319
crossref_primary_10_1007_s10985_023_09613_8
crossref_primary_10_1080_10705511_2024_2368023
crossref_primary_10_1016_j_dsx_2024_103155
crossref_primary_10_1186_s12889_020_09193_4
crossref_primary_10_1002_sim_8201
crossref_primary_10_1002_sim_9013
crossref_primary_10_3233_JAD_240285
crossref_primary_10_1016_j_csda_2021_107306
crossref_primary_10_1080_03610918_2020_1790600
crossref_primary_10_1177_09622802211023985
crossref_primary_10_1214_24_EJS2341
ContentType Journal Article
DBID NPM
DOI 10.1093/biomet/asw013
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Statistics
Biology
ExternalDocumentID 27279656
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P01 CA142538
– fundername: NIGMS NIH HHS
  grantid: R01 GM047845
– fundername: NIAID NIH HHS
  grantid: R37 AI029168
– fundername: NIAID NIH HHS
  grantid: R01 AI029168
– fundername: NIAID NIH HHS
  grantid: P30 AI050410
– fundername: NCI NIH HHS
  grantid: R01 CA082659
GroupedDBID -DZ
-E4
-~X
..I
.2P
.55
.DC
.GJ
.I3
0R~
1TH
23N
3R3
4.4
482
48X
53G
5GY
5RE
5VS
5WA
6J9
6OB
70D
79B
8U8
AAIJN
AAJKP
AAJQQ
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAWDT
AAWIL
ABAWQ
ABBHK
ABDFA
ABDTM
ABEJV
ABEUO
ABFAN
ABGNP
ABIME
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABPFR
ABPIB
ABPPZ
ABPQH
ABPQP
ABPTD
ABQLI
ABSMQ
ABVGC
ABWST
ABXSQ
ABXVV
ABYWD
ABZBJ
ABZEO
ACBEA
ACFRR
ACGFO
ACGFS
ACGOD
ACHJO
ACIPB
ACIWK
ACMTB
ACNCT
ACPQN
ACPRK
ACTMH
ACUBG
ACUFI
ACUKT
ACUTJ
ACUXJ
ACVCV
ACYTK
ACZBC
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADLSF
ADMHC
ADNBA
ADOCK
ADODI
ADQBN
ADRDM
ADRTK
ADULT
ADVEK
ADYJX
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEHUL
AEJOX
AEKKA
AEKPW
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFIYH
AFOFC
AFRAH
AFSHK
AFVYC
AFXHP
AFYAG
AGINJ
AGKEF
AGKRT
AGLNM
AGMDO
AGORE
AGQPQ
AGQXC
AGSYK
AHGBF
AHXPO
AIAGR
AIHAF
AIJHB
AJBYB
AJDVS
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALTZX
ALUQC
ALXQX
AMVHM
ANAKG
ANFBD
APIBT
APJGH
APWMN
AQDSO
ASAOO
ASPBG
AS~
ATDFG
ATGXG
ATTQO
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BEYMZ
BHONS
BQUQU
BTQHN
C45
CAG
CDBKE
COF
CS3
CXTWN
CZ4
DAKXR
DFGAJ
DILTD
DQDLB
DSRWC
DU5
D~K
EBS
ECEWR
EE~
EJD
ELUNK
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FQBLK
FVMVE
GAUVT
GJXCC
H13
H5~
HAR
HGD
HQ6
HVGLF
HW0
HZ~
H~9
IOX
IPSME
J21
JAAYA
JAS
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
MBTAY
ML0
MVM
N9A
NGC
NMDNZ
NOMLY
NPM
NTWIH
NU-
NVLIB
O0~
O9-
ODMLO
OJQWA
OJZSN
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZF
RZO
SA0
TCN
TEORI
TJP
TN5
UAP
WH7
X7H
X7M
XSW
YAYTL
YKOAZ
YXANX
ZCG
ZGI
ZKX
~02
~91
ID FETCH-LOGICAL-c437t-699145acc689fe21410421f60fbf6c5caae044ea81712bd6d8ee98ccc8c7fa7d2
ISSN 0006-3444
IngestDate Mon Jul 21 06:01:49 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Interval censoring
Current-status data
Proportional odds
Nonparametric likelihood
Time-dependent covariate
Linear transformation model
Semiparametric efficiency
Proportional hazards
EM algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-699145acc689fe21410421f60fbf6c5caae044ea81712bd6d8ee98ccc8c7fa7d2
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4890294
PMID 27279656
ParticipantIDs pubmed_primary_27279656
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Biometrika
PublicationTitleAlternate Biometrika
PublicationYear 2016
SSID ssj0006656
Score 2.5237563
Snippet Interval censoring arises frequently in clinical, epidemiological, financial and sociological studies, where the event or failure of interest is known only to...
SourceID pubmed
SourceType Index Database
StartPage 253
Title Maximum likelihood estimation for semiparametric transformation models with interval-censored data
URI https://www.ncbi.nlm.nih.gov/pubmed/27279656
Volume 103
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-ELyI77fk4E2qaZum7VFcRcT1pCBeJElTKG53BVd8_Hpnktju-kK9lNKUkOb7Os2kM98QshtyJZiKdQBr7STgqkiCvEAlzCiTLC9jpe2ebvdCnF7xs-vkui2XarNLhmpfv36ZV_IfVOEa4IpZsn9AtukULsA54AtHQBiOv8K4K5-r-rHe61V3pldZgWIUzajbAMIHU1eo7l1j4SyNBSGaZSrcYcvg-Py2ygY_yl6gwbEdYFS6T1tr__lipj50c9dY8hvjLEVngMnADc260u6_nj820T5OqKDjjb3fZAhFGwzVGE4RxNxJNTaGk8UjDIlGzaATAP5knp10lRUWGOJH6OGJhWN3wvze1xatCBZWuXCi4z-3ftDLfm-aJJPgOWApVNy_8d9mIWw93-ZxvOoqjOvAjerAjQk1on0_H_wNu-64nCdz3mGghw79BTJh-otkxpUQfVkks-gtOLHtJaI8IWhLCNoSggLwdJwQdJwQ1BGCIiHoJ0JQJMQyuTo5vjw6DXwRjUDzOB0GAhwAnkitRZaXJsKwXh6FpWClKoVOtJSGcW5kFqZhpApRZMbkmdY602kp0yJaIVP9Qd-sESp5xgQzeahEyiVK40VhXMAbnYEhEDFbJ6tupm7vnVLK7fscbnzbsklmW75tkekSXk2zDeu8odqx0L0BbehWdA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Maximum+likelihood+estimation+for+semiparametric+transformation+models+with+interval-censored+data&rft.jtitle=Biometrika&rft.au=Zeng%2C+Donglin&rft.au=Mao%2C+Lu&rft.au=Lin%2C+D+Y&rft.date=2016-06-01&rft.issn=0006-3444&rft.volume=103&rft.issue=2&rft.spage=253&rft_id=info:doi/10.1093%2Fbiomet%2Fasw013&rft_id=info%3Apmid%2F27279656&rft_id=info%3Apmid%2F27279656&rft.externalDocID=27279656
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3444&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3444&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3444&client=summon