CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption

[Display omitted] •0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species resulted in the enhanced adsorption of reactant H2O molecule.•CeO2@MoS2/g-C3N4 exhibited an efficient H2 evolution activity even without a noble-met...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 259; p. 118072
Main Authors Zhu, Chengzhang, Wang, Yuting, Jiang, Zhifeng, Xu, Fanchao, Xian, Qiming, Sun, Cheng, Tong, Qing, Zou, Weixin, Duan, Xiaoguang, Wang, Shaobin
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.12.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species resulted in the enhanced adsorption of reactant H2O molecule.•CeO2@MoS2/g-C3N4 exhibited an efficient H2 evolution activity even without a noble-metal cocatalyst.•The improved activity was attributed to decreased H2O adsorption energy and multi-step electron transfer. Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2 nanocrystal-decorated two-dimensional (2D) layered hybrids of MoS2/g-C3N4 was reported for the first time. In the absence of noble-metal cocatalyst, the optimized ternary CeO2@MoS2/g-C3N4 still manifested high photocatalytic activity toward H2 generation, with a rate of 65.4 μmol/h, which is approximately 8.3 and 17.5-fold greater than g-C3N4 and CeO2, respectively. The corresponding apparent external quantum efficiency reached 10.35% at a wavelength of 420 nm. The superior photocatalytic behavior of CeO2@MoS2/g-C3N4 heterojunction could be ascribed to the positive synergetic effects of well-matched energy-level positions and effective charge separation arose from the multi-step electron transfer processes between Ce4+/Ce3+ reversibility pairs and heterostructures. Furthermore, the adsorption ability of reactant H2O molecules on CeO2@MoS2/g-C3N4 was investigated. Due to the interfacial electronic interaction and Ce3+ species, CeO2@MoS2/g-C3N4 presented more reaction active sites with enhanced adsorption capacity and decreased energy barrier for reactant H2O molecules adsorption, which collaboratively promoted photocatalytic water splitting. This study provides new insights into the rational design of inexpensive ternary photocatalyst with multilevel electron transfer for efficiently converting solar energy into hydrogen without noble metals.
AbstractList Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2 nanocrystal-decorated two-dimensional (2D) layered hybrids of MoS2/g-C3N4 was reported for the first time. In the absence of noble-metal cocatalyst, the optimized ternary CeO2@MoS2/g-C3N4 still manifested high photocatalytic activity toward H2 generation, with a rate of 65.4 μmol/h, which is approximately 8.3 and 17.5-fold greater than g-C3N4 and CeO2, respectively. The corresponding apparent external quantum efficiency reached 10.35% at a wavelength of 420 nm. The superior photocatalytic behavior of CeO2@MoS2/g-C3N4 heterojunction could be ascribed to the positive synergetic effects of well-matched energy-level positions and effective charge separation arose from the multi-step electron transfer processes between Ce4+/Ce3+ reversibility pairs and heterostructures. Furthermore, the adsorption ability of reactant H2O molecules on CeO2@MoS2/g-C3N4 was investigated. Due to the interfacial electronic interaction and Ce3+ species, CeO2@MoS2/g-C3N4 presented more reaction active sites with enhanced adsorption capacity and decreased energy barrier for reactant H2O molecules adsorption, which collaboratively promoted photocatalytic water splitting. This study provides new insights into the rational design of inexpensive ternary photocatalyst with multilevel electron transfer for efficiently converting solar energy into hydrogen without noble metals.
[Display omitted] •0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species resulted in the enhanced adsorption of reactant H2O molecule.•CeO2@MoS2/g-C3N4 exhibited an efficient H2 evolution activity even without a noble-metal cocatalyst.•The improved activity was attributed to decreased H2O adsorption energy and multi-step electron transfer. Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2 nanocrystal-decorated two-dimensional (2D) layered hybrids of MoS2/g-C3N4 was reported for the first time. In the absence of noble-metal cocatalyst, the optimized ternary CeO2@MoS2/g-C3N4 still manifested high photocatalytic activity toward H2 generation, with a rate of 65.4 μmol/h, which is approximately 8.3 and 17.5-fold greater than g-C3N4 and CeO2, respectively. The corresponding apparent external quantum efficiency reached 10.35% at a wavelength of 420 nm. The superior photocatalytic behavior of CeO2@MoS2/g-C3N4 heterojunction could be ascribed to the positive synergetic effects of well-matched energy-level positions and effective charge separation arose from the multi-step electron transfer processes between Ce4+/Ce3+ reversibility pairs and heterostructures. Furthermore, the adsorption ability of reactant H2O molecules on CeO2@MoS2/g-C3N4 was investigated. Due to the interfacial electronic interaction and Ce3+ species, CeO2@MoS2/g-C3N4 presented more reaction active sites with enhanced adsorption capacity and decreased energy barrier for reactant H2O molecules adsorption, which collaboratively promoted photocatalytic water splitting. This study provides new insights into the rational design of inexpensive ternary photocatalyst with multilevel electron transfer for efficiently converting solar energy into hydrogen without noble metals.
ArticleNumber 118072
Author Zou, Weixin
Wang, Shaobin
Jiang, Zhifeng
Xian, Qiming
Xu, Fanchao
Zhu, Chengzhang
Sun, Cheng
Duan, Xiaoguang
Wang, Yuting
Tong, Qing
Author_xml – sequence: 1
  givenname: Chengzhang
  surname: Zhu
  fullname: Zhu, Chengzhang
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
– sequence: 2
  givenname: Yuting
  surname: Wang
  fullname: Wang, Yuting
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
– sequence: 3
  givenname: Zhifeng
  orcidid: 0000-0002-6589-6122
  surname: Jiang
  fullname: Jiang, Zhifeng
  organization: Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China
– sequence: 4
  givenname: Fanchao
  surname: Xu
  fullname: Xu, Fanchao
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
– sequence: 5
  givenname: Qiming
  surname: Xian
  fullname: Xian, Qiming
  email: xianqm@nju.edu.cn
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
– sequence: 6
  givenname: Cheng
  orcidid: 0000-0002-2221-2392
  surname: Sun
  fullname: Sun, Cheng
  organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
– sequence: 7
  givenname: Qing
  surname: Tong
  fullname: Tong, Qing
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210093, PR China
– sequence: 8
  givenname: Weixin
  surname: Zou
  fullname: Zou, Weixin
  email: wxzou2016@nju.edu.cn
  organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210093, PR China
– sequence: 9
  givenname: Xiaoguang
  surname: Duan
  fullname: Duan, Xiaoguang
  organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
– sequence: 10
  givenname: Shaobin
  surname: Wang
  fullname: Wang, Shaobin
  organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia
BookMark eNqFkc-O0zAQxiO0SHQX3oCDJc5p_S9Jswck1AV2pYUegLPl2OPWlWsH262UJ-V1cBROHEBzmMPM92nm-91WNz54qKq3BK8JJu3mtJajknlYU0z6NSFb3NEX1YpsO1az7ZbdVCvc07ZmrGOvqtuUThhjyuh2Vf3awZ4iL31QcUpZuvoctDUWNHJyglj6l_CNbg71jn3lSCaEHzb0AWWIXsYJqXAeQ7IZkAkRXW2yg4Pa2cMxo_EYcih3STdlq9Bx0jEcwCO4BnfJNvh79OSLkZHKSlesfAJVBldA54vLtk4ZRgQOVI7BoxylTwYikl4j8EfpVbnuke5RBKmy9BlJnUIcZ-vX1UsjXYI3f_pd9ePTx--7x_p5__lp9-G5Vpx1ueYD1c0w0MZg0xPDNBjel2pBt7wBwLRtdKM5JQRzrDqlmo5r3siWKtKant1V7xbfMYafF0hZnMKlROOSoKzQIE3bkrLFly0VQ0oRjBijPZf8BMFiRihOYkEoZoRiQVhk93_JlM1yfq9kYd3_xO8XMZT3rxaiSMrCnJmNJVGhg_23wW_dnL__
CitedBy_id crossref_primary_10_1016_j_ijhydene_2022_08_129
crossref_primary_10_1016_j_surfin_2024_104177
crossref_primary_10_1016_j_ceramint_2020_12_010
crossref_primary_10_1016_j_jallcom_2022_163879
crossref_primary_10_1016_j_renene_2025_122380
crossref_primary_10_1016_j_jcis_2020_04_111
crossref_primary_10_1007_s12598_022_02244_2
crossref_primary_10_1016_j_jhazmat_2022_128939
crossref_primary_10_1016_j_seppur_2024_130349
crossref_primary_10_1039_D4SE01532K
crossref_primary_10_1016_j_apsusc_2020_146076
crossref_primary_10_3390_ijms24010363
crossref_primary_10_1039_D2CP02148J
crossref_primary_10_1039_D1CY01940F
crossref_primary_10_1016_j_jre_2024_08_018
crossref_primary_10_1021_acsaelm_2c01553
crossref_primary_10_1016_j_jallcom_2021_159930
crossref_primary_10_1016_j_cej_2021_133829
crossref_primary_10_3390_nano10112307
crossref_primary_10_1016_j_jcis_2021_12_007
crossref_primary_10_1007_s12598_024_02653_5
crossref_primary_10_1016_j_jcis_2022_11_142
crossref_primary_10_1016_j_jece_2024_112563
crossref_primary_10_1039_D1CE00385B
crossref_primary_10_1007_s10854_024_13581_6
crossref_primary_10_1016_j_mssp_2024_108165
crossref_primary_10_1016_j_cej_2023_142704
crossref_primary_10_1039_D0CY02298E
crossref_primary_10_1016_j_jcis_2020_06_075
crossref_primary_10_1016_j_jece_2023_111777
crossref_primary_10_1016_j_jmrt_2023_10_244
crossref_primary_10_1002_cssc_201901960
crossref_primary_10_1039_C9QI01128E
crossref_primary_10_1016_j_ijhydene_2021_07_201
crossref_primary_10_1007_s12598_024_02746_1
crossref_primary_10_1039_D1NJ05169E
crossref_primary_10_1007_s10854_022_08159_z
crossref_primary_10_1016_j_cej_2021_132588
crossref_primary_10_1016_j_chemosphere_2023_138769
crossref_primary_10_1016_j_apsusc_2023_156715
crossref_primary_10_1016_j_apcatb_2021_120257
crossref_primary_10_1016_j_chemosphere_2023_138765
crossref_primary_10_1039_D2TC00922F
crossref_primary_10_1016_j_compositesb_2022_110082
crossref_primary_10_1016_j_diamond_2024_111376
crossref_primary_10_1016_j_envres_2023_116553
crossref_primary_10_3390_molecules28135098
crossref_primary_10_1002_anie_202009449
crossref_primary_10_1016_j_jallcom_2021_160743
crossref_primary_10_1002_smll_202300717
crossref_primary_10_1016_j_ecoenv_2020_111519
crossref_primary_10_1016_j_ijhydene_2022_09_071
crossref_primary_10_1016_j_jcis_2021_10_123
crossref_primary_10_1016_j_cej_2023_141849
crossref_primary_10_1039_D3RA02415F
crossref_primary_10_1016_j_jallcom_2024_174830
crossref_primary_10_1016_j_jcis_2022_04_024
crossref_primary_10_1016_j_jallcom_2020_156206
crossref_primary_10_1016_j_jcis_2020_11_099
crossref_primary_10_1021_acssuschemeng_0c00882
crossref_primary_10_1007_s12274_020_2955_x
crossref_primary_10_1016_j_jhazmat_2023_132744
crossref_primary_10_1016_j_ijhydene_2023_10_001
crossref_primary_10_1021_acsaem_1c03967
crossref_primary_10_1016_j_colsurfa_2020_125481
crossref_primary_10_1021_acsami_1c09651
crossref_primary_10_1039_D5NR00287G
crossref_primary_10_1016_j_jclepro_2024_141983
crossref_primary_10_1142_S0217984921503334
crossref_primary_10_1016_j_jhazmat_2022_128766
crossref_primary_10_1016_j_apsusc_2024_159434
crossref_primary_10_1016_j_envres_2023_115994
crossref_primary_10_1016_j_mcat_2024_114323
crossref_primary_10_1016_j_rser_2023_113348
crossref_primary_10_1021_acssuschemeng_0c04205
crossref_primary_10_1002_ejic_202100522
crossref_primary_10_1016_j_cej_2021_131682
crossref_primary_10_1016_j_fuel_2024_131907
crossref_primary_10_1142_S179329202150168X
crossref_primary_10_1016_j_jallcom_2023_170168
crossref_primary_10_1039_D4NR03936J
crossref_primary_10_1016_j_jcis_2021_09_095
crossref_primary_10_1039_D0DT00843E
crossref_primary_10_1016_j_apsusc_2021_151201
crossref_primary_10_1016_j_cej_2022_134602
crossref_primary_10_1016_j_jcis_2022_04_015
crossref_primary_10_1016_j_watres_2021_117985
crossref_primary_10_1016_j_seppur_2023_125586
crossref_primary_10_1016_j_ijhydene_2019_12_168
crossref_primary_10_1016_j_jes_2021_11_040
crossref_primary_10_1016_j_mcat_2023_113186
crossref_primary_10_1039_D1MA00539A
crossref_primary_10_3390_catal12101185
crossref_primary_10_1002_er_6632
crossref_primary_10_1016_j_jcis_2022_07_042
crossref_primary_10_1016_j_jphotochem_2024_115475
crossref_primary_10_1016_j_scitotenv_2022_155836
crossref_primary_10_1016_j_cej_2023_146555
crossref_primary_10_1039_D4CC05869K
crossref_primary_10_1016_j_checat_2021_08_001
crossref_primary_10_1016_j_surfin_2023_102632
crossref_primary_10_1039_D0NA00489H
crossref_primary_10_1039_D4EN00727A
crossref_primary_10_1016_j_apsusc_2024_160454
crossref_primary_10_1016_j_apcatb_2020_118755
crossref_primary_10_1016_j_jhazmat_2020_122119
crossref_primary_10_1016_j_molliq_2023_122103
crossref_primary_10_3390_molecules27217489
crossref_primary_10_1142_S1793292020501271
crossref_primary_10_1002_er_7791
crossref_primary_10_1007_s11356_024_34987_z
crossref_primary_10_1002_ange_202009449
crossref_primary_10_1021_acsomega_1c06089
crossref_primary_10_1016_j_ijhydene_2021_06_165
crossref_primary_10_1016_j_ijhydene_2022_12_155
crossref_primary_10_1016_j_apsusc_2023_157714
crossref_primary_10_1039_C9CC07835E
crossref_primary_10_1016_j_microc_2020_105415
crossref_primary_10_1007_s11164_022_04946_9
crossref_primary_10_1016_j_envres_2024_119759
crossref_primary_10_1016_j_carbon_2020_03_031
crossref_primary_10_1016_j_cej_2021_128456
crossref_primary_10_1016_j_cej_2020_125721
crossref_primary_10_1016_j_ceramint_2022_07_318
crossref_primary_10_1016_j_cej_2023_142747
crossref_primary_10_1016_j_mssp_2020_105411
crossref_primary_10_1016_j_seppur_2020_117567
crossref_primary_10_1002_aesr_202000063
crossref_primary_10_3390_inorganics13030077
crossref_primary_10_1039_D4QI01435A
crossref_primary_10_1016_j_apsusc_2020_145296
crossref_primary_10_1016_j_jcis_2023_09_158
crossref_primary_10_1016_j_ijhydene_2020_10_031
crossref_primary_10_1016_j_cej_2022_134744
crossref_primary_10_1016_j_jpowsour_2021_230420
crossref_primary_10_1039_D0EN00551G
crossref_primary_10_1016_j_psep_2024_04_047
crossref_primary_10_1039_D3NJ05399G
crossref_primary_10_1016_j_ijhydene_2021_12_165
crossref_primary_10_1088_1361_6528_ac04d3
crossref_primary_10_1016_j_apsusc_2022_153348
crossref_primary_10_1016_j_apsusc_2022_155087
crossref_primary_10_1016_j_apcatb_2021_119947
crossref_primary_10_1016_j_jhazmat_2020_122252
crossref_primary_10_1016_j_mtener_2021_100901
crossref_primary_10_1016_j_jcis_2025_137280
crossref_primary_10_1016_j_jhazmat_2020_122659
crossref_primary_10_1039_D2EN00951J
crossref_primary_10_1016_j_cej_2023_143309
crossref_primary_10_1021_acsomega_3c02084
crossref_primary_10_1021_acs_langmuir_4c03489
crossref_primary_10_1016_j_cis_2021_102488
crossref_primary_10_1002_solr_202301043
crossref_primary_10_1016_j_mcat_2021_111829
crossref_primary_10_1134_S0036024422030281
crossref_primary_10_1016_j_jece_2024_112829
crossref_primary_10_1016_j_cej_2020_128185
crossref_primary_10_1016_j_jallcom_2024_178313
crossref_primary_10_1016_j_chemosphere_2021_130552
crossref_primary_10_1016_j_envpol_2020_114550
crossref_primary_10_1016_j_jcis_2020_07_032
crossref_primary_10_1016_j_colsurfa_2021_126151
crossref_primary_10_1016_j_ijhydene_2022_12_257
crossref_primary_10_1016_j_poly_2024_117240
crossref_primary_10_1039_D1TA10376H
crossref_primary_10_1039_D2CE00830K
crossref_primary_10_1088_2053_1591_acae21
crossref_primary_10_1016_j_mtsust_2021_100073
crossref_primary_10_1002_adsu_202200344
crossref_primary_10_1016_j_ijhydene_2024_07_090
crossref_primary_10_1016_j_jcis_2024_10_087
crossref_primary_10_1016_j_mcat_2020_111309
crossref_primary_10_1016_j_jcis_2020_12_126
crossref_primary_10_1016_j_jclepro_2021_129059
crossref_primary_10_1016_j_flatc_2020_100200
crossref_primary_10_1016_j_jcis_2024_06_243
crossref_primary_10_1016_j_chemosphere_2021_133092
crossref_primary_10_1016_j_diamond_2022_108995
crossref_primary_10_1016_j_ijhydene_2023_05_237
crossref_primary_10_1016_j_cej_2023_147333
crossref_primary_10_1016_j_jallcom_2024_173893
crossref_primary_10_1016_j_ijhydene_2024_10_299
crossref_primary_10_1039_D1DT03605J
crossref_primary_10_1039_D4EN00431K
Cites_doi 10.1021/acs.inorgchem.6b00265
10.1016/j.nanoen.2018.02.001
10.1021/acsami.9b00903
10.1002/smll.201201161
10.1039/C8CC00766G
10.1021/jacs.7b11654
10.1021/acs.nanolett.5b00082
10.1016/j.apcatb.2018.06.013
10.1039/c3dt53110d
10.1021/la502033t
10.1021/acsami.8b13782
10.1002/anie.200705828
10.1002/anie.201403946
10.1002/adma.201601047
10.1016/j.apcatb.2017.09.055
10.1002/anie.201711357
10.1002/adma.201303116
10.1039/C8CS00341F
10.1002/smll.201601546
10.1038/s41598-017-06139-6
10.1002/anie.201403375
10.1002/cctc.201800101
10.1021/acs.jpcc.8b06624
10.1021/acs.iecr.8b02830
10.1016/j.apcatb.2018.01.067
10.1021/acs.est.8b00946
10.1021/acs.iecr.8b00927
10.1016/j.apcatb.2017.03.085
10.1021/acssuschemeng.7b03693
10.1021/acsaem.8b00030
10.1002/adma.201706108
10.1002/anie.201814360
10.1021/acsomega.7b00492
10.1002/adma.201801450
10.1002/aenm.201701503
10.1021/acsami.5b05118
10.1002/smll.201703277
10.1021/ja207103j
10.1002/chem.201503660
10.1016/j.nanoen.2015.10.011
10.1002/adfm.201502938
10.1039/C5TA05817A
10.1016/j.apcatb.2014.05.019
10.1039/C5CC05323D
10.1002/aenm.201700025
10.1016/j.jcat.2018.12.003
10.1016/j.apcatb.2017.02.024
10.1088/1361-6528/aa5cf2
10.1016/j.apcatb.2015.07.027
10.1016/j.watres.2015.06.009
10.1016/j.apcatb.2018.08.028
10.1021/es300303f
10.1021/acscatal.6b00715
10.1016/j.apsusc.2018.03.021
10.1039/c2nr31833d
10.1021/acsnano.5b07831
10.1016/j.apcatb.2018.02.011
10.1039/C8TA06565A
10.1039/C7CY00499K
10.1016/j.apcatb.2013.06.020
10.1016/j.watres.2015.05.053
10.1021/acsami.5b05715
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Dec 15, 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Dec 15, 2019
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.118072
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2019_118072
S0926337319308197
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPD
SSG
SSZ
T5K
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
SEW
SSH
VH1
WUQ
XPP
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c437t-4b2d5bb25f0f91f3def494946ed645ee0265d5d4211040c7cc574d45a62c16f93
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 11:07:52 EDT 2025
Tue Jul 01 04:34:58 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Sat Mar 02 16:00:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-step electron transfer
H2O reactant adsorption
Water splitting
2D layered MoS2/g-C3N4
CeO2 nanocrystals
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-4b2d5bb25f0f91f3def494946ed645ee0265d5d4211040c7cc574d45a62c16f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2221-2392
0000-0002-6589-6122
PQID 2301915661
PQPubID 2045281
ParticipantIDs proquest_journals_2301915661
crossref_primary_10_1016_j_apcatb_2019_118072
crossref_citationtrail_10_1016_j_apcatb_2019_118072
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-15
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Mori, Aoyama, Kawashima, Yamashita (bib0265) 2014; 43
Mori, Miyawaki, Yamashita (bib0010) 2016; 6
Martin, Qiu, Shevlin, Handoko, Chen, Guo, Tang (bib0155) 2014; 53
Yao, Chen, Cao, Yang, Tan, Dong (bib0225) 2018; 57
Yan, Chen, Ji, Liu, Wang, Xu, She, Huang, Xu, Xu, Li (bib0130) 2016; 22
Han, Wang, Gao, Cheng, Zhao, Zhang, Qu (bib0140) 2016; 10
Huang, Li, Lin, Tong, Liu (bib0280) 2018; 10
Zhao, Feng, Liu, Lu, Shi, Yang, Wang, Feng, Cheng (bib0245) 2018; 5
Zhu, Li, Xia, Liu, Xiong (bib0255) 2018; 10
Xiao, Liu, Zhu, Li, Zhang, Li (bib0020) 2015; 15
Yamashita, Mori, Kuwahara, Kamegawa, Wen, Verma, Che (bib0005) 2018; 47
Okamoto, Ida, Hyodo, Hagiwara, Ishihara (bib0055) 2011; 133
Li, Nie, Chen, Jiang, An, Wong, Zhang, Zhao, Yamashita (bib0105) 2015; 86
Lin, Zhang, Huang, Liu, Lee, Liang, Chu, Li (bib0205) 2012; 4
Li, Feng, Li, Li, Wei, Song (bib0195) 2015; 25
Khan, Khan, Cho (bib0230) 2017; 7
Si, Flytzani-Stephanopoulos (bib0170) 2008; 47
Ma, Dai, Jaroniec, Qiao (bib0220) 2014; 53
Wang, Chen, Feng, Xie, Liu, Su, Zhang, Wang, Yao, Lv, Liu (bib0095) 2017; 207
Nozaki, Yasuoka, Kuwahara, Ohmichi, Mori, Nagase, Yasuda, Yamashita (bib0050) 2018; 57
Zhu, Sun, Fujitsuka, Majima (bib0240) 2018; 57
Xu, Wang (bib0040) 2012; 46
Li, Lian, Wang, Zhang, Li (bib0070) 2016; 19
Li, Zhang, Yang, Wang, Ng (bib0190) 2014; 30
Feng, Li, Ling, Yan, Pan, Ge, Li, Bian (bib0275) 2018; 52
Jiang, Luo, Zong, Yao, Li, Zhu (bib0025) 2016; 12
Grzybek, Stelmachowski, Gudyka, Indyka, Sojka, Guillen-Hur-tado, Rico-Perez, Bueno-Lopez, Kotarba (bib0235) 2016; 180
Zhang, Li, Liu, Chen, Mao, An (bib0260) 2019; 6
Mansingh, Padhi, Parida (bib0045) 2017; 7
Zou, Shao, Pu, Luo, Sun, Ma, Tang, Gao, Dong (bib0305) 2017; 218
Jiang, Li, Xing, Zhang, Meng, Chen (bib0110) 2015; 7
Swain, Sultana, Naik, Parida (bib0125) 2017; 2
Huang, Lu, Lin, Mao, Ouyang, Liu, Zhang, Tong (bib0185) 2018; 6
Zhou, Yin, Du, Huang, Zeng, Fan, Liu, Wang, Zhang (bib0210) 2013; 9
Fu, Yu, Jiang, Cheng (bib0065) 2018; 8
Liu, Zhang, Ke, Zhang, Tian, Xu, Duan, Sun, Tade, Wang (bib0090) 2018; 228
Liu, Xu, Zhang, Zhang, Tian, Li, Tade, Sun, Wang (bib0145) 2018; 239
Shi, Chen, Chen, Jiang (bib0315) 2015; 51
Hu, Cai, Chen, Fan, Song, Yan, Shi (bib0160) 2015; 7
Wang, Jiang, Luo, Chen, Zhu (bib0060) 2018; 237
Xiong, Zhang, Wang, Liu, Wang, Zhang, Zhao (bib0135) 2018; 54
Lin, Yang, Wang (bib0285) 2019; 58
Yao, Xiong, Zou, Zhang, Wu, Dong, Gao, Deng, Tang, Chen, Dong, Chen (bib0035) 2014; 144
Zhu, Wang, Jiang, Liu, Pu, Xian, Zou, Sun (bib0200) 2019; 11
Zhu, Chen, Ma, Gu, Xian, Gong, Sun (bib0100) 2018; 122
She, Wu, Xu, Zhong, Wang, Song, Nie, Liu, Yang, Rodrigues, Vajtai, Lou, Du, Li, Ajayan (bib0320) 2017; 7
Xiong, Wang, Liu, Zheng, Wang, Yang, Wong, Zhang, Zhao (bib0120) 2018; 30
Zhao, Qi, Yin, Wang, Zhao, Ma, Wan, Chang, Gao, Yu, Tang (bib0310) 2015; 3
Jiang, Wang, Yu, Wang, An, Zhao, Li, Yuan, Wong (bib0015) 2018; 46
Zhu, Gong, Xian, Xie (bib0175) 2018; 444
Gong, Gu, Li, Zhao, Jia, Du (bib0180) 2016; 55
Huang, Luo, Chen, Yao, Liu (bib0250) 2018; 6
Xie, Feng, Wang, Chen, Zhang, Zeng, Lv, Liu (bib0075) 2018; 229
Yuan, Yang, Li, Chen, Wu, Fang, Bai, Ding, Yang, Cao, Yu, Zou (bib0085) 2018; 1
He, Fishman, Yang, Ortiz, Liu, Goldsamt, Batista, Pfefferle (bib0290) 2018; 140
Jiang, Wang, Li, Yuan, Zhao, Wong (bib0215) 2018; 30
Li, Han, Chen, Li, Xie, Mao, Bu, Cao, Dong, Feng, Lan (bib0270) 2016; 28
Wang, Wang, Feng, Zeng, Xie, Zhang, Su, Chen, Liu, Yao, Lv, Liu (bib0080) 2018; 221
Wang, He, Chen, Yu (bib0295) 2015; 81
Zhu, Jiang, Chen, Qian, Xie (bib0300) 2017; 28
Hou, Wen, Cui, Guo, Chen (bib0165) 2013; 25
Kong, Li, Wen, Chen, Liu, An (bib0030) 2019; 370
Li, Hou, Du, Zhang, Tao (bib0115) 2014; 160
Shi, Fujitsuka, Kim, Majima (bib0150) 2018; 14
Mori (10.1016/j.apcatb.2019.118072_bib0265) 2014; 43
Xiong (10.1016/j.apcatb.2019.118072_bib0135) 2018; 54
Wang (10.1016/j.apcatb.2019.118072_bib0295) 2015; 81
Nozaki (10.1016/j.apcatb.2019.118072_bib0050) 2018; 57
Zhu (10.1016/j.apcatb.2019.118072_bib0100) 2018; 122
Lin (10.1016/j.apcatb.2019.118072_bib0205) 2012; 4
Wang (10.1016/j.apcatb.2019.118072_bib0060) 2018; 237
Grzybek (10.1016/j.apcatb.2019.118072_bib0235) 2016; 180
Huang (10.1016/j.apcatb.2019.118072_bib0280) 2018; 10
She (10.1016/j.apcatb.2019.118072_bib0320) 2017; 7
Okamoto (10.1016/j.apcatb.2019.118072_bib0055) 2011; 133
Wang (10.1016/j.apcatb.2019.118072_bib0095) 2017; 207
Ma (10.1016/j.apcatb.2019.118072_bib0220) 2014; 53
Khan (10.1016/j.apcatb.2019.118072_bib0230) 2017; 7
He (10.1016/j.apcatb.2019.118072_bib0290) 2018; 140
Zou (10.1016/j.apcatb.2019.118072_bib0305) 2017; 218
Huang (10.1016/j.apcatb.2019.118072_bib0250) 2018; 6
Xu (10.1016/j.apcatb.2019.118072_bib0040) 2012; 46
Li (10.1016/j.apcatb.2019.118072_bib0115) 2014; 160
Martin (10.1016/j.apcatb.2019.118072_bib0155) 2014; 53
Mori (10.1016/j.apcatb.2019.118072_bib0010) 2016; 6
Zhu (10.1016/j.apcatb.2019.118072_bib0300) 2017; 28
Jiang (10.1016/j.apcatb.2019.118072_bib0025) 2016; 12
Hou (10.1016/j.apcatb.2019.118072_bib0165) 2013; 25
Zhao (10.1016/j.apcatb.2019.118072_bib0310) 2015; 3
Huang (10.1016/j.apcatb.2019.118072_bib0185) 2018; 6
Zhu (10.1016/j.apcatb.2019.118072_bib0255) 2018; 10
Yao (10.1016/j.apcatb.2019.118072_bib0035) 2014; 144
Li (10.1016/j.apcatb.2019.118072_bib0195) 2015; 25
Shi (10.1016/j.apcatb.2019.118072_bib0315) 2015; 51
Xiong (10.1016/j.apcatb.2019.118072_bib0120) 2018; 30
Zhu (10.1016/j.apcatb.2019.118072_bib0200) 2019; 11
Zhao (10.1016/j.apcatb.2019.118072_bib0245) 2018; 5
Jiang (10.1016/j.apcatb.2019.118072_bib0015) 2018; 46
Li (10.1016/j.apcatb.2019.118072_bib0070) 2016; 19
Kong (10.1016/j.apcatb.2019.118072_bib0030) 2019; 370
Mansingh (10.1016/j.apcatb.2019.118072_bib0045) 2017; 7
Han (10.1016/j.apcatb.2019.118072_bib0140) 2016; 10
Hu (10.1016/j.apcatb.2019.118072_bib0160) 2015; 7
Yan (10.1016/j.apcatb.2019.118072_bib0130) 2016; 22
Li (10.1016/j.apcatb.2019.118072_bib0105) 2015; 86
Liu (10.1016/j.apcatb.2019.118072_bib0090) 2018; 228
Lin (10.1016/j.apcatb.2019.118072_bib0285) 2019; 58
Yamashita (10.1016/j.apcatb.2019.118072_bib0005) 2018; 47
Gong (10.1016/j.apcatb.2019.118072_bib0180) 2016; 55
Wang (10.1016/j.apcatb.2019.118072_bib0080) 2018; 221
Zhu (10.1016/j.apcatb.2019.118072_bib0175) 2018; 444
Xiao (10.1016/j.apcatb.2019.118072_bib0020) 2015; 15
Swain (10.1016/j.apcatb.2019.118072_bib0125) 2017; 2
Fu (10.1016/j.apcatb.2019.118072_bib0065) 2018; 8
Zhang (10.1016/j.apcatb.2019.118072_bib0260) 2019; 6
Li (10.1016/j.apcatb.2019.118072_bib0190) 2014; 30
Shi (10.1016/j.apcatb.2019.118072_bib0150) 2018; 14
Jiang (10.1016/j.apcatb.2019.118072_bib0110) 2015; 7
Zhou (10.1016/j.apcatb.2019.118072_bib0210) 2013; 9
Yao (10.1016/j.apcatb.2019.118072_bib0225) 2018; 57
Feng (10.1016/j.apcatb.2019.118072_bib0275) 2018; 52
Zhu (10.1016/j.apcatb.2019.118072_bib0240) 2018; 57
Si (10.1016/j.apcatb.2019.118072_bib0170) 2008; 47
Li (10.1016/j.apcatb.2019.118072_bib0270) 2016; 28
Liu (10.1016/j.apcatb.2019.118072_bib0145) 2018; 239
Xie (10.1016/j.apcatb.2019.118072_bib0075) 2018; 229
Yuan (10.1016/j.apcatb.2019.118072_bib0085) 2018; 1
Jiang (10.1016/j.apcatb.2019.118072_bib0215) 2018; 30
References_xml – volume: 144
  start-page: 152
  year: 2014
  end-page: 165
  ident: bib0035
  article-title: Correlation between the physicochemical properties and catalytic performances of Ce
  publication-title: Appl. Catal. B
– volume: 30
  year: 2018
  ident: bib0215
  article-title: A hierarchical Z‑scheme α‑Fe
  publication-title: Adv. Mater.
– volume: 8
  year: 2018
  ident: bib0065
  article-title: g-C
  publication-title: Adv. Energy Mater.
– volume: 14
  year: 2018
  ident: bib0150
  article-title: Faster electron injection and more active sites for effcient photocatalytic H
  publication-title: Small
– volume: 229
  start-page: 96
  year: 2018
  end-page: 104
  ident: bib0075
  article-title: Construction of carbon dots modified MoO
  publication-title: Appl. Catal. B
– volume: 239
  start-page: 334
  year: 2018
  end-page: 344
  ident: bib0145
  article-title: Flower-like MoS
  publication-title: Appl. Catal. B
– volume: 6
  start-page: 24740
  year: 2018
  end-page: 24747
  ident: bib0185
  article-title: Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants
  publication-title: J. Mater. Chem. A
– volume: 4
  start-page: 6637
  year: 2012
  end-page: 6641
  ident: bib0205
  article-title: Wafer-scale MoS
  publication-title: Nanoscale
– volume: 7
  start-page: 2772
  year: 2017
  end-page: 2781
  ident: bib0045
  article-title: Enhanced visible light harnessing and oxygen vacancy promoted N, S co-doped CeO
  publication-title: Catal. Sci. Technol.
– volume: 30
  year: 2018
  ident: bib0120
  article-title: Cobalt covalent doping in MoS
  publication-title: Adv. Mater.
– volume: 25
  start-page: 6858
  year: 2015
  end-page: 6866
  ident: bib0195
  article-title: Smart hybrids of Zn
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 140
  year: 2013
  end-page: 147
  ident: bib0210
  article-title: Synthesis of few‐layer MoS
  publication-title: Small
– volume: 133
  start-page: 18034
  year: 2011
  end-page: 18037
  ident: bib0055
  article-title: Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading
  publication-title: J. Am. Chem. Soc.
– volume: 221
  start-page: 510
  year: 2018
  end-page: 520
  ident: bib0080
  article-title: Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 9240
  year: 2014
  end-page: 9245
  ident: bib0155
  article-title: Highly efficient photocatalytic H
  publication-title: Angew. Chem. Int. Ed.
– volume: 444
  start-page: 75
  year: 2018
  end-page: 86
  ident: bib0175
  article-title: Graphite-like carbon nitride coupled with tiny Bi
  publication-title: Appl. Surf. Sci.
– volume: 6
  start-page: 948
  year: 2019
  end-page: 958
  ident: bib0260
  article-title: Micro/nano-bubble assisted synthesis of Au/TiO
  publication-title: Environ. Sci.: Nano
– volume: 28
  year: 2017
  ident: bib0300
  article-title: L-Cysteine-assisted synthesis of hierarchical NiS
  publication-title: Nanotechnology
– volume: 54
  start-page: 3859
  year: 2018
  end-page: 3862
  ident: bib0135
  article-title: One-step synthesis of cobalt-doped MoS
  publication-title: Chem. Commun.
– volume: 30
  start-page: 8965
  year: 2014
  end-page: 8972
  ident: bib0190
  article-title: High efficiency photocatalysis for pollutant degradation with MoS
  publication-title: Langmuir
– volume: 228
  start-page: 64
  year: 2018
  end-page: 74
  ident: bib0090
  article-title: 0D (MoS
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 19234
  year: 2015
  end-page: 19242
  ident: bib0110
  article-title: Two-dimensional CaIn
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 5599
  year: 2018
  end-page: 5605
  ident: bib0050
  article-title: Oxidation of benzyl alcohol over nanoporous Au-CeO
  publication-title: Ind. Eng. Chem. Res.
– volume: 10
  start-page: 1982
  year: 2018
  end-page: 1987
  ident: bib0280
  article-title: Enhanced efficiency of electron-hole separation in Bi
  publication-title: ChemCatChem
– volume: 25
  start-page: 6291
  year: 2013
  end-page: 6297
  ident: bib0165
  article-title: Constructing 2D porous graphitic C
  publication-title: Adv. Mater.
– volume: 47
  start-page: 8072
  year: 2018
  end-page: 8096
  ident: bib0005
  article-title: Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels
  publication-title: Chem. Soc. Rev.
– volume: 19
  start-page: 446
  year: 2016
  end-page: 454
  ident: bib0070
  article-title: Nanotube-confinement induced size-controllable g-C
  publication-title: Nano Energy
– volume: 86
  start-page: 17
  year: 2015
  end-page: 24
  ident: bib0105
  article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C
  publication-title: Water Res.
– volume: 3
  start-page: 20465
  year: 2015
  end-page: 20470
  ident: bib0310
  article-title: Efficient water oxidation under visible light by tuning surface defects on ceria nanorods
  publication-title: J. Mater. Chem. A
– volume: 47
  start-page: 2884
  year: 2008
  end-page: 2887
  ident: bib0170
  article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 8906
  year: 2016
  end-page: 8911
  ident: bib0270
  article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H
  publication-title: Adv. Mater.
– volume: 237
  start-page: 633
  year: 2018
  end-page: 640
  ident: bib0060
  article-title: Ultrathin nanosheets g-C
  publication-title: Appl. Catal. B
– volume: 10
  start-page: 2745
  year: 2016
  end-page: 2751
  ident: bib0140
  article-title: Atomically thin mesoporous nanomesh of graphitic C
  publication-title: ACS Nano
– volume: 55
  start-page: 3992
  year: 2016
  end-page: 3999
  ident: bib0180
  article-title: Thermally stable hierarchical nanostructures of ultrathin MoS
  publication-title: Inorg. Chem.
– volume: 122
  start-page: 20444
  year: 2018
  end-page: 20458
  ident: bib0100
  article-title: Carbon nitride-modified defective TiO
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 4370
  year: 2016
  end-page: 4378
  ident: bib0025
  article-title: Polyaniline/carbon nitride nanosheets composite hydrogel: a separation‐free and high‐efficient photocatalyst with 3D hierarchical structure
  publication-title: Small
– volume: 22
  start-page: 4764
  year: 2016
  end-page: 4773
  ident: bib0130
  article-title: Construction of a 2D graphene-like MoS
  publication-title: Chem. Eur. J.
– volume: 6
  start-page: 4671
  year: 2018
  end-page: 4679
  ident: bib0250
  article-title: Self-assembled MoS
  publication-title: ACS Sustain. Chem. Eng.
– volume: 57
  start-page: 12407
  year: 2018
  end-page: 12419
  ident: bib0225
  article-title: Morphology and crystal-plane effects of CeO
  publication-title: Ind. Eng. Chem. Res.
– volume: 180
  start-page: 622
  year: 2016
  end-page: 629
  ident: bib0235
  article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N
  publication-title: Appl. Catal. B
– volume: 11
  start-page: 13011
  year: 2019
  end-page: 13021
  ident: bib0200
  article-title: Ultrafine Bi
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 2160
  year: 2018
  end-page: 2164
  ident: bib0240
  article-title: Z-Scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light
  publication-title: Angew. Chem. Int. Ed.
– volume: 15
  start-page: 4853
  year: 2015
  end-page: 4858
  ident: bib0020
  article-title: Copper nanowires: a substitute for noble metals to enhance photocatalytic H
  publication-title: Nano Lett.
– volume: 7
  start-page: 18247
  year: 2015
  end-page: 18256
  ident: bib0160
  article-title: Hydrothermal synthesis g‑C
  publication-title: ACS Appl. Mater. Interfaces
– volume: 160
  start-page: 89
  year: 2014
  end-page: 97
  ident: bib0115
  article-title: Synthesis and characterization of g-C
  publication-title: Appl. Catal. B
– volume: 5
  year: 2018
  ident: bib0245
  article-title: Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production
  publication-title: Adv. Sci.
– volume: 43
  start-page: 10541
  year: 2014
  end-page: 10547
  ident: bib0265
  article-title: Visible-light driven H
  publication-title: Dalton Trans.
– volume: 140
  start-page: 1824
  year: 2018
  end-page: 1833
  ident: bib0290
  article-title: Hydrophobic CuO nanosheets functionalized with organic adsorbates
  publication-title: J. Am. Chem. Soc.
– volume: 81
  start-page: 325
  year: 2015
  end-page: 332
  ident: bib0295
  article-title: Probing the roles of Ca
  publication-title: Water Res.
– volume: 218
  start-page: 51
  year: 2017
  end-page: 59
  ident: bib0305
  article-title: Crystal-plane-dependent metal oxide-support interaction in CeO
  publication-title: Appl. Catal. B
– volume: 7
  year: 2017
  ident: bib0320
  article-title: High efficiency photocatalytic water splitting using 2D α-Fe
  publication-title: Adv. Energy Mater.
– volume: 46
  start-page: 234
  year: 2018
  end-page: 240
  ident: bib0015
  article-title: AglnS
  publication-title: Nano Energy
– volume: 46
  start-page: 10145
  year: 2012
  end-page: 10153
  ident: bib0040
  article-title: Magnetic nanoscaled Fe
  publication-title: Environ. Sci. Technol.
– volume: 370
  start-page: 88
  year: 2019
  end-page: 96
  ident: bib0030
  article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO
  publication-title: J. Catal.
– volume: 51
  start-page: 17144
  year: 2015
  end-page: 17147
  ident: bib0315
  article-title: A g-C
  publication-title: Chem. Commun.
– volume: 207
  start-page: 103
  year: 2017
  end-page: 113
  ident: bib0095
  article-title: Facile synthesis of N-doped carbon dots/g-C
  publication-title: Appl. Catal. B
– volume: 53
  start-page: 7281
  year: 2014
  end-page: 7285
  ident: bib0220
  article-title: Graphitic carbon nitride nanosheet–carbon nanotube three‐dimensional porous composites as high‐performance oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 3128
  year: 2016
  end-page: 3135
  ident: bib0010
  article-title: Ru and Ru-Ni nanoparticles on TiO
  publication-title: ACS Catal.
– volume: 2
  start-page: 3745
  year: 2017
  end-page: 3753
  ident: bib0125
  article-title: Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free p−n heterojunction composite for visiblelight photocatalytic H2 production
  publication-title: ACS Omega
– volume: 7
  start-page: 5928
  year: 2017
  ident: bib0230
  article-title: Ce
  publication-title: Sci. Rep.
– volume: 10
  start-page: 39679
  year: 2018
  end-page: 39687
  ident: bib0255
  article-title: Hierarchical ZnO decorated with CeO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 7842
  year: 2018
  end-page: 7848
  ident: bib0275
  article-title: Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field
  publication-title: Environ. Sci. Technol.
– volume: 1
  start-page: 1400
  year: 2018
  end-page: 1407
  ident: bib0085
  article-title: Promoting charge separation in g-C
  publication-title: ACS Appl. Energy Mater.
– volume: 58
  start-page: 1
  year: 2019
  end-page: 6
  ident: bib0285
  article-title: Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C
  publication-title: Angew. Chem. Int. Ed.
– volume: 55
  start-page: 3992
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0180
  article-title: Thermally stable hierarchical nanostructures of ultrathin MoS2 nanosheet-coated CeO2 hollow spheres as catalyst for ammonia decomposition
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.6b00265
– volume: 46
  start-page: 234
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0015
  article-title: AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.001
– volume: 11
  start-page: 13011
  year: 2019
  ident: 10.1016/j.apcatb.2019.118072_bib0200
  article-title: Ultrafine Bi3TaO7 nanodot-decorated V, N codoped TiO2nanoblocks for visible-light photocatalytic activity: Interfacial effect and mechanism insight
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b00903
– volume: 9
  start-page: 140
  year: 2013
  ident: 10.1016/j.apcatb.2019.118072_bib0210
  article-title: Synthesis of few‐layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities
  publication-title: Small
  doi: 10.1002/smll.201201161
– volume: 54
  start-page: 3859
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0135
  article-title: One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC00766G
– volume: 140
  start-page: 1824
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0290
  article-title: Hydrophobic CuO nanosheets functionalized with organic adsorbates
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11654
– volume: 5
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0245
  article-title: Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production
  publication-title: Adv. Sci.
– volume: 15
  start-page: 4853
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0020
  article-title: Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00082
– volume: 237
  start-page: 633
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0060
  article-title: Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.06.013
– volume: 43
  start-page: 10541
  year: 2014
  ident: 10.1016/j.apcatb.2019.118072_bib0265
  article-title: Visible-light driven H2 production utilizing iridium and rhodium complexes intercalated into a zirconium phosphate layered matrix
  publication-title: Dalton Trans.
  doi: 10.1039/c3dt53110d
– volume: 30
  start-page: 8965
  year: 2014
  ident: 10.1016/j.apcatb.2019.118072_bib0190
  article-title: High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures
  publication-title: Langmuir
  doi: 10.1021/la502033t
– volume: 10
  start-page: 39679
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0255
  article-title: Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13782
– volume: 47
  start-page: 2884
  year: 2008
  ident: 10.1016/j.apcatb.2019.118072_bib0170
  article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705828
– volume: 53
  start-page: 7281
  year: 2014
  ident: 10.1016/j.apcatb.2019.118072_bib0220
  article-title: Graphitic carbon nitride nanosheet–carbon nanotube three‐dimensional porous composites as high‐performance oxygen evolution electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403946
– volume: 28
  start-page: 8906
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0270
  article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601047
– volume: 221
  start-page: 510
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0080
  article-title: Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.09.055
– volume: 57
  start-page: 2160
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0240
  article-title: Z-Scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711357
– volume: 25
  start-page: 6291
  year: 2013
  ident: 10.1016/j.apcatb.2019.118072_bib0165
  article-title: Constructing 2D porous graphitic C3N4 nanosheets/nitrogen‐doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201303116
– volume: 47
  start-page: 8072
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0005
  article-title: Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00341F
– volume: 12
  start-page: 4370
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0025
  article-title: Polyaniline/carbon nitride nanosheets composite hydrogel: a separation‐free and high‐efficient photocatalyst with 3D hierarchical structure
  publication-title: Small
  doi: 10.1002/smll.201601546
– volume: 7
  start-page: 5928
  year: 2017
  ident: 10.1016/j.apcatb.2019.118072_bib0230
  article-title: Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2-graphene nanostructures
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06139-6
– volume: 53
  start-page: 9240
  year: 2014
  ident: 10.1016/j.apcatb.2019.118072_bib0155
  article-title: Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403375
– volume: 10
  start-page: 1982
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0280
  article-title: Enhanced efficiency of electron-hole separation in Bi2O2CO3 for photocatalysis via acid treatment
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201800101
– volume: 122
  start-page: 20444
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0100
  article-title: Carbon nitride-modified defective TiO2−x@carbon spheres for photocatalytic H2 evolution and pollutants removal: synergistic effect and mechanism insight
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b06624
– volume: 57
  start-page: 12407
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0225
  article-title: Morphology and crystal-plane effects of CeO2 on TiO2/CeO2 catalysts during NH3-SCR reaction
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b02830
– volume: 228
  start-page: 64
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0090
  article-title: 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.01.067
– volume: 52
  start-page: 7842
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0275
  article-title: Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00946
– volume: 57
  start-page: 5599
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0050
  article-title: Oxidation of benzyl alcohol over nanoporous Au-CeO2 catalysts prepared from amorphous alloys and effect of alloying Au with amorphous alloys
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b00927
– volume: 218
  start-page: 51
  year: 2017
  ident: 10.1016/j.apcatb.2019.118072_bib0305
  article-title: Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.03.085
– volume: 6
  start-page: 4671
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0250
  article-title: Self-assembled MoS2-GO framework as an efficient cocatalyst of CuInZnS for visible-light driven hydrogen evolution
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03693
– volume: 1
  start-page: 1400
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0085
  article-title: Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00030
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0215
  article-title: A hierarchical Z‑scheme α‑Fe2O3/g‑C3N4 hybrid for enhanced photocatalytic CO2 reduction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706108
– volume: 58
  start-page: 1
  year: 2019
  ident: 10.1016/j.apcatb.2019.118072_bib0285
  article-title: Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814360
– volume: 2
  start-page: 3745
  year: 2017
  ident: 10.1016/j.apcatb.2019.118072_bib0125
  article-title: Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free p−n heterojunction composite for visiblelight photocatalytic H2 production
  publication-title: ACS Omega
  doi: 10.1021/acsomega.7b00492
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0120
  article-title: Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801450
– volume: 6
  start-page: 948
  year: 2019
  ident: 10.1016/j.apcatb.2019.118072_bib0260
  article-title: Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism
  publication-title: Environ. Sci.: Nano
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0065
  article-title: g-C3N4-based heterostructured photocatalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701503
– volume: 7
  start-page: 19234
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0110
  article-title: Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05118
– volume: 14
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0150
  article-title: Faster electron injection and more active sites for effcient photocatalytic H2 evolution in g-C3N4/MoS2 hybrid
  publication-title: Small
  doi: 10.1002/smll.201703277
– volume: 133
  start-page: 18034
  year: 2011
  ident: 10.1016/j.apcatb.2019.118072_bib0055
  article-title: Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207103j
– volume: 22
  start-page: 4764
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0130
  article-title: Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201503660
– volume: 19
  start-page: 446
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0070
  article-title: Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.10.011
– volume: 25
  start-page: 6858
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0195
  article-title: Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502938
– volume: 3
  start-page: 20465
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0310
  article-title: Efficient water oxidation under visible light by tuning surface defects on ceria nanorods
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05817A
– volume: 160
  start-page: 89
  year: 2014
  ident: 10.1016/j.apcatb.2019.118072_bib0115
  article-title: Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2014.05.019
– volume: 51
  start-page: 17144
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0315
  article-title: A g-C3N4/nanocarbon/ZnIn2S4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC05323D
– volume: 7
  year: 2017
  ident: 10.1016/j.apcatb.2019.118072_bib0320
  article-title: High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700025
– volume: 370
  start-page: 88
  year: 2019
  ident: 10.1016/j.apcatb.2019.118072_bib0030
  article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.12.003
– volume: 207
  start-page: 103
  year: 2017
  ident: 10.1016/j.apcatb.2019.118072_bib0095
  article-title: Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.02.024
– volume: 28
  year: 2017
  ident: 10.1016/j.apcatb.2019.118072_bib0300
  article-title: L-Cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa5cf2
– volume: 180
  start-page: 622
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0235
  article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: the role of the interface periphery
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2015.07.027
– volume: 81
  start-page: 325
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0295
  article-title: Probing the roles of Ca2+ and Mg2+ in humic acids-induced ultrafiltration membrane fouling using an integrated approach
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.06.009
– volume: 239
  start-page: 334
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0145
  article-title: Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.08.028
– volume: 46
  start-page: 10145
  year: 2012
  ident: 10.1016/j.apcatb.2019.118072_bib0040
  article-title: Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es300303f
– volume: 6
  start-page: 3128
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0010
  article-title: Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia−borane
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00715
– volume: 444
  start-page: 75
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0175
  article-title: Graphite-like carbon nitride coupled with tiny Bi2S3 nanoparticles as 2D/0D heterojunction with enhanced photocatalytic activity
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.03.021
– volume: 4
  start-page: 6637
  year: 2012
  ident: 10.1016/j.apcatb.2019.118072_bib0205
  article-title: Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization
  publication-title: Nanoscale
  doi: 10.1039/c2nr31833d
– volume: 10
  start-page: 2745
  year: 2016
  ident: 10.1016/j.apcatb.2019.118072_bib0140
  article-title: Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07831
– volume: 229
  start-page: 96
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0075
  article-title: Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.02.011
– volume: 6
  start-page: 24740
  year: 2018
  ident: 10.1016/j.apcatb.2019.118072_bib0185
  article-title: Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA06565A
– volume: 7
  start-page: 2772
  year: 2017
  ident: 10.1016/j.apcatb.2019.118072_bib0045
  article-title: Enhanced visible light harnessing and oxygen vacancy promoted N, S co-doped CeO2 nanoparticle: a challenging photocatalyst for Cr(VI) reduction
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C7CY00499K
– volume: 144
  start-page: 152
  year: 2014
  ident: 10.1016/j.apcatb.2019.118072_bib0035
  article-title: Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2013.06.020
– volume: 86
  start-page: 17
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0105
  article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.053
– volume: 7
  start-page: 18247
  year: 2015
  ident: 10.1016/j.apcatb.2019.118072_bib0160
  article-title: Hydrothermal synthesis g‑C3N4/nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05715
SSID ssj0002328
Score 2.657258
Snippet [Display omitted] •0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species...
Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118072
SubjectTerms 2D layered MoS2/g-C3N4
Adsorption
Carbon nitride
Catalysts
Catalytic activity
CeO2 nanocrystals
Cerium oxides
Electron transfer
Electrons
Energy
H2O reactant adsorption
Heterojunctions
Heterostructures
Hybrids
Hydrogen evolution
Hydrogen production
Hydrogen-based energy
Metals
Molybdenum disulfide
Multi-step electron transfer
Nanocrystals
Noble metals
Photocatalysis
Quantum efficiency
Solar energy
Solar energy conversion
Two dimensional composites
Water chemistry
Water splitting
Title CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption
URI https://dx.doi.org/10.1016/j.apcatb.2019.118072
https://www.proquest.com/docview/2301915661
Volume 259
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgAOCBYqCqWaA1d3k9hOCLcqbbWAuj2USr1Fjj_YrZYkyqZIe-Fv8neY8SYUkFAljolsy0qeZ95Yb2YYeyt1ZRLrDPd55LiM36VcY8zGEcroHUgZFro1nM_T2ZX8eK2ud1gx5sKQrHKw_VubHqz18GY6fM1pu1xOL6M8SYXIEEOC_BpllEuZEcqPvt_JPJAxBGuMgzmNHtPngsZLt0b3FQm88iOqhZYl_3JPfxnq4H3OnrInA22E4-3OnrEdV0_Yw2Ls1jZhj38rLDhhe6d3-Ws4bTjA6-fsR-EuEqh13Zhug8Rwxb82dumRh8JKb6hvJ5w3l8n0Cy_EXIJeQ3QyTU4gXBt2GyAFOsm8HCDZBUpMr1aOryjCh3bR9E24DtrgLmGxsV2D8AT3bYD3ewj3j17TNT0uVa-duSVzC0HWyBFwLYx9eaAPlNp1oGsLrl4EqQLMkgtAnmuo-TFou266YPNesKuz08_FjA-9HbiRIuu5rBKrqipRPvJ57IV1nurkyNTZVCrnMDRUVllJ8amMTGaMyqSVSqeJiVOfiz22Wze1e8nAI8uqbCwrT7X8MF51uckUriSEj4RJ95kYf2lphsLn1H9jVY4Kt5tyC4SSgFBugbDP-K9Z7bbwxz3jsxEt5R8ALtE33TPzYARXORiQdYmRIUbSyLXjV_-98Gv2iJ5IfBOrA7bbd7fuDVKovjoMZ-SQPTj-8Gk2_wmLvh9u
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9lA4IChUFArMgavZJLYTwq3attrS7vbQVuotcvzRXbQkq2yKtL-Uv8OMNykfEqrENYmtKHl-88Z6nmHsg9SlSawz3OeR4zL-lHKNORtHKGN0IGdY6NYwmabja_nlRt1ssVF_FoZslR33bzg9sHV3Zdh9zeFyPh9eRnmSCpEhhgTFtewR26bqVGrAtg9Pz8bTe0JG0RAIGZ_nNKA_QRdsXnppdFuSxyv_SOXQsuRfEeovrg4B6OQZe9opRzjcvNxztuWqXbYz6hu27bInv9UW3GV7x7-OsOGwbg2vXrAfI3eRQKWr2jRr1IYL_q22c49SFBZ6Ta07YVJfJsNbPhJTCXoF0dEwOYKwc9isgUzo5PRygHoX6Gx6uXB8QUk-LGd1W4cdoTW-JczWtqkRoeC-dwj_DGEL0mvaqcepqpUzd8S4EJyNHDG3hL41D7RBVbsGdGXBVbPgVoBxcgEodQ31PwZtV3UTaO8luz45vhqNedfegRspspbLMrGqLBPlI5_HXljnqVSOTJ1NpXIOs0NllZWUosrIZMaoTFqpdJqYOPW52GODqq7cKwYehVZpY1l6KueHKavLTaZwJiF8JEy6z0T_SwvT1T6nFhyLoje5fS02QCgICMUGCPuM349abmp_PPB81qOl-APDBYanB0Ye9OAqOg5ZFZgcYjKNcjt-_d8Tv2c746vJeXF-Oj17wx7THfLixOqADdrmzr1FRdWW77oV8xNIVyIf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CeO2+nanocrystal-modified+layered+MoS2%2Fg-C3N4+as+0D%2F2D+ternary+composite+for+visible-light+photocatalytic+hydrogen+evolution%3A+Interfacial+consecutive+multi-step+electron+transfer+and+enhanced+H2O+reactant+adsorption&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhu%2C+Chengzhang&rft.au=Wang%2C+Yuting&rft.au=Jiang%2C+Zhifeng&rft.au=Xu%2C+Fanchao&rft.date=2019-12-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=259&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118072&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon