CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption
[Display omitted] •0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species resulted in the enhanced adsorption of reactant H2O molecule.•CeO2@MoS2/g-C3N4 exhibited an efficient H2 evolution activity even without a noble-met...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 259; p. 118072 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
15.12.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species resulted in the enhanced adsorption of reactant H2O molecule.•CeO2@MoS2/g-C3N4 exhibited an efficient H2 evolution activity even without a noble-metal cocatalyst.•The improved activity was attributed to decreased H2O adsorption energy and multi-step electron transfer.
Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2 nanocrystal-decorated two-dimensional (2D) layered hybrids of MoS2/g-C3N4 was reported for the first time. In the absence of noble-metal cocatalyst, the optimized ternary CeO2@MoS2/g-C3N4 still manifested high photocatalytic activity toward H2 generation, with a rate of 65.4 μmol/h, which is approximately 8.3 and 17.5-fold greater than g-C3N4 and CeO2, respectively. The corresponding apparent external quantum efficiency reached 10.35% at a wavelength of 420 nm. The superior photocatalytic behavior of CeO2@MoS2/g-C3N4 heterojunction could be ascribed to the positive synergetic effects of well-matched energy-level positions and effective charge separation arose from the multi-step electron transfer processes between Ce4+/Ce3+ reversibility pairs and heterostructures. Furthermore, the adsorption ability of reactant H2O molecules on CeO2@MoS2/g-C3N4 was investigated. Due to the interfacial electronic interaction and Ce3+ species, CeO2@MoS2/g-C3N4 presented more reaction active sites with enhanced adsorption capacity and decreased energy barrier for reactant H2O molecules adsorption, which collaboratively promoted photocatalytic water splitting. This study provides new insights into the rational design of inexpensive ternary photocatalyst with multilevel electron transfer for efficiently converting solar energy into hydrogen without noble metals. |
---|---|
AbstractList | Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2 nanocrystal-decorated two-dimensional (2D) layered hybrids of MoS2/g-C3N4 was reported for the first time. In the absence of noble-metal cocatalyst, the optimized ternary CeO2@MoS2/g-C3N4 still manifested high photocatalytic activity toward H2 generation, with a rate of 65.4 μmol/h, which is approximately 8.3 and 17.5-fold greater than g-C3N4 and CeO2, respectively. The corresponding apparent external quantum efficiency reached 10.35% at a wavelength of 420 nm. The superior photocatalytic behavior of CeO2@MoS2/g-C3N4 heterojunction could be ascribed to the positive synergetic effects of well-matched energy-level positions and effective charge separation arose from the multi-step electron transfer processes between Ce4+/Ce3+ reversibility pairs and heterostructures. Furthermore, the adsorption ability of reactant H2O molecules on CeO2@MoS2/g-C3N4 was investigated. Due to the interfacial electronic interaction and Ce3+ species, CeO2@MoS2/g-C3N4 presented more reaction active sites with enhanced adsorption capacity and decreased energy barrier for reactant H2O molecules adsorption, which collaboratively promoted photocatalytic water splitting. This study provides new insights into the rational design of inexpensive ternary photocatalyst with multilevel electron transfer for efficiently converting solar energy into hydrogen without noble metals. [Display omitted] •0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species resulted in the enhanced adsorption of reactant H2O molecule.•CeO2@MoS2/g-C3N4 exhibited an efficient H2 evolution activity even without a noble-metal cocatalyst.•The improved activity was attributed to decreased H2O adsorption energy and multi-step electron transfer. Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2 nanocrystal-decorated two-dimensional (2D) layered hybrids of MoS2/g-C3N4 was reported for the first time. In the absence of noble-metal cocatalyst, the optimized ternary CeO2@MoS2/g-C3N4 still manifested high photocatalytic activity toward H2 generation, with a rate of 65.4 μmol/h, which is approximately 8.3 and 17.5-fold greater than g-C3N4 and CeO2, respectively. The corresponding apparent external quantum efficiency reached 10.35% at a wavelength of 420 nm. The superior photocatalytic behavior of CeO2@MoS2/g-C3N4 heterojunction could be ascribed to the positive synergetic effects of well-matched energy-level positions and effective charge separation arose from the multi-step electron transfer processes between Ce4+/Ce3+ reversibility pairs and heterostructures. Furthermore, the adsorption ability of reactant H2O molecules on CeO2@MoS2/g-C3N4 was investigated. Due to the interfacial electronic interaction and Ce3+ species, CeO2@MoS2/g-C3N4 presented more reaction active sites with enhanced adsorption capacity and decreased energy barrier for reactant H2O molecules adsorption, which collaboratively promoted photocatalytic water splitting. This study provides new insights into the rational design of inexpensive ternary photocatalyst with multilevel electron transfer for efficiently converting solar energy into hydrogen without noble metals. |
ArticleNumber | 118072 |
Author | Zou, Weixin Wang, Shaobin Jiang, Zhifeng Xian, Qiming Xu, Fanchao Zhu, Chengzhang Sun, Cheng Duan, Xiaoguang Wang, Yuting Tong, Qing |
Author_xml | – sequence: 1 givenname: Chengzhang surname: Zhu fullname: Zhu, Chengzhang organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China – sequence: 2 givenname: Yuting surname: Wang fullname: Wang, Yuting organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China – sequence: 3 givenname: Zhifeng orcidid: 0000-0002-6589-6122 surname: Jiang fullname: Jiang, Zhifeng organization: Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, PR China – sequence: 4 givenname: Fanchao surname: Xu fullname: Xu, Fanchao organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China – sequence: 5 givenname: Qiming surname: Xian fullname: Xian, Qiming email: xianqm@nju.edu.cn organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China – sequence: 6 givenname: Cheng orcidid: 0000-0002-2221-2392 surname: Sun fullname: Sun, Cheng organization: State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China – sequence: 7 givenname: Qing surname: Tong fullname: Tong, Qing organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210093, PR China – sequence: 8 givenname: Weixin surname: Zou fullname: Zou, Weixin email: wxzou2016@nju.edu.cn organization: Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing, 210093, PR China – sequence: 9 givenname: Xiaoguang surname: Duan fullname: Duan, Xiaoguang organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia – sequence: 10 givenname: Shaobin surname: Wang fullname: Wang, Shaobin organization: School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA, 5005, Australia |
BookMark | eNqFkc-O0zAQxiO0SHQX3oCDJc5p_S9Jswck1AV2pYUegLPl2OPWlWsH262UJ-V1cBROHEBzmMPM92nm-91WNz54qKq3BK8JJu3mtJajknlYU0z6NSFb3NEX1YpsO1az7ZbdVCvc07ZmrGOvqtuUThhjyuh2Vf3awZ4iL31QcUpZuvoctDUWNHJyglj6l_CNbg71jn3lSCaEHzb0AWWIXsYJqXAeQ7IZkAkRXW2yg4Pa2cMxo_EYcih3STdlq9Bx0jEcwCO4BnfJNvh79OSLkZHKSlesfAJVBldA54vLtk4ZRgQOVI7BoxylTwYikl4j8EfpVbnuke5RBKmy9BlJnUIcZ-vX1UsjXYI3f_pd9ePTx--7x_p5__lp9-G5Vpx1ueYD1c0w0MZg0xPDNBjel2pBt7wBwLRtdKM5JQRzrDqlmo5r3siWKtKant1V7xbfMYafF0hZnMKlROOSoKzQIE3bkrLFly0VQ0oRjBijPZf8BMFiRihOYkEoZoRiQVhk93_JlM1yfq9kYd3_xO8XMZT3rxaiSMrCnJmNJVGhg_23wW_dnL__ |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2022_08_129 crossref_primary_10_1016_j_surfin_2024_104177 crossref_primary_10_1016_j_ceramint_2020_12_010 crossref_primary_10_1016_j_jallcom_2022_163879 crossref_primary_10_1016_j_renene_2025_122380 crossref_primary_10_1016_j_jcis_2020_04_111 crossref_primary_10_1007_s12598_022_02244_2 crossref_primary_10_1016_j_jhazmat_2022_128939 crossref_primary_10_1016_j_seppur_2024_130349 crossref_primary_10_1039_D4SE01532K crossref_primary_10_1016_j_apsusc_2020_146076 crossref_primary_10_3390_ijms24010363 crossref_primary_10_1039_D2CP02148J crossref_primary_10_1039_D1CY01940F crossref_primary_10_1016_j_jre_2024_08_018 crossref_primary_10_1021_acsaelm_2c01553 crossref_primary_10_1016_j_jallcom_2021_159930 crossref_primary_10_1016_j_cej_2021_133829 crossref_primary_10_3390_nano10112307 crossref_primary_10_1016_j_jcis_2021_12_007 crossref_primary_10_1007_s12598_024_02653_5 crossref_primary_10_1016_j_jcis_2022_11_142 crossref_primary_10_1016_j_jece_2024_112563 crossref_primary_10_1039_D1CE00385B crossref_primary_10_1007_s10854_024_13581_6 crossref_primary_10_1016_j_mssp_2024_108165 crossref_primary_10_1016_j_cej_2023_142704 crossref_primary_10_1039_D0CY02298E crossref_primary_10_1016_j_jcis_2020_06_075 crossref_primary_10_1016_j_jece_2023_111777 crossref_primary_10_1016_j_jmrt_2023_10_244 crossref_primary_10_1002_cssc_201901960 crossref_primary_10_1039_C9QI01128E crossref_primary_10_1016_j_ijhydene_2021_07_201 crossref_primary_10_1007_s12598_024_02746_1 crossref_primary_10_1039_D1NJ05169E crossref_primary_10_1007_s10854_022_08159_z crossref_primary_10_1016_j_cej_2021_132588 crossref_primary_10_1016_j_chemosphere_2023_138769 crossref_primary_10_1016_j_apsusc_2023_156715 crossref_primary_10_1016_j_apcatb_2021_120257 crossref_primary_10_1016_j_chemosphere_2023_138765 crossref_primary_10_1039_D2TC00922F crossref_primary_10_1016_j_compositesb_2022_110082 crossref_primary_10_1016_j_diamond_2024_111376 crossref_primary_10_1016_j_envres_2023_116553 crossref_primary_10_3390_molecules28135098 crossref_primary_10_1002_anie_202009449 crossref_primary_10_1016_j_jallcom_2021_160743 crossref_primary_10_1002_smll_202300717 crossref_primary_10_1016_j_ecoenv_2020_111519 crossref_primary_10_1016_j_ijhydene_2022_09_071 crossref_primary_10_1016_j_jcis_2021_10_123 crossref_primary_10_1016_j_cej_2023_141849 crossref_primary_10_1039_D3RA02415F crossref_primary_10_1016_j_jallcom_2024_174830 crossref_primary_10_1016_j_jcis_2022_04_024 crossref_primary_10_1016_j_jallcom_2020_156206 crossref_primary_10_1016_j_jcis_2020_11_099 crossref_primary_10_1021_acssuschemeng_0c00882 crossref_primary_10_1007_s12274_020_2955_x crossref_primary_10_1016_j_jhazmat_2023_132744 crossref_primary_10_1016_j_ijhydene_2023_10_001 crossref_primary_10_1021_acsaem_1c03967 crossref_primary_10_1016_j_colsurfa_2020_125481 crossref_primary_10_1021_acsami_1c09651 crossref_primary_10_1039_D5NR00287G crossref_primary_10_1016_j_jclepro_2024_141983 crossref_primary_10_1142_S0217984921503334 crossref_primary_10_1016_j_jhazmat_2022_128766 crossref_primary_10_1016_j_apsusc_2024_159434 crossref_primary_10_1016_j_envres_2023_115994 crossref_primary_10_1016_j_mcat_2024_114323 crossref_primary_10_1016_j_rser_2023_113348 crossref_primary_10_1021_acssuschemeng_0c04205 crossref_primary_10_1002_ejic_202100522 crossref_primary_10_1016_j_cej_2021_131682 crossref_primary_10_1016_j_fuel_2024_131907 crossref_primary_10_1142_S179329202150168X crossref_primary_10_1016_j_jallcom_2023_170168 crossref_primary_10_1039_D4NR03936J crossref_primary_10_1016_j_jcis_2021_09_095 crossref_primary_10_1039_D0DT00843E crossref_primary_10_1016_j_apsusc_2021_151201 crossref_primary_10_1016_j_cej_2022_134602 crossref_primary_10_1016_j_jcis_2022_04_015 crossref_primary_10_1016_j_watres_2021_117985 crossref_primary_10_1016_j_seppur_2023_125586 crossref_primary_10_1016_j_ijhydene_2019_12_168 crossref_primary_10_1016_j_jes_2021_11_040 crossref_primary_10_1016_j_mcat_2023_113186 crossref_primary_10_1039_D1MA00539A crossref_primary_10_3390_catal12101185 crossref_primary_10_1002_er_6632 crossref_primary_10_1016_j_jcis_2022_07_042 crossref_primary_10_1016_j_jphotochem_2024_115475 crossref_primary_10_1016_j_scitotenv_2022_155836 crossref_primary_10_1016_j_cej_2023_146555 crossref_primary_10_1039_D4CC05869K crossref_primary_10_1016_j_checat_2021_08_001 crossref_primary_10_1016_j_surfin_2023_102632 crossref_primary_10_1039_D0NA00489H crossref_primary_10_1039_D4EN00727A crossref_primary_10_1016_j_apsusc_2024_160454 crossref_primary_10_1016_j_apcatb_2020_118755 crossref_primary_10_1016_j_jhazmat_2020_122119 crossref_primary_10_1016_j_molliq_2023_122103 crossref_primary_10_3390_molecules27217489 crossref_primary_10_1142_S1793292020501271 crossref_primary_10_1002_er_7791 crossref_primary_10_1007_s11356_024_34987_z crossref_primary_10_1002_ange_202009449 crossref_primary_10_1021_acsomega_1c06089 crossref_primary_10_1016_j_ijhydene_2021_06_165 crossref_primary_10_1016_j_ijhydene_2022_12_155 crossref_primary_10_1016_j_apsusc_2023_157714 crossref_primary_10_1039_C9CC07835E crossref_primary_10_1016_j_microc_2020_105415 crossref_primary_10_1007_s11164_022_04946_9 crossref_primary_10_1016_j_envres_2024_119759 crossref_primary_10_1016_j_carbon_2020_03_031 crossref_primary_10_1016_j_cej_2021_128456 crossref_primary_10_1016_j_cej_2020_125721 crossref_primary_10_1016_j_ceramint_2022_07_318 crossref_primary_10_1016_j_cej_2023_142747 crossref_primary_10_1016_j_mssp_2020_105411 crossref_primary_10_1016_j_seppur_2020_117567 crossref_primary_10_1002_aesr_202000063 crossref_primary_10_3390_inorganics13030077 crossref_primary_10_1039_D4QI01435A crossref_primary_10_1016_j_apsusc_2020_145296 crossref_primary_10_1016_j_jcis_2023_09_158 crossref_primary_10_1016_j_ijhydene_2020_10_031 crossref_primary_10_1016_j_cej_2022_134744 crossref_primary_10_1016_j_jpowsour_2021_230420 crossref_primary_10_1039_D0EN00551G crossref_primary_10_1016_j_psep_2024_04_047 crossref_primary_10_1039_D3NJ05399G crossref_primary_10_1016_j_ijhydene_2021_12_165 crossref_primary_10_1088_1361_6528_ac04d3 crossref_primary_10_1016_j_apsusc_2022_153348 crossref_primary_10_1016_j_apsusc_2022_155087 crossref_primary_10_1016_j_apcatb_2021_119947 crossref_primary_10_1016_j_jhazmat_2020_122252 crossref_primary_10_1016_j_mtener_2021_100901 crossref_primary_10_1016_j_jcis_2025_137280 crossref_primary_10_1016_j_jhazmat_2020_122659 crossref_primary_10_1039_D2EN00951J crossref_primary_10_1016_j_cej_2023_143309 crossref_primary_10_1021_acsomega_3c02084 crossref_primary_10_1021_acs_langmuir_4c03489 crossref_primary_10_1016_j_cis_2021_102488 crossref_primary_10_1002_solr_202301043 crossref_primary_10_1016_j_mcat_2021_111829 crossref_primary_10_1134_S0036024422030281 crossref_primary_10_1016_j_jece_2024_112829 crossref_primary_10_1016_j_cej_2020_128185 crossref_primary_10_1016_j_jallcom_2024_178313 crossref_primary_10_1016_j_chemosphere_2021_130552 crossref_primary_10_1016_j_envpol_2020_114550 crossref_primary_10_1016_j_jcis_2020_07_032 crossref_primary_10_1016_j_colsurfa_2021_126151 crossref_primary_10_1016_j_ijhydene_2022_12_257 crossref_primary_10_1016_j_poly_2024_117240 crossref_primary_10_1039_D1TA10376H crossref_primary_10_1039_D2CE00830K crossref_primary_10_1088_2053_1591_acae21 crossref_primary_10_1016_j_mtsust_2021_100073 crossref_primary_10_1002_adsu_202200344 crossref_primary_10_1016_j_ijhydene_2024_07_090 crossref_primary_10_1016_j_jcis_2024_10_087 crossref_primary_10_1016_j_mcat_2020_111309 crossref_primary_10_1016_j_jcis_2020_12_126 crossref_primary_10_1016_j_jclepro_2021_129059 crossref_primary_10_1016_j_flatc_2020_100200 crossref_primary_10_1016_j_jcis_2024_06_243 crossref_primary_10_1016_j_chemosphere_2021_133092 crossref_primary_10_1016_j_diamond_2022_108995 crossref_primary_10_1016_j_ijhydene_2023_05_237 crossref_primary_10_1016_j_cej_2023_147333 crossref_primary_10_1016_j_jallcom_2024_173893 crossref_primary_10_1016_j_ijhydene_2024_10_299 crossref_primary_10_1039_D1DT03605J crossref_primary_10_1039_D4EN00431K |
Cites_doi | 10.1021/acs.inorgchem.6b00265 10.1016/j.nanoen.2018.02.001 10.1021/acsami.9b00903 10.1002/smll.201201161 10.1039/C8CC00766G 10.1021/jacs.7b11654 10.1021/acs.nanolett.5b00082 10.1016/j.apcatb.2018.06.013 10.1039/c3dt53110d 10.1021/la502033t 10.1021/acsami.8b13782 10.1002/anie.200705828 10.1002/anie.201403946 10.1002/adma.201601047 10.1016/j.apcatb.2017.09.055 10.1002/anie.201711357 10.1002/adma.201303116 10.1039/C8CS00341F 10.1002/smll.201601546 10.1038/s41598-017-06139-6 10.1002/anie.201403375 10.1002/cctc.201800101 10.1021/acs.jpcc.8b06624 10.1021/acs.iecr.8b02830 10.1016/j.apcatb.2018.01.067 10.1021/acs.est.8b00946 10.1021/acs.iecr.8b00927 10.1016/j.apcatb.2017.03.085 10.1021/acssuschemeng.7b03693 10.1021/acsaem.8b00030 10.1002/adma.201706108 10.1002/anie.201814360 10.1021/acsomega.7b00492 10.1002/adma.201801450 10.1002/aenm.201701503 10.1021/acsami.5b05118 10.1002/smll.201703277 10.1021/ja207103j 10.1002/chem.201503660 10.1016/j.nanoen.2015.10.011 10.1002/adfm.201502938 10.1039/C5TA05817A 10.1016/j.apcatb.2014.05.019 10.1039/C5CC05323D 10.1002/aenm.201700025 10.1016/j.jcat.2018.12.003 10.1016/j.apcatb.2017.02.024 10.1088/1361-6528/aa5cf2 10.1016/j.apcatb.2015.07.027 10.1016/j.watres.2015.06.009 10.1016/j.apcatb.2018.08.028 10.1021/es300303f 10.1021/acscatal.6b00715 10.1016/j.apsusc.2018.03.021 10.1039/c2nr31833d 10.1021/acsnano.5b07831 10.1016/j.apcatb.2018.02.011 10.1039/C8TA06565A 10.1039/C7CY00499K 10.1016/j.apcatb.2013.06.020 10.1016/j.watres.2015.05.053 10.1021/acsami.5b05715 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Dec 15, 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Dec 15, 2019 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2019.118072 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2019_118072 S0926337319308197 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHPOS AIEXJ AIKHN AITUG AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPD SSG SSZ T5K ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE SEW SSH VH1 WUQ XPP 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c437t-4b2d5bb25f0f91f3def494946ed645ee0265d5d4211040c7cc574d45a62c16f93 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 11:07:52 EDT 2025 Tue Jul 01 04:34:58 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Sat Mar 02 16:00:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multi-step electron transfer H2O reactant adsorption Water splitting 2D layered MoS2/g-C3N4 CeO2 nanocrystals |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-4b2d5bb25f0f91f3def494946ed645ee0265d5d4211040c7cc574d45a62c16f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2221-2392 0000-0002-6589-6122 |
PQID | 2301915661 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2301915661 crossref_primary_10_1016_j_apcatb_2019_118072 crossref_citationtrail_10_1016_j_apcatb_2019_118072 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-15 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Mori, Aoyama, Kawashima, Yamashita (bib0265) 2014; 43 Mori, Miyawaki, Yamashita (bib0010) 2016; 6 Martin, Qiu, Shevlin, Handoko, Chen, Guo, Tang (bib0155) 2014; 53 Yao, Chen, Cao, Yang, Tan, Dong (bib0225) 2018; 57 Yan, Chen, Ji, Liu, Wang, Xu, She, Huang, Xu, Xu, Li (bib0130) 2016; 22 Han, Wang, Gao, Cheng, Zhao, Zhang, Qu (bib0140) 2016; 10 Huang, Li, Lin, Tong, Liu (bib0280) 2018; 10 Zhao, Feng, Liu, Lu, Shi, Yang, Wang, Feng, Cheng (bib0245) 2018; 5 Zhu, Li, Xia, Liu, Xiong (bib0255) 2018; 10 Xiao, Liu, Zhu, Li, Zhang, Li (bib0020) 2015; 15 Yamashita, Mori, Kuwahara, Kamegawa, Wen, Verma, Che (bib0005) 2018; 47 Okamoto, Ida, Hyodo, Hagiwara, Ishihara (bib0055) 2011; 133 Li, Nie, Chen, Jiang, An, Wong, Zhang, Zhao, Yamashita (bib0105) 2015; 86 Lin, Zhang, Huang, Liu, Lee, Liang, Chu, Li (bib0205) 2012; 4 Li, Feng, Li, Li, Wei, Song (bib0195) 2015; 25 Khan, Khan, Cho (bib0230) 2017; 7 Si, Flytzani-Stephanopoulos (bib0170) 2008; 47 Ma, Dai, Jaroniec, Qiao (bib0220) 2014; 53 Wang, Chen, Feng, Xie, Liu, Su, Zhang, Wang, Yao, Lv, Liu (bib0095) 2017; 207 Nozaki, Yasuoka, Kuwahara, Ohmichi, Mori, Nagase, Yasuda, Yamashita (bib0050) 2018; 57 Zhu, Sun, Fujitsuka, Majima (bib0240) 2018; 57 Xu, Wang (bib0040) 2012; 46 Li, Lian, Wang, Zhang, Li (bib0070) 2016; 19 Li, Zhang, Yang, Wang, Ng (bib0190) 2014; 30 Feng, Li, Ling, Yan, Pan, Ge, Li, Bian (bib0275) 2018; 52 Jiang, Luo, Zong, Yao, Li, Zhu (bib0025) 2016; 12 Grzybek, Stelmachowski, Gudyka, Indyka, Sojka, Guillen-Hur-tado, Rico-Perez, Bueno-Lopez, Kotarba (bib0235) 2016; 180 Zhang, Li, Liu, Chen, Mao, An (bib0260) 2019; 6 Mansingh, Padhi, Parida (bib0045) 2017; 7 Zou, Shao, Pu, Luo, Sun, Ma, Tang, Gao, Dong (bib0305) 2017; 218 Jiang, Li, Xing, Zhang, Meng, Chen (bib0110) 2015; 7 Swain, Sultana, Naik, Parida (bib0125) 2017; 2 Huang, Lu, Lin, Mao, Ouyang, Liu, Zhang, Tong (bib0185) 2018; 6 Zhou, Yin, Du, Huang, Zeng, Fan, Liu, Wang, Zhang (bib0210) 2013; 9 Fu, Yu, Jiang, Cheng (bib0065) 2018; 8 Liu, Zhang, Ke, Zhang, Tian, Xu, Duan, Sun, Tade, Wang (bib0090) 2018; 228 Liu, Xu, Zhang, Zhang, Tian, Li, Tade, Sun, Wang (bib0145) 2018; 239 Shi, Chen, Chen, Jiang (bib0315) 2015; 51 Hu, Cai, Chen, Fan, Song, Yan, Shi (bib0160) 2015; 7 Wang, Jiang, Luo, Chen, Zhu (bib0060) 2018; 237 Xiong, Zhang, Wang, Liu, Wang, Zhang, Zhao (bib0135) 2018; 54 Lin, Yang, Wang (bib0285) 2019; 58 Yao, Xiong, Zou, Zhang, Wu, Dong, Gao, Deng, Tang, Chen, Dong, Chen (bib0035) 2014; 144 Zhu, Wang, Jiang, Liu, Pu, Xian, Zou, Sun (bib0200) 2019; 11 Zhu, Chen, Ma, Gu, Xian, Gong, Sun (bib0100) 2018; 122 She, Wu, Xu, Zhong, Wang, Song, Nie, Liu, Yang, Rodrigues, Vajtai, Lou, Du, Li, Ajayan (bib0320) 2017; 7 Xiong, Wang, Liu, Zheng, Wang, Yang, Wong, Zhang, Zhao (bib0120) 2018; 30 Zhao, Qi, Yin, Wang, Zhao, Ma, Wan, Chang, Gao, Yu, Tang (bib0310) 2015; 3 Jiang, Wang, Yu, Wang, An, Zhao, Li, Yuan, Wong (bib0015) 2018; 46 Zhu, Gong, Xian, Xie (bib0175) 2018; 444 Gong, Gu, Li, Zhao, Jia, Du (bib0180) 2016; 55 Huang, Luo, Chen, Yao, Liu (bib0250) 2018; 6 Xie, Feng, Wang, Chen, Zhang, Zeng, Lv, Liu (bib0075) 2018; 229 Yuan, Yang, Li, Chen, Wu, Fang, Bai, Ding, Yang, Cao, Yu, Zou (bib0085) 2018; 1 He, Fishman, Yang, Ortiz, Liu, Goldsamt, Batista, Pfefferle (bib0290) 2018; 140 Jiang, Wang, Li, Yuan, Zhao, Wong (bib0215) 2018; 30 Li, Han, Chen, Li, Xie, Mao, Bu, Cao, Dong, Feng, Lan (bib0270) 2016; 28 Wang, Wang, Feng, Zeng, Xie, Zhang, Su, Chen, Liu, Yao, Lv, Liu (bib0080) 2018; 221 Wang, He, Chen, Yu (bib0295) 2015; 81 Zhu, Jiang, Chen, Qian, Xie (bib0300) 2017; 28 Hou, Wen, Cui, Guo, Chen (bib0165) 2013; 25 Kong, Li, Wen, Chen, Liu, An (bib0030) 2019; 370 Li, Hou, Du, Zhang, Tao (bib0115) 2014; 160 Shi, Fujitsuka, Kim, Majima (bib0150) 2018; 14 Mori (10.1016/j.apcatb.2019.118072_bib0265) 2014; 43 Xiong (10.1016/j.apcatb.2019.118072_bib0135) 2018; 54 Wang (10.1016/j.apcatb.2019.118072_bib0295) 2015; 81 Nozaki (10.1016/j.apcatb.2019.118072_bib0050) 2018; 57 Zhu (10.1016/j.apcatb.2019.118072_bib0100) 2018; 122 Lin (10.1016/j.apcatb.2019.118072_bib0205) 2012; 4 Wang (10.1016/j.apcatb.2019.118072_bib0060) 2018; 237 Grzybek (10.1016/j.apcatb.2019.118072_bib0235) 2016; 180 Huang (10.1016/j.apcatb.2019.118072_bib0280) 2018; 10 She (10.1016/j.apcatb.2019.118072_bib0320) 2017; 7 Okamoto (10.1016/j.apcatb.2019.118072_bib0055) 2011; 133 Wang (10.1016/j.apcatb.2019.118072_bib0095) 2017; 207 Ma (10.1016/j.apcatb.2019.118072_bib0220) 2014; 53 Khan (10.1016/j.apcatb.2019.118072_bib0230) 2017; 7 He (10.1016/j.apcatb.2019.118072_bib0290) 2018; 140 Zou (10.1016/j.apcatb.2019.118072_bib0305) 2017; 218 Huang (10.1016/j.apcatb.2019.118072_bib0250) 2018; 6 Xu (10.1016/j.apcatb.2019.118072_bib0040) 2012; 46 Li (10.1016/j.apcatb.2019.118072_bib0115) 2014; 160 Martin (10.1016/j.apcatb.2019.118072_bib0155) 2014; 53 Mori (10.1016/j.apcatb.2019.118072_bib0010) 2016; 6 Zhu (10.1016/j.apcatb.2019.118072_bib0300) 2017; 28 Jiang (10.1016/j.apcatb.2019.118072_bib0025) 2016; 12 Hou (10.1016/j.apcatb.2019.118072_bib0165) 2013; 25 Zhao (10.1016/j.apcatb.2019.118072_bib0310) 2015; 3 Huang (10.1016/j.apcatb.2019.118072_bib0185) 2018; 6 Zhu (10.1016/j.apcatb.2019.118072_bib0255) 2018; 10 Yao (10.1016/j.apcatb.2019.118072_bib0035) 2014; 144 Li (10.1016/j.apcatb.2019.118072_bib0195) 2015; 25 Shi (10.1016/j.apcatb.2019.118072_bib0315) 2015; 51 Xiong (10.1016/j.apcatb.2019.118072_bib0120) 2018; 30 Zhu (10.1016/j.apcatb.2019.118072_bib0200) 2019; 11 Zhao (10.1016/j.apcatb.2019.118072_bib0245) 2018; 5 Jiang (10.1016/j.apcatb.2019.118072_bib0015) 2018; 46 Li (10.1016/j.apcatb.2019.118072_bib0070) 2016; 19 Kong (10.1016/j.apcatb.2019.118072_bib0030) 2019; 370 Mansingh (10.1016/j.apcatb.2019.118072_bib0045) 2017; 7 Han (10.1016/j.apcatb.2019.118072_bib0140) 2016; 10 Hu (10.1016/j.apcatb.2019.118072_bib0160) 2015; 7 Yan (10.1016/j.apcatb.2019.118072_bib0130) 2016; 22 Li (10.1016/j.apcatb.2019.118072_bib0105) 2015; 86 Liu (10.1016/j.apcatb.2019.118072_bib0090) 2018; 228 Lin (10.1016/j.apcatb.2019.118072_bib0285) 2019; 58 Yamashita (10.1016/j.apcatb.2019.118072_bib0005) 2018; 47 Gong (10.1016/j.apcatb.2019.118072_bib0180) 2016; 55 Wang (10.1016/j.apcatb.2019.118072_bib0080) 2018; 221 Zhu (10.1016/j.apcatb.2019.118072_bib0175) 2018; 444 Xiao (10.1016/j.apcatb.2019.118072_bib0020) 2015; 15 Swain (10.1016/j.apcatb.2019.118072_bib0125) 2017; 2 Fu (10.1016/j.apcatb.2019.118072_bib0065) 2018; 8 Zhang (10.1016/j.apcatb.2019.118072_bib0260) 2019; 6 Li (10.1016/j.apcatb.2019.118072_bib0190) 2014; 30 Shi (10.1016/j.apcatb.2019.118072_bib0150) 2018; 14 Jiang (10.1016/j.apcatb.2019.118072_bib0110) 2015; 7 Zhou (10.1016/j.apcatb.2019.118072_bib0210) 2013; 9 Yao (10.1016/j.apcatb.2019.118072_bib0225) 2018; 57 Feng (10.1016/j.apcatb.2019.118072_bib0275) 2018; 52 Zhu (10.1016/j.apcatb.2019.118072_bib0240) 2018; 57 Si (10.1016/j.apcatb.2019.118072_bib0170) 2008; 47 Li (10.1016/j.apcatb.2019.118072_bib0270) 2016; 28 Liu (10.1016/j.apcatb.2019.118072_bib0145) 2018; 239 Xie (10.1016/j.apcatb.2019.118072_bib0075) 2018; 229 Yuan (10.1016/j.apcatb.2019.118072_bib0085) 2018; 1 Jiang (10.1016/j.apcatb.2019.118072_bib0215) 2018; 30 |
References_xml | – volume: 144 start-page: 152 year: 2014 end-page: 165 ident: bib0035 article-title: Correlation between the physicochemical properties and catalytic performances of Ce publication-title: Appl. Catal. B – volume: 30 year: 2018 ident: bib0215 article-title: A hierarchical Z‑scheme α‑Fe publication-title: Adv. Mater. – volume: 8 year: 2018 ident: bib0065 article-title: g-C publication-title: Adv. Energy Mater. – volume: 14 year: 2018 ident: bib0150 article-title: Faster electron injection and more active sites for effcient photocatalytic H publication-title: Small – volume: 229 start-page: 96 year: 2018 end-page: 104 ident: bib0075 article-title: Construction of carbon dots modified MoO publication-title: Appl. Catal. B – volume: 239 start-page: 334 year: 2018 end-page: 344 ident: bib0145 article-title: Flower-like MoS publication-title: Appl. Catal. B – volume: 6 start-page: 24740 year: 2018 end-page: 24747 ident: bib0185 article-title: Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants publication-title: J. Mater. Chem. A – volume: 4 start-page: 6637 year: 2012 end-page: 6641 ident: bib0205 article-title: Wafer-scale MoS publication-title: Nanoscale – volume: 7 start-page: 2772 year: 2017 end-page: 2781 ident: bib0045 article-title: Enhanced visible light harnessing and oxygen vacancy promoted N, S co-doped CeO publication-title: Catal. Sci. Technol. – volume: 30 year: 2018 ident: bib0120 article-title: Cobalt covalent doping in MoS publication-title: Adv. Mater. – volume: 25 start-page: 6858 year: 2015 end-page: 6866 ident: bib0195 article-title: Smart hybrids of Zn publication-title: Adv. Funct. Mater. – volume: 9 start-page: 140 year: 2013 end-page: 147 ident: bib0210 article-title: Synthesis of few‐layer MoS publication-title: Small – volume: 133 start-page: 18034 year: 2011 end-page: 18037 ident: bib0055 article-title: Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading publication-title: J. Am. Chem. Soc. – volume: 221 start-page: 510 year: 2018 end-page: 520 ident: bib0080 article-title: Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C publication-title: Appl. Catal. B – volume: 53 start-page: 9240 year: 2014 end-page: 9245 ident: bib0155 article-title: Highly efficient photocatalytic H publication-title: Angew. Chem. Int. Ed. – volume: 444 start-page: 75 year: 2018 end-page: 86 ident: bib0175 article-title: Graphite-like carbon nitride coupled with tiny Bi publication-title: Appl. Surf. Sci. – volume: 6 start-page: 948 year: 2019 end-page: 958 ident: bib0260 article-title: Micro/nano-bubble assisted synthesis of Au/TiO publication-title: Environ. Sci.: Nano – volume: 28 year: 2017 ident: bib0300 article-title: L-Cysteine-assisted synthesis of hierarchical NiS publication-title: Nanotechnology – volume: 54 start-page: 3859 year: 2018 end-page: 3862 ident: bib0135 article-title: One-step synthesis of cobalt-doped MoS publication-title: Chem. Commun. – volume: 30 start-page: 8965 year: 2014 end-page: 8972 ident: bib0190 article-title: High efficiency photocatalysis for pollutant degradation with MoS publication-title: Langmuir – volume: 228 start-page: 64 year: 2018 end-page: 74 ident: bib0090 article-title: 0D (MoS publication-title: Appl. Catal. B – volume: 7 start-page: 19234 year: 2015 end-page: 19242 ident: bib0110 article-title: Two-dimensional CaIn publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 5599 year: 2018 end-page: 5605 ident: bib0050 article-title: Oxidation of benzyl alcohol over nanoporous Au-CeO publication-title: Ind. Eng. Chem. Res. – volume: 10 start-page: 1982 year: 2018 end-page: 1987 ident: bib0280 article-title: Enhanced efficiency of electron-hole separation in Bi publication-title: ChemCatChem – volume: 25 start-page: 6291 year: 2013 end-page: 6297 ident: bib0165 article-title: Constructing 2D porous graphitic C publication-title: Adv. Mater. – volume: 47 start-page: 8072 year: 2018 end-page: 8096 ident: bib0005 article-title: Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels publication-title: Chem. Soc. Rev. – volume: 19 start-page: 446 year: 2016 end-page: 454 ident: bib0070 article-title: Nanotube-confinement induced size-controllable g-C publication-title: Nano Energy – volume: 86 start-page: 17 year: 2015 end-page: 24 ident: bib0105 article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C publication-title: Water Res. – volume: 3 start-page: 20465 year: 2015 end-page: 20470 ident: bib0310 article-title: Efficient water oxidation under visible light by tuning surface defects on ceria nanorods publication-title: J. Mater. Chem. A – volume: 47 start-page: 2884 year: 2008 end-page: 2887 ident: bib0170 article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 8906 year: 2016 end-page: 8911 ident: bib0270 article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H publication-title: Adv. Mater. – volume: 237 start-page: 633 year: 2018 end-page: 640 ident: bib0060 article-title: Ultrathin nanosheets g-C publication-title: Appl. Catal. B – volume: 10 start-page: 2745 year: 2016 end-page: 2751 ident: bib0140 article-title: Atomically thin mesoporous nanomesh of graphitic C publication-title: ACS Nano – volume: 55 start-page: 3992 year: 2016 end-page: 3999 ident: bib0180 article-title: Thermally stable hierarchical nanostructures of ultrathin MoS publication-title: Inorg. Chem. – volume: 122 start-page: 20444 year: 2018 end-page: 20458 ident: bib0100 article-title: Carbon nitride-modified defective TiO publication-title: J. Phys. Chem. C – volume: 12 start-page: 4370 year: 2016 end-page: 4378 ident: bib0025 article-title: Polyaniline/carbon nitride nanosheets composite hydrogel: a separation‐free and high‐efficient photocatalyst with 3D hierarchical structure publication-title: Small – volume: 22 start-page: 4764 year: 2016 end-page: 4773 ident: bib0130 article-title: Construction of a 2D graphene-like MoS publication-title: Chem. Eur. J. – volume: 6 start-page: 4671 year: 2018 end-page: 4679 ident: bib0250 article-title: Self-assembled MoS publication-title: ACS Sustain. Chem. Eng. – volume: 57 start-page: 12407 year: 2018 end-page: 12419 ident: bib0225 article-title: Morphology and crystal-plane effects of CeO publication-title: Ind. Eng. Chem. Res. – volume: 180 start-page: 622 year: 2016 end-page: 629 ident: bib0235 article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N publication-title: Appl. Catal. B – volume: 11 start-page: 13011 year: 2019 end-page: 13021 ident: bib0200 article-title: Ultrafine Bi publication-title: ACS Appl. Mater. Interfaces – volume: 57 start-page: 2160 year: 2018 end-page: 2164 ident: bib0240 article-title: Z-Scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light publication-title: Angew. Chem. Int. Ed. – volume: 15 start-page: 4853 year: 2015 end-page: 4858 ident: bib0020 article-title: Copper nanowires: a substitute for noble metals to enhance photocatalytic H publication-title: Nano Lett. – volume: 7 start-page: 18247 year: 2015 end-page: 18256 ident: bib0160 article-title: Hydrothermal synthesis g‑C publication-title: ACS Appl. Mater. Interfaces – volume: 160 start-page: 89 year: 2014 end-page: 97 ident: bib0115 article-title: Synthesis and characterization of g-C publication-title: Appl. Catal. B – volume: 5 year: 2018 ident: bib0245 article-title: Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production publication-title: Adv. Sci. – volume: 43 start-page: 10541 year: 2014 end-page: 10547 ident: bib0265 article-title: Visible-light driven H publication-title: Dalton Trans. – volume: 140 start-page: 1824 year: 2018 end-page: 1833 ident: bib0290 article-title: Hydrophobic CuO nanosheets functionalized with organic adsorbates publication-title: J. Am. Chem. Soc. – volume: 81 start-page: 325 year: 2015 end-page: 332 ident: bib0295 article-title: Probing the roles of Ca publication-title: Water Res. – volume: 218 start-page: 51 year: 2017 end-page: 59 ident: bib0305 article-title: Crystal-plane-dependent metal oxide-support interaction in CeO publication-title: Appl. Catal. B – volume: 7 year: 2017 ident: bib0320 article-title: High efficiency photocatalytic water splitting using 2D α-Fe publication-title: Adv. Energy Mater. – volume: 46 start-page: 234 year: 2018 end-page: 240 ident: bib0015 article-title: AglnS publication-title: Nano Energy – volume: 46 start-page: 10145 year: 2012 end-page: 10153 ident: bib0040 article-title: Magnetic nanoscaled Fe publication-title: Environ. Sci. Technol. – volume: 370 start-page: 88 year: 2019 end-page: 96 ident: bib0030 article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO publication-title: J. Catal. – volume: 51 start-page: 17144 year: 2015 end-page: 17147 ident: bib0315 article-title: A g-C publication-title: Chem. Commun. – volume: 207 start-page: 103 year: 2017 end-page: 113 ident: bib0095 article-title: Facile synthesis of N-doped carbon dots/g-C publication-title: Appl. Catal. B – volume: 53 start-page: 7281 year: 2014 end-page: 7285 ident: bib0220 article-title: Graphitic carbon nitride nanosheet–carbon nanotube three‐dimensional porous composites as high‐performance oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 3128 year: 2016 end-page: 3135 ident: bib0010 article-title: Ru and Ru-Ni nanoparticles on TiO publication-title: ACS Catal. – volume: 2 start-page: 3745 year: 2017 end-page: 3753 ident: bib0125 article-title: Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free p−n heterojunction composite for visiblelight photocatalytic H2 production publication-title: ACS Omega – volume: 7 start-page: 5928 year: 2017 ident: bib0230 article-title: Ce publication-title: Sci. Rep. – volume: 10 start-page: 39679 year: 2018 end-page: 39687 ident: bib0255 article-title: Hierarchical ZnO decorated with CeO publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 7842 year: 2018 end-page: 7848 ident: bib0275 article-title: Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field publication-title: Environ. Sci. Technol. – volume: 1 start-page: 1400 year: 2018 end-page: 1407 ident: bib0085 article-title: Promoting charge separation in g-C publication-title: ACS Appl. Energy Mater. – volume: 58 start-page: 1 year: 2019 end-page: 6 ident: bib0285 article-title: Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C publication-title: Angew. Chem. Int. Ed. – volume: 55 start-page: 3992 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0180 article-title: Thermally stable hierarchical nanostructures of ultrathin MoS2 nanosheet-coated CeO2 hollow spheres as catalyst for ammonia decomposition publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.6b00265 – volume: 46 start-page: 234 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0015 article-title: AglnS2/In2S3 heterostructure sensitization of Escherichia coli for sustainable hydrogen production publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.001 – volume: 11 start-page: 13011 year: 2019 ident: 10.1016/j.apcatb.2019.118072_bib0200 article-title: Ultrafine Bi3TaO7 nanodot-decorated V, N codoped TiO2nanoblocks for visible-light photocatalytic activity: Interfacial effect and mechanism insight publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b00903 – volume: 9 start-page: 140 year: 2013 ident: 10.1016/j.apcatb.2019.118072_bib0210 article-title: Synthesis of few‐layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities publication-title: Small doi: 10.1002/smll.201201161 – volume: 54 start-page: 3859 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0135 article-title: One-step synthesis of cobalt-doped MoS2 nanosheets as bifunctional electrocatalysts for overall water splitting under both acidic and alkaline conditions publication-title: Chem. Commun. doi: 10.1039/C8CC00766G – volume: 140 start-page: 1824 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0290 article-title: Hydrophobic CuO nanosheets functionalized with organic adsorbates publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11654 – volume: 5 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0245 article-title: Metal-organic framework-derived ZnO/ZnS heteronanostructures for efficient visible-light-driven photocatalytic hydrogen production publication-title: Adv. Sci. – volume: 15 start-page: 4853 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0020 article-title: Copper nanowires: a substitute for noble metals to enhance photocatalytic H2 generation publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b00082 – volume: 237 start-page: 633 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0060 article-title: Ultrathin nanosheets g-C3N4@Bi2WO6 core-shell structure via low temperature reassembled strategy to promote photocatalytic activity publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.06.013 – volume: 43 start-page: 10541 year: 2014 ident: 10.1016/j.apcatb.2019.118072_bib0265 article-title: Visible-light driven H2 production utilizing iridium and rhodium complexes intercalated into a zirconium phosphate layered matrix publication-title: Dalton Trans. doi: 10.1039/c3dt53110d – volume: 30 start-page: 8965 year: 2014 ident: 10.1016/j.apcatb.2019.118072_bib0190 article-title: High efficiency photocatalysis for pollutant degradation with MoS2/C3N4 heterostructures publication-title: Langmuir doi: 10.1021/la502033t – volume: 10 start-page: 39679 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0255 article-title: Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13782 – volume: 47 start-page: 2884 year: 2008 ident: 10.1016/j.apcatb.2019.118072_bib0170 article-title: Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200705828 – volume: 53 start-page: 7281 year: 2014 ident: 10.1016/j.apcatb.2019.118072_bib0220 article-title: Graphitic carbon nitride nanosheet–carbon nanotube three‐dimensional porous composites as high‐performance oxygen evolution electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403946 – volume: 28 start-page: 8906 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0270 article-title: Hexagonal@cubic CdS core@shell nanorod photocatalyst for highly active production of H2 with unprecedented stability publication-title: Adv. Mater. doi: 10.1002/adma.201601047 – volume: 221 start-page: 510 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0080 article-title: Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.09.055 – volume: 57 start-page: 2160 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0240 article-title: Z-Scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711357 – volume: 25 start-page: 6291 year: 2013 ident: 10.1016/j.apcatb.2019.118072_bib0165 article-title: Constructing 2D porous graphitic C3N4 nanosheets/nitrogen‐doped graphene/layered MoS2 ternary nanojunction with enhanced photoelectrochemical activity publication-title: Adv. Mater. doi: 10.1002/adma.201303116 – volume: 47 start-page: 8072 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0005 article-title: Single-site and nano-confined photocatalysts designed in porous materials for environmental uses and solar fuels publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00341F – volume: 12 start-page: 4370 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0025 article-title: Polyaniline/carbon nitride nanosheets composite hydrogel: a separation‐free and high‐efficient photocatalyst with 3D hierarchical structure publication-title: Small doi: 10.1002/smll.201601546 – volume: 7 start-page: 5928 year: 2017 ident: 10.1016/j.apcatb.2019.118072_bib0230 article-title: Ce3+-ion, surface oxygen vacancy, and visible light-induced photocatalytic dye degradation and photocapacitive performance of CeO2-graphene nanostructures publication-title: Sci. Rep. doi: 10.1038/s41598-017-06139-6 – volume: 53 start-page: 9240 year: 2014 ident: 10.1016/j.apcatb.2019.118072_bib0155 article-title: Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403375 – volume: 10 start-page: 1982 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0280 article-title: Enhanced efficiency of electron-hole separation in Bi2O2CO3 for photocatalysis via acid treatment publication-title: ChemCatChem doi: 10.1002/cctc.201800101 – volume: 122 start-page: 20444 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0100 article-title: Carbon nitride-modified defective TiO2−x@carbon spheres for photocatalytic H2 evolution and pollutants removal: synergistic effect and mechanism insight publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b06624 – volume: 57 start-page: 12407 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0225 article-title: Morphology and crystal-plane effects of CeO2 on TiO2/CeO2 catalysts during NH3-SCR reaction publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b02830 – volume: 228 start-page: 64 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0090 article-title: 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.01.067 – volume: 52 start-page: 7842 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0275 article-title: Enhanced photocatalytic degradation performance by fluid-induced piezoelectric field publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b00946 – volume: 57 start-page: 5599 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0050 article-title: Oxidation of benzyl alcohol over nanoporous Au-CeO2 catalysts prepared from amorphous alloys and effect of alloying Au with amorphous alloys publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b00927 – volume: 218 start-page: 51 year: 2017 ident: 10.1016/j.apcatb.2019.118072_bib0305 article-title: Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution enhanced visible light photocatalytic hydrogen evolution via cubic CeO2 hybridized g-C3N4 composite publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.03.085 – volume: 6 start-page: 4671 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0250 article-title: Self-assembled MoS2-GO framework as an efficient cocatalyst of CuInZnS for visible-light driven hydrogen evolution publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b03693 – volume: 1 start-page: 1400 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0085 article-title: Promoting charge separation in g-C3N4/graphene/MoS2 photocatalysts by two-dimensional nanojunction for enhanced photocatalytic H2 production publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00030 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0215 article-title: A hierarchical Z‑scheme α‑Fe2O3/g‑C3N4 hybrid for enhanced photocatalytic CO2 reduction publication-title: Adv. Mater. doi: 10.1002/adma.201706108 – volume: 58 start-page: 1 year: 2019 ident: 10.1016/j.apcatb.2019.118072_bib0285 article-title: Stacking-layer-number dependence of water adsorption in 3D ordered close-packed g-C3N4 nanosphere arrays for photocatalytic hydrogen evolution publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814360 – volume: 2 start-page: 3745 year: 2017 ident: 10.1016/j.apcatb.2019.118072_bib0125 article-title: Coupling of crumpled-type novel MoS2 with CeO2 nanoparticles: a noble-metal-free p−n heterojunction composite for visiblelight photocatalytic H2 production publication-title: ACS Omega doi: 10.1021/acsomega.7b00492 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0120 article-title: Cobalt covalent doping in MoS2 to induce bifunctionality of overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201801450 – volume: 6 start-page: 948 year: 2019 ident: 10.1016/j.apcatb.2019.118072_bib0260 article-title: Micro/nano-bubble assisted synthesis of Au/TiO2@CNTs composite photocatalyst for photocatalytic degradation of gaseous styrene and its enhanced catalytic mechanism publication-title: Environ. Sci.: Nano – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0065 article-title: g-C3N4-based heterostructured photocatalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701503 – volume: 7 start-page: 19234 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0110 article-title: Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05118 – volume: 14 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0150 article-title: Faster electron injection and more active sites for effcient photocatalytic H2 evolution in g-C3N4/MoS2 hybrid publication-title: Small doi: 10.1002/smll.201703277 – volume: 133 start-page: 18034 year: 2011 ident: 10.1016/j.apcatb.2019.118072_bib0055 article-title: Synthesis and photocatalytic activity of rhodium-doped calcium niobate nanosheets for hydrogen production from a water/methanol system without cocatalyst loading publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207103j – volume: 22 start-page: 4764 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0130 article-title: Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light photocatalytic activity and photoelectrochemical activity publication-title: Chem. Eur. J. doi: 10.1002/chem.201503660 – volume: 19 start-page: 446 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0070 article-title: Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.10.011 – volume: 25 start-page: 6858 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0195 article-title: Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g-C3N4 layers: synergistic lithium storage and excellent electrochemical performance publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502938 – volume: 3 start-page: 20465 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0310 article-title: Efficient water oxidation under visible light by tuning surface defects on ceria nanorods publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05817A – volume: 160 start-page: 89 year: 2014 ident: 10.1016/j.apcatb.2019.118072_bib0115 article-title: Synthesis and characterization of g-C3N4/Bi2MoO6 heterojunctions with enhanced visible light photocatalytic activity publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2014.05.019 – volume: 51 start-page: 17144 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0315 article-title: A g-C3N4/nanocarbon/ZnIn2S4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator publication-title: Chem. Commun. doi: 10.1039/C5CC05323D – volume: 7 year: 2017 ident: 10.1016/j.apcatb.2019.118072_bib0320 article-title: High efficiency photocatalytic water splitting using 2D α-Fe2O3/g-C3N4 Z-scheme catalysts publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201700025 – volume: 370 start-page: 88 year: 2019 ident: 10.1016/j.apcatb.2019.118072_bib0030 article-title: The synergic degradation mechanism and photothermocatalytic mineralization of typical VOCs over PtCu/CeO2 ordered porous catalysts under simulated solar irradiation publication-title: J. Catal. doi: 10.1016/j.jcat.2018.12.003 – volume: 207 start-page: 103 year: 2017 ident: 10.1016/j.apcatb.2019.118072_bib0095 article-title: Facile synthesis of N-doped carbon dots/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for the degradation of indomethacin publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.02.024 – volume: 28 year: 2017 ident: 10.1016/j.apcatb.2019.118072_bib0300 article-title: L-Cysteine-assisted synthesis of hierarchical NiS2 hollow spheres supported carbon nitride as photocatalysts with enhanced lifetime publication-title: Nanotechnology doi: 10.1088/1361-6528/aa5cf2 – volume: 180 start-page: 622 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0235 article-title: Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: the role of the interface periphery publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2015.07.027 – volume: 81 start-page: 325 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0295 article-title: Probing the roles of Ca2+ and Mg2+ in humic acids-induced ultrafiltration membrane fouling using an integrated approach publication-title: Water Res. doi: 10.1016/j.watres.2015.06.009 – volume: 239 start-page: 334 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0145 article-title: Flower-like MoS2 on graphitic carbon nitride for enhanced photocatalytic and electrochemical hydrogen evolutions publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.08.028 – volume: 46 start-page: 10145 year: 2012 ident: 10.1016/j.apcatb.2019.118072_bib0040 article-title: Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol publication-title: Environ. Sci. Technol. doi: 10.1021/es300303f – volume: 6 start-page: 3128 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0010 article-title: Ru and Ru-Ni nanoparticles on TiO2 support as extremely active catalysts for hydrogen production from ammonia−borane publication-title: ACS Catal. doi: 10.1021/acscatal.6b00715 – volume: 444 start-page: 75 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0175 article-title: Graphite-like carbon nitride coupled with tiny Bi2S3 nanoparticles as 2D/0D heterojunction with enhanced photocatalytic activity publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.021 – volume: 4 start-page: 6637 year: 2012 ident: 10.1016/j.apcatb.2019.118072_bib0205 article-title: Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization publication-title: Nanoscale doi: 10.1039/c2nr31833d – volume: 10 start-page: 2745 year: 2016 ident: 10.1016/j.apcatb.2019.118072_bib0140 article-title: Atomically thin mesoporous nanomesh of graphitic C3N4 for high-efficiency photocatalytic hydrogen evolution publication-title: ACS Nano doi: 10.1021/acsnano.5b07831 – volume: 229 start-page: 96 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0075 article-title: Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.02.011 – volume: 6 start-page: 24740 year: 2018 ident: 10.1016/j.apcatb.2019.118072_bib0185 article-title: Cerium-based hybrid nanorods for synergetic photo-thermocatalytic degradation of organic pollutants publication-title: J. Mater. Chem. A doi: 10.1039/C8TA06565A – volume: 7 start-page: 2772 year: 2017 ident: 10.1016/j.apcatb.2019.118072_bib0045 article-title: Enhanced visible light harnessing and oxygen vacancy promoted N, S co-doped CeO2 nanoparticle: a challenging photocatalyst for Cr(VI) reduction publication-title: Catal. Sci. Technol. doi: 10.1039/C7CY00499K – volume: 144 start-page: 152 year: 2014 ident: 10.1016/j.apcatb.2019.118072_bib0035 article-title: Correlation between the physicochemical properties and catalytic performances of CexSn1–xO2 mixed oxides for NO reduction by CO publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2013.06.020 – volume: 86 start-page: 17 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0105 article-title: Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach publication-title: Water Res. doi: 10.1016/j.watres.2015.05.053 – volume: 7 start-page: 18247 year: 2015 ident: 10.1016/j.apcatb.2019.118072_bib0160 article-title: Hydrothermal synthesis g‑C3N4/nano-InVO4 nanocomposites and enhanced photocatalytic activity for hydrogen production under visible light irradiation publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05715 |
SSID | ssj0002328 |
Score | 2.657258 |
Snippet | [Display omitted]
•0D CeO2 nanocrystals were tightly anchored on the 2D layered MoS2/g-C3N4 nanosheets.•Strong electronic interactions and Ce3+ species... Developing low-cost and high-performance catalysts is significant to solar-to-fuel conversion. Here, the synthesis of zero-dimensional (0D) CeO2... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118072 |
SubjectTerms | 2D layered MoS2/g-C3N4 Adsorption Carbon nitride Catalysts Catalytic activity CeO2 nanocrystals Cerium oxides Electron transfer Electrons Energy H2O reactant adsorption Heterojunctions Heterostructures Hybrids Hydrogen evolution Hydrogen production Hydrogen-based energy Metals Molybdenum disulfide Multi-step electron transfer Nanocrystals Noble metals Photocatalysis Quantum efficiency Solar energy Solar energy conversion Two dimensional composites Water chemistry Water splitting |
Title | CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption |
URI | https://dx.doi.org/10.1016/j.apcatb.2019.118072 https://www.proquest.com/docview/2301915661 |
Volume | 259 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcgAOCBYqCqWaA1d3k9hOCLcqbbWAuj2USr1Fjj_YrZYkyqZIe-Fv8neY8SYUkFAljolsy0qeZ95Yb2YYeyt1ZRLrDPd55LiM36VcY8zGEcroHUgZFro1nM_T2ZX8eK2ud1gx5sKQrHKw_VubHqz18GY6fM1pu1xOL6M8SYXIEEOC_BpllEuZEcqPvt_JPJAxBGuMgzmNHtPngsZLt0b3FQm88iOqhZYl_3JPfxnq4H3OnrInA22E4-3OnrEdV0_Yw2Ls1jZhj38rLDhhe6d3-Ws4bTjA6-fsR-EuEqh13Zhug8Rwxb82dumRh8JKb6hvJ5w3l8n0Cy_EXIJeQ3QyTU4gXBt2GyAFOsm8HCDZBUpMr1aOryjCh3bR9E24DtrgLmGxsV2D8AT3bYD3ewj3j17TNT0uVa-duSVzC0HWyBFwLYx9eaAPlNp1oGsLrl4EqQLMkgtAnmuo-TFou266YPNesKuz08_FjA-9HbiRIuu5rBKrqipRPvJ57IV1nurkyNTZVCrnMDRUVllJ8amMTGaMyqSVSqeJiVOfiz22Wze1e8nAI8uqbCwrT7X8MF51uckUriSEj4RJ95kYf2lphsLn1H9jVY4Kt5tyC4SSgFBugbDP-K9Z7bbwxz3jsxEt5R8ALtE33TPzYARXORiQdYmRIUbSyLXjV_-98Gv2iJ5IfBOrA7bbd7fuDVKovjoMZ-SQPTj-8Gk2_wmLvh9u |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELXK9lA4IChUFArMgavZJLYTwq3attrS7vbQVuotcvzRXbQkq2yKtL-Uv8OMNykfEqrENYmtKHl-88Z6nmHsg9SlSawz3OeR4zL-lHKNORtHKGN0IGdY6NYwmabja_nlRt1ssVF_FoZslR33bzg9sHV3Zdh9zeFyPh9eRnmSCpEhhgTFtewR26bqVGrAtg9Pz8bTe0JG0RAIGZ_nNKA_QRdsXnppdFuSxyv_SOXQsuRfEeovrg4B6OQZe9opRzjcvNxztuWqXbYz6hu27bInv9UW3GV7x7-OsOGwbg2vXrAfI3eRQKWr2jRr1IYL_q22c49SFBZ6Ta07YVJfJsNbPhJTCXoF0dEwOYKwc9isgUzo5PRygHoX6Gx6uXB8QUk-LGd1W4cdoTW-JczWtqkRoeC-dwj_DGEL0mvaqcepqpUzd8S4EJyNHDG3hL41D7RBVbsGdGXBVbPgVoBxcgEodQ31PwZtV3UTaO8luz45vhqNedfegRspspbLMrGqLBPlI5_HXljnqVSOTJ1NpXIOs0NllZWUosrIZMaoTFqpdJqYOPW52GODqq7cKwYehVZpY1l6KueHKavLTaZwJiF8JEy6z0T_SwvT1T6nFhyLoje5fS02QCgICMUGCPuM349abmp_PPB81qOl-APDBYanB0Ye9OAqOg5ZFZgcYjKNcjt-_d8Tv2c746vJeXF-Oj17wx7THfLixOqADdrmzr1FRdWW77oV8xNIVyIf |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CeO2+nanocrystal-modified+layered+MoS2%2Fg-C3N4+as+0D%2F2D+ternary+composite+for+visible-light+photocatalytic+hydrogen+evolution%3A+Interfacial+consecutive+multi-step+electron+transfer+and+enhanced+H2O+reactant+adsorption&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Zhu%2C+Chengzhang&rft.au=Wang%2C+Yuting&rft.au=Jiang%2C+Zhifeng&rft.au=Xu%2C+Fanchao&rft.date=2019-12-15&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=259&rft.spage=1&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118072&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |