Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution
[Display omitted] Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under visible-light irradiation. •A fish scale-like g-C3N4/Ag3PO4 composite photocatalyst was fabricated.•The heterojunction photocatalyst exhibits h...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 244; pp. 240 - 249 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
05.05.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under visible-light irradiation.
•A fish scale-like g-C3N4/Ag3PO4 composite photocatalyst was fabricated.•The heterojunction photocatalyst exhibits highly improved oxygen evolution than pristine Ag3PO4.•The improvement in the activity is ascribed to synergistic effects of modified g-C3N4.•Z-scheme configuration is suggested to be responsible for enhanced redox catalytic capability.
Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor oxygen-evolving efficiency originating from intrinsically sluggish oxygen evolution reaction (OER) kinetics. Ag3PO4 has been actively pursued as a promising photocatalyst for oxygen evolution from water-splitting. However, its low OER efficiency is a long standing problem. Both the construction of Z-scheme Ag3PO4-based composite photocatalytic systems and the optimization of surface morphology and interfacial contact in heterojunctions photocatalysts would be beneficial for boosting OER efficiency. Here we report on the fabrication of Ag3PO4/fish scale-like graphitic carbon nitride (g-C3N4) sheet composites with well-defined heterostructures and intimate interfacial contact driven by electrostatic assembly. The Ag3PO4/modified g-C3N4 composites photocatalyst reveals significantly enhanced oxygen-evolving activity under light-emitting diode (LED) illumination. Effective surface modification of g-C3N4, strong interfacial interactions between two semiconductors and tandem Z-scheme-type pathway for more efficient charge transfer synergistically accelerates the redox capability of Ag3PO4 for OER. This work may provide new insights into the design and construction of high-performance solar-driven Z-scheme photocatalytic water splitting systems. |
---|---|
AbstractList | Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor oxygen-evolving efficiency originating from intrinsically sluggish oxygen evolution reaction (OER) kinetics. Ag3PO4 has been actively pursued as a promising photocatalyst for oxygen evolution from water-splitting. However, its low OER efficiency is a long standing problem. Both the construction of Z-scheme Ag3PO4-based composite photocatalytic systems and the optimization of surface morphology and interfacial contact in heterojunctions photocatalysts would be beneficial for boosting OER efficiency. Here we report on the fabrication of Ag3PO4/fish scale-like graphitic carbon nitride (g-C3N4) sheet composites with well-defined heterostructures and intimate interfacial contact driven by electrostatic assembly. The Ag3PO4/modified g-C3N4 composites photocatalyst reveals significantly enhanced oxygen-evolving activity under light-emitting diode (LED) illumination. Effective surface modification of g-C3N4, strong interfacial interactions between two semiconductors and tandem Z-scheme-type pathway for more efficient charge transfer synergistically accelerates the redox capability of Ag3PO4 for OER. This work may provide new insights into the design and construction of high-performance solar-driven Z-scheme photocatalytic water splitting systems. [Display omitted] Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under visible-light irradiation. •A fish scale-like g-C3N4/Ag3PO4 composite photocatalyst was fabricated.•The heterojunction photocatalyst exhibits highly improved oxygen evolution than pristine Ag3PO4.•The improvement in the activity is ascribed to synergistic effects of modified g-C3N4.•Z-scheme configuration is suggested to be responsible for enhanced redox catalytic capability. Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor oxygen-evolving efficiency originating from intrinsically sluggish oxygen evolution reaction (OER) kinetics. Ag3PO4 has been actively pursued as a promising photocatalyst for oxygen evolution from water-splitting. However, its low OER efficiency is a long standing problem. Both the construction of Z-scheme Ag3PO4-based composite photocatalytic systems and the optimization of surface morphology and interfacial contact in heterojunctions photocatalysts would be beneficial for boosting OER efficiency. Here we report on the fabrication of Ag3PO4/fish scale-like graphitic carbon nitride (g-C3N4) sheet composites with well-defined heterostructures and intimate interfacial contact driven by electrostatic assembly. The Ag3PO4/modified g-C3N4 composites photocatalyst reveals significantly enhanced oxygen-evolving activity under light-emitting diode (LED) illumination. Effective surface modification of g-C3N4, strong interfacial interactions between two semiconductors and tandem Z-scheme-type pathway for more efficient charge transfer synergistically accelerates the redox capability of Ag3PO4 for OER. This work may provide new insights into the design and construction of high-performance solar-driven Z-scheme photocatalytic water splitting systems. |
Author | Tang, Hua Li, Guisheng Yang, Xiaofei Tian, Lin Liu, Qinqin Zhao, Xiaolong |
Author_xml | – sequence: 1 givenname: Xiaofei orcidid: 0000-0003-1972-4562 surname: Yang fullname: Yang, Xiaofei email: xiaofei.yang@njfu.edu.cn organization: College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China – sequence: 2 givenname: Lin surname: Tian fullname: Tian, Lin organization: School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 3 givenname: Xiaolong surname: Zhao fullname: Zhao, Xiaolong organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China – sequence: 4 givenname: Hua surname: Tang fullname: Tang, Hua organization: School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 5 givenname: Qinqin surname: Liu fullname: Liu, Qinqin organization: School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China – sequence: 6 givenname: Guisheng surname: Li fullname: Li, Guisheng email: liguisheng@shnu.edu.cn organization: Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Life and Environmental Science, Shanghai Normal University, Shanghai 200234, China |
BookMark | eNqFkM2O0zAURi00SHR-3oBFJNYJvnaa2CyQUAXMSCPYDJvZWI5z0zpK7WC7hfISvPI4U1YsYGXp6jvf9T2X5MJ5h4S8BloBhebtWOnZ6NRVjIKoACq6bl6QFYiWl1wIfkFWVLKm5Lzlr8hljCOllHEmVuT3nUsYBm2sngo_J7u3v3Sy3hV-KLblhn-py05H7IvHMpod7rHYYSb8eHDmOZf8Dx36Ip4chq2NyZoC3U47k7MuLTXRTzqUfbBHdMW888nnz-rptET9z9M2T_Hop8NSd01eDnqKePPnvSLfPn182NyW918_320-3Jem5m0q1xzNmomhAQNUaImyHTrWSWagbk0NQvKO6Z5Cx2Vbtw32DYCkiEa0awacX5E35945-O8HjEmN_hBcXqkYSMk4l7zOqfqcMsHHGHBQc7B7HU4KqFrUq1Gd1atFvQJQWX3G3v2FGZueraag7fQ_-P0Zxnz-0WJQ0VjMOnsb0CTVe_vvgid3Oqbz |
CitedBy_id | crossref_primary_10_1039_C9RA08292A crossref_primary_10_1016_j_apcatb_2019_04_031 crossref_primary_10_1016_j_colsurfa_2022_129315 crossref_primary_10_1016_j_jallcom_2022_167554 crossref_primary_10_1021_acsaem_0c01357 crossref_primary_10_1021_acsomega_9b04420 crossref_primary_10_1039_C9TA08357J crossref_primary_10_1016_j_solidstatesciences_2020_106350 crossref_primary_10_1016_j_wse_2020_12_005 crossref_primary_10_1016_j_cej_2022_137369 crossref_primary_10_1039_D1NJ02217B crossref_primary_10_1016_j_colsurfa_2020_124778 crossref_primary_10_20964_2021_10_57 crossref_primary_10_1016_j_jcis_2021_12_196 crossref_primary_10_1039_D4TA01886A crossref_primary_10_1007_s40843_022_2394_6 crossref_primary_10_1016_j_ceramint_2021_05_054 crossref_primary_10_1007_s11356_021_17286_9 crossref_primary_10_1016_j_flatc_2022_100419 crossref_primary_10_1016_j_inoche_2019_107630 crossref_primary_10_1021_acsanm_9b00295 crossref_primary_10_1016_j_apcatb_2022_121214 crossref_primary_10_1016_j_jallcom_2019_151990 crossref_primary_10_1002_adma_202105195 crossref_primary_10_1016_j_apsusc_2019_144042 crossref_primary_10_1016_j_optmat_2021_111222 crossref_primary_10_1039_D4CC03796K crossref_primary_10_3390_nano11061480 crossref_primary_10_1016_j_seppur_2020_117486 crossref_primary_10_1016_j_jcis_2024_02_087 crossref_primary_10_3390_nano11030613 crossref_primary_10_1016_j_ijhydene_2020_04_116 crossref_primary_10_1016_j_materresbull_2023_112423 crossref_primary_10_1016_j_jallcom_2024_177907 crossref_primary_10_1016_j_jece_2024_112328 crossref_primary_10_1016_j_seppur_2023_125286 crossref_primary_10_1016_j_jallcom_2020_156798 crossref_primary_10_1016_S1872_2067_19_63494_7 crossref_primary_10_1016_j_diamond_2022_108896 crossref_primary_10_1016_j_jece_2022_108189 crossref_primary_10_1016_j_jmst_2022_07_021 crossref_primary_10_1038_s41598_019_45672_4 crossref_primary_10_1007_s11164_024_05500_5 crossref_primary_10_1016_j_jenvman_2020_110803 crossref_primary_10_1021_acs_langmuir_1c01009 crossref_primary_10_1016_j_jcis_2023_11_171 crossref_primary_10_3390_ijms241411383 crossref_primary_10_1007_s40242_022_1468_4 crossref_primary_10_1016_j_apcatb_2020_119144 crossref_primary_10_1016_j_catcom_2020_106028 crossref_primary_10_1016_j_scitotenv_2020_141926 crossref_primary_10_1016_j_envres_2024_119184 crossref_primary_10_1007_s12209_020_00269_1 crossref_primary_10_1016_j_apcatb_2019_117867 crossref_primary_10_1016_j_chemosphere_2021_133461 crossref_primary_10_1039_D2GC00608A crossref_primary_10_1016_j_cej_2021_132770 crossref_primary_10_1016_j_vacuum_2022_111785 crossref_primary_10_1016_j_jcis_2020_05_025 crossref_primary_10_1002_er_8382 crossref_primary_10_1007_s12598_019_01224_3 crossref_primary_10_1007_s12274_020_2955_x crossref_primary_10_3390_catal11121519 crossref_primary_10_1088_1361_6463_ab48b1 crossref_primary_10_1016_j_jallcom_2020_154145 crossref_primary_10_1039_D1TA00704A crossref_primary_10_1016_j_seppur_2022_122744 crossref_primary_10_1016_j_jhazmat_2020_123790 crossref_primary_10_1016_j_jtice_2021_02_003 crossref_primary_10_2139_ssrn_3967300 crossref_primary_10_1016_j_cej_2019_123608 crossref_primary_10_1016_j_apcatb_2019_118252 crossref_primary_10_1016_j_jallcom_2022_168635 crossref_primary_10_1016_j_apcatb_2023_122490 crossref_primary_10_1016_j_apsusc_2024_159675 crossref_primary_10_1016_j_apcatb_2020_119157 crossref_primary_10_1016_j_ijhydene_2021_07_076 crossref_primary_10_1016_j_jece_2024_112347 crossref_primary_10_1016_j_apcatb_2020_119038 crossref_primary_10_1016_j_materresbull_2023_112448 crossref_primary_10_20964_2021_05_42 crossref_primary_10_1016_j_apcatb_2019_117854 crossref_primary_10_1016_j_fuel_2023_127998 crossref_primary_10_1016_j_jhazmat_2019_121690 crossref_primary_10_1007_s40843_019_9473_2 crossref_primary_10_1016_j_jpcs_2022_110968 crossref_primary_10_1021_acsami_9b04302 crossref_primary_10_1016_j_apcatb_2019_117850 crossref_primary_10_1016_j_apsusc_2020_146486 crossref_primary_10_1016_j_jcat_2024_115846 crossref_primary_10_1016_j_apsusc_2019_05_360 crossref_primary_10_3390_catal10040440 crossref_primary_10_1021_acs_energyfuels_9b02705 crossref_primary_10_1039_C9NR10511E crossref_primary_10_1016_j_colsurfa_2022_129232 crossref_primary_10_1039_C9CY01305A crossref_primary_10_1007_s10904_020_01595_6 crossref_primary_10_1039_D0NR01611J crossref_primary_10_1016_j_ccr_2024_216318 crossref_primary_10_1016_j_coco_2021_100724 crossref_primary_10_1039_D4TA02512A crossref_primary_10_1021_acssuschemeng_9b00252 crossref_primary_10_1007_s10853_019_03449_0 crossref_primary_10_1016_j_jhazmat_2020_122119 crossref_primary_10_1016_j_jhazmat_2023_132281 crossref_primary_10_1039_D1SE00290B crossref_primary_10_1016_j_eti_2025_104078 crossref_primary_10_1016_j_jhazmat_2019_121083 crossref_primary_10_1016_j_jmst_2021_12_070 crossref_primary_10_1039_C9NR05413H crossref_primary_10_1016_j_dyepig_2020_108568 crossref_primary_10_1039_D4EE00445K crossref_primary_10_3389_fchem_2022_955065 crossref_primary_10_1007_s12274_023_6014_2 crossref_primary_10_1016_j_cej_2019_123496 crossref_primary_10_1016_j_cclet_2020_12_002 crossref_primary_10_1002_cctc_201901533 crossref_primary_10_1016_j_colsurfa_2023_132997 crossref_primary_10_1016_j_seppur_2020_118251 crossref_primary_10_1016_j_ijhydene_2020_11_191 crossref_primary_10_1016_j_jhazmat_2022_128866 crossref_primary_10_1016_j_jphotochem_2024_115537 crossref_primary_10_1039_D2NJ01100J crossref_primary_10_1016_j_cej_2021_131223 crossref_primary_10_1002_admt_202100993 crossref_primary_10_1016_j_cej_2021_131585 crossref_primary_10_1016_j_matlet_2020_127399 crossref_primary_10_1016_j_jcis_2024_01_213 crossref_primary_10_1016_j_surfin_2023_102989 crossref_primary_10_1016_j_seppur_2024_129785 crossref_primary_10_1021_acs_inorgchem_1c01716 crossref_primary_10_1039_D1CY01850G crossref_primary_10_3390_catal12121634 crossref_primary_10_1016_j_apsusc_2020_147234 crossref_primary_10_1016_j_apcatb_2023_123561 crossref_primary_10_1002_smll_202005149 crossref_primary_10_1016_j_colsurfa_2019_124041 crossref_primary_10_1039_D0NJ04322B crossref_primary_10_1016_j_jallcom_2019_153166 crossref_primary_10_1016_j_jallcom_2024_174682 crossref_primary_10_1016_j_cej_2020_124421 crossref_primary_10_1016_S1872_2067_23_64520_6 crossref_primary_10_1016_S1872_2067_21_63849_4 crossref_primary_10_1016_j_cclet_2021_12_071 crossref_primary_10_1016_j_jcis_2023_06_067 crossref_primary_10_1016_j_apcatb_2019_118445 crossref_primary_10_1149_1945_7111_ac65b8 crossref_primary_10_1016_j_inoche_2023_111503 crossref_primary_10_1039_D2TA06939C crossref_primary_10_1039_D0EN00801J crossref_primary_10_1016_j_jenvman_2019_109738 crossref_primary_10_1016_j_jphotochem_2021_113705 crossref_primary_10_1002_adfm_201910005 crossref_primary_10_1016_j_apsusc_2019_05_056 crossref_primary_10_1016_j_colsurfa_2019_124397 crossref_primary_10_1016_j_mssp_2022_106903 crossref_primary_10_1002_asia_202000583 crossref_primary_10_1021_acsanm_3c02052 crossref_primary_10_1021_acssuschemeng_0c07753 crossref_primary_10_1016_j_jhazmat_2019_121417 crossref_primary_10_1016_j_cej_2019_03_025 crossref_primary_10_1039_C9RA07843F crossref_primary_10_1016_j_cej_2021_130831 crossref_primary_10_1016_j_jallcom_2022_166256 crossref_primary_10_1016_j_jpcs_2021_110181 crossref_primary_10_1016_j_mssp_2021_106187 crossref_primary_10_1002_cptc_202200143 crossref_primary_10_1016_j_apsusc_2019_05_163 crossref_primary_10_1111_jace_17740 crossref_primary_10_1016_j_solidstatesciences_2019_106095 crossref_primary_10_1016_j_jpowsour_2020_228430 crossref_primary_10_1016_S1872_2067_22_64110_X crossref_primary_10_1016_j_jallcom_2020_155684 crossref_primary_10_1002_pssr_202000513 crossref_primary_10_1016_j_ijhydene_2020_08_283 crossref_primary_10_1021_acssuschemeng_0c05246 crossref_primary_10_1039_C8NR10198A crossref_primary_10_1007_s11356_022_19318_4 crossref_primary_10_1039_D0CY00395F crossref_primary_10_1016_j_apsusc_2022_156310 crossref_primary_10_1016_j_apsusc_2023_158454 crossref_primary_10_1016_S1872_2067_20_63559_8 crossref_primary_10_1002_slct_202101556 crossref_primary_10_1021_acssuschemeng_1c07992 crossref_primary_10_1002_ep_13714 crossref_primary_10_1039_D0TA05985D crossref_primary_10_1016_j_apsusc_2024_160018 crossref_primary_10_1016_j_ceramint_2022_02_089 crossref_primary_10_1016_j_apcatb_2024_124326 crossref_primary_10_1016_j_mtadv_2019_100025 crossref_primary_10_1021_acsami_1c02722 crossref_primary_10_1016_j_apsusc_2019_07_121 crossref_primary_10_1016_j_apsusc_2020_148137 crossref_primary_10_1039_D4TA00256C crossref_primary_10_1016_j_cej_2019_122122 crossref_primary_10_1016_j_electacta_2021_138963 crossref_primary_10_1016_j_ceramint_2019_10_081 crossref_primary_10_1016_j_jallcom_2021_162772 crossref_primary_10_1016_j_chemosphere_2023_139175 crossref_primary_10_1016_j_seppur_2020_118177 crossref_primary_10_1016_j_mtener_2023_101408 crossref_primary_10_1088_1674_4926_44_8_081701 crossref_primary_10_1016_j_apcatb_2019_118433 crossref_primary_10_1007_s10853_020_04799_w crossref_primary_10_1016_j_jcis_2021_10_178 crossref_primary_10_1016_j_apsusc_2021_151027 crossref_primary_10_1016_j_talanta_2020_120916 crossref_primary_10_1016_j_apcatb_2019_02_020 crossref_primary_10_1002_solr_201900434 crossref_primary_10_1038_s41598_020_63623_2 crossref_primary_10_1039_D0NJ01060J crossref_primary_10_1039_C9TA01863H crossref_primary_10_1002_admi_202201114 crossref_primary_10_1039_D1CE00439E crossref_primary_10_1002_aenm_202302325 crossref_primary_10_1016_j_cej_2023_144673 crossref_primary_10_1002_cctc_202000448 crossref_primary_10_1016_j_xcrp_2021_100355 crossref_primary_10_1016_j_mtphys_2020_100261 crossref_primary_10_1016_j_cej_2019_06_029 crossref_primary_10_1021_acsanm_9b00428 crossref_primary_10_1016_j_electacta_2019_03_212 crossref_primary_10_1007_s12598_023_02580_x crossref_primary_10_1016_j_physrep_2022_07_003 crossref_primary_10_1016_j_seppur_2023_125330 crossref_primary_10_1039_D3NJ02084C crossref_primary_10_3390_catal10020206 crossref_primary_10_1016_j_jcis_2023_04_025 crossref_primary_10_1016_j_jpowsour_2021_230159 crossref_primary_10_1016_j_seppur_2021_120406 crossref_primary_10_3762_bjnano_10_92 crossref_primary_10_1007_s10854_019_01176_5 crossref_primary_10_1016_j_molliq_2020_113242 crossref_primary_10_1007_s42247_024_00788_w crossref_primary_10_1016_j_mtsust_2024_101069 crossref_primary_10_1016_j_colsurfa_2022_130298 crossref_primary_10_1016_j_seppur_2023_123609 crossref_primary_10_1016_j_jenvman_2022_114552 crossref_primary_10_1016_j_ceramint_2019_08_123 crossref_primary_10_1021_acsami_9b01421 crossref_primary_10_1016_j_jcis_2022_10_016 crossref_primary_10_1155_2020_8461543 crossref_primary_10_2139_ssrn_3960517 crossref_primary_10_1016_S1872_2067_19_63430_3 crossref_primary_10_1016_j_jcis_2022_01_073 crossref_primary_10_1002_chem_201902203 crossref_primary_10_1002_cctc_201901489 crossref_primary_10_1016_j_vacuum_2023_112090 crossref_primary_10_1016_j_solidstatesciences_2019_105967 crossref_primary_10_1016_j_apsusc_2022_154694 crossref_primary_10_1002_smll_202205706 crossref_primary_10_1007_s13762_024_06204_4 crossref_primary_10_1039_C9DT02849H crossref_primary_10_1016_j_chemosphere_2021_131260 crossref_primary_10_1016_j_seppur_2024_129950 crossref_primary_10_1016_j_chemosphere_2022_133841 crossref_primary_10_1016_j_jhazmat_2022_130300 crossref_primary_10_1088_1361_6528_ab3f15 crossref_primary_10_1039_D4DT02658F crossref_primary_10_1016_j_matdes_2021_110040 crossref_primary_10_1016_j_chemosphere_2024_142308 crossref_primary_10_1002_admt_202201579 crossref_primary_10_1016_j_cej_2020_126780 crossref_primary_10_1016_j_jphotochem_2019_04_023 crossref_primary_10_1016_j_ceramint_2019_07_088 crossref_primary_10_1016_j_chemosphere_2021_129746 crossref_primary_10_1016_j_apcatb_2020_119696 crossref_primary_10_1016_j_ceramint_2019_08_226 crossref_primary_10_1021_acsaem_0c03168 crossref_primary_10_1039_D2CY01387H crossref_primary_10_1016_j_cej_2019_04_124 crossref_primary_10_1039_C9NJ05987C crossref_primary_10_1016_S1872_2067_20_63631_2 crossref_primary_10_1016_j_apcatb_2021_120059 crossref_primary_10_1016_j_apcatb_2020_118918 crossref_primary_10_1007_s12598_019_01232_3 crossref_primary_10_1021_acsami_1c10307 crossref_primary_10_1016_j_colsurfa_2022_128682 crossref_primary_10_1039_C9RA07068K crossref_primary_10_1016_j_jphotochem_2022_114167 crossref_primary_10_1016_j_apcatb_2019_118281 crossref_primary_10_1016_j_apsusc_2021_152171 crossref_primary_10_1038_s41598_019_49949_6 crossref_primary_10_1016_j_apsusc_2020_145919 crossref_primary_10_1016_j_apsusc_2019_144613 crossref_primary_10_1016_j_seppur_2019_05_080 crossref_primary_10_1021_acssuschemeng_1c01234 crossref_primary_10_1016_j_apsusc_2019_143639 crossref_primary_10_1016_j_apsusc_2019_143647 crossref_primary_10_1016_j_ijhydene_2022_10_009 crossref_primary_10_1016_j_jmst_2020_04_026 crossref_primary_10_1007_s10854_020_03271_4 crossref_primary_10_1039_D0QI01026J crossref_primary_10_1002_er_8181 crossref_primary_10_1016_j_apsusc_2020_148619 crossref_primary_10_1016_j_jcis_2020_12_009 crossref_primary_10_1016_j_ccr_2024_215752 crossref_primary_10_1021_acs_est_1c08031 crossref_primary_10_1039_C8TA11497H crossref_primary_10_1016_j_ceramint_2019_08_203 crossref_primary_10_3390_nano11113122 crossref_primary_10_1016_j_mtphys_2023_101080 crossref_primary_10_1016_j_apsusc_2020_146444 crossref_primary_10_1016_j_ijhydene_2024_03_262 crossref_primary_10_1016_S1872_2067_20_63595_1 crossref_primary_10_1002_smll_202006851 crossref_primary_10_1016_j_apcatb_2022_121107 crossref_primary_10_1016_j_seppur_2024_127503 crossref_primary_10_1016_j_apsusc_2019_143771 crossref_primary_10_1016_j_fuel_2024_134264 crossref_primary_10_1016_j_cej_2021_132727 crossref_primary_10_1016_j_jiec_2019_12_003 |
Cites_doi | 10.1016/j.apcatb.2015.10.022 10.1021/acs.jpcc.6b04430 10.1016/j.apsusc.2018.06.014 10.1021/es5046309 10.1021/es8032814 10.1039/C6CP06147H 10.1002/cssc.201301194 10.1007/s12274-016-1391-4 10.1016/j.apcatb.2018.01.057 10.1016/j.ijhydene.2015.12.061 10.1016/j.apcatb.2016.09.055 10.1016/j.apcatb.2018.02.025 10.1002/chem.201404284 10.1016/j.apsusc.2018.10.090 10.1021/jacs.7b08416 10.1016/S1872-2067(17)62911-5 10.1002/cssc.201403168 10.1016/j.apcatb.2017.07.022 10.1021/jp2037476 10.1021/acs.jpclett.6b02151 10.1016/j.apsusc.2018.08.209 10.1016/j.nanoen.2015.01.043 10.1016/j.apsusc.2017.07.185 10.1002/adma.201500033 10.1016/j.apsusc.2017.07.290 10.1016/j.apcatb.2018.03.066 10.1002/anie.201706870 10.1021/ja027751g 10.1002/advs.201600371 10.1039/C5TA05503B 10.1023/A:1023480507710 10.1021/ie5012036 10.1021/jp303219j 10.1021/jp0684628 10.1021/acsnano.6b01999 10.1039/c3cp53131g 10.1021/jz1007966 10.1002/advs.201500389 10.1039/C7TA03777E 10.1016/j.apcatb.2018.04.036 10.1002/anie.201001259 10.1002/adma.201605148 10.1038/nmat2780 10.1038/ncomms6881 10.1016/j.apsusc.2018.06.156 10.1021/acsami.5b02649 10.1016/j.jallcom.2014.11.148 10.3389/fchem.2018.00123 10.1016/j.apcatb.2017.05.087 10.1016/j.apcatb.2018.03.100 10.1021/acsami.6b07754 10.1016/j.apcatb.2018.02.022 10.1016/j.apcatb.2016.07.046 10.1002/aenm.201501865 10.1016/j.apcatb.2016.04.050 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV May 5, 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV May 5, 2019 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2018.11.056 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 249 |
ExternalDocumentID | 10_1016_j_apcatb_2018_11_056 S0926337318311068 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c437t-53ec528f61c108a9e97fb2b92c147c41893b2ad01b397476ed61190eec8752133 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 10:35:00 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 03:10:53 EDT 2025 Sat Mar 02 16:00:23 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | g-C3N4 Water splitting Z-scheme Ag3PO4 Photocatalytic oxygen evolution |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-53ec528f61c108a9e97fb2b92c147c41893b2ad01b397476ed61190eec8752133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1972-4562 |
PQID | 2199233934 |
PQPubID | 2045281 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2199233934 crossref_primary_10_1016_j_apcatb_2018_11_056 crossref_citationtrail_10_1016_j_apcatb_2018_11_056 elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_11_056 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-05 |
PublicationDateYYYYMMDD | 2019-05-05 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Yu, Shi, Zhao, Bian, Zhao, Zhou, Waterhouse, Wu, Tung, Zhang (bib0205) 2017; 29 Zhang, Savateev, Zhao, Li, Antonietti (bib0245) 2017; 5 Zhang, Jiang, Li, He, Chen (bib0225) 2016; 183 Guo, Tang, Xie, Tian, Feng, Zhou, Jiang (bib0220) 2017; 218 Chen, Huang, Yi (bib0135) 2014; 20 Cao, Low, Yu, Jaroniec (bib0210) 2015; 27 Zhang, Li, Lan, Lin, Savateev, Heil, Zafeiratos, Wang, Antonietti (bib0240) 2017; 56 Yu, Xu, Peng (bib0155) 2015; 3 Wang, Xu, Zhou, Shao (bib0020) 2017; 4 Cui, Tian, Xian, Tang, Yang (bib0195) 2018; 430 Zhao, Pan, Chen, Li, Jiang, Wang, Li, Leung (bib0045) 2019; 467–468 Tian, Xian, Cui, Tang, Yang (bib0200) 2018; 430 Maeda, Domen (bib0010) 2010; 1 Ong, Putri, Tan, Tan, Li, Ng, Wen, Chai (bib0260) 2017; 10 Tian, Yang, Cui, Liu, Tang (bib0130) 2019; 463 Berto, Sanwald, Byers, Browning, Gutierrez, Lercher (bib0070) 2016; 7 Kudo (bib0030) 2003; 7 Zeng, Wang, Zhang, Zhu, Yan (bib0250) 2007; 111 Tian, Yang, Liu, Qu, Tang (bib0065) 2018; 455 Hou, Zuo, Ma, Wang, Bartels, Feng (bib0100) 2012; 116 Miao, Yue, Ji, Shen, Zhou, Liu, Xu, Zhu, Zhu, Kong, Shah (bib0140) 2018; 227 Yang, Tang, Xu, Antonietti, Shalom (bib0190) 2015; 8 Katsumata, Sakai, Suzuki, Kaneco (bib0120) 2014; 53 Liu, Shen, Yang, Liu, Tang (bib0180) 2018; 456 Zhu, Kim, Mao, Fujitsuka, Zhang, Wang, Majima (bib0235) 2017; 139 Yi, Ye, Kikugawa, Kako, Ouyang, Stuart-Williams, Yang, Cao, Luo, Li, Liu, Withers (bib0090) 2010; 9 Kato, Asakura, Kudo (bib0005) 2003; 125 Liu, Shen, Yang, Zhang, Tang (bib0125) 2018; 232 An, Li, Tang (bib0265) 2014; 7 Wang, Li, Ma, Yu, Yu (bib0110) 2011; 115 Sun, Wang, Zhang, Zhou, Yin, Shang (bib0255) 2009; 43 Guo, Wang, Qian, Ao, Wang, Hou (bib0025) 2018; 234 Liu, Cheng, Yu (bib0160) 2016; 18 Li, Tu, Zhou, Zou (bib0115) 2016; 3 Yu, Wang, Low, Xiao (bib0150) 2013; 15 Yi, Yan, Wulan, Li, Liu, Jiang (bib0215) 2017; 200 Li, Yan, Wang, Zhao, Zhang, Gong, Guan (bib0275) 2015; 6 Li, Lv, Ho, Dong, Wu, Xia (bib0170) 2017; 202 Cheng, Hu, Lv, Wu, Li, Li, Li, Sun (bib0165) 2018; 232 Zhang, Li, Wu, Zheng, Tao (bib0055) 2018; 229 Yin, Bai, Zhu, Zhong, Zhao, Li, Bai (bib0270) 2016; 8 Chen, Gu, Sun, Zhao, Zhang, You, Liu, Zhang, Su, Su, Zhang (bib0080) 2016; 10 Ou, Zhong, Zhang, Yu (bib0230) 2015; 626 He, Zhang, Teng, Fan (bib0145) 2015; 49 Chong, Cheng, Wang, Li, Chang, Zhang (bib0105) 2016; 41 Halaoui (bib0035) 2016; 120 Li, Xiao, Li, Cao, Chen, Li, Li, Li (bib0075) 2018 Lv, Wei, Sun, Li, Huang, Dai (bib0015) 2017; 217 Fu, Li, Liu, Yang, Tang (bib0175) 2017; 38 Maeda, Xiong, Yoshinaga, Ikeda, Sakamoto, Hisatomi, Takashima, Lu, Kanehara, Setoyama, Teranishi, Domen (bib0085) 2010; 49 Cui, Yang, Xian, Tian, Tang, Liu (bib0095) 2018; 6 Huang, Song, Pan, Wang, Zhang, Zou, Mi, Zhang, Wang (bib0050) 2015; 12 Pan, Han, Miao, Zhang, Li (bib0060) 2018; 229 Lin, Xiao, Li, Liu, Wang, Yang (bib0040) 2016; 6 Ao, Wang, Wang, Wang, Hou (bib0280) 2016; 194 Yang, Chen, Xu, Tang, Chen, Jiang (bib0185) 2015; 7 Li (10.1016/j.apcatb.2018.11.056_bib0115) 2016; 3 Chen (10.1016/j.apcatb.2018.11.056_bib0135) 2014; 20 Tian (10.1016/j.apcatb.2018.11.056_bib0200) 2018; 430 Lin (10.1016/j.apcatb.2018.11.056_bib0040) 2016; 6 Cao (10.1016/j.apcatb.2018.11.056_bib0210) 2015; 27 An (10.1016/j.apcatb.2018.11.056_bib0265) 2014; 7 Wang (10.1016/j.apcatb.2018.11.056_bib0110) 2011; 115 Katsumata (10.1016/j.apcatb.2018.11.056_bib0120) 2014; 53 Kudo (10.1016/j.apcatb.2018.11.056_bib0030) 2003; 7 Yang (10.1016/j.apcatb.2018.11.056_bib0185) 2015; 7 Yu (10.1016/j.apcatb.2018.11.056_bib0155) 2015; 3 Yin (10.1016/j.apcatb.2018.11.056_bib0270) 2016; 8 Kato (10.1016/j.apcatb.2018.11.056_bib0005) 2003; 125 Tian (10.1016/j.apcatb.2018.11.056_bib0130) 2019; 463 Zhu (10.1016/j.apcatb.2018.11.056_bib0235) 2017; 139 Liu (10.1016/j.apcatb.2018.11.056_bib0160) 2016; 18 Zhang (10.1016/j.apcatb.2018.11.056_bib0245) 2017; 5 Maeda (10.1016/j.apcatb.2018.11.056_bib0010) 2010; 1 Ong (10.1016/j.apcatb.2018.11.056_bib0260) 2017; 10 Halaoui (10.1016/j.apcatb.2018.11.056_bib0035) 2016; 120 Ao (10.1016/j.apcatb.2018.11.056_bib0280) 2016; 194 Berto (10.1016/j.apcatb.2018.11.056_bib0070) 2016; 7 Hou (10.1016/j.apcatb.2018.11.056_bib0100) 2012; 116 Cheng (10.1016/j.apcatb.2018.11.056_bib0165) 2018; 232 Liu (10.1016/j.apcatb.2018.11.056_bib0180) 2018; 456 Lv (10.1016/j.apcatb.2018.11.056_bib0015) 2017; 217 Yi (10.1016/j.apcatb.2018.11.056_bib0215) 2017; 200 Li (10.1016/j.apcatb.2018.11.056_bib0170) 2017; 202 Yu (10.1016/j.apcatb.2018.11.056_bib0205) 2017; 29 Zhang (10.1016/j.apcatb.2018.11.056_bib0225) 2016; 183 Cui (10.1016/j.apcatb.2018.11.056_bib0095) 2018; 6 Li (10.1016/j.apcatb.2018.11.056_bib0275) 2015; 6 Chong (10.1016/j.apcatb.2018.11.056_bib0105) 2016; 41 Yang (10.1016/j.apcatb.2018.11.056_bib0190) 2015; 8 Liu (10.1016/j.apcatb.2018.11.056_bib0125) 2018; 232 Pan (10.1016/j.apcatb.2018.11.056_bib0060) 2018; 229 Zhao (10.1016/j.apcatb.2018.11.056_bib0045) 2019; 467–468 Zeng (10.1016/j.apcatb.2018.11.056_bib0250) 2007; 111 He (10.1016/j.apcatb.2018.11.056_bib0145) 2015; 49 Guo (10.1016/j.apcatb.2018.11.056_bib0220) 2017; 218 Tian (10.1016/j.apcatb.2018.11.056_bib0065) 2018; 455 Zhang (10.1016/j.apcatb.2018.11.056_bib0240) 2017; 56 Chen (10.1016/j.apcatb.2018.11.056_bib0080) 2016; 10 Sun (10.1016/j.apcatb.2018.11.056_bib0255) 2009; 43 Maeda (10.1016/j.apcatb.2018.11.056_bib0085) 2010; 49 Wang (10.1016/j.apcatb.2018.11.056_bib0020) 2017; 4 Li (10.1016/j.apcatb.2018.11.056_bib0075) 2018 Yi (10.1016/j.apcatb.2018.11.056_bib0090) 2010; 9 Ou (10.1016/j.apcatb.2018.11.056_bib0230) 2015; 626 Yu (10.1016/j.apcatb.2018.11.056_bib0150) 2013; 15 Fu (10.1016/j.apcatb.2018.11.056_bib0175) 2017; 38 Zhang (10.1016/j.apcatb.2018.11.056_bib0055) 2018; 229 Miao (10.1016/j.apcatb.2018.11.056_bib0140) 2018; 227 Guo (10.1016/j.apcatb.2018.11.056_bib0025) 2018; 234 Cui (10.1016/j.apcatb.2018.11.056_bib0195) 2018; 430 Huang (10.1016/j.apcatb.2018.11.056_bib0050) 2015; 12 |
References_xml | – volume: 20 start-page: 17590 year: 2014 end-page: 17596 ident: bib0135 article-title: Enhanced ethylene photodegradation performance of g-C publication-title: Chem. Eur. J. – volume: 3 start-page: 19936 year: 2015 end-page: 19947 ident: bib0155 article-title: Enhanced photocatalytic activity of g-C3N publication-title: J. Mater. Chem. A – volume: 232 start-page: 330 year: 2018 end-page: 339 ident: bib0165 article-title: Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure publication-title: Appl. Catal. B Environ. – volume: 194 start-page: 157 year: 2016 end-page: 168 ident: bib0280 article-title: Synthesis of novel 2D-2D p-n heterojunction BiOBr/La publication-title: Appl. Catal. B Environ. – volume: 7 start-page: 1086 year: 2014 end-page: 1093 ident: bib0265 article-title: Cu publication-title: ChemSusChem – volume: 4 year: 2017 ident: bib0020 article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting publication-title: Adv. Sci. – volume: 232 start-page: 562 year: 2018 end-page: 573 ident: bib0125 article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics publication-title: Appl. Catal. B Environ. – volume: 38 start-page: 2160 year: 2017 end-page: 2170 ident: bib0175 article-title: Construction of carbon nitride and MoS publication-title: Chin. J. Catal. – volume: 202 start-page: 611 year: 2017 end-page: 619 ident: bib0170 article-title: Hybridization of rutile TiO publication-title: Appl. Catal. B Environ. – volume: 139 start-page: 13234 year: 2017 end-page: 13242 ident: bib0235 article-title: Metal-free photocatalyst for H publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 20132 year: 2012 end-page: 20139 ident: bib0100 article-title: Ag publication-title: J. Phys. Chem. C. – volume: 10 start-page: 1673 year: 2017 end-page: 1696 ident: bib0260 article-title: Unravelling charge carrier dynamics in protonated g-C publication-title: Nano Res. – volume: 18 start-page: 31175 year: 2016 end-page: 31183 ident: bib0160 article-title: A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C publication-title: Phys. Chem. Chem. Phys. – volume: 467–468 start-page: 658 year: 2019 end-page: 665 ident: bib0045 article-title: G-C publication-title: Appl. Surf. Sci. – volume: 56 start-page: 13445 year: 2017 end-page: 13449 ident: bib0240 article-title: Optimizing optical absorption, rxciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity publication-title: Angew. Chem. Int. Ed. – volume: 218 start-page: 664 year: 2017 end-page: 671 ident: bib0220 article-title: P-doped tubular g-C publication-title: Appl. Catal. B Environ. – volume: 183 start-page: 113 year: 2016 end-page: 123 ident: bib0225 article-title: Construction of SnNb publication-title: Appl. Catal. B Environ. – volume: 41 start-page: 2575 year: 2016 end-page: 2582 ident: bib0105 article-title: Enhanced photocatalytic activity of Ag publication-title: Int. J. Hydrogen Energy – volume: 6 start-page: 5881 year: 2015 ident: bib0275 article-title: Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production publication-title: Nat. Commun. – volume: 430 start-page: 108 year: 2018 end-page: 115 ident: bib0195 article-title: Solar photocatalytic water oxidation over Ag publication-title: Appl. Surf. Sci. – volume: 115 start-page: 14648 year: 2011 end-page: 14655 ident: bib0110 article-title: H publication-title: J. Phys. Chem. C – volume: 455 start-page: 403 year: 2018 end-page: 409 ident: bib0065 article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. – volume: 49 start-page: 649 year: 2015 end-page: 656 ident: bib0145 article-title: New application of Z-Scheme Ag publication-title: Environ. Sci. Technol. – volume: 7 start-page: 15285 year: 2015 end-page: 15293 ident: bib0185 article-title: Tuning the morphology of g-C publication-title: ACS Appl Mater. Interfaces – volume: 43 start-page: 2005 year: 2009 end-page: 2010 ident: bib0255 article-title: Visible light-induced efficient contaminant removal by Bi publication-title: Environ. Sci. Technol. – volume: 120 start-page: 22766 year: 2016 end-page: 22776 ident: bib0035 article-title: Photoelectrochemical investigation of the mechanism of enhancement of water oxidation at the hematite nanorod array modified with “NiBi” publication-title: J. Phys. Chem. C – volume: 6 start-page: 123 year: 2018 ident: bib0095 article-title: Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag publication-title: Front. Chem. – volume: 234 start-page: 90 year: 2018 end-page: 99 ident: bib0025 article-title: Phosphate group grafted twinned BiPO publication-title: Appl. Catal. B Environ. – volume: 8 start-page: 23133 year: 2016 end-page: 23142 ident: bib0270 article-title: Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution publication-title: ACS Appl. Mater. Interfaces – volume: 29 year: 2017 ident: bib0205 article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution publication-title: Adv. Mater. – volume: 125 start-page: 3082 year: 2003 end-page: 3089 ident: bib0005 article-title: Highly efficient water splitting into H publication-title: J. Am. Chem. Soc. – volume: 217 start-page: 275 year: 2017 end-page: 284 ident: bib0015 article-title: Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility publication-title: Appl. Catal. B-Environ. – volume: 53 start-page: 8018 year: 2014 end-page: 8025 ident: bib0120 article-title: Highly efficient photocatalytic activity of g-C publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 6693 year: 2016 end-page: 6701 ident: bib0080 article-title: Light-driven overall water splitting enabled by a photo-dember effect realized on 3D plasmonic structures publication-title: ACS Nano – volume: 1 start-page: 2655 year: 2010 end-page: 2661 ident: bib0010 article-title: Photocatalytic water splitting: recent progress and future challenges publication-title: J. Phys. Chem. Lett. – volume: 626 start-page: 401 year: 2015 end-page: 409 ident: bib0230 article-title: Ultrasound assisted synthesis of heterogeneous g-C publication-title: J. Alloy Compd. – volume: 456 start-page: 369 year: 2018 end-page: 378 ident: bib0180 article-title: Dual Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 27 start-page: 2150 year: 2015 end-page: 2176 ident: bib0210 article-title: Polymeric photocatalysts based on graphitic carbon nitride publication-title: Adv. Mater. – volume: 7 start-page: 4358 year: 2016 end-page: 4362 ident: bib0070 article-title: Enabling overall water splitting on photocatalysts by CO-covered noble metal co-catalysts publication-title: J. Phys. Chem. Lett. – volume: 227 start-page: 459 year: 2018 end-page: 469 ident: bib0140 article-title: Nitrogen-doped carbon dots decorated on g-C publication-title: Appl. Catal. B Environ. – volume: 229 start-page: 130 year: 2018 end-page: 138 ident: bib0060 article-title: Thermally stable TiO publication-title: Appl. Catal. B Environ. – volume: 5 start-page: 12723 year: 2017 end-page: 12728 ident: bib0245 article-title: Advancing the n-π* electron transition of carbon nitride nanotubes for H publication-title: J. Mater. Chem. A – volume: 8 start-page: 1350 year: 2015 end-page: 1358 ident: bib0190 article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution publication-title: ChemSusChem – volume: 430 start-page: 301 year: 2018 end-page: 308 ident: bib0200 article-title: Fabrication of modified g-C publication-title: Appl. Surf. Sci. – year: 2018 ident: bib0075 article-title: Nanotube array-like WO publication-title: ACS Appl. Energy Mater. – volume: 7 start-page: 31 year: 2003 end-page: 38 ident: bib0030 article-title: Photocatalyst materials for water splitting publication-title: Catal. Surv. Asia – volume: 9 start-page: 559 year: 2010 end-page: 564 ident: bib0090 article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation publication-title: Nat. Mater. – volume: 463 start-page: 9 year: 2019 end-page: 17 ident: bib0130 article-title: Fabrication of dual direct Z-scheme g-C publication-title: Appl. Surf. Sci. – volume: 15 start-page: 16883 year: 2013 end-page: 16890 ident: bib0150 article-title: Enhanced photocatalytic performance of direct Z-scheme g-C publication-title: Phys. Chem. Chem. Phys. – volume: 111 start-page: 11879 year: 2007 end-page: 11887 ident: bib0250 article-title: Hydrothermal synthesis and photocatalytic properties of pyrochlore La publication-title: J. Phys. Chem. C – volume: 6 year: 2016 ident: bib0040 article-title: Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution publication-title: Adv. Energy. Mater. – volume: 3 year: 2016 ident: bib0115 article-title: Z-Scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges publication-title: Adv. Sci. – volume: 49 start-page: 4096 year: 2010 end-page: 4099 ident: bib0085 article-title: Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 646 year: 2015 end-page: 656 ident: bib0050 article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution publication-title: Nano Energy – volume: 229 start-page: 227 year: 2018 end-page: 236 ident: bib0055 article-title: Defect-rich O-incorporated 1T-MoS publication-title: Appl. Catal. B Environ. – volume: 200 start-page: 477 year: 2017 end-page: 483 ident: bib0215 article-title: Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation publication-title: Appl. Catal. B Environ. – volume: 183 start-page: 113 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0225 article-title: Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2015.10.022 – volume: 120 start-page: 22766 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0035 article-title: Photoelectrochemical investigation of the mechanism of enhancement of water oxidation at the hematite nanorod array modified with “NiBi” publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b04430 – volume: 455 start-page: 403 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0065 article-title: Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.014 – volume: 49 start-page: 649 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0145 article-title: New application of Z-Scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel publication-title: Environ. Sci. Technol. doi: 10.1021/es5046309 – volume: 43 start-page: 2005 year: 2009 ident: 10.1016/j.apcatb.2018.11.056_bib0255 article-title: Visible light-induced efficient contaminant removal by Bi5O7I publication-title: Environ. Sci. Technol. doi: 10.1021/es8032814 – volume: 18 start-page: 31175 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0160 article-title: A new understanding of the photocatalytic mechanism of the direct Z-scheme g-C3N4/TiO2 heterostructure publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP06147H – volume: 7 start-page: 1086 year: 2014 ident: 10.1016/j.apcatb.2018.11.056_bib0265 article-title: Cu2O/Reduced graphene oxide composites for the photocatalytic conversion of CO2 publication-title: ChemSusChem doi: 10.1002/cssc.201301194 – volume: 10 start-page: 1673 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0260 article-title: Unravelling charge carrier dynamics in protonated g-C3N4 interfaced with carbon nanodots as co-catalysts toward enhanced photocatalytic CO2 reduction: a combined experimental and first-principles DFT study publication-title: Nano Res. doi: 10.1007/s12274-016-1391-4 – volume: 227 start-page: 459 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0140 article-title: Nitrogen-doped carbon dots decorated on g-C3N4/Ag3PO4 photo-catalyst with improved visible light photocatalytic activity and mechanism insight publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.01.057 – volume: 41 start-page: 2575 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0105 article-title: Enhanced photocatalytic activity of Ag3PO4 for oxygen evolution and methylene blue degeneration: effect of calcination temperature publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.12.061 – volume: 202 start-page: 611 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0170 article-title: Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): an efficient visible-light-driven Z-scheme hybridized photocatalyst publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.09.055 – volume: 229 start-page: 227 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0055 article-title: Defect-rich O-incorporated 1T-MoS2 nanosheets for remarkably enhanced visible-light photocatalytic H2 evolution over CdS: the impact of enriched defects publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.02.025 – volume: 20 start-page: 17590 year: 2014 ident: 10.1016/j.apcatb.2018.11.056_bib0135 article-title: Enhanced ethylene photodegradation performance of g-C3N4-Ag3PO4 composites with direct Z-scheme configuration publication-title: Chem. Eur. J. doi: 10.1002/chem.201404284 – volume: 467–468 start-page: 658 year: 2019 ident: 10.1016/j.apcatb.2018.11.056_bib0045 article-title: G-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.090 – volume: 139 start-page: 13234 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0235 article-title: Metal-free photocatalyst for H2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08416 – volume: 38 start-page: 2160 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0175 article-title: Construction of carbon nitride and MoS2 quantum dot 2D/0D hybrid photocatalyst: direct Z-scheme mechanism for improved photocatalytic activity publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(17)62911-5 – volume: 8 start-page: 1350 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0190 article-title: Silver phosphate/graphitic carbon nitride as an efficient photocatalytic tandem system for oxygen evolution publication-title: ChemSusChem doi: 10.1002/cssc.201403168 – volume: 218 start-page: 664 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0220 article-title: P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.07.022 – volume: 115 start-page: 14648 year: 2011 ident: 10.1016/j.apcatb.2018.11.056_bib0110 article-title: H2WO4 center dot H2O/Ag/AgCl composite nanoplates: a plasmonic Z-scheme visible-light photocatalyst publication-title: J. Phys. Chem. C doi: 10.1021/jp2037476 – volume: 7 start-page: 4358 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0070 article-title: Enabling overall water splitting on photocatalysts by CO-covered noble metal co-catalysts publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02151 – year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0075 article-title: Nanotube array-like WO3 photoanode with dual-layer oxygen-evolution cocatalysts for photoelectrocatalytic overall water splitting publication-title: ACS Appl. Energy Mater. – volume: 463 start-page: 9 year: 2019 ident: 10.1016/j.apcatb.2018.11.056_bib0130 article-title: Fabrication of dual direct Z-scheme g-C3N4/MoS2/Ag3PO4 photocatalyst and its oxygen evolution performance publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.209 – volume: 12 start-page: 646 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0050 article-title: Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.01.043 – volume: 430 start-page: 301 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0200 article-title: Fabrication of modified g-C3N4 nanorod/Ag3PO4 nanocomposites for solar-driven photocatalytic oxygen evolution from water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.185 – volume: 27 start-page: 2150 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0210 article-title: Polymeric photocatalysts based on graphitic carbon nitride publication-title: Adv. Mater. doi: 10.1002/adma.201500033 – volume: 430 start-page: 108 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0195 article-title: Solar photocatalytic water oxidation over Ag3PO4/g-C3N4 composite materials mediated by metallic Ag and graphene publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.07.290 – volume: 232 start-page: 330 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0165 article-title: Drastic promoting the visible photoreactivity of layered carbon nitride by polymerization of dicyandiamide at high pressure publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.03.066 – volume: 56 start-page: 13445 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0240 article-title: Optimizing optical absorption, rxciton dissociation, and charge transfer of a polymeric carbon nitride with ultrahigh solar hydrogen production activity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706870 – volume: 125 start-page: 3082 year: 2003 ident: 10.1016/j.apcatb.2018.11.056_bib0005 article-title: Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure publication-title: J. Am. Chem. Soc. doi: 10.1021/ja027751g – volume: 4 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0020 article-title: Recent progress in metal-organic frameworks for applications in electrocatalytic and photocatalytic water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201600371 – volume: 3 start-page: 19936 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0155 article-title: Enhanced photocatalytic activity of g-C3N4 for selective CO2 reduction to CH3OH via facile coupling of ZnO: a direct Z-scheme mechanism publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05503B – volume: 7 start-page: 31 year: 2003 ident: 10.1016/j.apcatb.2018.11.056_bib0030 article-title: Photocatalyst materials for water splitting publication-title: Catal. Surv. Asia doi: 10.1023/A:1023480507710 – volume: 53 start-page: 8018 year: 2014 ident: 10.1016/j.apcatb.2018.11.056_bib0120 article-title: Highly efficient photocatalytic activity of g-C3N4/Ag3PO4 hybrid photocatalysts through Z-scheme photocatalytic mechanism under visible light publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie5012036 – volume: 116 start-page: 20132 year: 2012 ident: 10.1016/j.apcatb.2018.11.056_bib0100 article-title: Ag3PO4 oxygen evolution photocatalyst employing synergistic action of Ag/AgBr nanoparticles and graphene sheets publication-title: J. Phys. Chem. C. doi: 10.1021/jp303219j – volume: 111 start-page: 11879 year: 2007 ident: 10.1016/j.apcatb.2018.11.056_bib0250 article-title: Hydrothermal synthesis and photocatalytic properties of pyrochlore La2Sn2O7 nanocubes publication-title: J. Phys. Chem. C doi: 10.1021/jp0684628 – volume: 10 start-page: 6693 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0080 article-title: Light-driven overall water splitting enabled by a photo-dember effect realized on 3D plasmonic structures publication-title: ACS Nano doi: 10.1021/acsnano.6b01999 – volume: 15 start-page: 16883 year: 2013 ident: 10.1016/j.apcatb.2018.11.056_bib0150 article-title: Enhanced photocatalytic performance of direct Z-scheme g-C3N4-TiO2 photocatalysts for the decomposition of formaldehyde in air publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp53131g – volume: 1 start-page: 2655 year: 2010 ident: 10.1016/j.apcatb.2018.11.056_bib0010 article-title: Photocatalytic water splitting: recent progress and future challenges publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1007966 – volume: 3 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0115 article-title: Z-Scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges publication-title: Adv. Sci. doi: 10.1002/advs.201500389 – volume: 5 start-page: 12723 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0245 article-title: Advancing the n-π* electron transition of carbon nitride nanotubes for H2 photosynthesis publication-title: J. Mater. Chem. A doi: 10.1039/C7TA03777E – volume: 234 start-page: 90 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0025 article-title: Phosphate group grafted twinned BiPO4 with significantly enhanced photocatalytic activity: synergistic effect of improved charge separation efficiency and redox ability publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.04.036 – volume: 49 start-page: 4096 year: 2010 ident: 10.1016/j.apcatb.2018.11.056_bib0085 article-title: Photocatalytic overall water splitting promoted by two different cocatalysts for hydrogen and oxygen evolution under visible light publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201001259 – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0205 article-title: Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201605148 – volume: 9 start-page: 559 year: 2010 ident: 10.1016/j.apcatb.2018.11.056_bib0090 article-title: An orthophosphate semiconductor with photooxidation properties under visible-light irradiation publication-title: Nat. Mater. doi: 10.1038/nmat2780 – volume: 6 start-page: 5881 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0275 article-title: Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production publication-title: Nat. Commun. doi: 10.1038/ncomms6881 – volume: 456 start-page: 369 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0180 article-title: Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.06.156 – volume: 7 start-page: 15285 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0185 article-title: Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation publication-title: ACS Appl Mater. Interfaces doi: 10.1021/acsami.5b02649 – volume: 626 start-page: 401 year: 2015 ident: 10.1016/j.apcatb.2018.11.056_bib0230 article-title: Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase publication-title: J. Alloy Compd. doi: 10.1016/j.jallcom.2014.11.148 – volume: 6 start-page: 123 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0095 article-title: Insights into highly improved solar-driven photocatalytic oxygen evolution over integrated Ag3PO4/MoS2 Heterostructures publication-title: Front. Chem. doi: 10.3389/fchem.2018.00123 – volume: 217 start-page: 275 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0015 article-title: Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2017.05.087 – volume: 232 start-page: 562 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0125 article-title: 3D reduced graphene oxide aerogel-mediated Z-scheme photocatalytic system for highly efficient solar-driven water oxidation and removal of antibiotics publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.03.100 – volume: 8 start-page: 23133 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0270 article-title: Embedding metal in the interface of a p-n heterojunction with a stack design for superior Z-scheme photocatalytic hydrogen evolution publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07754 – volume: 229 start-page: 130 year: 2018 ident: 10.1016/j.apcatb.2018.11.056_bib0060 article-title: Thermally stable TiO2 quantum dots embedded in SiO2 foams: characterization and photocatalytic H2 evolution activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2018.02.022 – volume: 200 start-page: 477 year: 2017 ident: 10.1016/j.apcatb.2018.11.056_bib0215 article-title: Noble-metal-free cobalt phosphide modified carbon nitride: an efficient photocatalyst for hydrogen generation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.07.046 – volume: 6 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0040 article-title: Nanodiamond-embedded p-type copper(I) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution publication-title: Adv. Energy. Mater. doi: 10.1002/aenm.201501865 – volume: 194 start-page: 157 year: 2016 ident: 10.1016/j.apcatb.2018.11.056_bib0280 article-title: Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.04.050 |
SSID | ssj0002328 |
Score | 2.6679971 |
Snippet | [Display omitted]
Tandem Z-scheme Ag3PO4/g-C3N4 heterojunctions were explored as highly efficient photocatalysts for driving oxygen evolution reaction under... Exploring active catalyst materials for solar-driven photocatalytic water splitting into oxygen has proven extremely challenging, mostly due to poor... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 240 |
SubjectTerms | Ag3PO4 Carbon nitride Charge transfer Composite materials Efficiency Evolution Fabrication g-C3N4 Heterojunctions Heterostructures Light emitting diodes Morphology Optimization Oxygen Oxygen evolution reactions Phosphates Photocatalysis Photocatalysts Photocatalytic oxygen evolution Reaction kinetics Silver compounds Splitting Water splitting Z-scheme |
Title | Interfacial optimization of g-C3N4-based Z-scheme heterojunction toward synergistic enhancement of solar-driven photocatalytic oxygen evolution |
URI | https://dx.doi.org/10.1016/j.apcatb.2018.11.056 https://www.proquest.com/docview/2199233934 |
Volume | 244 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V5QAcEF2oKLSVD1zdTfxMjtWq1ZaKvUCliouVOA7bim5W3RSxF_4Cf5kZr0MBIVXimGjsRJkv89I3Y4C3Wasr3dqKNypvqFqFdlCGgutSaB-E1N5Qc_L7mZleqHeX-nILJkMvDNEqk-3f2PRordOdcfqa4-XV1fhDVgojpSVQog8z1PCrlCWUH32_p3lgxBCtMQpzkh7a5yLHq1r6qq-J4FUc0SxPOsb63-7pL0Mdvc_pc3iWwkZ2vHmzHdgKixE8ngyntY3g6W-DBUewe3Lfv4bL0g-8egE_YgWwrahQzjo0FzepD5N1LfvMJ3KmODm2hn3imPeGm8DmRJjprtH_Rbk-8mzZak1Ng3HKMwuLOWGHHkbbrChb5s0t2VG2nHd9F2tEaxLtvq0RsSx8TYh_CRenJx8nU57OZOBeSdtzLYPXomhN7vOsqMpQ2rYWdSl8rqxXOYY_taiaLK8lZSomNCbHmCMEj4mRwIR4F7YX3SK8AlZaBIOXufeZUrhBURtvZF2IxrRG2XYP5KAK59PAcjo344sbmGnXbqNARwrEXMahAveA_1q13AzseEDeDlp2fwDPoU95YOX-AAqXfvyVE0TnlbKU6vV_b_wGnuBVGWmVeh-2-9u7cIChT18fRmwfwqPjs_Pp7CfnvAZk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7RcKAcqjYtKi1t99DrNva-bB9RBAoFcilIqJeVvV43oBJHxFTkV_CXO7NZ04cqIfVqz6wtz_ibh-YB8DFpdKmbrOS1SmvKViEOSp9zXQjtvJDaGWpOPp2aybn6fKEvNmDc98JQWWXE_jWmB7SOV0bxa44Wl5ejL0khjJQZKSXaMJM_gU2aTqUHsLl_dDyZPgAyOg0BkJGeE0PfQRfKvMqFK7uKarzyTzTOkzZZ_9tC_YXVwQAdPodn0XNk--uXewEbfj6ErXG_sG0I27_NFhzCzsGvFjZki__w8iXchyRgU1KunLWIGNexFZO1DfvGx3KqONm2mn3lGPr6a89mVDPTXqEJDHRdKLVlyxX1DYZBz8zPZ6Q-9DA6ZkkBM69vCErZYtZ2bUgTrYi0vVuh0jL_Iyr9Kzg_PDgbT3hcy8CdklnHtfROi7wxqUuTvCx8kTWVqArhUpU5laIHVImyTtJKUrBifG1SdDu8dxgbCYyJd2Awb-f-NbAiQ31wMnUuUQoPyCvjjKxyUZvGqKzZBdmLwro4s5xWZ3y3fXHalV0L0JIAMZyxKMBd4A9ci_XMjkfos17K9g_ds2hWHuHc65XCxn9_aQVV9EpZSPXmvw_-AFuTs9MTe3I0PX4LT_FOEaos9R4Muptb_w49oa56HzX9J9TmCRU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+optimization+of+g-C3N4-based+Z-scheme+heterojunction+toward+synergistic+enhancement+of+solar-driven+photocatalytic+oxygen+evolution&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yang%2C+Xiaofei&rft.au=Tian%2C+Lin&rft.au=Zhao%2C+Xiaolong&rft.au=Tang%2C+Hua&rft.date=2019-05-05&rft.issn=0926-3373&rft.volume=244&rft.spage=240&rft.epage=249&rft_id=info:doi/10.1016%2Fj.apcatb.2018.11.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2018_11_056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |