Characteristics of the pulsating flow and heat transfer in an elbow tailpipe of a self-excited Helmholtz pulse combustor

•A valveless Helmholtz pulse combustor with an elbow tailpipe was designed.•The pulsating flow in the elbow tailpipe was numerically simulated by FLUENT.•The mean velocity decrease with the velocity amplitude along the tailpipe.•The internal and external elbow pressure decrease along the tailpipe.•P...

Full description

Saved in:
Bibliographic Details
Published inApplied thermal engineering Vol. 108; pp. 567 - 580
Main Authors Xu, Yanying, Zhai, Ming, Guo, Li, Dong, Peng, Chen, Jian, Wang, Zhi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 05.09.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A valveless Helmholtz pulse combustor with an elbow tailpipe was designed.•The pulsating flow in the elbow tailpipe was numerically simulated by FLUENT.•The mean velocity decrease with the velocity amplitude along the tailpipe.•The internal and external elbow pressure decrease along the tailpipe.•Periodical vortex shapes and positions contribute to heat transfer enhancement. A valveless self-excited Helmholtz pulse combustor with an elbow tailpipe was designed. The pressures along the tailpipe and the internal and external elbow section were measured. The pulsating flow in the elbow tailpipe was numerically simulated by FLUENT. Numerical simulation results show that the mean velocity decrease with the velocity amplitude along the tailpipe. The mean and amplitude of area-averaged pressure and internal and external elbow pressure decrease along the tailpipe. The mean and amplitude of the internal elbow pressure are less than those of the external elbow pressure. The simulation results are in good agreement with the experimental data. The mass-averaged velocity-reversing, Dean vortex forming, shedding and reforming process and periodical Dean vortex shapes and vortex core positions contribute to convective heat transfer enhancement.
AbstractList •A valveless Helmholtz pulse combustor with an elbow tailpipe was designed.•The pulsating flow in the elbow tailpipe was numerically simulated by FLUENT.•The mean velocity decrease with the velocity amplitude along the tailpipe.•The internal and external elbow pressure decrease along the tailpipe.•Periodical vortex shapes and positions contribute to heat transfer enhancement. A valveless self-excited Helmholtz pulse combustor with an elbow tailpipe was designed. The pressures along the tailpipe and the internal and external elbow section were measured. The pulsating flow in the elbow tailpipe was numerically simulated by FLUENT. Numerical simulation results show that the mean velocity decrease with the velocity amplitude along the tailpipe. The mean and amplitude of area-averaged pressure and internal and external elbow pressure decrease along the tailpipe. The mean and amplitude of the internal elbow pressure are less than those of the external elbow pressure. The simulation results are in good agreement with the experimental data. The mass-averaged velocity-reversing, Dean vortex forming, shedding and reforming process and periodical Dean vortex shapes and vortex core positions contribute to convective heat transfer enhancement.
Author Xu, Yanying
Guo, Li
Dong, Peng
Chen, Jian
Zhai, Ming
Wang, Zhi
Author_xml – sequence: 1
  givenname: Yanying
  surname: Xu
  fullname: Xu, Yanying
  email: xyylwzj@163.com
  organization: Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China
– sequence: 2
  givenname: Ming
  surname: Zhai
  fullname: Zhai, Ming
  email: zhaiming@hit.edu.cn
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 3
  givenname: Li
  surname: Guo
  fullname: Guo, Li
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 4
  givenname: Peng
  surname: Dong
  fullname: Dong, Peng
  organization: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
– sequence: 5
  givenname: Jian
  surname: Chen
  fullname: Chen, Jian
  organization: Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China
– sequence: 6
  givenname: Zhi
  surname: Wang
  fullname: Wang, Zhi
  organization: Liaoning Key Laboratory of Aircraft Fire Explosion Control and Reliability Airworthiness Technology, Shenyang Aerospace University, Shenyang 110136, China
BookMark eNqNkLFOwzAQhj0UibbwDh5YE-w4rROJBSpKkSqxdLcc59K4cu3IdqHw9LiUBaYOp5P-0_9J903QyDoLCN1RklNC5_e7XA6DiT34vTRgt3mR0pzwnNJyhMaUzeqsZJReo0kIO0JoUfFyjI6LXnqpIngdolYBuw4nCB4OJsio7RZ3xn1gaVvcg4w4emlDBx5rm0IMpknXKLUZ9ACnssQBTJfBUekILV6B2ffOxK8fImDl9s0hROdv0FUnU3L7u6dos3zeLFbZ-u3ldfG4zlTJeMxYxwmQturqhlSqbQpa1AqIUpTPZFUBqxlteUFLQngpgddFDSWfM04bVqWZooczVnkXgodODF7vpf8UlIiTOLETf8WJkzhBuEjiUv3pXz29lbw4m0RocylkeYZA-vNdgxdBabAKWu1BRdE6fRnoG2sJnS0
CitedBy_id crossref_primary_10_1063_5_0028165
crossref_primary_10_1177_09544062231154823
crossref_primary_10_1109_JSEN_2018_2872866
crossref_primary_10_1016_j_applthermaleng_2018_02_047
crossref_primary_10_1177_09544062221139949
crossref_primary_10_1016_j_applthermaleng_2019_114548
crossref_primary_10_1016_j_applthermaleng_2021_117414
crossref_primary_10_3390_en14133953
crossref_primary_10_1016_j_fuel_2022_126423
crossref_primary_10_1016_j_icheatmasstransfer_2020_104859
crossref_primary_10_1016_j_ijheatfluidflow_2024_109534
crossref_primary_10_1016_j_applthermaleng_2023_120198
crossref_primary_10_11159_jffhmt_2018_004
crossref_primary_10_1016_j_applthermaleng_2021_117839
crossref_primary_10_1016_j_icheatmasstransfer_2025_108795
crossref_primary_10_1007_s40430_022_03828_w
crossref_primary_10_1016_j_combustflame_2016_10_017
Cites_doi 10.1016/j.egypro.2014.11.1038
10.1016/j.expthermflusci.2014.10.010
10.1016/j.combustflame.2013.07.003
10.1016/j.ijheatfluidflow.2015.12.007
10.1063/1.166260
10.1016/j.pnucene.2012.04.004
10.1016/j.icheatmasstransfer.2013.04.006
10.1016/j.cja.2013.07.015
10.1007/s00231-005-0036-z
10.1016/S0082-0784(06)80151-7
10.1248/cpb.55.1545
10.1016/0010-2180(91)90075-M
10.1016/j.nonrwa.2009.07.006
10.1016/j.icheatmasstransfer.2013.04.008
10.1016/j.ijheatmasstransfer.2006.12.001
10.1080/07373930600961520
10.1063/1.166137
10.1016/j.ijheatmasstransfer.2016.03.102
10.1248/cpb.55.1119
10.1080/00102209308935304
10.1016/j.rser.2015.10.110
10.1016/0010-2180(90)90112-5
10.1016/j.ijthermalsci.2015.08.014
ContentType Journal Article
Copyright 2016 Elsevier Ltd
Copyright_xml – notice: 2016 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.applthermaleng.2016.07.114
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 580
ExternalDocumentID 10_1016_j_applthermaleng_2016_07_114
S1359431116312455
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FGOYB
HZ~
R2-
SEW
SSH
ID FETCH-LOGICAL-c437t-3f70e0d8f9b08cdb2129ce0cc175a88e3931d72140074ae7929e476371b381b3
IEDL.DBID .~1
ISSN 1359-4311
IngestDate Thu Apr 24 23:00:42 EDT 2025
Tue Jul 01 02:27:20 EDT 2025
Fri Feb 23 02:36:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Elbow tailpipe
Numerical simulation
Self-excited Helmholtz pulse combustor
Heat transfer
Pulsating flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-3f70e0d8f9b08cdb2129ce0cc175a88e3931d72140074ae7929e476371b381b3
PageCount 14
ParticipantIDs crossref_primary_10_1016_j_applthermaleng_2016_07_114
crossref_citationtrail_10_1016_j_applthermaleng_2016_07_114
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_07_114
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-09-05
PublicationDateYYYYMMDD 2016-09-05
PublicationDate_xml – month: 09
  year: 2016
  text: 2016-09-05
  day: 05
PublicationDecade 2010
PublicationTitle Applied thermal engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu (b0055) 2007; 25
In, Spano, Neff, Ditto, Daw, Edwards, Nguyen (b0090) 1997; 7
Yang, Yin, He, Duan (b0065) 2013; 160
Papadopoulos, Vouros (b0125) 2016; 58
Yan, Li, Wanxing, Ningfei (b0030) 2014; 61
Wu, Mujumdar (b0045) 2006; 24
Dold, Short, Clarke, Nikiforakis (b0010) 1994
Wantha (b0140) 2016; 99
Aboutalebi, Nikravan Moghaddam, Mohammadi, Shafii (b0100) 2013
Jafari, Farhadi, Sedighi (b0105) 2013; 45
Li, Zheng, Qiu, Chen (b0035) 2013; 26
Wang, Cui, Sunada (b0050) 2007; 55
Liewkongsataporn (b0120) 2006
Yuan, Tan, Wen, Zhuang (b0135) 2016; 99
Xu, Li, Sunada (b0060) 2007; 55
Zinn (b0005) 1992; 24
Kudra, Mujumdar (b0075) 2002
Kudra, Mujumdar (b0070) 1995
Yan, Gu, Yu (b0130) 2012; 59
Meng, de Jong, Kudra (b0020) 2016; 55
Dec, Keller (b0025) 1990; 80
Zohir, Habib, Attya, Eid (b0115) 2006; 42
Bloom, Terlyga, Patterson (b0095) 2010; 11
Dec, Keller, Hongo (b0015) 1991; 83
Jie, Zheng, Wang, Peng, Chen (b0040) 2015; 61
Jin, Lee, Lee (b0110) 2007; 50
Richards, Morris, Shaw, Keeley, Welter (b0080) 1993; 94
Daw, Thomas, Richards, Narayanaswami (b0085) 1995; 5
Daw (10.1016/j.applthermaleng.2016.07.114_b0085) 1995; 5
Wu (10.1016/j.applthermaleng.2016.07.114_b0045) 2006; 24
Liewkongsataporn (10.1016/j.applthermaleng.2016.07.114_b0120) 2006
Jie (10.1016/j.applthermaleng.2016.07.114_b0040) 2015; 61
Yan (10.1016/j.applthermaleng.2016.07.114_b0130) 2012; 59
Wantha (10.1016/j.applthermaleng.2016.07.114_b0140) 2016; 99
Xu (10.1016/j.applthermaleng.2016.07.114_b0060) 2007; 55
Dec (10.1016/j.applthermaleng.2016.07.114_b0015) 1991; 83
Dold (10.1016/j.applthermaleng.2016.07.114_b0010) 1994
Zohir (10.1016/j.applthermaleng.2016.07.114_b0115) 2006; 42
In (10.1016/j.applthermaleng.2016.07.114_b0090) 1997; 7
Bloom (10.1016/j.applthermaleng.2016.07.114_b0095) 2010; 11
Wang (10.1016/j.applthermaleng.2016.07.114_b0050) 2007; 55
Zinn (10.1016/j.applthermaleng.2016.07.114_b0005) 1992; 24
Kudra (10.1016/j.applthermaleng.2016.07.114_b0070) 1995
Kudra (10.1016/j.applthermaleng.2016.07.114_b0075) 2002
Aboutalebi (10.1016/j.applthermaleng.2016.07.114_b0100) 2013
Dec (10.1016/j.applthermaleng.2016.07.114_b0025) 1990; 80
Jin (10.1016/j.applthermaleng.2016.07.114_b0110) 2007; 50
Wu (10.1016/j.applthermaleng.2016.07.114_b0055) 2007; 25
Jafari (10.1016/j.applthermaleng.2016.07.114_b0105) 2013; 45
Yang (10.1016/j.applthermaleng.2016.07.114_b0065) 2013; 160
Meng (10.1016/j.applthermaleng.2016.07.114_b0020) 2016; 55
Richards (10.1016/j.applthermaleng.2016.07.114_b0080) 1993; 94
Li (10.1016/j.applthermaleng.2016.07.114_b0035) 2013; 26
Yan (10.1016/j.applthermaleng.2016.07.114_b0030) 2014; 61
Papadopoulos (10.1016/j.applthermaleng.2016.07.114_b0125) 2016; 58
Yuan (10.1016/j.applthermaleng.2016.07.114_b0135) 2016; 99
References_xml – volume: 55
  start-page: 1119
  year: 2007
  end-page: 1125
  ident: b0050
  article-title: Improvement of the dissolution rate of nitrendipine using a new pulse combustion drying method
  publication-title: Chem. Pharm. Bull.
– volume: 61
  start-page: 12
  year: 2015
  end-page: 23
  ident: b0040
  article-title: Operating characteristics and propagation of back-pressure waves in a multi-tube two-phase valveless air-breathing pulse detonation combustor
  publication-title: Exp. Therm. Fluid Sci.
– start-page: 465
  year: 1994
  end-page: 473
  ident: b0010
  publication-title: Accumulating Sequence of Ignitions from a Propagating Pulse, Irvine, CA, Jul 31–Aug 05, 1994
– volume: 94
  start-page: 57
  year: 1993
  end-page: 85
  ident: b0080
  article-title: Thermal pulse combustion
  publication-title: Combust. Sci. Technol.
– volume: 7
  start-page: 605
  year: 1997
  end-page: 613
  ident: b0090
  article-title: Maintenance of chaos in a computational model of a thermal pulse combustor
  publication-title: Chaos
– volume: 83
  start-page: 271
  year: 1991
  end-page: 292
  ident: b0015
  article-title: Time-resolved velocities and turbulence in the oscillating flow of a pulse combustor tailpipe
  publication-title: Combust. Flame
– volume: 61
  start-page: 1130
  year: 2014
  end-page: 1133
  ident: b0030
  article-title: Study on pulse triggering combustion instability in a combustion chamber
  publication-title: Energy Procedia
– volume: 26
  start-page: 1353
  year: 2013
  end-page: 1359
  ident: b0035
  article-title: Experimental investigations on the power extraction of a turbine driven by a pulse detonation combustor
  publication-title: Chin. J. Aeronaut.
– start-page: 137
  year: 2013
  end-page: 145
  ident: b0100
  article-title: Experimental investigation on performance of a rotating closed loop pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Transfer
– year: 2002
  ident: b0075
  article-title: Advanced Drying Technologies
– volume: 160
  start-page: 2866
  year: 2013
  end-page: 2878
  ident: b0065
  article-title: Nonlinear analysis of a pulse combustor model with exhaust decoupler and vent pipe
  publication-title: Combust. Flame
– year: 1995
  ident: b0070
  article-title: Handbook of Industrial Drying
– volume: 11
  start-page: 2314
  year: 2010
  end-page: 2334
  ident: b0095
  article-title: Perturbation analysis of self-sustained oscillations in a pulse combustion model
  publication-title: Nonlinear Anal.: Real World Appl.
– volume: 59
  start-page: 59
  year: 2012
  end-page: 65
  ident: b0130
  article-title: Heat transfer of pulsating turbulent pipe flow in rolling motion
  publication-title: Prog. Nucl. Energy
– volume: 55
  start-page: 73
  year: 2016
  end-page: 114
  ident: b0020
  article-title: A state-of-the-art review of pulse combustion: principles, modeling, applications and R&D issues
  publication-title: Renew. Sustain. Energy Rev.
– volume: 45
  start-page: 146
  year: 2013
  end-page: 154
  ident: b0105
  article-title: Pulsating flow effects on convection heat transfer in a corrugated channel: a LBM approach
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 42
  start-page: 625
  year: 2006
  end-page: 635
  ident: b0115
  article-title: An experimental investigation of heat transfer to pulsating pipe air fow with different amplitudes
  publication-title: Heat Mass Transfer
– volume: 80
  start-page: 358
  year: 1990
  end-page: 370
  ident: b0025
  article-title: Time-resolved gas temperatures in the oscillating turbulent flow of a pulse combustor tailpipe
  publication-title: Combust. Flame
– volume: 5
  start-page: 662
  year: 1995
  end-page: 670
  ident: b0085
  article-title: Chaos in thermal pulse combustion
  publication-title: Chaos
– volume: 25
  start-page: 941
  year: 2007
  end-page: 942
  ident: b0055
  article-title: Thesis summary: mathematical modeling of pulse combustion and its applications to innovative thermal drying techniques
  publication-title: Dry. Technol.
– volume: 99
  start-page: 152
  year: 2016
  end-page: 160
  ident: b0135
  article-title: Heat transfer of pulsating laminar flow in pipes with wall thermal inertia
  publication-title: Int. J. Therm. Sci.
– volume: 58
  start-page: 54
  year: 2016
  end-page: 67
  ident: b0125
  article-title: Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies
  publication-title: Int. J. Heat Fluid Flow
– year: 2006
  ident: b0120
  article-title: Characteristics of Pulsating Flows in a Pulse Combustor
– volume: 24
  start-page: 1297
  year: 1992
  end-page: 1305
  ident: b0005
  article-title: Pulse combustion: recent applications and research issues
  publication-title: Symp. (Int.) Combust.
– volume: 24
  start-page: 1521
  year: 2006
  end-page: 1523
  ident: b0045
  article-title: R&D needs and opportunities in pulse combustion and pulse combustion drying
  publication-title: Dry. Technol.
– volume: 50
  start-page: 3062
  year: 2007
  end-page: 3071
  ident: b0110
  article-title: Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel
  publication-title: Heat Mass Transfer
– volume: 99
  start-page: 141
  year: 2016
  end-page: 148
  ident: b0140
  article-title: Effect and heat transfer correlations of finned tube heat exchanger under unsteady pulsating flows
  publication-title: Int. J. Heat Mass Transfer
– volume: 55
  start-page: 1545
  year: 2007
  end-page: 1550
  ident: b0060
  article-title: Preparation and evaluation of ibuprofen solid dispersion systems with Kollidon particles using a pulse combustion dryer system
  publication-title: Chem. Pharm. Bull.
– volume: 61
  start-page: 1130
  year: 2014
  ident: 10.1016/j.applthermaleng.2016.07.114_b0030
  article-title: Study on pulse triggering combustion instability in a combustion chamber
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2014.11.1038
– volume: 61
  start-page: 12
  year: 2015
  ident: 10.1016/j.applthermaleng.2016.07.114_b0040
  article-title: Operating characteristics and propagation of back-pressure waves in a multi-tube two-phase valveless air-breathing pulse detonation combustor
  publication-title: Exp. Therm. Fluid Sci.
  doi: 10.1016/j.expthermflusci.2014.10.010
– volume: 160
  start-page: 2866
  issue: 12
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.07.114_b0065
  article-title: Nonlinear analysis of a pulse combustor model with exhaust decoupler and vent pipe
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2013.07.003
– volume: 58
  start-page: 54
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.07.114_b0125
  article-title: Pulsating turbulent pipe flow in the current dominated regime at high and very-high frequencies
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2015.12.007
– volume: 7
  start-page: 605
  issue: 4
  year: 1997
  ident: 10.1016/j.applthermaleng.2016.07.114_b0090
  article-title: Maintenance of chaos in a computational model of a thermal pulse combustor
  publication-title: Chaos
  doi: 10.1063/1.166260
– volume: 59
  start-page: 59
  year: 2012
  ident: 10.1016/j.applthermaleng.2016.07.114_b0130
  article-title: Heat transfer of pulsating turbulent pipe flow in rolling motion
  publication-title: Prog. Nucl. Energy
  doi: 10.1016/j.pnucene.2012.04.004
– volume: 45
  start-page: 146
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.07.114_b0105
  article-title: Pulsating flow effects on convection heat transfer in a corrugated channel: a LBM approach
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2013.04.006
– volume: 26
  start-page: 1353
  issue: 6
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.07.114_b0035
  article-title: Experimental investigations on the power extraction of a turbine driven by a pulse detonation combustor
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2013.07.015
– volume: 42
  start-page: 625
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.07.114_b0115
  article-title: An experimental investigation of heat transfer to pulsating pipe air fow with different amplitudes
  publication-title: Heat Mass Transfer
  doi: 10.1007/s00231-005-0036-z
– year: 2006
  ident: 10.1016/j.applthermaleng.2016.07.114_b0120
– volume: 24
  start-page: 1297
  issue: 1
  year: 1992
  ident: 10.1016/j.applthermaleng.2016.07.114_b0005
  article-title: Pulse combustion: recent applications and research issues
  publication-title: Symp. (Int.) Combust.
  doi: 10.1016/S0082-0784(06)80151-7
– year: 2002
  ident: 10.1016/j.applthermaleng.2016.07.114_b0075
– volume: 55
  start-page: 1545
  issue: 11
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.07.114_b0060
  article-title: Preparation and evaluation of ibuprofen solid dispersion systems with Kollidon particles using a pulse combustion dryer system
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.55.1545
– volume: 83
  start-page: 271
  issue: 3–4
  year: 1991
  ident: 10.1016/j.applthermaleng.2016.07.114_b0015
  article-title: Time-resolved velocities and turbulence in the oscillating flow of a pulse combustor tailpipe
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(91)90075-M
– volume: 11
  start-page: 2314
  issue: 4
  year: 2010
  ident: 10.1016/j.applthermaleng.2016.07.114_b0095
  article-title: Perturbation analysis of self-sustained oscillations in a pulse combustion model
  publication-title: Nonlinear Anal.: Real World Appl.
  doi: 10.1016/j.nonrwa.2009.07.006
– start-page: 137
  issue: 45
  year: 2013
  ident: 10.1016/j.applthermaleng.2016.07.114_b0100
  article-title: Experimental investigation on performance of a rotating closed loop pulsating heat pipe
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2013.04.008
– volume: 50
  start-page: 3062
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.07.114_b0110
  article-title: Effects of the pulsating flow agitation on the heat transfer in a triangular grooved channel
  publication-title: Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2006.12.001
– volume: 24
  start-page: 1521
  issue: 11
  year: 2006
  ident: 10.1016/j.applthermaleng.2016.07.114_b0045
  article-title: R&D needs and opportunities in pulse combustion and pulse combustion drying
  publication-title: Dry. Technol.
  doi: 10.1080/07373930600961520
– volume: 5
  start-page: 662
  issue: 4
  year: 1995
  ident: 10.1016/j.applthermaleng.2016.07.114_b0085
  article-title: Chaos in thermal pulse combustion
  publication-title: Chaos
  doi: 10.1063/1.166137
– volume: 25
  start-page: 941
  issue: 4–6
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.07.114_b0055
  article-title: Thesis summary: mathematical modeling of pulse combustion and its applications to innovative thermal drying techniques
  publication-title: Dry. Technol.
– volume: 99
  start-page: 141
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.07.114_b0140
  article-title: Effect and heat transfer correlations of finned tube heat exchanger under unsteady pulsating flows
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.03.102
– volume: 55
  start-page: 1119
  issue: 8
  year: 2007
  ident: 10.1016/j.applthermaleng.2016.07.114_b0050
  article-title: Improvement of the dissolution rate of nitrendipine using a new pulse combustion drying method
  publication-title: Chem. Pharm. Bull.
  doi: 10.1248/cpb.55.1119
– volume: 94
  start-page: 57
  issue: 1–6
  year: 1993
  ident: 10.1016/j.applthermaleng.2016.07.114_b0080
  article-title: Thermal pulse combustion
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209308935304
– volume: 55
  start-page: 73
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.07.114_b0020
  article-title: A state-of-the-art review of pulse combustion: principles, modeling, applications and R&D issues
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.10.110
– year: 1995
  ident: 10.1016/j.applthermaleng.2016.07.114_b0070
– start-page: 465
  year: 1994
  ident: 10.1016/j.applthermaleng.2016.07.114_b0010
– volume: 80
  start-page: 358
  issue: 3–4
  year: 1990
  ident: 10.1016/j.applthermaleng.2016.07.114_b0025
  article-title: Time-resolved gas temperatures in the oscillating turbulent flow of a pulse combustor tailpipe
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(90)90112-5
– volume: 99
  start-page: 152
  year: 2016
  ident: 10.1016/j.applthermaleng.2016.07.114_b0135
  article-title: Heat transfer of pulsating laminar flow in pipes with wall thermal inertia
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2015.08.014
SSID ssj0012874
Score 2.2667263
Snippet •A valveless Helmholtz pulse combustor with an elbow tailpipe was designed.•The pulsating flow in the elbow tailpipe was numerically simulated by FLUENT.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 567
SubjectTerms Elbow tailpipe
Heat transfer
Numerical simulation
Pulsating flow
Self-excited Helmholtz pulse combustor
Title Characteristics of the pulsating flow and heat transfer in an elbow tailpipe of a self-excited Helmholtz pulse combustor
URI https://dx.doi.org/10.1016/j.applthermaleng.2016.07.114
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pa9swFBalhbEdRrsfLFtbdMjVizTJkc0OJYSGtGW5LIPcjCQ_jQzXManDwg772_ee42QJ7BDY0bIlmyf5fd-zP73HWNcLlwsJJvIGMEBRn0KUKI0vXuy9EA6CtfS948ukP_6m72fx7IQNt3thSFbZ-v6NT2-8ddvSa63Zq-bz3lep4hThTyKjQJCKaaO51oZW-cffO5mHpHzuTdAVpxFd_Yx1_2q86Ccx8axHS2VLSOjVpPKUUv8bpvagZ3TOXrackQ82j3XBTqB8xV7sZRJ8zdbDw8TLfBE43pJXq4LkOuV3HorFT27LnJP35XXDV2HJ5yU2cigcniUxaTWvgDpb_gRFiGDtiZNyRKdH9JP1r2ZE4GgutyJh5Rs2Hd1Oh-OoLaoQea1MHalgBIg8CakTic8dQlfqQXiPPMImCahUyRzDQqqXri0YpE-AVlVGOgR3p96y03JRwjvG06Cls8pZpxOdgnEA0vStT5w1aT8JHfZ5a8LMtwnHqe5FkW2VZT-ywwnIaAIyYWirdIfFu97VJvHGkf1utrOVHSykDDHiqBHe__cIH9hzOmqkaPElO62XK7hC7lK762ZxXrOzwd3DePIHdqL0YQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkXgcEE9RKOBDOYa11846EaoqVKi29HFhkXqzbGdcLUqzUZtVCwd-FL-wM9mkdCUOlVCvtjyJZuz5ZpLPM4xtBOELIcEkwQAmKGoYk0xpPHhpCEJ4iM7R946Dw9H4u_56lB6tsD_9XRiiVXa-f-HTW2_djQw6bQ7q6XTwTao0R_iTGFEgSKU9s3IPfp5j3na2ufsZjfx-ONz5MtkeJ11rgSRoZZpERSNAFFnMvchC4dGB5wFECIimLstA5UoWmBxR13DtwGAQARqPopEeIc4rFHuH3dXoLahrwoffV7QSSfXj2yQvzRN6u3ts4y-njH5KU1x34qhNChHL2tKhUup_w-I1qNt5zB51MSr_tFDDE7YC1VP28FrlwmfsYnu50DOfRY6P5PW8JHpQdcxjOTvnrio4eXvetPExnPJphYMcSo-zRF6tpzXQYsfPoIwJXASKgTmi4Qn65eZXKxE4msfPicj5nE1uQ9Mv2Go1q-Al43nU0jvlndeZzsF4AGlGLmTemXyUxTX2sVehDV2Bc-qzUdqeyfbDLhvAkgGsMHQ1e42lV6vrRaGPG67b6q1llzauRUy6kYRX_y3hHbs_nhzs2_3dw73X7AHNtDS4dJ2tNqdzeINxU-PfthuVM3vLB-MSNN0t8A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+of+the+pulsating+flow+and+heat+transfer+in+an+elbow+tailpipe+of+a+self-excited+Helmholtz+pulse+combustor&rft.jtitle=Applied+thermal+engineering&rft.au=Xu%2C+Yanying&rft.au=Zhai%2C+Ming&rft.au=Guo%2C+Li&rft.au=Dong%2C+Peng&rft.date=2016-09-05&rft.issn=1359-4311&rft.volume=108&rft.spage=567&rft.epage=580&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.07.114&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2016_07_114
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon