Spin Nernst Effect of Magnons in Collinear Antiferromagnets
In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction,...
Saved in:
Published in | Physical review letters Vol. 117; no. 21; p. 217202 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
15.11.2016
|
Online Access | Get more information |
Cover
Loading…
Abstract | In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction, we show that a longitudinal temperature gradient can drive the two modes to opposite transverse directions, realizing a spin Nernst effect of magnons with vanishing thermal Hall current. We find that magnons around the Γ point and the K point contribute oppositely to the transverse spin transport, and their competition leads to a sign change of the spin Nernst coefficient at finite temperature. Possible material candidates are discussed. |
---|---|
AbstractList | In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin angular momentum and exhibit opposite chirality. Using a honeycomb antiferromagnet in the presence of the Dzyaloshinskii-Moriya interaction, we show that a longitudinal temperature gradient can drive the two modes to opposite transverse directions, realizing a spin Nernst effect of magnons with vanishing thermal Hall current. We find that magnons around the Γ point and the K point contribute oppositely to the transverse spin transport, and their competition leads to a sign change of the spin Nernst coefficient at finite temperature. Possible material candidates are discussed. |
Author | Xiao, Di Cheng, Ran Okamoto, Satoshi |
Author_xml | – sequence: 1 givenname: Ran surname: Cheng fullname: Cheng, Ran organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA – sequence: 2 givenname: Satoshi surname: Okamoto fullname: Okamoto, Satoshi organization: Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA – sequence: 3 givenname: Di surname: Xiao fullname: Xiao, Di organization: Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27911532$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j91KxDAUhIMo7o--wpIX6JqTpEmKV8uyrsKqF-r1kqanWmnTkkRh396AejXMfDDDLMi5Hz0SsgK2BmDiZvo4xYDfPaaUA73moDnjZ2QOTFeFBpAzsojxkzEGXJlLMuO6AigFn5Pbl6nz9AmDj4nu2hZdomNLH-17Hok0s-3Y951HG-jGp67FEMYhU0zxily0to94_adL8na3e93eF4fn_cN2cyicFDoVpSlNXTHjrANjhahqpVomS5Udt8yyWnKpUDXQ1E0Wg8AbhuBE6bRUji_J6rd3-qoHbI5T6AYbTsf_F_wHt4NMOQ |
CitedBy_id | crossref_primary_10_1103_PhysRevB_97_014417 crossref_primary_10_1038_s42254_019_0110_y crossref_primary_10_1103_PhysRevB_108_165412 crossref_primary_10_1103_PhysRevLett_127_207402 crossref_primary_10_1103_PhysRevLett_132_236302 crossref_primary_10_1016_j_physb_2023_414721 crossref_primary_10_1103_PhysRevB_110_235109 crossref_primary_10_1103_PhysRevResearch_4_013186 crossref_primary_10_1103_PhysRevB_99_014427 crossref_primary_10_1103_PhysRevB_99_054422 crossref_primary_10_1039_D1CP03989J crossref_primary_10_1103_PhysRevB_97_035125 crossref_primary_10_1103_PhysRevB_104_L180402 crossref_primary_10_1103_PhysRevResearch_6_L032050 crossref_primary_10_1103_PhysRevB_103_024424 crossref_primary_10_1021_acs_nanolett_0c03220 crossref_primary_10_1103_PhysRevB_101_024427 crossref_primary_10_1088_1361_648X_ac9a28 crossref_primary_10_1103_PhysRevB_99_041110 crossref_primary_10_1103_PhysRevB_110_094427 crossref_primary_10_1103_PhysRevB_102_115152 crossref_primary_10_1103_PhysRevB_110_165147 crossref_primary_10_1103_PhysRevB_97_014433 crossref_primary_10_1103_PhysRevB_105_174427 crossref_primary_10_1103_PhysRevB_105_224401 crossref_primary_10_7566_JPSJ_90_081004 crossref_primary_10_1103_PhysRevB_105_165152 crossref_primary_10_1088_1674_1056_ad6425 crossref_primary_10_1103_PhysRevB_108_085435 crossref_primary_10_1103_PhysRevLett_129_167202 crossref_primary_10_1088_2053_1583_aa75ed crossref_primary_10_1103_PhysRevB_97_054404 crossref_primary_10_1103_PhysRevB_99_214413 crossref_primary_10_1103_PhysRevB_109_174436 crossref_primary_10_1103_PhysRevB_110_054434 crossref_primary_10_1209_0295_5075_125_36002 crossref_primary_10_1103_PhysRevLett_122_187203 crossref_primary_10_1038_s42005_019_0128_6 crossref_primary_10_1103_PhysRevB_97_020402 crossref_primary_10_1103_PhysRevB_107_024408 crossref_primary_10_1103_PhysRevB_111_064401 crossref_primary_10_1103_PhysRevResearch_2_013079 crossref_primary_10_1103_PhysRevB_109_024441 crossref_primary_10_1038_s41586_025_08715_7 crossref_primary_10_1103_PhysRevB_110_054429 crossref_primary_10_1103_PhysRevB_105_094440 crossref_primary_10_1103_PhysRevLett_124_027601 crossref_primary_10_1103_PhysRevB_101_205425 crossref_primary_10_1088_1674_1056_ac6eed crossref_primary_10_1103_PhysRevB_107_054439 crossref_primary_10_1103_PhysRevB_110_214441 crossref_primary_10_1038_s41598_020_74047_3 crossref_primary_10_1103_PhysRevB_100_060410 crossref_primary_10_1103_PhysRevB_98_035424 crossref_primary_10_1021_acsnano_4c03529 crossref_primary_10_1021_acsaelm_2c00419 crossref_primary_10_1063_5_0084359 crossref_primary_10_1088_1361_648X_aa7dd2 crossref_primary_10_1103_PhysRevResearch_5_L042032 crossref_primary_10_1093_ptep_ptaa151 crossref_primary_10_1063_1_4985615 crossref_primary_10_1103_PhysRevB_106_L220401 crossref_primary_10_1103_PhysRevB_96_104437 crossref_primary_10_1021_acsanm_2c03296 crossref_primary_10_1103_PhysRevB_103_014425 crossref_primary_10_1103_PhysRevB_104_L100404 crossref_primary_10_1021_acs_nanolett_4c06015 crossref_primary_10_1103_PhysRevB_111_014408 crossref_primary_10_1103_PhysRevB_98_134450 crossref_primary_10_1039_C7DT03249H crossref_primary_10_1103_PhysRevB_101_205407 crossref_primary_10_1016_j_physe_2019_113899 crossref_primary_10_1103_PhysRevB_109_134405 crossref_primary_10_1021_acs_nanolett_4c01486 crossref_primary_10_1103_PhysRevB_111_064426 crossref_primary_10_1103_PhysRevLett_125_247204 crossref_primary_10_1103_PhysRevB_98_020401 crossref_primary_10_1038_s41598_023_32598_1 crossref_primary_10_1103_PhysRevB_109_184435 crossref_primary_10_1088_1361_6463_ac28fa crossref_primary_10_1103_PhysRevB_107_214434 crossref_primary_10_1016_j_jmmm_2024_172358 crossref_primary_10_1038_s42005_020_00490_3 crossref_primary_10_1103_PhysRevB_100_224416 crossref_primary_10_1103_PhysRevB_109_134415 crossref_primary_10_1103_PhysRevB_95_020401 crossref_primary_10_1103_PhysRevB_95_224403 crossref_primary_10_1038_s41598_019_43702_9 crossref_primary_10_1103_PhysRevLett_127_097401 crossref_primary_10_1103_PhysRevB_102_075131 crossref_primary_10_1103_PhysRevResearch_3_023248 crossref_primary_10_1103_PhysRevB_100_014421 crossref_primary_10_1103_PhysRevB_103_014407 crossref_primary_10_1103_PhysRevB_108_045143 crossref_primary_10_1103_PhysRevLett_119_046403 crossref_primary_10_1038_s41598_020_72000_y crossref_primary_10_1103_PhysRevLett_125_117209 crossref_primary_10_1103_PhysRevX_11_021061 crossref_primary_10_1063_5_0030368 crossref_primary_10_1103_PhysRevApplied_16_034035 crossref_primary_10_1103_PhysRevB_94_174444 crossref_primary_10_1021_acs_nanolett_0c00363 crossref_primary_10_1063_5_0181317 crossref_primary_10_1103_PhysRevX_8_041028 crossref_primary_10_1103_PhysRevB_100_174402 crossref_primary_10_1088_1361_6463_aa5b09 crossref_primary_10_1103_PhysRevB_106_085131 crossref_primary_10_1002_smtd_201700343 crossref_primary_10_1103_PhysRevLett_119_177202 crossref_primary_10_1103_PhysRevB_104_104412 crossref_primary_10_1103_PhysRevB_103_155151 crossref_primary_10_1103_PhysRevB_102_075432 crossref_primary_10_1103_PhysRevB_108_024409 crossref_primary_10_1103_PhysRevLett_117_217203 crossref_primary_10_1002_adfm_202407469 crossref_primary_10_1103_PhysRevB_98_020408 crossref_primary_10_1103_PhysRevResearch_6_023044 crossref_primary_10_1063_5_0191253 crossref_primary_10_1103_PhysRevB_98_134422 crossref_primary_10_1103_PhysRevB_108_224424 crossref_primary_10_59717_j_xinn_mater_2024_100109 crossref_primary_10_1103_PhysRevB_102_094404 crossref_primary_10_1103_PhysRevB_96_134425 crossref_primary_10_1103_PhysRevB_110_045423 crossref_primary_10_1103_PhysRevB_108_L180401 crossref_primary_10_1103_PhysRevB_106_125103 crossref_primary_10_1103_PhysRevB_111_L020412 crossref_primary_10_1103_PhysRevLett_123_237207 crossref_primary_10_1103_PhysRevB_108_214402 crossref_primary_10_1103_PhysRevB_108_094427 crossref_primary_10_1103_PhysRevB_111_024416 crossref_primary_10_1016_j_jmmm_2024_171911 crossref_primary_10_1021_acs_nanolett_2c00562 crossref_primary_10_1103_PhysRevB_100_064412 crossref_primary_10_1038_s41467_024_51943_0 crossref_primary_10_1016_j_jmmm_2023_171043 crossref_primary_10_1103_PhysRevMaterials_4_094004 crossref_primary_10_1002_pssr_202100130 crossref_primary_10_1103_PhysRevB_104_174410 crossref_primary_10_1103_PhysRevB_111_035423 crossref_primary_10_1038_s41598_019_51646_3 crossref_primary_10_1038_s41467_021_23658_z crossref_primary_10_1103_PhysRevB_105_L100402 crossref_primary_10_1063_5_0256440 crossref_primary_10_1063_5_0137520 crossref_primary_10_1016_j_physb_2017_10_126 crossref_primary_10_1016_j_physrep_2024_01_006 crossref_primary_10_1103_PhysRevB_95_104418 crossref_primary_10_1103_PhysRevB_97_174407 crossref_primary_10_1103_PhysRevB_99_224433 crossref_primary_10_1103_PhysRevLett_121_207202 crossref_primary_10_7498_aps_72_20221997 crossref_primary_10_1103_PhysRevB_97_180401 crossref_primary_10_1016_j_physe_2021_114984 crossref_primary_10_1103_PhysRevX_9_011026 crossref_primary_10_1063_5_0054409 crossref_primary_10_1103_PhysRevB_106_035113 crossref_primary_10_1016_j_physe_2020_114580 crossref_primary_10_1063_5_0096968 crossref_primary_10_1038_s41598_019_42742_5 crossref_primary_10_1002_apxr_202300054 crossref_primary_10_3390_e26121060 crossref_primary_10_1063_5_0124441 crossref_primary_10_1103_PhysRevResearch_5_033026 crossref_primary_10_1063_1_4985577 crossref_primary_10_1103_PhysRevB_107_064403 crossref_primary_10_1103_PhysRevB_98_094419 crossref_primary_10_1103_PhysRevLett_124_147204 crossref_primary_10_1103_PhysRevB_101_195133 crossref_primary_10_1103_PhysRevB_103_214411 crossref_primary_10_1103_PhysRevLett_119_107205 crossref_primary_10_1103_PhysRevLett_123_167202 crossref_primary_10_1002_andp_201900350 crossref_primary_10_1103_PhysRevB_107_245426 crossref_primary_10_1021_acs_nanolett_4c00430 crossref_primary_10_1103_PhysRevB_96_224414 crossref_primary_10_1016_j_jmmm_2023_171117 crossref_primary_10_1103_PhysRevB_110_064429 crossref_primary_10_1103_PhysRevLett_124_077201 crossref_primary_10_1038_s41524_021_00570_0 crossref_primary_10_1103_PhysRevLett_130_266703 crossref_primary_10_1146_annurev_conmatphys_031620_104715 crossref_primary_10_1103_PhysRevB_101_214403 crossref_primary_10_1103_PhysRevResearch_4_013001 crossref_primary_10_1103_PhysRevB_97_140401 crossref_primary_10_1038_s41524_022_00735_5 crossref_primary_10_1103_PhysRevB_110_174426 crossref_primary_10_1103_PhysRevB_98_115424 crossref_primary_10_1088_1674_1056_28_7_078503 crossref_primary_10_1103_PhysRevB_106_035148 crossref_primary_10_1103_PhysRevB_107_064429 crossref_primary_10_1103_PhysRevLett_128_117201 crossref_primary_10_1103_PhysRevLett_130_216703 crossref_primary_10_1088_1674_1056_ad7af7 crossref_primary_10_1103_RevModPhys_90_015005 crossref_primary_10_1103_PhysRevB_102_075407 crossref_primary_10_1103_PhysRevB_101_235430 crossref_primary_10_1103_PhysRevB_100_100401 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/physrevlett.117.217202 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 27911532 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c437t-5858b908cac18a339b66f045618a2a0a0b4246e6d1dbde6d8e12d0e1c35c746c2 |
IngestDate | Thu Jan 02 23:10:18 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-5858b908cac18a339b66f045618a2a0a0b4246e6d1dbde6d8e12d0e1c35c746c2 |
OpenAccessLink | https://www.osti.gov/servlets/purl/1333660 |
PMID | 27911532 |
ParticipantIDs | pubmed_primary_27911532 |
PublicationCentury | 2000 |
PublicationDate | 2016-11-15 |
PublicationDateYYYYMMDD | 2016-11-15 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2016 |
SSID | ssj0001268 |
Score | 2.644193 |
Snippet | In a collinear antiferromagnet with easy-axis anisotropy, symmetry guarantees that the spin wave modes are doubly degenerate. The two modes carry opposite spin... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 217202 |
Title | Spin Nernst Effect of Magnons in Collinear Antiferromagnets |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27911532 |
Volume | 117 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1bT8IwFMcb1JjwYrzfzR58M8Nu67ouPhHUGBIvUUl4I70hRGUE54uf3tO1GwYxUV8G6wmj268cTs_6P0PomNA4ZIxyn8WJ9Anj2hcsinyaKs2Tfkw4Nnrn6xt61SHtbtyt1dpfVi2956IhP-bqSv5DFdqAq1HJ_oFsdVBogPfAF7ZAGLa_YvwwHo7ATU0gxDtxZYiLFS1PI7c-vFWU3Da1eppmUZCeTLJXsGpbvqkMSu9KVk7H8lJIfKpguzXQ1iHcT0fS7TMHxpnNKefZ22BYWrpDXjSfD78mFAJqlHVWUtnQ1gniJPWTwIo7Ky9pJZZuOFhVc-X0krCQTc_xx9jUhTBJGjgD03tzk7jx_QNwXcevBaUwAfcbR7-wztTJLk0LaAFmDOYRqCZvUy-zbZQ5fTh06XR-h0xhaHeQmUlGEWw8rqIVN0vwmhb5Gqrp0TpatpzeNtCZAe9Z8J4F72V9z4H3wFaB92bBb6LO5cVj68p3T8HwJYmS3If5HBMpZpLLgPEoSgWlfROIw17IMceChIRqqgIlFLwwHYQK60BGsUwIleEWWoQv1zvIw9CmIF7UVEYE_tcEw4qGqeQ0UEqkwS7atmfdG9tSJ73yeuz9aNlH9ekgOkBLffht6UMI1HJxVDD4BBk8PS4 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spin+Nernst+Effect+of+Magnons+in+Collinear+Antiferromagnets&rft.jtitle=Physical+review+letters&rft.au=Cheng%2C+Ran&rft.au=Okamoto%2C+Satoshi&rft.au=Xiao%2C+Di&rft.date=2016-11-15&rft.eissn=1079-7114&rft.volume=117&rft.issue=21&rft.spage=217202&rft_id=info:doi/10.1103%2Fphysrevlett.117.217202&rft_id=info%3Apmid%2F27911532&rft_id=info%3Apmid%2F27911532&rft.externalDocID=27911532 |