Spin Nernst Effect of Magnons in Collinear Antiferromagnets

In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction,...

Full description

Saved in:
Bibliographic Details
Published inPhysical review letters Vol. 117; no. 21; p. 217202
Main Authors Cheng, Ran, Okamoto, Satoshi, Xiao, Di
Format Journal Article
LanguageEnglish
Published United States 15.11.2016
Online AccessGet more information

Cover

Loading…
Abstract In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction, we show that a longitudinal temperature gradient can drive the two modes to opposite transverse directions, realizing a spin Nernst effect of magnons with vanishing thermal Hall current. We find that magnons around the Γ point and the K point contribute oppositely to the transverse spin transport, and their competition leads to a sign change of the spin Nernst coefficient at finite temperature. Possible material candidates are discussed.
AbstractList In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction, we show that a longitudinal temperature gradient can drive the two modes to opposite transverse directions, realizing a spin Nernst effect of magnons with vanishing thermal Hall current. We find that magnons around the Γ point and the K point contribute oppositely to the transverse spin transport, and their competition leads to a sign change of the spin Nernst coefficient at finite temperature. Possible material candidates are discussed.
Author Xiao, Di
Cheng, Ran
Okamoto, Satoshi
Author_xml – sequence: 1
  givenname: Ran
  surname: Cheng
  fullname: Cheng, Ran
  organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
– sequence: 2
  givenname: Satoshi
  surname: Okamoto
  fullname: Okamoto, Satoshi
  organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
– sequence: 3
  givenname: Di
  surname: Xiao
  fullname: Xiao, Di
  organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27911532$$D View this record in MEDLINE/PubMed
BookMark eNo1j91KxDAUhIMo7o--wpIX6JqTpEmKV8uyrsKqF-r1kqanWmnTkkRh396AejXMfDDDLMi5Hz0SsgK2BmDiZvo4xYDfPaaUA73moDnjZ2QOTFeFBpAzsojxkzEGXJlLMuO6AigFn5Pbl6nz9AmDj4nu2hZdomNLH-17Hok0s-3Y951HG-jGp67FEMYhU0zxily0to94_adL8na3e93eF4fn_cN2cyicFDoVpSlNXTHjrANjhahqpVomS5Udt8yyWnKpUDXQ1E0Wg8AbhuBE6bRUji_J6rd3-qoHbI5T6AYbTsf_F_wHt4NMOQ
CitedBy_id crossref_primary_10_1103_PhysRevB_97_014417
crossref_primary_10_1038_s42254_019_0110_y
crossref_primary_10_1103_PhysRevB_108_165412
crossref_primary_10_1103_PhysRevLett_127_207402
crossref_primary_10_1103_PhysRevLett_132_236302
crossref_primary_10_1016_j_physb_2023_414721
crossref_primary_10_1103_PhysRevB_110_235109
crossref_primary_10_1103_PhysRevResearch_4_013186
crossref_primary_10_1103_PhysRevB_99_014427
crossref_primary_10_1103_PhysRevB_99_054422
crossref_primary_10_1039_D1CP03989J
crossref_primary_10_1103_PhysRevB_97_035125
crossref_primary_10_1103_PhysRevB_104_L180402
crossref_primary_10_1103_PhysRevResearch_6_L032050
crossref_primary_10_1103_PhysRevB_103_024424
crossref_primary_10_1021_acs_nanolett_0c03220
crossref_primary_10_1103_PhysRevB_101_024427
crossref_primary_10_1088_1361_648X_ac9a28
crossref_primary_10_1103_PhysRevB_99_041110
crossref_primary_10_1103_PhysRevB_110_094427
crossref_primary_10_1103_PhysRevB_102_115152
crossref_primary_10_1103_PhysRevB_110_165147
crossref_primary_10_1103_PhysRevB_97_014433
crossref_primary_10_1103_PhysRevB_105_174427
crossref_primary_10_1103_PhysRevB_105_224401
crossref_primary_10_7566_JPSJ_90_081004
crossref_primary_10_1103_PhysRevB_105_165152
crossref_primary_10_1088_1674_1056_ad6425
crossref_primary_10_1103_PhysRevB_108_085435
crossref_primary_10_1103_PhysRevLett_129_167202
crossref_primary_10_1088_2053_1583_aa75ed
crossref_primary_10_1103_PhysRevB_97_054404
crossref_primary_10_1103_PhysRevB_99_214413
crossref_primary_10_1103_PhysRevB_109_174436
crossref_primary_10_1103_PhysRevB_110_054434
crossref_primary_10_1209_0295_5075_125_36002
crossref_primary_10_1103_PhysRevLett_122_187203
crossref_primary_10_1038_s42005_019_0128_6
crossref_primary_10_1103_PhysRevB_97_020402
crossref_primary_10_1103_PhysRevB_107_024408
crossref_primary_10_1103_PhysRevB_111_064401
crossref_primary_10_1103_PhysRevResearch_2_013079
crossref_primary_10_1103_PhysRevB_109_024441
crossref_primary_10_1038_s41586_025_08715_7
crossref_primary_10_1103_PhysRevB_110_054429
crossref_primary_10_1103_PhysRevB_105_094440
crossref_primary_10_1103_PhysRevLett_124_027601
crossref_primary_10_1103_PhysRevB_101_205425
crossref_primary_10_1088_1674_1056_ac6eed
crossref_primary_10_1103_PhysRevB_107_054439
crossref_primary_10_1103_PhysRevB_110_214441
crossref_primary_10_1038_s41598_020_74047_3
crossref_primary_10_1103_PhysRevB_100_060410
crossref_primary_10_1103_PhysRevB_98_035424
crossref_primary_10_1021_acsnano_4c03529
crossref_primary_10_1021_acsaelm_2c00419
crossref_primary_10_1063_5_0084359
crossref_primary_10_1088_1361_648X_aa7dd2
crossref_primary_10_1103_PhysRevResearch_5_L042032
crossref_primary_10_1093_ptep_ptaa151
crossref_primary_10_1063_1_4985615
crossref_primary_10_1103_PhysRevB_106_L220401
crossref_primary_10_1103_PhysRevB_96_104437
crossref_primary_10_1021_acsanm_2c03296
crossref_primary_10_1103_PhysRevB_103_014425
crossref_primary_10_1103_PhysRevB_104_L100404
crossref_primary_10_1021_acs_nanolett_4c06015
crossref_primary_10_1103_PhysRevB_111_014408
crossref_primary_10_1103_PhysRevB_98_134450
crossref_primary_10_1039_C7DT03249H
crossref_primary_10_1103_PhysRevB_101_205407
crossref_primary_10_1016_j_physe_2019_113899
crossref_primary_10_1103_PhysRevB_109_134405
crossref_primary_10_1021_acs_nanolett_4c01486
crossref_primary_10_1103_PhysRevB_111_064426
crossref_primary_10_1103_PhysRevLett_125_247204
crossref_primary_10_1103_PhysRevB_98_020401
crossref_primary_10_1038_s41598_023_32598_1
crossref_primary_10_1103_PhysRevB_109_184435
crossref_primary_10_1088_1361_6463_ac28fa
crossref_primary_10_1103_PhysRevB_107_214434
crossref_primary_10_1016_j_jmmm_2024_172358
crossref_primary_10_1038_s42005_020_00490_3
crossref_primary_10_1103_PhysRevB_100_224416
crossref_primary_10_1103_PhysRevB_109_134415
crossref_primary_10_1103_PhysRevB_95_020401
crossref_primary_10_1103_PhysRevB_95_224403
crossref_primary_10_1038_s41598_019_43702_9
crossref_primary_10_1103_PhysRevLett_127_097401
crossref_primary_10_1103_PhysRevB_102_075131
crossref_primary_10_1103_PhysRevResearch_3_023248
crossref_primary_10_1103_PhysRevB_100_014421
crossref_primary_10_1103_PhysRevB_103_014407
crossref_primary_10_1103_PhysRevB_108_045143
crossref_primary_10_1103_PhysRevLett_119_046403
crossref_primary_10_1038_s41598_020_72000_y
crossref_primary_10_1103_PhysRevLett_125_117209
crossref_primary_10_1103_PhysRevX_11_021061
crossref_primary_10_1063_5_0030368
crossref_primary_10_1103_PhysRevApplied_16_034035
crossref_primary_10_1103_PhysRevB_94_174444
crossref_primary_10_1021_acs_nanolett_0c00363
crossref_primary_10_1063_5_0181317
crossref_primary_10_1103_PhysRevX_8_041028
crossref_primary_10_1103_PhysRevB_100_174402
crossref_primary_10_1088_1361_6463_aa5b09
crossref_primary_10_1103_PhysRevB_106_085131
crossref_primary_10_1002_smtd_201700343
crossref_primary_10_1103_PhysRevLett_119_177202
crossref_primary_10_1103_PhysRevB_104_104412
crossref_primary_10_1103_PhysRevB_103_155151
crossref_primary_10_1103_PhysRevB_102_075432
crossref_primary_10_1103_PhysRevB_108_024409
crossref_primary_10_1103_PhysRevLett_117_217203
crossref_primary_10_1002_adfm_202407469
crossref_primary_10_1103_PhysRevB_98_020408
crossref_primary_10_1103_PhysRevResearch_6_023044
crossref_primary_10_1063_5_0191253
crossref_primary_10_1103_PhysRevB_98_134422
crossref_primary_10_1103_PhysRevB_108_224424
crossref_primary_10_59717_j_xinn_mater_2024_100109
crossref_primary_10_1103_PhysRevB_102_094404
crossref_primary_10_1103_PhysRevB_96_134425
crossref_primary_10_1103_PhysRevB_110_045423
crossref_primary_10_1103_PhysRevB_108_L180401
crossref_primary_10_1103_PhysRevB_106_125103
crossref_primary_10_1103_PhysRevB_111_L020412
crossref_primary_10_1103_PhysRevLett_123_237207
crossref_primary_10_1103_PhysRevB_108_214402
crossref_primary_10_1103_PhysRevB_108_094427
crossref_primary_10_1103_PhysRevB_111_024416
crossref_primary_10_1016_j_jmmm_2024_171911
crossref_primary_10_1021_acs_nanolett_2c00562
crossref_primary_10_1103_PhysRevB_100_064412
crossref_primary_10_1038_s41467_024_51943_0
crossref_primary_10_1016_j_jmmm_2023_171043
crossref_primary_10_1103_PhysRevMaterials_4_094004
crossref_primary_10_1002_pssr_202100130
crossref_primary_10_1103_PhysRevB_104_174410
crossref_primary_10_1103_PhysRevB_111_035423
crossref_primary_10_1038_s41598_019_51646_3
crossref_primary_10_1038_s41467_021_23658_z
crossref_primary_10_1103_PhysRevB_105_L100402
crossref_primary_10_1063_5_0256440
crossref_primary_10_1063_5_0137520
crossref_primary_10_1016_j_physb_2017_10_126
crossref_primary_10_1016_j_physrep_2024_01_006
crossref_primary_10_1103_PhysRevB_95_104418
crossref_primary_10_1103_PhysRevB_97_174407
crossref_primary_10_1103_PhysRevB_99_224433
crossref_primary_10_1103_PhysRevLett_121_207202
crossref_primary_10_7498_aps_72_20221997
crossref_primary_10_1103_PhysRevB_97_180401
crossref_primary_10_1016_j_physe_2021_114984
crossref_primary_10_1103_PhysRevX_9_011026
crossref_primary_10_1063_5_0054409
crossref_primary_10_1103_PhysRevB_106_035113
crossref_primary_10_1016_j_physe_2020_114580
crossref_primary_10_1063_5_0096968
crossref_primary_10_1038_s41598_019_42742_5
crossref_primary_10_1002_apxr_202300054
crossref_primary_10_3390_e26121060
crossref_primary_10_1063_5_0124441
crossref_primary_10_1103_PhysRevResearch_5_033026
crossref_primary_10_1063_1_4985577
crossref_primary_10_1103_PhysRevB_107_064403
crossref_primary_10_1103_PhysRevB_98_094419
crossref_primary_10_1103_PhysRevLett_124_147204
crossref_primary_10_1103_PhysRevB_101_195133
crossref_primary_10_1103_PhysRevB_103_214411
crossref_primary_10_1103_PhysRevLett_119_107205
crossref_primary_10_1103_PhysRevLett_123_167202
crossref_primary_10_1002_andp_201900350
crossref_primary_10_1103_PhysRevB_107_245426
crossref_primary_10_1021_acs_nanolett_4c00430
crossref_primary_10_1103_PhysRevB_96_224414
crossref_primary_10_1016_j_jmmm_2023_171117
crossref_primary_10_1103_PhysRevB_110_064429
crossref_primary_10_1103_PhysRevLett_124_077201
crossref_primary_10_1038_s41524_021_00570_0
crossref_primary_10_1103_PhysRevLett_130_266703
crossref_primary_10_1146_annurev_conmatphys_031620_104715
crossref_primary_10_1103_PhysRevB_101_214403
crossref_primary_10_1103_PhysRevResearch_4_013001
crossref_primary_10_1103_PhysRevB_97_140401
crossref_primary_10_1038_s41524_022_00735_5
crossref_primary_10_1103_PhysRevB_110_174426
crossref_primary_10_1103_PhysRevB_98_115424
crossref_primary_10_1088_1674_1056_28_7_078503
crossref_primary_10_1103_PhysRevB_106_035148
crossref_primary_10_1103_PhysRevB_107_064429
crossref_primary_10_1103_PhysRevLett_128_117201
crossref_primary_10_1103_PhysRevLett_130_216703
crossref_primary_10_1088_1674_1056_ad7af7
crossref_primary_10_1103_RevModPhys_90_015005
crossref_primary_10_1103_PhysRevB_102_075407
crossref_primary_10_1103_PhysRevB_101_235430
crossref_primary_10_1103_PhysRevB_100_100401
ContentType Journal Article
DBID NPM
DOI 10.1103/physrevlett.117.217202
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
ExternalDocumentID 27911532
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
ID FETCH-LOGICAL-c437t-5858b908cac18a339b66f045618a2a0a0b4246e6d1dbde6d8e12d0e1c35c746c2
IngestDate Thu Jan 02 23:10:18 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-5858b908cac18a339b66f045618a2a0a0b4246e6d1dbde6d8e12d0e1c35c746c2
OpenAccessLink https://www.osti.gov/servlets/purl/1333660
PMID 27911532
ParticipantIDs pubmed_primary_27911532
PublicationCentury 2000
PublicationDate 2016-11-15
PublicationDateYYYYMMDD 2016-11-15
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2016
SSID ssj0001268
Score 2.644193
Snippet In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin...
SourceID pubmed
SourceType Index Database
StartPage 217202
Title Spin Nernst Effect of Magnons in Collinear Antiferromagnets
URI https://www.ncbi.nlm.nih.gov/pubmed/27911532
Volume 117
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT8IwFMcb1JjwYrzfzR58M8Nu67ouPhHUGBIvUUl4I70hRGUE54uf3tO1GwYxUV8G6wmj268cTs_6P0PomNA4ZIxyn8WJ9Anj2hcsinyaKs2Tfkw4Nnrn6xt61SHtbtyt1dpfVi2956IhP-bqSv5DFdqAq1HJ_oFsdVBogPfAF7ZAGLa_YvwwHo7ATU0gxDtxZYiLFS1PI7c-vFWU3Da1eppmUZCeTLJXsGpbvqkMSu9KVk7H8lJIfKpguzXQ1iHcT0fS7TMHxpnNKefZ22BYWrpDXjSfD78mFAJqlHVWUtnQ1gniJPWTwIo7Ky9pJZZuOFhVc-X0krCQTc_xx9jUhTBJGjgD03tzk7jx_QNwXcevBaUwAfcbR7-wztTJLk0LaAFmDOYRqCZvUy-zbZQ5fTh06XR-h0xhaHeQmUlGEWw8rqIVN0vwmhb5Gqrp0TpatpzeNtCZAe9Z8J4F72V9z4H3wFaB92bBb6LO5cVj68p3T8HwJYmS3If5HBMpZpLLgPEoSgWlfROIw17IMceChIRqqgIlFLwwHYQK60BGsUwIleEWWoQv1zvIw9CmIF7UVEYE_tcEw4qGqeQ0UEqkwS7atmfdG9tSJ73yeuz9aNlH9ekgOkBLffht6UMI1HJxVDD4BBk8PS4
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+Nernst+Effect+of+Magnons+in+Collinear+Antiferromagnets&rft.jtitle=Physical+review+letters&rft.au=Cheng%2C+Ran&rft.au=Okamoto%2C+Satoshi&rft.au=Xiao%2C+Di&rft.date=2016-11-15&rft.eissn=1079-7114&rft.volume=117&rft.issue=21&rft.spage=217202&rft_id=info:doi/10.1103%2Fphysrevlett.117.217202&rft_id=info%3Apmid%2F27911532&rft_id=info%3Apmid%2F27911532&rft.externalDocID=27911532