Quantifying water transport in anion exchange membrane fuel cells

Sufficient water transport through the membrane is necessary for a well-performing anion exchange membrane fuel cell (AEMFC). In this study, the water flux through a membrane electrode assembly (MEA), using a Tokuyama A201 membrane, is quantified using humidity sensors at the in- and outlet on both...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 44; no. 10; pp. 4930 - 4939
Main Authors Eriksson, Björn, Grimler, Henrik, Carlson, Annika, Ekström, Henrik, Wreland Lindström, Rakel, Lindbergh, Göran, Lagergren, Carina
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 22.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sufficient water transport through the membrane is necessary for a well-performing anion exchange membrane fuel cell (AEMFC). In this study, the water flux through a membrane electrode assembly (MEA), using a Tokuyama A201 membrane, is quantified using humidity sensors at the in- and outlet on both sides of the MEA. Experiments performed in humidified inert gas at both sides of the MEA or with liquid water at one side shows that the aggregation state of water has a large impact on the transport properties. The water fluxes are shown to be approximately three times larger for a membrane in contact with liquid water compared to vaporous. Further, the flux during fuel cell operation is investigated and shows that the transport rate of water in the membrane is affected by an applied current. The water vapor content increases on both the anode and cathode side of the AEMFC for all investigated current densities. Through modeling, an apparent water drag coefficient is determined to −0.64, indicating that the current-induced transport of water occurs in the opposite direction to the transport of hydroxide ions. These results implicate that flooding, on one or both electrodes, is a larger concern than dry-out in an AEMFC. [Display omitted] •Experimental determination of AEMFC transport coefficients in cells.•Partial pressure of water is the main driving force for diffusion.•Both anode and cathode increase in water content during operation.
AbstractList Sufficient water transport through the membrane is necessary for a well-performing anion exchange membrane fuel cell (AEMFC). In this study, the water flux through a membrane electrode assembly (MEA), using a Tokuyama A201 membrane, is quantified using humidity sensors at the in- and outlet on both sides of the MEA. Experiments performed in humidified inert gas at both sides of the MEA or with liquid water at one side shows that the aggregation state of water has a large impact on the transport properties. The water fluxes are shown to be approximately three times larger for a membrane in contact with liquid water compared to vaporous. Further, the flux during fuel cell operation is investigated and shows that the transport rate of water in the membrane is affected by an applied current. The water vapor content increases on both the anode and cathode side of the AEMFC for all investigated current densities. Through modeling, an apparent water drag coefficient is determined to −0.64, indicating that the current-induced transport of water occurs in the opposite direction to the transport of hydroxide ions. These results implicate that flooding, on one or both electrodes, is a larger concern than dry-out in an AEMFC. [Display omitted] •Experimental determination of AEMFC transport coefficients in cells.•Partial pressure of water is the main driving force for diffusion.•Both anode and cathode increase in water content during operation.
Sufficient water transport through the membrane is necessary for a well-performing anion exchange membrane fuel cell (AEMFC). In this study, the water flux through a membrane electrode assembly (MEA), using a Tokuyama A201 membrane, is quantified using humidity sensors at the in- and outlet on both sides of the MEA. Experiments performed in humidified inert gas at both sides of the MEA or with liquid water at one side shows that the aggregation state of water has a large impact on the transport properties. The water fluxes are shown to be approximately three times larger for a membrane in contact with liquid water compared to vaporous. Further, the flux during fuel cell operation is investigated and shows that the transport rate of water in the membrane is affected by an applied current. The water vapor content increases on both the anode and cathode side of the AEMFC for all investigated current densities. Through modeling, an apparent water drag coefficient is determined to −0.64, indicating that the current-induced transport of water occurs in the opposite direction to the transport of hydroxide ions. These results implicate that flooding, on one or both electrodes, is a larger concern than dry-out in an AEMFC.
Author Ekström, Henrik
Wreland Lindström, Rakel
Eriksson, Björn
Carlson, Annika
Grimler, Henrik
Lindbergh, Göran
Lagergren, Carina
Author_xml – sequence: 1
  givenname: Björn
  orcidid: 0000-0003-4770-9554
  surname: Eriksson
  fullname: Eriksson, Björn
  email: bjorerik@kth.se
  organization: Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 2
  givenname: Henrik
  surname: Grimler
  fullname: Grimler, Henrik
  organization: Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 3
  givenname: Annika
  orcidid: 0000-0002-1923-8479
  surname: Carlson
  fullname: Carlson, Annika
  organization: Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 4
  givenname: Henrik
  surname: Ekström
  fullname: Ekström, Henrik
  organization: Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 5
  givenname: Rakel
  surname: Wreland Lindström
  fullname: Wreland Lindström, Rakel
  organization: Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 6
  givenname: Göran
  surname: Lindbergh
  fullname: Lindbergh, Göran
  organization: Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
– sequence: 7
  givenname: Carina
  surname: Lagergren
  fullname: Lagergren, Carina
  organization: Applied Electrochemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244325$$DView record from Swedish Publication Index
BookMark eNqFkM1OwzAQhC1UJNrCK6C8QILXdpzkRlV-JSSEBFwtx960LqlT2Smlb0-qAldOq9XON5qdCRn5ziMhl0AzoCCvVplbLfcWPWaMQpkBy6DMT8gYyqJKuSiLERlTLmnKoarOyCTGFaVQUFGNyexlq33vmr3zi2SnewxJH7SPmy70ifOJ9q7zCX6ZpfYLTNa4roczJs0W28Rg28ZzctroNuLFz5ySt7vb1_lD-vR8_zifPaVG8KJPcwmsFtIyYw8ptZXWFrKsG2AiB1blUkKBpkQpJeU5DAvWVWkNSAG8kXxK0qNv3OFmW6tNcGsd9qrTTt2495nqwkJ99EvFhOAsH_TyqDehizFg80cAVYfi1Er9FqcOkRQwNRQ3gNdHEIdvPh0GFY1Db9C6gKZXtnP_WXwDQzR8Sw
CitedBy_id crossref_primary_10_3390_en12244702
crossref_primary_10_1039_C9SE01143A
crossref_primary_10_1039_D2EE01818G
crossref_primary_10_1080_01496395_2022_2105721
crossref_primary_10_1016_j_memsci_2023_121638
crossref_primary_10_1002_advs_202100284
crossref_primary_10_1016_j_apenergy_2022_119722
crossref_primary_10_1016_j_progpolymsci_2019_101177
crossref_primary_10_1016_j_heliyon_2024_e29622
crossref_primary_10_1016_j_jpowsour_2022_231141
crossref_primary_10_1016_j_jpowsour_2022_232494
crossref_primary_10_1002_chem_202203173
crossref_primary_10_1016_j_ijhydene_2020_05_026
crossref_primary_10_14579_MEMBRANE_JOURNAL_2019_29_3_155
crossref_primary_10_1016_j_apcatb_2022_121733
crossref_primary_10_1016_j_ijhydene_2020_02_081
crossref_primary_10_1016_j_jechem_2024_01_070
crossref_primary_10_1002_cssc_202301080
crossref_primary_10_1038_s41467_021_22612_3
crossref_primary_10_1016_j_ijhydene_2019_04_122
crossref_primary_10_1039_D0RA00434K
crossref_primary_10_1016_j_cej_2023_144423
crossref_primary_10_1016_j_memsci_2023_121945
crossref_primary_10_1016_j_enconman_2022_116203
crossref_primary_10_1149_1945_7111_ac38f8
crossref_primary_10_3390_su142114653
crossref_primary_10_1039_D2CS00038E
crossref_primary_10_3390_pr10071315
crossref_primary_10_1016_j_jpowsour_2022_232343
crossref_primary_10_1016_j_progpolymsci_2020_101345
crossref_primary_10_1021_acs_energyfuels_9b02403
crossref_primary_10_1002_adfm_202303857
crossref_primary_10_1016_j_jpowsour_2022_231534
crossref_primary_10_1007_s11242_020_01509_7
crossref_primary_10_1016_j_cej_2021_131737
crossref_primary_10_1016_j_ijhydene_2022_10_177
crossref_primary_10_1021_acsapm_2c00415
crossref_primary_10_1016_j_jpowsour_2023_232803
Cites_doi 10.1016/j.jpowsour.2018.01.071
10.1016/j.jpowsour.2013.06.095
10.1016/j.ijhydene.2015.04.040
10.1021/acs.macromol.7b00082
10.1149/1.1639157
10.1016/j.ijhydene.2010.03.026
10.1016/j.jpowsour.2017.07.117
10.1016/j.jpowsour.2017.07.012
10.1149/1.1838700
10.1016/j.jpowsour.2017.01.111
10.1021/acs.chemmater.7b00958
10.1149/2.0421605jes
10.1016/j.apenergy.2016.09.091
10.1039/C4EE01303D
10.1149/1.2069407
10.1016/j.elecom.2006.03.027
10.1016/j.ijhydene.2017.05.146
10.1016/j.jpowsour.2018.02.020
10.1016/j.ijhydene.2014.01.180
10.1016/j.jpowsour.2017.07.106
10.1016/j.ijhydene.2017.02.199
10.1016/j.jpowsour.2017.05.030
10.1016/j.memsci.2015.09.027
10.1021/acs.macromol.8b00034
10.1149/2.0531711jes
10.1149/1.2085971
10.1149/1.2221251
10.1016/j.ijhydene.2012.09.074
10.1073/pnas.0810041106
10.1021/jp405088s
10.1016/j.renene.2016.01.054
10.1021/acs.macromol.5b01302
10.1149/1.3116922
10.1016/j.electacta.2018.04.137
10.1002/fuce.201500210
10.1016/j.jpowsour.2018.04.047
10.1016/j.ijhydene.2014.12.091
10.1039/C5TA00350D
10.1002/fuce.200400045
10.1149/2.0771610jes
10.1016/j.ijhydene.2016.11.129
10.1039/C5TA06209H
10.1016/j.jpowsour.2017.05.006
ContentType Journal Article
Copyright 2019 The Author(s)
Copyright_xml – notice: 2019 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1016/j.ijhydene.2018.12.185
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 4939
ExternalDocumentID oai_DiVA_org_kth_244325
10_1016_j_ijhydene_2018_12_185
S0360319918341892
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
T9H
WUQ
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c437t-5612b46d2cd2018ad6dd768bf124512956617ec8e666035117eeb98dc16413f63
IEDL.DBID .~1
ISSN 0360-3199
1879-3487
IngestDate Tue Oct 01 22:02:54 EDT 2024
Thu Sep 26 15:54:18 EDT 2024
Fri Feb 23 02:34:47 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Anion exchange membrane fuel cell
Relative humidity sensor
Water transport model
Fuel cells
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-5612b46d2cd2018ad6dd768bf124512956617ec8e666035117eeb98dc16413f63
ORCID 0000-0003-4770-9554
0000-0002-1923-8479
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0360319918341892
PageCount 10
ParticipantIDs swepub_primary_oai_DiVA_org_kth_244325
crossref_primary_10_1016_j_ijhydene_2018_12_185
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_12_185
PublicationCentury 2000
PublicationDate 2019-02-22
PublicationDateYYYYMMDD 2019-02-22
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-22
  day: 22
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Varcoe, Slade (bib21) 2005; 5
Jiao, He, Du, Yin (bib37) 2014; 39
Kreuer, Jannasch (bib22) 2017; 375
Dekel, Rasin, Page, Brandon (bib24) 2018; 375
Deng, Wang, Wang, Xie, Yin, Du, Jiao (bib36) 2016; 183
Huo, Deng, Chang, Jiao (bib33) 2012; 37
Lu, Pan, Huang, Zhuang, Lu (bib3) 2008; 105
Berg, Stornes (bib45) 2016; 16
Deng, Wang, Xie, Zhou, Yin, Du, Jiao (bib38) 2016; 91
Eikerling, Kharkats, Kornyshev, Volfkovich (bib28) 1998; 145
Peng, Roy, Greenbaum, Zawodzinski (bib19) 2018; 380
Park, Kim, Kim, Nam (bib30) 2017; 42
Fuller, Newman (bib26) 1992; 139
Li, Zhao, Yang (bib41) 2010; 35
Varcoe, Slade (bib1) 2006; 8
Luo, Wright, Weissbach, Holdcroft (bib40) 2018; 375
Adachi, Navessin, Xie, Frisken, Holdcroft (bib42) 2009; 156
Omasta, Wang, Peng, Lewis, Varcoe, Mustain (bib8) 2018; 375
Bernardi, Verbrugge (bib27) 1992; 139
Sepehr, Liu, Luo, Bae, Tuckerman, Hickner, Paddison (bib29) 2017; 50
Zheng, Ash, Pandey, Ozioko, Ponce-González, Handl, Weissbach, Varcoe, Holdcroft, Liberatore, Hiesgen, Dekel (bib20) 2018; 51
Huo, Zhou, Wang, Chen, Jiao (bib35) 2018; 382
Caire, Vandiver, Pandey, Herring, Liberatore (bib23) 2016; 163
Dekel (bib7) 2018; 375
Weber, Newman (bib31) 2004; 151
Carlson, Shapturenka, Eriksson, Lindbergh, Lagergren, Lindström (bib43) 2018; 277
Dekel, Amar, Willdorf, Kosa, Dhara, Diesendruck (bib16) 2017; 29
Springer, Zawodzinski, Gottesfeld (bib25) 1991; 138
Wester (bib44) 2015
Britton, Holdcroft (bib6) 2016; 163
Oshiba, Hiura, Suzuki, Yamaguchi (bib14) 2017; 345
Shiau, Zenyuk, Weber (bib34) 2017; 164
Peng, Li, Hu, Xiao, Lu, Zhuang (bib13) 2018; 390
Cheng, He, Zhang (bib9) 2015; 40
Jheng, Tai, Hsu, Lin, Chen, Wang, Chiang, Ko (bib11) 2017; 42
Park, Wycisk, Ren, Turley, Pintauro (bib12) 2015; 4
Varcoe, Atanassov, Dekel, Herring, Hickner, Kohl, Kucernak, Mustain, Nijmeijer, Scott, Xu, Zhuang (bib2) 2014; 7
Dang, Weiber, Jannasch (bib5) 2015; 3
Dang, Jannasch (bib4) 2015; 48
Kim, Lee, Nam (bib10) 2017; 42
Duan, Ge, Wang (bib17) 2013; 243
Fukuta (bib15) 2011
Bharath, Millichamp, Neville, Mason, Shearing, Brown, Manos, Brett (bib18) 2016; 497
Zhang, Ohashi, Tamaki, Yamaguchi (bib39) 2013; 117
Jiao, Huo, Zu, Jiao, Chen, Du (bib32) 2015; 40
Dekel (10.1016/j.ijhydene.2018.12.185_bib16) 2017; 29
Oshiba (10.1016/j.ijhydene.2018.12.185_bib14) 2017; 345
Fuller (10.1016/j.ijhydene.2018.12.185_bib26) 1992; 139
Deng (10.1016/j.ijhydene.2018.12.185_bib38) 2016; 91
Peng (10.1016/j.ijhydene.2018.12.185_bib13) 2018; 390
Zhang (10.1016/j.ijhydene.2018.12.185_bib39) 2013; 117
Dekel (10.1016/j.ijhydene.2018.12.185_bib24) 2018; 375
Eikerling (10.1016/j.ijhydene.2018.12.185_bib28) 1998; 145
Jiao (10.1016/j.ijhydene.2018.12.185_bib37) 2014; 39
Lu (10.1016/j.ijhydene.2018.12.185_bib3) 2008; 105
Britton (10.1016/j.ijhydene.2018.12.185_bib6) 2016; 163
Dang (10.1016/j.ijhydene.2018.12.185_bib5) 2015; 3
Weber (10.1016/j.ijhydene.2018.12.185_bib31) 2004; 151
Fukuta (10.1016/j.ijhydene.2018.12.185_bib15) 2011
Caire (10.1016/j.ijhydene.2018.12.185_bib23) 2016; 163
Varcoe (10.1016/j.ijhydene.2018.12.185_bib2) 2014; 7
Jheng (10.1016/j.ijhydene.2018.12.185_bib11) 2017; 42
Kreuer (10.1016/j.ijhydene.2018.12.185_bib22) 2017; 375
Wester (10.1016/j.ijhydene.2018.12.185_bib44) 2015
Varcoe (10.1016/j.ijhydene.2018.12.185_bib1) 2006; 8
Varcoe (10.1016/j.ijhydene.2018.12.185_bib21) 2005; 5
Berg (10.1016/j.ijhydene.2018.12.185_bib45) 2016; 16
Adachi (10.1016/j.ijhydene.2018.12.185_bib42) 2009; 156
Peng (10.1016/j.ijhydene.2018.12.185_bib19) 2018; 380
Jiao (10.1016/j.ijhydene.2018.12.185_bib32) 2015; 40
Cheng (10.1016/j.ijhydene.2018.12.185_bib9) 2015; 40
Li (10.1016/j.ijhydene.2018.12.185_bib41) 2010; 35
Carlson (10.1016/j.ijhydene.2018.12.185_bib43) 2018; 277
Dekel (10.1016/j.ijhydene.2018.12.185_bib7) 2018; 375
Duan (10.1016/j.ijhydene.2018.12.185_bib17) 2013; 243
Shiau (10.1016/j.ijhydene.2018.12.185_bib34) 2017; 164
Zheng (10.1016/j.ijhydene.2018.12.185_bib20) 2018; 51
Springer (10.1016/j.ijhydene.2018.12.185_bib25) 1991; 138
Deng (10.1016/j.ijhydene.2018.12.185_bib36) 2016; 183
Luo (10.1016/j.ijhydene.2018.12.185_bib40) 2018; 375
Huo (10.1016/j.ijhydene.2018.12.185_bib33) 2012; 37
Huo (10.1016/j.ijhydene.2018.12.185_bib35) 2018; 382
Park (10.1016/j.ijhydene.2018.12.185_bib30) 2017; 42
Dang (10.1016/j.ijhydene.2018.12.185_bib4) 2015; 48
Sepehr (10.1016/j.ijhydene.2018.12.185_bib29) 2017; 50
Park (10.1016/j.ijhydene.2018.12.185_bib12) 2015; 4
Omasta (10.1016/j.ijhydene.2018.12.185_bib8) 2018; 375
Kim (10.1016/j.ijhydene.2018.12.185_bib10) 2017; 42
Bharath (10.1016/j.ijhydene.2018.12.185_bib18) 2016; 497
Bernardi (10.1016/j.ijhydene.2018.12.185_bib27) 1992; 139
References_xml – volume: 8
  start-page: 839
  year: 2006
  end-page: 843
  ident: bib1
  article-title: An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells
  publication-title: Electrochem Commun
  contributor:
    fullname: Slade
– volume: 138
  start-page: 2334
  year: 1991
  end-page: 2342
  ident: bib25
  article-title: Polymer electrolyte fuel cell model
  publication-title: J Electrochem Soc
  contributor:
    fullname: Gottesfeld
– volume: 139
  start-page: 2477
  year: 1992
  end-page: 2491
  ident: bib27
  article-title: A mathematical model of the solid-polymer-electrolyte fuel cell
  publication-title: J Electrochem Soc
  contributor:
    fullname: Verbrugge
– volume: 16
  start-page: 715
  year: 2016
  end-page: 724
  ident: bib45
  article-title: Towards a consistent interpretation of electro-osmotic drag in polymer electrolyte membranes
  publication-title: Fuel Cells
  contributor:
    fullname: Stornes
– volume: 3
  start-page: 5280
  year: 2015
  end-page: 5284
  ident: bib5
  article-title: Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes
  publication-title: J Mater Chem A
  contributor:
    fullname: Jannasch
– volume: 382
  start-page: 1
  year: 2018
  end-page: 12
  ident: bib35
  article-title: Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell
  publication-title: J Power Sources
  contributor:
    fullname: Jiao
– year: 2015
  ident: bib44
  article-title: Tabeller och diagram för energitekniska beräkningar
  contributor:
    fullname: Wester
– volume: 91
  start-page: 166
  year: 2016
  end-page: 177
  ident: bib38
  article-title: Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization
  publication-title: Renew Energy
  contributor:
    fullname: Jiao
– volume: 390
  start-page: 165
  year: 2018
  end-page: 167
  ident: bib13
  article-title: Alkaline polymer electrolyte fuel cells stably working at 80 °C
  publication-title: J Power Sources
  contributor:
    fullname: Zhuang
– volume: 183
  start-page: 1272
  year: 2016
  end-page: 1278
  ident: bib36
  article-title: Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell
  publication-title: Appl Energy
  contributor:
    fullname: Jiao
– volume: 51
  start-page: 3264
  year: 2018
  end-page: 3278
  ident: bib20
  article-title: Water uptake study of anion exchange membranes
  publication-title: Macromolecules
  contributor:
    fullname: Dekel
– volume: 375
  start-page: 442
  year: 2018
  end-page: 451
  ident: bib40
  article-title: Water permeation through anion exchange membranes
  publication-title: J Power Sources
  contributor:
    fullname: Holdcroft
– volume: 497
  start-page: 229
  year: 2016
  end-page: 238
  ident: bib18
  article-title: Measurement of water uptake in thin-film Nafion and anion alkaline exchange membranes using the quartz crystal microbalance
  publication-title: J Membr Sci
  contributor:
    fullname: Brett
– volume: 29
  start-page: 4425
  year: 2017
  end-page: 4431
  ident: bib16
  article-title: Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications
  publication-title: Chem Mater
  contributor:
    fullname: Diesendruck
– volume: 48
  start-page: 5742
  year: 2015
  end-page: 5751
  ident: bib4
  article-title: Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes
  publication-title: Macromolecules
  contributor:
    fullname: Jannasch
– volume: 42
  start-page: 5315
  year: 2017
  end-page: 5326
  ident: bib11
  article-title: Study on the alkaline stability of imidazolium and benzimidazolium based polyelectrolytes for anion exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Ko
– volume: 39
  start-page: 5981
  year: 2014
  end-page: 5995
  ident: bib37
  article-title: Three-dimensional multiphase modeling of alkaline anion exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Yin
– volume: 163
  start-page: F353
  year: 2016
  end-page: F358
  ident: bib6
  article-title: The control and effect of pore size distribution in AEMFC catalyst layers
  publication-title: J Electrochem Soc
  contributor:
    fullname: Holdcroft
– volume: 375
  start-page: 191
  year: 2018
  end-page: 204
  ident: bib24
  article-title: Steady state and transient simulation of anion exchange membrane fuel cells
  publication-title: J Power Sources
  contributor:
    fullname: Brandon
– volume: 151
  start-page: A311
  year: 2004
  end-page: A325
  ident: bib31
  article-title: Transport in polymer-electrolyte membranes
  publication-title: J Electrochem Soc
  contributor:
    fullname: Newman
– volume: 277
  start-page: 151
  year: 2018
  end-page: 160
  ident: bib43
  article-title: Electrode parameters and operating conditions influencing the performance of anion exchange membrane fuel cells
  publication-title: Electrochim Acta
  contributor:
    fullname: Lindström
– volume: 145
  start-page: 2684
  year: 1998
  end-page: 2699
  ident: bib28
  article-title: Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes
  publication-title: J Electrochem Soc
  contributor:
    fullname: Volfkovich
– volume: 375
  start-page: 205
  year: 2018
  end-page: 213
  ident: bib8
  article-title: Importance of balancing membrane and electrode water in anion exchange membrane fuel cells
  publication-title: J Power Sources
  contributor:
    fullname: Mustain
– volume: 243
  start-page: 773
  year: 2013
  end-page: 778
  ident: bib17
  article-title: Water uptake, ionic conductivity and swelling properties of anion-exchange membrane
  publication-title: J Power Sources
  contributor:
    fullname: Wang
– volume: 37
  start-page: 18389
  year: 2012
  end-page: 18402
  ident: bib33
  article-title: Water management in alkaline anion exchange membrane fuel cell anode
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Jiao
– volume: 156
  start-page: B782
  year: 2009
  end-page: B790
  ident: bib42
  article-title: Correlation of in situ and ex situ measurements of water permeation through nafion NRE211 proton exchange membranes
  publication-title: J Electrochem Soc
  contributor:
    fullname: Holdcroft
– volume: 105
  start-page: 20611
  year: 2008
  end-page: 20614
  ident: bib3
  article-title: Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts
  publication-title: Proc Natl Acad Sci USA
  contributor:
    fullname: Lu
– volume: 375
  start-page: 158
  year: 2018
  end-page: 169
  ident: bib7
  article-title: Review of cell performance in anion exchange membrane fuel cells
  publication-title: J Power Sources
  contributor:
    fullname: Dekel
– volume: 139
  start-page: 1332
  year: 1992
  end-page: 1337
  ident: bib26
  article-title: Experimental-determination of the transport number of water in nafion-117 membrane
  publication-title: J Electrochem Soc
  contributor:
    fullname: Newman
– volume: 7
  start-page: 3135
  year: 2014
  end-page: 3191
  ident: bib2
  article-title: Anion-exchange membranes in electrochemical energy systems
  publication-title: Energy Environ Sci
  contributor:
    fullname: Zhuang
– volume: 50
  start-page: 4397
  year: 2017
  end-page: 4405
  ident: bib29
  article-title: Mesoscale simulations of anion exchange membranes based on quaternary ammonium tethered triblock copolymers
  publication-title: Macromolecules
  contributor:
    fullname: Paddison
– volume: 42
  start-page: 23759
  year: 2017
  end-page: 23767
  ident: bib10
  article-title: Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Nam
– volume: 164
  start-page: E3583
  year: 2017
  end-page: E3591
  ident: bib34
  article-title: Elucidating performance limitations in alkaline-exchange- membrane fuel cells
  publication-title: J Electrochem Soc
  contributor:
    fullname: Weber
– start-page: 1
  year: 2011
  end-page: 38
  ident: bib15
  article-title: 2011 AMFC WORKSHOP electrolyte materials for AMFCs and AMFC performance
  contributor:
    fullname: Fukuta
– volume: 40
  start-page: 3300
  year: 2015
  end-page: 3312
  ident: bib32
  article-title: An analytical model for hydrogen alkaline anion exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Du
– volume: 40
  start-page: 7348
  year: 2015
  end-page: 7360
  ident: bib9
  article-title: A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Zhang
– volume: 35
  start-page: 5656
  year: 2010
  end-page: 5665
  ident: bib41
  article-title: Measurements of water uptake and transport properties in anion-exchange membranes
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Yang
– volume: 163
  start-page: H964
  year: 2016
  end-page: H969
  ident: bib23
  article-title: Accelerated mechanical degradation of anion exchange membranes via hydration cycling
  publication-title: J Electrochem Soc
  contributor:
    fullname: Liberatore
– volume: 42
  start-page: 20895
  year: 2017
  end-page: 20903
  ident: bib30
  article-title: Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes
  publication-title: Int J Hydrogen Energy
  contributor:
    fullname: Nam
– volume: 345
  start-page: 221
  year: 2017
  end-page: 226
  ident: bib14
  article-title: Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies
  publication-title: J Power Sources
  contributor:
    fullname: Yamaguchi
– volume: 380
  start-page: 64
  year: 2018
  end-page: 75
  ident: bib19
  article-title: Effect of CO2 absorption on ion and water mobility in an anion exchange membrane
  publication-title: J Power Sources
  contributor:
    fullname: Zawodzinski
– volume: 5
  start-page: 187
  year: 2005
  end-page: 200
  ident: bib21
  article-title: Prospects for alkaline anion-exchange membranes in low temperature fuel cells
  publication-title: Fuel Cells
  contributor:
    fullname: Slade
– volume: 117
  start-page: 16791
  year: 2013
  end-page: 16801
  ident: bib39
  article-title: Water movement in a solid-state alkaline fuel cell affected by the anion-exchange pore-filling membrane properties
  publication-title: J Phys Chem C
  contributor:
    fullname: Yamaguchi
– volume: 4
  start-page: 132
  year: 2015
  end-page: 141
  ident: bib12
  article-title: Crosslinked poly(phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells
  publication-title: J Mater Chem A
  contributor:
    fullname: Pintauro
– volume: 375
  start-page: 361
  year: 2017
  end-page: 366
  ident: bib22
  article-title: A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation
  publication-title: J Power Sources
  contributor:
    fullname: Jannasch
– volume: 380
  start-page: 64
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib19
  article-title: Effect of CO2 absorption on ion and water mobility in an anion exchange membrane
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.01.071
  contributor:
    fullname: Peng
– volume: 243
  start-page: 773
  year: 2013
  ident: 10.1016/j.ijhydene.2018.12.185_bib17
  article-title: Water uptake, ionic conductivity and swelling properties of anion-exchange membrane
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2013.06.095
  contributor:
    fullname: Duan
– volume: 40
  start-page: 7348
  year: 2015
  ident: 10.1016/j.ijhydene.2018.12.185_bib9
  article-title: A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.04.040
  contributor:
    fullname: Cheng
– volume: 50
  start-page: 4397
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib29
  article-title: Mesoscale simulations of anion exchange membranes based on quaternary ammonium tethered triblock copolymers
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b00082
  contributor:
    fullname: Sepehr
– volume: 151
  start-page: A311
  year: 2004
  ident: 10.1016/j.ijhydene.2018.12.185_bib31
  article-title: Transport in polymer-electrolyte membranes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1639157
  contributor:
    fullname: Weber
– volume: 35
  start-page: 5656
  year: 2010
  ident: 10.1016/j.ijhydene.2018.12.185_bib41
  article-title: Measurements of water uptake and transport properties in anion-exchange membranes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.03.026
  contributor:
    fullname: Li
– volume: 375
  start-page: 158
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib7
  article-title: Review of cell performance in anion exchange membrane fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.07.117
  contributor:
    fullname: Dekel
– volume: 375
  start-page: 191
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib24
  article-title: Steady state and transient simulation of anion exchange membrane fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.07.012
  contributor:
    fullname: Dekel
– volume: 145
  start-page: 2684
  year: 1998
  ident: 10.1016/j.ijhydene.2018.12.185_bib28
  article-title: Phenomenological theory of electro-osmotic effect and water management in polymer electrolyte proton-conducting membranes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.1838700
  contributor:
    fullname: Eikerling
– volume: 345
  start-page: 221
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib14
  article-title: Improvement in the solid-state alkaline fuel cell performance through efficient water management strategies
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.01.111
  contributor:
    fullname: Oshiba
– volume: 29
  start-page: 4425
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib16
  article-title: Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications
  publication-title: Chem Mater
  doi: 10.1021/acs.chemmater.7b00958
  contributor:
    fullname: Dekel
– volume: 163
  start-page: F353
  year: 2016
  ident: 10.1016/j.ijhydene.2018.12.185_bib6
  article-title: The control and effect of pore size distribution in AEMFC catalyst layers
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0421605jes
  contributor:
    fullname: Britton
– volume: 183
  start-page: 1272
  year: 2016
  ident: 10.1016/j.ijhydene.2018.12.185_bib36
  article-title: Effect of electrode design and operating condition on performance of hydrogen alkaline membrane fuel cell
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.091
  contributor:
    fullname: Deng
– volume: 7
  start-page: 3135
  year: 2014
  ident: 10.1016/j.ijhydene.2018.12.185_bib2
  article-title: Anion-exchange membranes in electrochemical energy systems
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE01303D
  contributor:
    fullname: Varcoe
– volume: 139
  start-page: 1332
  year: 1992
  ident: 10.1016/j.ijhydene.2018.12.185_bib26
  article-title: Experimental-determination of the transport number of water in nafion-117 membrane
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2069407
  contributor:
    fullname: Fuller
– year: 2015
  ident: 10.1016/j.ijhydene.2018.12.185_bib44
  contributor:
    fullname: Wester
– volume: 8
  start-page: 839
  year: 2006
  ident: 10.1016/j.ijhydene.2018.12.185_bib1
  article-title: An electron-beam-grafted ETFE alkaline anion-exchange membrane in metal-cation-free solid-state alkaline fuel cells
  publication-title: Electrochem Commun
  doi: 10.1016/j.elecom.2006.03.027
  contributor:
    fullname: Varcoe
– volume: 42
  start-page: 20895
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib30
  article-title: Molecular dynamics simulation of the functional group effect in hydrocarbon anionic exchange membranes
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.146
  contributor:
    fullname: Park
– volume: 382
  start-page: 1
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib35
  article-title: Experimental and analytical analysis of polarization and water transport behaviors of hydrogen alkaline membrane fuel cell
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.02.020
  contributor:
    fullname: Huo
– volume: 39
  start-page: 5981
  year: 2014
  ident: 10.1016/j.ijhydene.2018.12.185_bib37
  article-title: Three-dimensional multiphase modeling of alkaline anion exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.01.180
  contributor:
    fullname: Jiao
– volume: 375
  start-page: 361
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib22
  article-title: A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.07.106
  contributor:
    fullname: Kreuer
– volume: 42
  start-page: 23759
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib10
  article-title: Synthesis and characterization of PEEK containing imidazole for anion exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.199
  contributor:
    fullname: Kim
– volume: 375
  start-page: 442
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib40
  article-title: Water permeation through anion exchange membranes
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.05.030
  contributor:
    fullname: Luo
– volume: 497
  start-page: 229
  year: 2016
  ident: 10.1016/j.ijhydene.2018.12.185_bib18
  article-title: Measurement of water uptake in thin-film Nafion and anion alkaline exchange membranes using the quartz crystal microbalance
  publication-title: J Membr Sci
  doi: 10.1016/j.memsci.2015.09.027
  contributor:
    fullname: Bharath
– volume: 51
  start-page: 3264
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib20
  article-title: Water uptake study of anion exchange membranes
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00034
  contributor:
    fullname: Zheng
– volume: 164
  start-page: E3583
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib34
  article-title: Elucidating performance limitations in alkaline-exchange- membrane fuel cells
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0531711jes
  contributor:
    fullname: Shiau
– volume: 138
  start-page: 2334
  year: 1991
  ident: 10.1016/j.ijhydene.2018.12.185_bib25
  article-title: Polymer electrolyte fuel cell model
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2085971
  contributor:
    fullname: Springer
– volume: 139
  start-page: 2477
  year: 1992
  ident: 10.1016/j.ijhydene.2018.12.185_bib27
  article-title: A mathematical model of the solid-polymer-electrolyte fuel cell
  publication-title: J Electrochem Soc
  doi: 10.1149/1.2221251
  contributor:
    fullname: Bernardi
– volume: 37
  start-page: 18389
  year: 2012
  ident: 10.1016/j.ijhydene.2018.12.185_bib33
  article-title: Water management in alkaline anion exchange membrane fuel cell anode
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.09.074
  contributor:
    fullname: Huo
– volume: 105
  start-page: 20611
  year: 2008
  ident: 10.1016/j.ijhydene.2018.12.185_bib3
  article-title: Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0810041106
  contributor:
    fullname: Lu
– volume: 117
  start-page: 16791
  year: 2013
  ident: 10.1016/j.ijhydene.2018.12.185_bib39
  article-title: Water movement in a solid-state alkaline fuel cell affected by the anion-exchange pore-filling membrane properties
  publication-title: J Phys Chem C
  doi: 10.1021/jp405088s
  contributor:
    fullname: Zhang
– start-page: 1
  year: 2011
  ident: 10.1016/j.ijhydene.2018.12.185_bib15
  contributor:
    fullname: Fukuta
– volume: 91
  start-page: 166
  year: 2016
  ident: 10.1016/j.ijhydene.2018.12.185_bib38
  article-title: Modeling of hydrogen alkaline membrane fuel cell with interfacial effect and water management optimization
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.054
  contributor:
    fullname: Deng
– volume: 48
  start-page: 5742
  year: 2015
  ident: 10.1016/j.ijhydene.2018.12.185_bib4
  article-title: Exploring different cationic alkyl side chain designs for enhanced alkaline stability and hydroxide ion conductivity of anion-exchange membranes
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.5b01302
  contributor:
    fullname: Dang
– volume: 156
  start-page: B782
  year: 2009
  ident: 10.1016/j.ijhydene.2018.12.185_bib42
  article-title: Correlation of in situ and ex situ measurements of water permeation through nafion NRE211 proton exchange membranes
  publication-title: J Electrochem Soc
  doi: 10.1149/1.3116922
  contributor:
    fullname: Adachi
– volume: 277
  start-page: 151
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib43
  article-title: Electrode parameters and operating conditions influencing the performance of anion exchange membrane fuel cells
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2018.04.137
  contributor:
    fullname: Carlson
– volume: 16
  start-page: 715
  year: 2016
  ident: 10.1016/j.ijhydene.2018.12.185_bib45
  article-title: Towards a consistent interpretation of electro-osmotic drag in polymer electrolyte membranes
  publication-title: Fuel Cells
  doi: 10.1002/fuce.201500210
  contributor:
    fullname: Berg
– volume: 390
  start-page: 165
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib13
  article-title: Alkaline polymer electrolyte fuel cells stably working at 80 °C
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2018.04.047
  contributor:
    fullname: Peng
– volume: 40
  start-page: 3300
  year: 2015
  ident: 10.1016/j.ijhydene.2018.12.185_bib32
  article-title: An analytical model for hydrogen alkaline anion exchange membrane fuel cell
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.12.091
  contributor:
    fullname: Jiao
– volume: 3
  start-page: 5280
  year: 2015
  ident: 10.1016/j.ijhydene.2018.12.185_bib5
  article-title: Poly(phenylene oxide) functionalized with quaternary ammonium groups via flexible alkyl spacers for high-performance anion exchange membranes
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA00350D
  contributor:
    fullname: Dang
– volume: 5
  start-page: 187
  year: 2005
  ident: 10.1016/j.ijhydene.2018.12.185_bib21
  article-title: Prospects for alkaline anion-exchange membranes in low temperature fuel cells
  publication-title: Fuel Cells
  doi: 10.1002/fuce.200400045
  contributor:
    fullname: Varcoe
– volume: 163
  start-page: H964
  year: 2016
  ident: 10.1016/j.ijhydene.2018.12.185_bib23
  article-title: Accelerated mechanical degradation of anion exchange membranes via hydration cycling
  publication-title: J Electrochem Soc
  doi: 10.1149/2.0771610jes
  contributor:
    fullname: Caire
– volume: 42
  start-page: 5315
  year: 2017
  ident: 10.1016/j.ijhydene.2018.12.185_bib11
  article-title: Study on the alkaline stability of imidazolium and benzimidazolium based polyelectrolytes for anion exchange membrane fuel cells
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.11.129
  contributor:
    fullname: Jheng
– volume: 4
  start-page: 132
  year: 2015
  ident: 10.1016/j.ijhydene.2018.12.185_bib12
  article-title: Crosslinked poly(phenylene oxide)-based nanofiber composite membranes for alkaline fuel cells
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA06209H
  contributor:
    fullname: Park
– volume: 375
  start-page: 205
  year: 2018
  ident: 10.1016/j.ijhydene.2018.12.185_bib8
  article-title: Importance of balancing membrane and electrode water in anion exchange membrane fuel cells
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2017.05.006
  contributor:
    fullname: Omasta
SSID ssj0017049
Score 2.4988747
Snippet Sufficient water transport through the membrane is necessary for a well-performing anion exchange membrane fuel cell (AEMFC). In this study, the water flux...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 4930
SubjectTerms Anion exchange membrane fuel cell
Fuel cells
Relative humidity sensor
Water transport model
Title Quantifying water transport in anion exchange membrane fuel cells
URI https://dx.doi.org/10.1016/j.ijhydene.2018.12.185
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244325
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGBAPEV5VB4QWxqch2OPUaEqICohKOpmObFDU2halVTAwm_nnEdVBsTAmMiJnfPlu-_suzNCZ8SVDo09bgXsIgYHRXoWB9pheTLRMnEpc4utmLs-7Q28m6E_bKBOnQtjwior7C8xvUDr6o5dSdOepan9ANhrUnA4KKVHGDc47IExAp1ufy3DPEhQUWBobJnWK1nC43Y6Hn3C723KZRJmlgWJOVP5FwO1Wkm0sD7dbbRV0UYcliPbQQ2d7aLNlWKCeyi8X0gT-WPylvA7UMg5zuvK5TjNsMxgCrD-KFN98URPwFHONE4W-hWb9fu3fTToXj12elZ1QIIVe26QW-Zky8ijyomV-QCpqFLgPkQJGG1jyIGqkUDHTIOPUuwYBlpHnKkYfCTiJtQ9QGvZNNOHCPu-AuySLKGGQSl4iRPziOqAgvvMpGwiu5aKmJV1MEQdIDYWtRyFGYYgjgA5NhGvhSd-zKgAsP7z2fNS2su-TBXsy_QpFNP5s3jJRwJoiev4R__o5BhtwBUv8tOdE7SWzxf6FBhGHrUKFWqh9fD6ttf_BmKNz-Q
link.rule.ids 230,315,786,790,891,4521,24144,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgAD4inK0wNiS0NeTjxWhapAWwnRom6Wkzg0haZVSQUs_Hbu8qjKgBhYEyd2zs5339n3IOTCsKTJAptrrncVgIEibY0D7dBsGSkZWcyzsqOYbo-1B_bd0BlWSLOMhUG3ygL7c0zP0Lq4ohfS1GdxrD8C9mIIDodFaRseBxxeQzaAfl31r6Wfh-EWHBhaa9h8JUx4XI_Ho0_4vzFfpuHhvqCBRZV_0VCrqUQz9dPaJlsFb6SNfGg7pKKSXbK5kk1wjzQeFhJdfzBwib4Dh5zTtExdTuOEygTmgKqPPNaXTtQELOVE0WihXilu4L_tk0Hrpt9sa0WFBC2wLTfVsLSlb7PQDEL8ABmyMAT7wY9Aa6MmB65muCrwFBgp2ZGhq5TPvTAAI8mwImYdkGoyTdQhoY4TAnhJL2JIoUJ4iRlwnymXgf3sSVkjeikVMcsTYYjSQ2wsSjkKHIYwTAFyrBFeCk_8mFIBaP3ns5e5tJd9YRrs6_ipIabzZ_GSjgTwEst0jv7RyTlZb_e7HdG57d0fkw24w7NgdfOEVNP5Qp0C3Uj9s2w5fQNpjNF9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+water+transport+in+anion+exchange+membrane+fuel+cells&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Eriksson%2C+Bj%C3%B6rn&rft.au=Grimler%2C+Henrik&rft.au=Carlson%2C+Annika&rft.au=Ekstr%C3%B6m%2C+Henrik&rft.date=2019-02-22&rft.issn=1879-3487&rft.volume=44&rft.issue=10&rft.spage=4930&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.12.185&rft.externalDocID=oai_DiVA_org_kth_244325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon