Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution

[Display omitted] Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under visible-light irradiation. •A fish scale-like g-C3N4/Ag3PO4 composite photocatalyst was fabricated.•The heterojunction photocatalyst exhibits h...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 244; pp. 240 - 249
Main Authors Yang, Xiaofei, Tian, Lin, Zhao, Xiaolong, Tang, Hua, Liu, Qinqin, Li, Guisheng
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 05.05.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under visible-light irradiation. •A fish scale-like g-C3N4/Ag3PO4 composite photocatalyst was fabricated.•The heterojunction photocatalyst exhibits highly improved oxygen evolution than pristine Ag3PO4.•The improvement in the activity is ascribed to synergistic effects of modified g-C3N4.•Z-scheme configuration is suggested to be responsible for enhanced redox catalytic capability. Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor oxygen-evolving efficiency originating from intrinsically sluggish oxygen evolution reaction (OER) kinetics. Ag3PO4 has been actively pursued as a promising photocatalyst for oxygen evolution from water-splitting. However, its low OER efficiency is a long standing problem. Both the construction of Z-scheme Ag3PO4-based composite photocatalytic systems and the optimization of surface morphology and interfacial contact in heterojunctions photocatalysts would be beneficial for boosting OER efficiency. Here we report on the fabrication of Ag3PO4/fish scale-like graphitic carbon nitride (g-C3N4) sheet composites with well-defined heterostructures and intimate interfacial contact driven by electrostatic assembly. The Ag3PO4/modified g-C3N4 composites photocatalyst reveals significantly enhanced oxygen-evolving activity under light-emitting diode (LED) illumination. Effective surface modification of g-C3N4, strong interfacial interactions between two semiconductors and tandem Z-scheme-type pathway for more efficient charge transfer synergistically accelerates the redox capability of Ag3PO4 for OER. This work may provide new insights into the design and construction of high-performance solar-driven Z-scheme photocatalytic water splitting systems.
AbstractList Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor oxygen-evolving efficiency originating from intrinsically sluggish oxygen evolution reaction (OER) kinetics. Ag3PO4 has been actively pursued as a promising photocatalyst for oxygen evolution from water-splitting. However, its low OER efficiency is a long standing problem. Both the construction of Z-scheme Ag3PO4-based composite photocatalytic systems and the optimization of surface morphology and interfacial contact in heterojunctions photocatalysts would be beneficial for boosting OER efficiency. Here we report on the fabrication of Ag3PO4/fish scale-like graphitic carbon nitride (g-C3N4) sheet composites with well-defined heterostructures and intimate interfacial contact driven by electrostatic assembly. The Ag3PO4/modified g-C3N4 composites photocatalyst reveals significantly enhanced oxygen-evolving activity under light-emitting diode (LED) illumination. Effective surface modification of g-C3N4, strong interfacial interactions between two semiconductors and tandem Z-scheme-type pathway for more efficient charge transfer synergistically accelerates the redox capability of Ag3PO4 for OER. This work may provide new insights into the design and construction of high-performance solar-driven Z-scheme photocatalytic water splitting systems.
[Display omitted] Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under visible-light irradiation. •A fish scale-like g-C3N4/Ag3PO4 composite photocatalyst was fabricated.•The heterojunction photocatalyst exhibits highly improved oxygen evolution than pristine Ag3PO4.•The improvement in the activity is ascribed to synergistic effects of modified g-C3N4.•Z-scheme configuration is suggested to be responsible for enhanced redox catalytic capability. Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor oxygen-evolving efficiency originating from intrinsically sluggish oxygen evolution reaction (OER) kinetics. Ag3PO4 has been actively pursued as a promising photocatalyst for oxygen evolution from water-splitting. However, its low OER efficiency is a long standing problem. Both the construction of Z-scheme Ag3PO4-based composite photocatalytic systems and the optimization of surface morphology and interfacial contact in heterojunctions photocatalysts would be beneficial for boosting OER efficiency. Here we report on the fabrication of Ag3PO4/fish scale-like graphitic carbon nitride (g-C3N4) sheet composites with well-defined heterostructures and intimate interfacial contact driven by electrostatic assembly. The Ag3PO4/modified g-C3N4 composites photocatalyst reveals significantly enhanced oxygen-evolving activity under light-emitting diode (LED) illumination. Effective surface modification of g-C3N4, strong interfacial interactions between two semiconductors and tandem Z-scheme-type pathway for more efficient charge transfer synergistically accelerates the redox capability of Ag3PO4 for OER. This work may provide new insights into the design and construction of high-performance solar-driven Z-scheme photocatalytic water splitting systems.
Author Tang, Hua
Li, Guisheng
Yang, Xiaofei
Tian, Lin
Liu, Qinqin
Zhao, Xiaolong
Author_xml – sequence: 1
  givenname: Xiaofei
  orcidid: 0000-0003-1972-4562
  surname: Yang
  fullname: Yang, Xiaofei
  email: xiaofei.yang@njfu.edu.cn
  organization: College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China
– sequence: 2
  givenname: Lin
  surname: Tian
  fullname: Tian, Lin
  organization: School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 3
  givenname: Xiaolong
  surname: Zhao
  fullname: Zhao, Xiaolong
  organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China
– sequence: 4
  givenname: Hua
  surname: Tang
  fullname: Tang, Hua
  organization: School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 5
  givenname: Qinqin
  surname: Liu
  fullname: Liu, Qinqin
  organization: School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
– sequence: 6
  givenname: Guisheng
  surname: Li
  fullname: Li, Guisheng
  email: liguisheng@shnu.edu.cn
  organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China
BookMark eNqFkM2O0zAURi00SHR-3oBFJNYJvnaa2CyQUAXMSCPYDJvZWI5z0zpK7WC7hfISvPI4U1YsYGXp6jvf9T2X5MJ5h4S8BloBhebtWOnZ6NRVjIKoACq6bl6QFYiWl1wIfkFWVLKm5Lzlr8hljCOllHEmVuT3nUsYBm2sngo_J7u3v3Sy3hV-KLblhn-py05H7IvHMpod7rHYYSb8eHDmOZf8Dx36Ip4chq2NyZoC3U47k7MuLTXRTzqUfbBHdMW888nnz-rptET9z9M2T_Hop8NSd01eDnqKePPnvSLfPn182NyW918_320-3Jem5m0q1xzNmomhAQNUaImyHTrWSWagbk0NQvKO6Z5Cx2Vbtw32DYCkiEa0awacX5E35945-O8HjEmN_hBcXqkYSMk4l7zOqfqcMsHHGHBQc7B7HU4KqFrUq1Gd1atFvQJQWX3G3v2FGZueraag7fQ_-P0Zxnz-0WJQ0VjMOnsb0CTVe_vvgid3Oqbz
CitedBy_id crossref_primary_10_1039_C9RA08292A
crossref_primary_10_1016_j_apcatb_2019_04_031
crossref_primary_10_1016_j_colsurfa_2022_129315
crossref_primary_10_1016_j_jallcom_2022_167554
crossref_primary_10_1021_acsaem_0c01357
crossref_primary_10_1021_acsomega_9b04420
crossref_primary_10_1039_C9TA08357J
crossref_primary_10_1016_j_solidstatesciences_2020_106350
crossref_primary_10_1016_j_wse_2020_12_005
crossref_primary_10_1016_j_cej_2022_137369
crossref_primary_10_1039_D1NJ02217B
crossref_primary_10_1016_j_colsurfa_2020_124778
crossref_primary_10_20964_2021_10_57
crossref_primary_10_1016_j_jcis_2021_12_196
crossref_primary_10_1039_D4TA01886A
crossref_primary_10_1007_s40843_022_2394_6
crossref_primary_10_1016_j_ceramint_2021_05_054
crossref_primary_10_1007_s11356_021_17286_9
crossref_primary_10_1016_j_flatc_2022_100419
crossref_primary_10_1016_j_inoche_2019_107630
crossref_primary_10_1021_acsanm_9b00295
crossref_primary_10_1016_j_apcatb_2022_121214
crossref_primary_10_1016_j_jallcom_2019_151990
crossref_primary_10_1002_adma_202105195
crossref_primary_10_1016_j_apsusc_2019_144042
crossref_primary_10_1016_j_optmat_2021_111222
crossref_primary_10_1039_D4CC03796K
crossref_primary_10_3390_nano11061480
crossref_primary_10_1016_j_seppur_2020_117486
crossref_primary_10_1016_j_jcis_2024_02_087
crossref_primary_10_3390_nano11030613
crossref_primary_10_1016_j_ijhydene_2020_04_116
crossref_primary_10_1016_j_materresbull_2023_112423
crossref_primary_10_1016_j_jallcom_2024_177907
crossref_primary_10_1016_j_jece_2024_112328
crossref_primary_10_1016_j_seppur_2023_125286
crossref_primary_10_1016_j_jallcom_2020_156798
crossref_primary_10_1016_S1872_2067_19_63494_7
crossref_primary_10_1016_j_diamond_2022_108896
crossref_primary_10_1016_j_jece_2022_108189
crossref_primary_10_1016_j_jmst_2022_07_021
crossref_primary_10_1038_s41598_019_45672_4
crossref_primary_10_1007_s11164_024_05500_5
crossref_primary_10_1016_j_jenvman_2020_110803
crossref_primary_10_1021_acs_langmuir_1c01009
crossref_primary_10_1016_j_jcis_2023_11_171
crossref_primary_10_3390_ijms241411383
crossref_primary_10_1007_s40242_022_1468_4
crossref_primary_10_1016_j_apcatb_2020_119144
crossref_primary_10_1016_j_catcom_2020_106028
crossref_primary_10_1016_j_scitotenv_2020_141926
crossref_primary_10_1016_j_envres_2024_119184
crossref_primary_10_1007_s12209_020_00269_1
crossref_primary_10_1016_j_apcatb_2019_117867
crossref_primary_10_1016_j_chemosphere_2021_133461
crossref_primary_10_1039_D2GC00608A
crossref_primary_10_1016_j_cej_2021_132770
crossref_primary_10_1016_j_vacuum_2022_111785
crossref_primary_10_1016_j_jcis_2020_05_025
crossref_primary_10_1002_er_8382
crossref_primary_10_1007_s12598_019_01224_3
crossref_primary_10_1007_s12274_020_2955_x
crossref_primary_10_3390_catal11121519
crossref_primary_10_1088_1361_6463_ab48b1
crossref_primary_10_1016_j_jallcom_2020_154145
crossref_primary_10_1039_D1TA00704A
crossref_primary_10_1016_j_seppur_2022_122744
crossref_primary_10_1016_j_jhazmat_2020_123790
crossref_primary_10_1016_j_jtice_2021_02_003
crossref_primary_10_2139_ssrn_3967300
crossref_primary_10_1016_j_cej_2019_123608
crossref_primary_10_1016_j_apcatb_2019_118252
crossref_primary_10_1016_j_jallcom_2022_168635
crossref_primary_10_1016_j_apcatb_2023_122490
crossref_primary_10_1016_j_apsusc_2024_159675
crossref_primary_10_1016_j_apcatb_2020_119157
crossref_primary_10_1016_j_ijhydene_2021_07_076
crossref_primary_10_1016_j_jece_2024_112347
crossref_primary_10_1016_j_apcatb_2020_119038
crossref_primary_10_1016_j_materresbull_2023_112448
crossref_primary_10_20964_2021_05_42
crossref_primary_10_1016_j_apcatb_2019_117854
crossref_primary_10_1016_j_fuel_2023_127998
crossref_primary_10_1016_j_jhazmat_2019_121690
crossref_primary_10_1007_s40843_019_9473_2
crossref_primary_10_1016_j_jpcs_2022_110968
crossref_primary_10_1021_acsami_9b04302
crossref_primary_10_1016_j_apcatb_2019_117850
crossref_primary_10_1016_j_apsusc_2020_146486
crossref_primary_10_1016_j_jcat_2024_115846
crossref_primary_10_1016_j_apsusc_2019_05_360
crossref_primary_10_3390_catal10040440
crossref_primary_10_1021_acs_energyfuels_9b02705
crossref_primary_10_1039_C9NR10511E
crossref_primary_10_1016_j_colsurfa_2022_129232
crossref_primary_10_1039_C9CY01305A
crossref_primary_10_1007_s10904_020_01595_6
crossref_primary_10_1039_D0NR01611J
crossref_primary_10_1016_j_ccr_2024_216318
crossref_primary_10_1016_j_coco_2021_100724
crossref_primary_10_1039_D4TA02512A
crossref_primary_10_1021_acssuschemeng_9b00252
crossref_primary_10_1007_s10853_019_03449_0
crossref_primary_10_1016_j_jhazmat_2020_122119
crossref_primary_10_1016_j_jhazmat_2023_132281
crossref_primary_10_1039_D1SE00290B
crossref_primary_10_1016_j_eti_2025_104078
crossref_primary_10_1016_j_jhazmat_2019_121083
crossref_primary_10_1016_j_jmst_2021_12_070
crossref_primary_10_1039_C9NR05413H
crossref_primary_10_1016_j_dyepig_2020_108568
crossref_primary_10_1039_D4EE00445K
crossref_primary_10_3389_fchem_2022_955065
crossref_primary_10_1007_s12274_023_6014_2
crossref_primary_10_1016_j_cej_2019_123496
crossref_primary_10_1016_j_cclet_2020_12_002
crossref_primary_10_1002_cctc_201901533
crossref_primary_10_1016_j_colsurfa_2023_132997
crossref_primary_10_1016_j_seppur_2020_118251
crossref_primary_10_1016_j_ijhydene_2020_11_191
crossref_primary_10_1016_j_jhazmat_2022_128866
crossref_primary_10_1016_j_jphotochem_2024_115537
crossref_primary_10_1039_D2NJ01100J
crossref_primary_10_1016_j_cej_2021_131223
crossref_primary_10_1002_admt_202100993
crossref_primary_10_1016_j_cej_2021_131585
crossref_primary_10_1016_j_matlet_2020_127399
crossref_primary_10_1016_j_jcis_2024_01_213
crossref_primary_10_1016_j_surfin_2023_102989
crossref_primary_10_1016_j_seppur_2024_129785
crossref_primary_10_1021_acs_inorgchem_1c01716
crossref_primary_10_1039_D1CY01850G
crossref_primary_10_3390_catal12121634
crossref_primary_10_1016_j_apsusc_2020_147234
crossref_primary_10_1016_j_apcatb_2023_123561
crossref_primary_10_1002_smll_202005149
crossref_primary_10_1016_j_colsurfa_2019_124041
crossref_primary_10_1039_D0NJ04322B
crossref_primary_10_1016_j_jallcom_2019_153166
crossref_primary_10_1016_j_jallcom_2024_174682
crossref_primary_10_1016_j_cej_2020_124421
crossref_primary_10_1016_S1872_2067_23_64520_6
crossref_primary_10_1016_S1872_2067_21_63849_4
crossref_primary_10_1016_j_cclet_2021_12_071
crossref_primary_10_1016_j_jcis_2023_06_067
crossref_primary_10_1016_j_apcatb_2019_118445
crossref_primary_10_1149_1945_7111_ac65b8
crossref_primary_10_1016_j_inoche_2023_111503
crossref_primary_10_1039_D2TA06939C
crossref_primary_10_1039_D0EN00801J
crossref_primary_10_1016_j_jenvman_2019_109738
crossref_primary_10_1016_j_jphotochem_2021_113705
crossref_primary_10_1002_adfm_201910005
crossref_primary_10_1016_j_apsusc_2019_05_056
crossref_primary_10_1016_j_colsurfa_2019_124397
crossref_primary_10_1016_j_mssp_2022_106903
crossref_primary_10_1002_asia_202000583
crossref_primary_10_1021_acsanm_3c02052
crossref_primary_10_1021_acssuschemeng_0c07753
crossref_primary_10_1016_j_jhazmat_2019_121417
crossref_primary_10_1016_j_cej_2019_03_025
crossref_primary_10_1039_C9RA07843F
crossref_primary_10_1016_j_cej_2021_130831
crossref_primary_10_1016_j_jallcom_2022_166256
crossref_primary_10_1016_j_jpcs_2021_110181
crossref_primary_10_1016_j_mssp_2021_106187
crossref_primary_10_1002_cptc_202200143
crossref_primary_10_1016_j_apsusc_2019_05_163
crossref_primary_10_1111_jace_17740
crossref_primary_10_1016_j_solidstatesciences_2019_106095
crossref_primary_10_1016_j_jpowsour_2020_228430
crossref_primary_10_1016_S1872_2067_22_64110_X
crossref_primary_10_1016_j_jallcom_2020_155684
crossref_primary_10_1002_pssr_202000513
crossref_primary_10_1016_j_ijhydene_2020_08_283
crossref_primary_10_1021_acssuschemeng_0c05246
crossref_primary_10_1039_C8NR10198A
crossref_primary_10_1007_s11356_022_19318_4
crossref_primary_10_1039_D0CY00395F
crossref_primary_10_1016_j_apsusc_2022_156310
crossref_primary_10_1016_j_apsusc_2023_158454
crossref_primary_10_1016_S1872_2067_20_63559_8
crossref_primary_10_1002_slct_202101556
crossref_primary_10_1021_acssuschemeng_1c07992
crossref_primary_10_1002_ep_13714
crossref_primary_10_1039_D0TA05985D
crossref_primary_10_1016_j_apsusc_2024_160018
crossref_primary_10_1016_j_ceramint_2022_02_089
crossref_primary_10_1016_j_apcatb_2024_124326
crossref_primary_10_1016_j_mtadv_2019_100025
crossref_primary_10_1021_acsami_1c02722
crossref_primary_10_1016_j_apsusc_2019_07_121
crossref_primary_10_1016_j_apsusc_2020_148137
crossref_primary_10_1039_D4TA00256C
crossref_primary_10_1016_j_cej_2019_122122
crossref_primary_10_1016_j_electacta_2021_138963
crossref_primary_10_1016_j_ceramint_2019_10_081
crossref_primary_10_1016_j_jallcom_2021_162772
crossref_primary_10_1016_j_chemosphere_2023_139175
crossref_primary_10_1016_j_seppur_2020_118177
crossref_primary_10_1016_j_mtener_2023_101408
crossref_primary_10_1088_1674_4926_44_8_081701
crossref_primary_10_1016_j_apcatb_2019_118433
crossref_primary_10_1007_s10853_020_04799_w
crossref_primary_10_1016_j_jcis_2021_10_178
crossref_primary_10_1016_j_apsusc_2021_151027
crossref_primary_10_1016_j_talanta_2020_120916
crossref_primary_10_1016_j_apcatb_2019_02_020
crossref_primary_10_1002_solr_201900434
crossref_primary_10_1038_s41598_020_63623_2
crossref_primary_10_1039_D0NJ01060J
crossref_primary_10_1039_C9TA01863H
crossref_primary_10_1002_admi_202201114
crossref_primary_10_1039_D1CE00439E
crossref_primary_10_1002_aenm_202302325
crossref_primary_10_1016_j_cej_2023_144673
crossref_primary_10_1002_cctc_202000448
crossref_primary_10_1016_j_xcrp_2021_100355
crossref_primary_10_1016_j_mtphys_2020_100261
crossref_primary_10_1016_j_cej_2019_06_029
crossref_primary_10_1021_acsanm_9b00428
crossref_primary_10_1016_j_electacta_2019_03_212
crossref_primary_10_1007_s12598_023_02580_x
crossref_primary_10_1016_j_physrep_2022_07_003
crossref_primary_10_1016_j_seppur_2023_125330
crossref_primary_10_1039_D3NJ02084C
crossref_primary_10_3390_catal10020206
crossref_primary_10_1016_j_jcis_2023_04_025
crossref_primary_10_1016_j_jpowsour_2021_230159
crossref_primary_10_1016_j_seppur_2021_120406
crossref_primary_10_3762_bjnano_10_92
crossref_primary_10_1007_s10854_019_01176_5
crossref_primary_10_1016_j_molliq_2020_113242
crossref_primary_10_1007_s42247_024_00788_w
crossref_primary_10_1016_j_mtsust_2024_101069
crossref_primary_10_1016_j_colsurfa_2022_130298
crossref_primary_10_1016_j_seppur_2023_123609
crossref_primary_10_1016_j_jenvman_2022_114552
crossref_primary_10_1016_j_ceramint_2019_08_123
crossref_primary_10_1021_acsami_9b01421
crossref_primary_10_1016_j_jcis_2022_10_016
crossref_primary_10_1155_2020_8461543
crossref_primary_10_2139_ssrn_3960517
crossref_primary_10_1016_S1872_2067_19_63430_3
crossref_primary_10_1016_j_jcis_2022_01_073
crossref_primary_10_1002_chem_201902203
crossref_primary_10_1002_cctc_201901489
crossref_primary_10_1016_j_vacuum_2023_112090
crossref_primary_10_1016_j_solidstatesciences_2019_105967
crossref_primary_10_1016_j_apsusc_2022_154694
crossref_primary_10_1002_smll_202205706
crossref_primary_10_1007_s13762_024_06204_4
crossref_primary_10_1039_C9DT02849H
crossref_primary_10_1016_j_chemosphere_2021_131260
crossref_primary_10_1016_j_seppur_2024_129950
crossref_primary_10_1016_j_chemosphere_2022_133841
crossref_primary_10_1016_j_jhazmat_2022_130300
crossref_primary_10_1088_1361_6528_ab3f15
crossref_primary_10_1039_D4DT02658F
crossref_primary_10_1016_j_matdes_2021_110040
crossref_primary_10_1016_j_chemosphere_2024_142308
crossref_primary_10_1002_admt_202201579
crossref_primary_10_1016_j_cej_2020_126780
crossref_primary_10_1016_j_jphotochem_2019_04_023
crossref_primary_10_1016_j_ceramint_2019_07_088
crossref_primary_10_1016_j_chemosphere_2021_129746
crossref_primary_10_1016_j_apcatb_2020_119696
crossref_primary_10_1016_j_ceramint_2019_08_226
crossref_primary_10_1021_acsaem_0c03168
crossref_primary_10_1039_D2CY01387H
crossref_primary_10_1016_j_cej_2019_04_124
crossref_primary_10_1039_C9NJ05987C
crossref_primary_10_1016_S1872_2067_20_63631_2
crossref_primary_10_1016_j_apcatb_2021_120059
crossref_primary_10_1016_j_apcatb_2020_118918
crossref_primary_10_1007_s12598_019_01232_3
crossref_primary_10_1021_acsami_1c10307
crossref_primary_10_1016_j_colsurfa_2022_128682
crossref_primary_10_1039_C9RA07068K
crossref_primary_10_1016_j_jphotochem_2022_114167
crossref_primary_10_1016_j_apcatb_2019_118281
crossref_primary_10_1016_j_apsusc_2021_152171
crossref_primary_10_1038_s41598_019_49949_6
crossref_primary_10_1016_j_apsusc_2020_145919
crossref_primary_10_1016_j_apsusc_2019_144613
crossref_primary_10_1016_j_seppur_2019_05_080
crossref_primary_10_1021_acssuschemeng_1c01234
crossref_primary_10_1016_j_apsusc_2019_143639
crossref_primary_10_1016_j_apsusc_2019_143647
crossref_primary_10_1016_j_ijhydene_2022_10_009
crossref_primary_10_1016_j_jmst_2020_04_026
crossref_primary_10_1007_s10854_020_03271_4
crossref_primary_10_1039_D0QI01026J
crossref_primary_10_1002_er_8181
crossref_primary_10_1016_j_apsusc_2020_148619
crossref_primary_10_1016_j_jcis_2020_12_009
crossref_primary_10_1016_j_ccr_2024_215752
crossref_primary_10_1021_acs_est_1c08031
crossref_primary_10_1039_C8TA11497H
crossref_primary_10_1016_j_ceramint_2019_08_203
crossref_primary_10_3390_nano11113122
crossref_primary_10_1016_j_mtphys_2023_101080
crossref_primary_10_1016_j_apsusc_2020_146444
crossref_primary_10_1016_j_ijhydene_2024_03_262
crossref_primary_10_1016_S1872_2067_20_63595_1
crossref_primary_10_1002_smll_202006851
crossref_primary_10_1016_j_apcatb_2022_121107
crossref_primary_10_1016_j_seppur_2024_127503
crossref_primary_10_1016_j_apsusc_2019_143771
crossref_primary_10_1016_j_fuel_2024_134264
crossref_primary_10_1016_j_cej_2021_132727
crossref_primary_10_1016_j_jiec_2019_12_003
Cites_doi 10.1016/j.apcatb.2015.10.022
10.1021/acs.jpcc.6b04430
10.1016/j.apsusc.2018.06.014
10.1021/es5046309
10.1021/es8032814
10.1039/C6CP06147H
10.1002/cssc.201301194
10.1007/s12274-016-1391-4
10.1016/j.apcatb.2018.01.057
10.1016/j.ijhydene.2015.12.061
10.1016/j.apcatb.2016.09.055
10.1016/j.apcatb.2018.02.025
10.1002/chem.201404284
10.1016/j.apsusc.2018.10.090
10.1021/jacs.7b08416
10.1016/S1872-2067(17)62911-5
10.1002/cssc.201403168
10.1016/j.apcatb.2017.07.022
10.1021/jp2037476
10.1021/acs.jpclett.6b02151
10.1016/j.apsusc.2018.08.209
10.1016/j.nanoen.2015.01.043
10.1016/j.apsusc.2017.07.185
10.1002/adma.201500033
10.1016/j.apsusc.2017.07.290
10.1016/j.apcatb.2018.03.066
10.1002/anie.201706870
10.1021/ja027751g
10.1002/advs.201600371
10.1039/C5TA05503B
10.1023/A:1023480507710
10.1021/ie5012036
10.1021/jp303219j
10.1021/jp0684628
10.1021/acsnano.6b01999
10.1039/c3cp53131g
10.1021/jz1007966
10.1002/advs.201500389
10.1039/C7TA03777E
10.1016/j.apcatb.2018.04.036
10.1002/anie.201001259
10.1002/adma.201605148
10.1038/nmat2780
10.1038/ncomms6881
10.1016/j.apsusc.2018.06.156
10.1021/acsami.5b02649
10.1016/j.jallcom.2014.11.148
10.3389/fchem.2018.00123
10.1016/j.apcatb.2017.05.087
10.1016/j.apcatb.2018.03.100
10.1021/acsami.6b07754
10.1016/j.apcatb.2018.02.022
10.1016/j.apcatb.2016.07.046
10.1002/aenm.201501865
10.1016/j.apcatb.2016.04.050
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV May 5, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV May 5, 2019
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2018.11.056
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 249
ExternalDocumentID 10_1016_j_apcatb_2018_11_056
S0926337318311068
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c437t-53ec528f61c108a9e97fb2b92c147c41893b2ad01b397476ed61190eec8752133
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 10:35:00 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 03:10:53 EDT 2025
Sat Mar 02 16:00:23 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords g-C3N4
Water splitting
Z-scheme
Ag3PO4
Photocatalytic oxygen evolution
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-53ec528f61c108a9e97fb2b92c147c41893b2ad01b397476ed61190eec8752133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1972-4562
PQID 2199233934
PQPubID 2045281
PageCount 10
ParticipantIDs proquest_journals_2199233934
crossref_primary_10_1016_j_apcatb_2018_11_056
crossref_citationtrail_10_1016_j_apcatb_2018_11_056
elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_11_056
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-05
PublicationDateYYYYMMDD 2019-05-05
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-05
  day: 05
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Yu, Shi, Zhao, Bian, Zhao, Zhou, Waterhouse, Wu, Tung, Zhang (bib0205) 2017; 29
Zhang, Savateev, Zhao, Li, Antonietti (bib0245) 2017; 5
Zhang, Jiang, Li, He, Chen (bib0225) 2016; 183
Guo, Tang, Xie, Tian, Feng, Zhou, Jiang (bib0220) 2017; 218
Chen, Huang, Yi (bib0135) 2014; 20
Cao, Low, Yu, Jaroniec (bib0210) 2015; 27
Zhang, Li, Lan, Lin, Savateev, Heil, Zafeiratos, Wang, Antonietti (bib0240) 2017; 56
Yu, Xu, Peng (bib0155) 2015; 3
Wang, Xu, Zhou, Shao (bib0020) 2017; 4
Cui, Tian, Xian, Tang, Yang (bib0195) 2018; 430
Zhao, Pan, Chen, Li, Jiang, Wang, Li, Leung (bib0045) 2019; 467–468
Tian, Xian, Cui, Tang, Yang (bib0200) 2018; 430
Maeda, Domen (bib0010) 2010; 1
Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib0260) 2017; 10
Tian, Yang, Cui, Liu, Tang (bib0130) 2019; 463
Berto, Sanwald, Byers, Browning, Gutierrez, Lercher (bib0070) 2016; 7
Kudo (bib0030) 2003; 7
Zeng, Wang, Zhang, Zhu, Yan (bib0250) 2007; 111
Tian, Yang, Liu, Qu, Tang (bib0065) 2018; 455
Hou, Zuo, Ma, Wang, Bartels, Feng (bib0100) 2012; 116
Miao, Yue, Ji, Shen, Zhou, Liu, Xu, Zhu, Zhu, Kong, Shah (bib0140) 2018; 227
Yang, Tang, Xu, Antonietti, Shalom (bib0190) 2015; 8
Katsumata, Sakai, Suzuki, Kaneco (bib0120) 2014; 53
Liu, Shen, Yang, Liu, Tang (bib0180) 2018; 456
Zhu, Kim, Mao, Fujitsuka, Zhang, Wang, Majima (bib0235) 2017; 139
Yi, Ye, Kikugawa, Kako, Ouyang, Stuart-Williams, Yang, Cao, Luo, Li, Liu, Withers (bib0090) 2010; 9
Kato, Asakura, Kudo (bib0005) 2003; 125
Liu, Shen, Yang, Zhang, Tang (bib0125) 2018; 232
An, Li, Tang (bib0265) 2014; 7
Wang, Li, Ma, Yu, Yu (bib0110) 2011; 115
Sun, Wang, Zhang, Zhou, Yin, Shang (bib0255) 2009; 43
Guo, Wang, Qian, Ao, Wang, Hou (bib0025) 2018; 234
Liu, Cheng, Yu (bib0160) 2016; 18
Li, Tu, Zhou, Zou (bib0115) 2016; 3
Yu, Wang, Low, Xiao (bib0150) 2013; 15
Yi, Yan, Wulan, Li, Liu, Jiang (bib0215) 2017; 200
Li, Yan, Wang, Zhao, Zhang, Gong, Guan (bib0275) 2015; 6
Li, Lv, Ho, Dong, Wu, Xia (bib0170) 2017; 202
Cheng, Hu, Lv, Wu, Li, Li, Li, Sun (bib0165) 2018; 232
Zhang, Li, Wu, Zheng, Tao (bib0055) 2018; 229
Yin, Bai, Zhu, Zhong, Zhao, Li, Bai (bib0270) 2016; 8
Chen, Gu, Sun, Zhao, Zhang, You, Liu, Zhang, Su, Su, Zhang (bib0080) 2016; 10
Ou, Zhong, Zhang, Yu (bib0230) 2015; 626
He, Zhang, Teng, Fan (bib0145) 2015; 49
Chong, Cheng, Wang, Li, Chang, Zhang (bib0105) 2016; 41
Halaoui (bib0035) 2016; 120
Li, Xiao, Li, Cao, Chen, Li, Li, Li (bib0075) 2018
Lv, Wei, Sun, Li, Huang, Dai (bib0015) 2017; 217
Fu, Li, Liu, Yang, Tang (bib0175) 2017; 38
Maeda, Xiong, Yoshinaga, Ikeda, Sakamoto, Hisatomi, Takashima, Lu, Kanehara, Setoyama, Teranishi, Domen (bib0085) 2010; 49
Cui, Yang, Xian, Tian, Tang, Liu (bib0095) 2018; 6
Huang, Song, Pan, Wang, Zhang, Zou, Mi, Zhang, Wang (bib0050) 2015; 12
Pan, Han, Miao, Zhang, Li (bib0060) 2018; 229
Lin, Xiao, Li, Liu, Wang, Yang (bib0040) 2016; 6
Ao, Wang, Wang, Wang, Hou (bib0280) 2016; 194
Yang, Chen, Xu, Tang, Chen, Jiang (bib0185) 2015; 7
Li (10.1016/j.apcatb.2018.11.056_bib0115) 2016; 3
Chen (10.1016/j.apcatb.2018.11.056_bib0135) 2014; 20
Tian (10.1016/j.apcatb.2018.11.056_bib0200) 2018; 430
Lin (10.1016/j.apcatb.2018.11.056_bib0040) 2016; 6
Cao (10.1016/j.apcatb.2018.11.056_bib0210) 2015; 27
An (10.1016/j.apcatb.2018.11.056_bib0265) 2014; 7
Wang (10.1016/j.apcatb.2018.11.056_bib0110) 2011; 115
Katsumata (10.1016/j.apcatb.2018.11.056_bib0120) 2014; 53
Kudo (10.1016/j.apcatb.2018.11.056_bib0030) 2003; 7
Yang (10.1016/j.apcatb.2018.11.056_bib0185) 2015; 7
Yu (10.1016/j.apcatb.2018.11.056_bib0155) 2015; 3
Yin (10.1016/j.apcatb.2018.11.056_bib0270) 2016; 8
Kato (10.1016/j.apcatb.2018.11.056_bib0005) 2003; 125
Tian (10.1016/j.apcatb.2018.11.056_bib0130) 2019; 463
Zhu (10.1016/j.apcatb.2018.11.056_bib0235) 2017; 139
Liu (10.1016/j.apcatb.2018.11.056_bib0160) 2016; 18
Zhang (10.1016/j.apcatb.2018.11.056_bib0245) 2017; 5
Maeda (10.1016/j.apcatb.2018.11.056_bib0010) 2010; 1
Ong (10.1016/j.apcatb.2018.11.056_bib0260) 2017; 10
Halaoui (10.1016/j.apcatb.2018.11.056_bib0035) 2016; 120
Ao (10.1016/j.apcatb.2018.11.056_bib0280) 2016; 194
Berto (10.1016/j.apcatb.2018.11.056_bib0070) 2016; 7
Hou (10.1016/j.apcatb.2018.11.056_bib0100) 2012; 116
Cheng (10.1016/j.apcatb.2018.11.056_bib0165) 2018; 232
Liu (10.1016/j.apcatb.2018.11.056_bib0180) 2018; 456
Lv (10.1016/j.apcatb.2018.11.056_bib0015) 2017; 217
Yi (10.1016/j.apcatb.2018.11.056_bib0215) 2017; 200
Li (10.1016/j.apcatb.2018.11.056_bib0170) 2017; 202
Yu (10.1016/j.apcatb.2018.11.056_bib0205) 2017; 29
Zhang (10.1016/j.apcatb.2018.11.056_bib0225) 2016; 183
Cui (10.1016/j.apcatb.2018.11.056_bib0095) 2018; 6
Li (10.1016/j.apcatb.2018.11.056_bib0275) 2015; 6
Chong (10.1016/j.apcatb.2018.11.056_bib0105) 2016; 41
Yang (10.1016/j.apcatb.2018.11.056_bib0190) 2015; 8
Liu (10.1016/j.apcatb.2018.11.056_bib0125) 2018; 232
Pan (10.1016/j.apcatb.2018.11.056_bib0060) 2018; 229
Zhao (10.1016/j.apcatb.2018.11.056_bib0045) 2019; 467–468
Zeng (10.1016/j.apcatb.2018.11.056_bib0250) 2007; 111
He (10.1016/j.apcatb.2018.11.056_bib0145) 2015; 49
Guo (10.1016/j.apcatb.2018.11.056_bib0220) 2017; 218
Tian (10.1016/j.apcatb.2018.11.056_bib0065) 2018; 455
Zhang (10.1016/j.apcatb.2018.11.056_bib0240) 2017; 56
Chen (10.1016/j.apcatb.2018.11.056_bib0080) 2016; 10
Sun (10.1016/j.apcatb.2018.11.056_bib0255) 2009; 43
Maeda (10.1016/j.apcatb.2018.11.056_bib0085) 2010; 49
Wang (10.1016/j.apcatb.2018.11.056_bib0020) 2017; 4
Li (10.1016/j.apcatb.2018.11.056_bib0075) 2018
Yi (10.1016/j.apcatb.2018.11.056_bib0090) 2010; 9
Ou (10.1016/j.apcatb.2018.11.056_bib0230) 2015; 626
Yu (10.1016/j.apcatb.2018.11.056_bib0150) 2013; 15
Fu (10.1016/j.apcatb.2018.11.056_bib0175) 2017; 38
Zhang (10.1016/j.apcatb.2018.11.056_bib0055) 2018; 229
Miao (10.1016/j.apcatb.2018.11.056_bib0140) 2018; 227
Guo (10.1016/j.apcatb.2018.11.056_bib0025) 2018; 234
Cui (10.1016/j.apcatb.2018.11.056_bib0195) 2018; 430
Huang (10.1016/j.apcatb.2018.11.056_bib0050) 2015; 12
References_xml – volume: 20
  start-page: 17590
  year: 2014
  end-page: 17596
  ident: bib0135
  article-title: Enhanced ethylene photodegradation performance of g-C
  publication-title: Chem. Eur. J.
– volume: 3
  start-page: 19936
  year: 2015
  end-page: 19947
  ident: bib0155
  article-title: Enhanced photocatalytic activity of g-C3N
  publication-title: J. Mater. Chem. A
– volume: 232
  start-page: 330
  year: 2018
  end-page: 339
  ident: bib0165
  article-title: Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure
  publication-title: Appl. Catal. B Environ.
– volume: 194
  start-page: 157
  year: 2016
  end-page: 168
  ident: bib0280
  article-title: Synthesis of novel 2D-2D p-n heterojunction BiOBr/La
  publication-title: Appl. Catal. B Environ.
– volume: 7
  start-page: 1086
  year: 2014
  end-page: 1093
  ident: bib0265
  article-title: Cu
  publication-title: ChemSusChem
– volume: 4
  year: 2017
  ident: bib0020
  article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting
  publication-title: Adv. Sci.
– volume: 232
  start-page: 562
  year: 2018
  end-page: 573
  ident: bib0125
  article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics
  publication-title: Appl. Catal. B Environ.
– volume: 38
  start-page: 2160
  year: 2017
  end-page: 2170
  ident: bib0175
  article-title: Construction of carbon nitride and MoS
  publication-title: Chin. J. Catal.
– volume: 202
  start-page: 611
  year: 2017
  end-page: 619
  ident: bib0170
  article-title: Hybridization of rutile TiO
  publication-title: Appl. Catal. B Environ.
– volume: 139
  start-page: 13234
  year: 2017
  end-page: 13242
  ident: bib0235
  article-title: Metal-free photocatalyst for H
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 20132
  year: 2012
  end-page: 20139
  ident: bib0100
  article-title: Ag
  publication-title: J. Phys. Chem. C.
– volume: 10
  start-page: 1673
  year: 2017
  end-page: 1696
  ident: bib0260
  article-title: Unravelling charge carrier dynamics in protonated g-C
  publication-title: Nano Res.
– volume: 18
  start-page: 31175
  year: 2016
  end-page: 31183
  ident: bib0160
  article-title: A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C
  publication-title: Phys. Chem. Chem. Phys.
– volume: 467–468
  start-page: 658
  year: 2019
  end-page: 665
  ident: bib0045
  article-title: G-C
  publication-title: Appl. Surf. Sci.
– volume: 56
  start-page: 13445
  year: 2017
  end-page: 13449
  ident: bib0240
  article-title: Optimizing optical absorption, rxciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity
  publication-title: Angew. Chem. Int. Ed.
– volume: 218
  start-page: 664
  year: 2017
  end-page: 671
  ident: bib0220
  article-title: P-doped tubular g-C
  publication-title: Appl. Catal. B Environ.
– volume: 183
  start-page: 113
  year: 2016
  end-page: 123
  ident: bib0225
  article-title: Construction of SnNb
  publication-title: Appl. Catal. B Environ.
– volume: 41
  start-page: 2575
  year: 2016
  end-page: 2582
  ident: bib0105
  article-title: Enhanced photocatalytic activity of Ag
  publication-title: Int. J. Hydrogen Energy
– volume: 6
  start-page: 5881
  year: 2015
  ident: bib0275
  article-title: Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production
  publication-title: Nat. Commun.
– volume: 430
  start-page: 108
  year: 2018
  end-page: 115
  ident: bib0195
  article-title: Solar photocatalytic water oxidation over Ag
  publication-title: Appl. Surf. Sci.
– volume: 115
  start-page: 14648
  year: 2011
  end-page: 14655
  ident: bib0110
  article-title: H
  publication-title: J. Phys. Chem. C
– volume: 455
  start-page: 403
  year: 2018
  end-page: 409
  ident: bib0065
  article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
– volume: 49
  start-page: 649
  year: 2015
  end-page: 656
  ident: bib0145
  article-title: New application of Z-Scheme Ag
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 15285
  year: 2015
  end-page: 15293
  ident: bib0185
  article-title: Tuning the morphology of g-C
  publication-title: ACS Appl Mater. Interfaces
– volume: 43
  start-page: 2005
  year: 2009
  end-page: 2010
  ident: bib0255
  article-title: Visible light-induced efficient contaminant removal by Bi
  publication-title: Environ. Sci. Technol.
– volume: 120
  start-page: 22766
  year: 2016
  end-page: 22776
  ident: bib0035
  article-title: Photoelectrochemical investigation of the mechanism of enhancement of water oxidation at the hematite nanorod array modified with “NiBi”
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 123
  year: 2018
  ident: bib0095
  article-title: Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag
  publication-title: Front. Chem.
– volume: 234
  start-page: 90
  year: 2018
  end-page: 99
  ident: bib0025
  article-title: Phosphate group grafted twinned BiPO
  publication-title: Appl. Catal. B Environ.
– volume: 8
  start-page: 23133
  year: 2016
  end-page: 23142
  ident: bib0270
  article-title: Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution
  publication-title: ACS Appl. Mater. Interfaces
– volume: 29
  year: 2017
  ident: bib0205
  article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution
  publication-title: Adv. Mater.
– volume: 125
  start-page: 3082
  year: 2003
  end-page: 3089
  ident: bib0005
  article-title: Highly efficient water splitting into H
  publication-title: J. Am. Chem. Soc.
– volume: 217
  start-page: 275
  year: 2017
  end-page: 284
  ident: bib0015
  article-title: Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility
  publication-title: Appl. Catal. B-Environ.
– volume: 53
  start-page: 8018
  year: 2014
  end-page: 8025
  ident: bib0120
  article-title: Highly efficient photocatalytic activity of g-C
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 6693
  year: 2016
  end-page: 6701
  ident: bib0080
  article-title: Light-driven overall water splitting enabled by a photo-dember effect realized on 3D plasmonic structures
  publication-title: ACS Nano
– volume: 1
  start-page: 2655
  year: 2010
  end-page: 2661
  ident: bib0010
  article-title: Photocatalytic water splitting: recent progress and future challenges
  publication-title: J. Phys. Chem. Lett.
– volume: 626
  start-page: 401
  year: 2015
  end-page: 409
  ident: bib0230
  article-title: Ultrasound assisted synthesis of heterogeneous g-C
  publication-title: J. Alloy Compd.
– volume: 456
  start-page: 369
  year: 2018
  end-page: 378
  ident: bib0180
  article-title: Dual Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 27
  start-page: 2150
  year: 2015
  end-page: 2176
  ident: bib0210
  article-title: Polymeric photocatalysts based on graphitic carbon nitride
  publication-title: Adv. Mater.
– volume: 7
  start-page: 4358
  year: 2016
  end-page: 4362
  ident: bib0070
  article-title: Enabling overall water splitting on photocatalysts by CO-covered noble metal co-catalysts
  publication-title: J. Phys. Chem. Lett.
– volume: 227
  start-page: 459
  year: 2018
  end-page: 469
  ident: bib0140
  article-title: Nitrogen-doped carbon dots decorated on g-C
  publication-title: Appl. Catal. B Environ.
– volume: 229
  start-page: 130
  year: 2018
  end-page: 138
  ident: bib0060
  article-title: Thermally stable TiO
  publication-title: Appl. Catal. B Environ.
– volume: 5
  start-page: 12723
  year: 2017
  end-page: 12728
  ident: bib0245
  article-title: Advancing the n-π* electron transition of carbon nitride nanotubes for H
  publication-title: J. Mater. Chem. A
– volume: 8
  start-page: 1350
  year: 2015
  end-page: 1358
  ident: bib0190
  article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution
  publication-title: ChemSusChem
– volume: 430
  start-page: 301
  year: 2018
  end-page: 308
  ident: bib0200
  article-title: Fabrication of modified g-C
  publication-title: Appl. Surf. Sci.
– year: 2018
  ident: bib0075
  article-title: Nanotube array-like WO
  publication-title: ACS Appl. Energy Mater.
– volume: 7
  start-page: 31
  year: 2003
  end-page: 38
  ident: bib0030
  article-title: Photocatalyst materials for water splitting
  publication-title: Catal. Surv. Asia
– volume: 9
  start-page: 559
  year: 2010
  end-page: 564
  ident: bib0090
  article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation
  publication-title: Nat. Mater.
– volume: 463
  start-page: 9
  year: 2019
  end-page: 17
  ident: bib0130
  article-title: Fabrication of dual direct Z-scheme g-C
  publication-title: Appl. Surf. Sci.
– volume: 15
  start-page: 16883
  year: 2013
  end-page: 16890
  ident: bib0150
  article-title: Enhanced photocatalytic performance of direct Z-scheme g-C
  publication-title: Phys. Chem. Chem. Phys.
– volume: 111
  start-page: 11879
  year: 2007
  end-page: 11887
  ident: bib0250
  article-title: Hydrothermal synthesis and photocatalytic properties of pyrochlore La
  publication-title: J. Phys. Chem. C
– volume: 6
  year: 2016
  ident: bib0040
  article-title: Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution
  publication-title: Adv. Energy. Mater.
– volume: 3
  year: 2016
  ident: bib0115
  article-title: Z-Scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges
  publication-title: Adv. Sci.
– volume: 49
  start-page: 4096
  year: 2010
  end-page: 4099
  ident: bib0085
  article-title: Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light
  publication-title: Angew. Chem. Int. Ed.
– volume: 12
  start-page: 646
  year: 2015
  end-page: 656
  ident: bib0050
  article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution
  publication-title: Nano Energy
– volume: 229
  start-page: 227
  year: 2018
  end-page: 236
  ident: bib0055
  article-title: Defect-rich O-incorporated 1T-MoS
  publication-title: Appl. Catal. B Environ.
– volume: 200
  start-page: 477
  year: 2017
  end-page: 483
  ident: bib0215
  article-title: Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation
  publication-title: Appl. Catal. B Environ.
– volume: 183
  start-page: 113
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0225
  article-title: Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2015.10.022
– volume: 120
  start-page: 22766
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0035
  article-title: Photoelectrochemical investigation of the mechanism of enhancement of water oxidation at the hematite nanorod array modified with “NiBi”
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b04430
– volume: 455
  start-page: 403
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0065
  article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.014
– volume: 49
  start-page: 649
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0145
  article-title: New application of Z-Scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es5046309
– volume: 43
  start-page: 2005
  year: 2009
  ident: 10.1016/j.apcatb.2018.11.056_bib0255
  article-title: Visible light-induced efficient contaminant removal by Bi5O7I
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es8032814
– volume: 18
  start-page: 31175
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0160
  article-title: A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP06147H
– volume: 7
  start-page: 1086
  year: 2014
  ident: 10.1016/j.apcatb.2018.11.056_bib0265
  article-title: Cu2O/Reduced graphene oxide composites for the photocatalytic conversion of CO2
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201301194
– volume: 10
  start-page: 1673
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0260
  article-title: Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1391-4
– volume: 227
  start-page: 459
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0140
  article-title: Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photo-catalyst with improved visible light photocatalytic activity and mechanism insight
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.01.057
– volume: 41
  start-page: 2575
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0105
  article-title: Enhanced photocatalytic activity of Ag3PO4 for oxygen evolution and methylene blue degeneration: effect of calcination temperature
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.12.061
– volume: 202
  start-page: 611
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0170
  article-title: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.09.055
– volume: 229
  start-page: 227
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0055
  article-title: Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: the impact of enriched defects
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.02.025
– volume: 20
  start-page: 17590
  year: 2014
  ident: 10.1016/j.apcatb.2018.11.056_bib0135
  article-title: Enhanced ethylene photodegradation performance of g-C3N4-Ag3PO4 composites with direct Z-scheme configuration
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201404284
– volume: 467–468
  start-page: 658
  year: 2019
  ident: 10.1016/j.apcatb.2018.11.056_bib0045
  article-title: G-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.090
– volume: 139
  start-page: 13234
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0235
  article-title: Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08416
– volume: 38
  start-page: 2160
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0175
  article-title: Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(17)62911-5
– volume: 8
  start-page: 1350
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0190
  article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201403168
– volume: 218
  start-page: 664
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0220
  article-title: P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.07.022
– volume: 115
  start-page: 14648
  year: 2011
  ident: 10.1016/j.apcatb.2018.11.056_bib0110
  article-title: H2WO4 center dot H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2037476
– volume: 7
  start-page: 4358
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0070
  article-title: Enabling overall water splitting on photocatalysts by CO-covered noble metal co-catalysts
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02151
– year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0075
  article-title: Nanotube array-like WO3 photoanode with dual-layer oxygen-evolution cocatalysts for photoelectrocatalytic overall water splitting
  publication-title: ACS Appl. Energy Mater.
– volume: 463
  start-page: 9
  year: 2019
  ident: 10.1016/j.apcatb.2018.11.056_bib0130
  article-title: Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.209
– volume: 12
  start-page: 646
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0050
  article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.01.043
– volume: 430
  start-page: 301
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0200
  article-title: Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.185
– volume: 27
  start-page: 2150
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0210
  article-title: Polymeric photocatalysts based on graphitic carbon nitride
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201500033
– volume: 430
  start-page: 108
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0195
  article-title: Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.07.290
– volume: 232
  start-page: 330
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0165
  article-title: Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.03.066
– volume: 56
  start-page: 13445
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0240
  article-title: Optimizing optical absorption, rxciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201706870
– volume: 125
  start-page: 3082
  year: 2003
  ident: 10.1016/j.apcatb.2018.11.056_bib0005
  article-title: Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja027751g
– volume: 4
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0020
  article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600371
– volume: 3
  start-page: 19936
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0155
  article-title: Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05503B
– volume: 7
  start-page: 31
  year: 2003
  ident: 10.1016/j.apcatb.2018.11.056_bib0030
  article-title: Photocatalyst materials for water splitting
  publication-title: Catal. Surv. Asia
  doi: 10.1023/A:1023480507710
– volume: 53
  start-page: 8018
  year: 2014
  ident: 10.1016/j.apcatb.2018.11.056_bib0120
  article-title: Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie5012036
– volume: 116
  start-page: 20132
  year: 2012
  ident: 10.1016/j.apcatb.2018.11.056_bib0100
  article-title: Ag3PO4 oxygen evolution photocatalyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp303219j
– volume: 111
  start-page: 11879
  year: 2007
  ident: 10.1016/j.apcatb.2018.11.056_bib0250
  article-title: Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0684628
– volume: 10
  start-page: 6693
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0080
  article-title: Light-driven overall water splitting enabled by a photo-dember effect realized on 3D plasmonic structures
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01999
– volume: 15
  start-page: 16883
  year: 2013
  ident: 10.1016/j.apcatb.2018.11.056_bib0150
  article-title: Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp53131g
– volume: 1
  start-page: 2655
  year: 2010
  ident: 10.1016/j.apcatb.2018.11.056_bib0010
  article-title: Photocatalytic water splitting: recent progress and future challenges
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1007966
– volume: 3
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0115
  article-title: Z-Scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201500389
– volume: 5
  start-page: 12723
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0245
  article-title: Advancing the n-π* electron transition of carbon nitride nanotubes for H2 photosynthesis
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA03777E
– volume: 234
  start-page: 90
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0025
  article-title: Phosphate group grafted twinned BiPO4 with significantly enhanced photocatalytic activity: synergistic effect of improved charge separation efficiency and redox ability
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.04.036
– volume: 49
  start-page: 4096
  year: 2010
  ident: 10.1016/j.apcatb.2018.11.056_bib0085
  article-title: Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201001259
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0205
  article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605148
– volume: 9
  start-page: 559
  year: 2010
  ident: 10.1016/j.apcatb.2018.11.056_bib0090
  article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2780
– volume: 6
  start-page: 5881
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0275
  article-title: Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6881
– volume: 456
  start-page: 369
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0180
  article-title: Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.06.156
– volume: 7
  start-page: 15285
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0185
  article-title: Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation
  publication-title: ACS Appl Mater. Interfaces
  doi: 10.1021/acsami.5b02649
– volume: 626
  start-page: 401
  year: 2015
  ident: 10.1016/j.apcatb.2018.11.056_bib0230
  article-title: Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase
  publication-title: J. Alloy Compd.
  doi: 10.1016/j.jallcom.2014.11.148
– volume: 6
  start-page: 123
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0095
  article-title: Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag3PO4/MoS2 Heterostructures
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2018.00123
– volume: 217
  start-page: 275
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0015
  article-title: Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2017.05.087
– volume: 232
  start-page: 562
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0125
  article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.03.100
– volume: 8
  start-page: 23133
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0270
  article-title: Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07754
– volume: 229
  start-page: 130
  year: 2018
  ident: 10.1016/j.apcatb.2018.11.056_bib0060
  article-title: Thermally stable TiO2 quantum dots embedded in SiO2 foams: characterization and photocatalytic H2 evolution activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.02.022
– volume: 200
  start-page: 477
  year: 2017
  ident: 10.1016/j.apcatb.2018.11.056_bib0215
  article-title: Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.07.046
– volume: 6
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0040
  article-title: Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution
  publication-title: Adv. Energy. Mater.
  doi: 10.1002/aenm.201501865
– volume: 194
  start-page: 157
  year: 2016
  ident: 10.1016/j.apcatb.2018.11.056_bib0280
  article-title: Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.04.050
SSID ssj0002328
Score 2.6679971
Snippet [Display omitted] Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under...
Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 240
SubjectTerms Ag3PO4
Carbon nitride
Charge transfer
Composite materials
Efficiency
Evolution
Fabrication
g-C3N4
Heterojunctions
Heterostructures
Light emitting diodes
Morphology
Optimization
Oxygen
Oxygen evolution reactions
Phosphates
Photocatalysis
Photocatalysts
Photocatalytic oxygen evolution
Reaction kinetics
Silver compounds
Splitting
Water splitting
Z-scheme
Title Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution
URI https://dx.doi.org/10.1016/j.apcatb.2018.11.056
https://www.proquest.com/docview/2199233934
Volume 244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAcEF2oKLSVD1zdTfxMjtWq1ZaKvUCliouVOA7bim5W3RSxF_4Cf5kZr0MBIVXimGjsRJkv89I3Y4C3Wasr3dqKNypvqFqFdlCGgutSaB-E1N5Qc_L7mZleqHeX-nILJkMvDNEqk-3f2PRordOdcfqa4-XV1fhDVgojpSVQog8z1PCrlCWUH32_p3lgxBCtMQpzkh7a5yLHq1r6qq-J4FUc0SxPOsb63-7pL0Mdvc_pc3iWwkZ2vHmzHdgKixE8ngyntY3g6W-DBUewe3Lfv4bL0g-8egE_YgWwrahQzjo0FzepD5N1LfvMJ3KmODm2hn3imPeGm8DmRJjprtH_Rbk-8mzZak1Ng3HKMwuLOWGHHkbbrChb5s0t2VG2nHd9F2tEaxLtvq0RsSx8TYh_CRenJx8nU57OZOBeSdtzLYPXomhN7vOsqMpQ2rYWdSl8rqxXOYY_taiaLK8lZSomNCbHmCMEj4mRwIR4F7YX3SK8AlZaBIOXufeZUrhBURtvZF2IxrRG2XYP5KAK59PAcjo344sbmGnXbqNARwrEXMahAveA_1q13AzseEDeDlp2fwDPoU95YOX-AAqXfvyVE0TnlbKU6vV_b_wGnuBVGWmVeh-2-9u7cIChT18fRmwfwqPjs_Pp7CfnvAZk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKAcqjYtKi1t99DrNva-bB9RBAoFcilIqJeVvV43oBJHxFTkV_CXO7NZ04cqIfVqz6wtz_ibh-YB8DFpdKmbrOS1SmvKViEOSp9zXQjtvJDaGWpOPp2aybn6fKEvNmDc98JQWWXE_jWmB7SOV0bxa44Wl5ejL0khjJQZKSXaMJM_gU2aTqUHsLl_dDyZPgAyOg0BkJGeE0PfQRfKvMqFK7uKarzyTzTOkzZZ_9tC_YXVwQAdPodn0XNk--uXewEbfj6ErXG_sG0I27_NFhzCzsGvFjZki__w8iXchyRgU1KunLWIGNexFZO1DfvGx3KqONm2mn3lGPr6a89mVDPTXqEJDHRdKLVlyxX1DYZBz8zPZ6Q-9DA6ZkkBM69vCErZYtZ2bUgTrYi0vVuh0jL_Iyr9Kzg_PDgbT3hcy8CdklnHtfROi7wxqUuTvCx8kTWVqArhUpU5laIHVImyTtJKUrBifG1SdDu8dxgbCYyJd2Awb-f-NbAiQ31wMnUuUQoPyCvjjKxyUZvGqKzZBdmLwro4s5xWZ3y3fXHalV0L0JIAMZyxKMBd4A9ci_XMjkfos17K9g_ds2hWHuHc65XCxn9_aQVV9EpZSPXmvw_-AFuTs9MTe3I0PX4LT_FOEaos9R4Muptb_w49oa56HzX9J9TmCRU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+optimization+of+g-C3N4-based+Z-scheme+heterojunction+toward+synergistic+enhancement+of+solar-driven+photocatalytic+oxygen+evolution&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yang%2C+Xiaofei&rft.au=Tian%2C+Lin&rft.au=Zhao%2C+Xiaolong&rft.au=Tang%2C+Hua&rft.date=2019-05-05&rft.issn=0926-3373&rft.volume=244&rft.spage=240&rft.epage=249&rft_id=info:doi/10.1016%2Fj.apcatb.2018.11.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2018_11_056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon