Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize
Background and aims Cereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are unknown. The aims of this study were to compare Cd uptake, translocation and influx kinetics between rice, wheat and maize and to investigate...
Saved in:
Published in | Plant and soil Vol. 433; no. 1/2; pp. 377 - 389 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer
01.12.2018
Springer International Publishing Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background and aims Cereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are unknown. The aims of this study were to compare Cd uptake, translocation and influx kinetics between rice, wheat and maize and to investigate whether the expression and functionality of Nramp5 genes differ between the three crop species. Methods Two cultivars each of rice, wheat and maize were grown hydroponically and exposed to a range of Cd concentrations. Nramp5 genes were cloned from the three plants and their expression levels determined. The Cd transport activities of Nramp5 proteins were tested in yeast. Results Under hydroponic conditions, Cd uptake in rice was 2.5–8.1 and 1.1–3.6 times that of wheat and maize, respectively. The maximum Cd influx velocity of rice was 6.5 and 2.2 times that in wheat and maize, respectively. Wheat showed the lowest Cd uptake but the highest Cd root-to-shoot translocation. The absolute expression level of OsNramp5 in rice roots was 4–5 times that of TaNramp5A and TaNramp5D in wheat or ZmNramp5 in maize. All Nramp5 proteins were localized to the plasma membrane. When expressed in yeast, OsNramp5 showed a greater Cd transport activity than wheat or maize Nramp5. Conclusions Rice has a greater Cd uptake ability than wheat or maize, likely because OsNramp5 is more highly expressed and the protein has a higher Cd transport activity than wheat or maize Nramp5. |
---|---|
AbstractList | Background and aimsCereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are unknown. The aims of this study were to compare Cd uptake, translocation and influx kinetics between rice, wheat and maize and to investigate whether the expression and functionality of Nramp5 genes differ between the three crop species.MethodsTwo cultivars each of rice, wheat and maize were grown hydroponically and exposed to a range of Cd concentrations. Nramp5 genes were cloned from the three plants and their expression levels determined. The Cd transport activities of Nramp5 proteins were tested in yeast.ResultsUnder hydroponic conditions, Cd uptake in rice was 2.5–8.1 and 1.1–3.6 times that of wheat and maize, respectively. The maximum Cd influx velocity of rice was 6.5 and 2.2 times that in wheat and maize, respectively. Wheat showed the lowest Cd uptake but the highest Cd root-to-shoot translocation. The absolute expression level of OsNramp5 in rice roots was 4–5 times that of TaNramp5A and TaNramp5D in wheat or ZmNramp5 in maize. All Nramp5 proteins were localized to the plasma membrane. When expressed in yeast, OsNramp5 showed a greater Cd transport activity than wheat or maize Nramp5.ConclusionsRice has a greater Cd uptake ability than wheat or maize, likely because OsNramp5 is more highly expressed and the protein has a higher Cd transport activity than wheat or maize Nramp5. Background and aims Cereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are unknown. The aims of this study were to compare Cd uptake, translocation and influx kinetics between rice, wheat and maize and to investigate whether the expression and functionality of Nramp5 genes differ between the three crop species. Methods Two cultivars each of rice, wheat and maize were grown hydroponically and exposed to a range of Cd concentrations. Nramp5 genes were cloned from the three plants and their expression levels determined. The Cd transport activities of Nramp5 proteins were tested in yeast. Results Under hydroponic conditions, Cd uptake in rice was 2.5–8.1 and 1.1–3.6 times that of wheat and maize, respectively. The maximum Cd influx velocity of rice was 6.5 and 2.2 times that in wheat and maize, respectively. Wheat showed the lowest Cd uptake but the highest Cd root-to-shoot translocation. The absolute expression level of OsNramp5 in rice roots was 4–5 times that of TaNramp5A and TaNramp5D in wheat or ZmNramp5 in maize. All Nramp5 proteins were localized to the plasma membrane. When expressed in yeast, OsNramp5 showed a greater Cd transport activity than wheat or maize Nramp5. Conclusions Rice has a greater Cd uptake ability than wheat or maize, likely because OsNramp5 is more highly expressed and the protein has a higher Cd transport activity than wheat or maize Nramp5. Background and aims Cereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are unknown. The aims of this study were to compare Cd uptake, translocation and influx kinetics between rice, wheat and maize and to investigate whether the expression and functionality of Nramp5 genes differ between the three crop species. Methods Two cultivars each of rice, wheat and maize were grown hydroponically and exposed to a range of Cd concentrations. Nramp5 genes were cloned from the three plants and their expression levels determined. The Cd transport activities of Nramp5 proteins were tested in yeast. Results Under hydroponic conditions, Cd uptake in rice was 2.5–8.1 and 1.1–3.6 times that of wheat and maize, respectively. The maximum Cd influx velocity of rice was 6.5 and 2.2 times that in wheat and maize, respectively. Wheat showed the lowest Cd uptake but the highest Cd root-to-shoot translocation. The absolute expression level of OsNramp5 in rice roots was 4–5 times that of TaNramp5A and TaNramp5D in wheat or ZmNramp5 in maize. All Nramp5 proteins were localized to the plasma membrane. When expressed in yeast, OsNramp5 showed a greater Cd transport activity than wheat or maize Nramp5. Conclusions Rice has a greater Cd uptake ability than wheat or maize, likely because OsNramp5 is more highly expressed and the protein has a higher Cd transport activity than wheat or maize Nramp5. |
Author | Chang, Jia-Dong Tang, Zhong Liu, Wen-Ju Zhao, Fang-Jie Sui, Fu-Qing Huang, Xin-Yuan |
Author_xml | – sequence: 1 givenname: Fu-Qing surname: Sui fullname: Sui, Fu-Qing – sequence: 2 givenname: Jia-Dong surname: Chang fullname: Chang, Jia-Dong – sequence: 3 givenname: Zhong surname: Tang fullname: Tang, Zhong – sequence: 4 givenname: Wen-Ju surname: Liu fullname: Liu, Wen-Ju – sequence: 5 givenname: Xin-Yuan surname: Huang fullname: Huang, Xin-Yuan – sequence: 6 givenname: Fang-Jie surname: Zhao fullname: Zhao, Fang-Jie |
BookMark | eNp9kE1rFTEUhoO04G3rD3AhBNy4Gc3HJJm7lKJWKLqx0F04k0k6uZ3JjEmGev31Zjqi0EVX4ZDnOR_vGToJU7AIvabkPSVEfUiUUlJXhDYVb-p9JV6gHRWKV4JweYJ2hHBWEbW_fYnOUjqQtaZyh_pvEcZZYPtrjjYlPwUMocNuCSaXAgafj3jw93Y4rswAPuDe3_U2YgPd6JcRL3OGe4vLR_TG4txDWIuH3kJ-bDaC_20v0KmDIdlXf99zdPP504_Lq-r6-5evlx-vK1NzlStunGWcGuq6RinHa6aEdK1h1tW07kA2LZO15K1TALYtF3HKW9E1BhSIhvBz9G7rO8fp52JT1qNPxg4DBDstSTOqJBesbnhB3z5BD9MSy80rxYlq9lLsC0U3ysQppWidnqMfIR41JXrNXm_Z65K9XrPXojjqiWN8hjXQHMEPz5psM1OZEu5s_L_Tc9KbTTqkPMV_-zEpBWdM8T8dUKSE |
CitedBy_id | crossref_primary_10_1007_s42729_021_00601_1 crossref_primary_10_1016_j_plaphy_2024_109443 crossref_primary_10_1016_j_envexpbot_2022_104867 crossref_primary_10_1016_j_jes_2023_03_032 crossref_primary_10_1007_s11368_019_02470_9 crossref_primary_10_1016_j_ecoenv_2020_111616 crossref_primary_10_1021_acs_est_8b06863 crossref_primary_10_3390_toxics12080532 crossref_primary_10_1016_j_envpol_2021_118497 crossref_primary_10_1360_TB_2022_0138 crossref_primary_10_1016_j_jes_2022_06_017 crossref_primary_10_15302_J_FASE_2020335 crossref_primary_10_1016_j_ijbiomac_2023_127103 crossref_primary_10_1016_j_foodchem_2022_134017 crossref_primary_10_1016_j_jhazmat_2021_126464 crossref_primary_10_1016_j_jhazmat_2021_127036 crossref_primary_10_3390_ijms23158162 crossref_primary_10_1002_saj2_20034 crossref_primary_10_1016_j_ecoenv_2019_109590 crossref_primary_10_1093_jxb_erad495 crossref_primary_10_3389_fpls_2024_1482099 crossref_primary_10_3390_toxics10120732 crossref_primary_10_1016_j_jenvman_2023_118195 crossref_primary_10_1039_D4RA06005A crossref_primary_10_3390_plants13202921 crossref_primary_10_1016_j_chemosphere_2023_140559 crossref_primary_10_1007_s00128_023_03765_x crossref_primary_10_1016_j_envpol_2020_114103 crossref_primary_10_1111_jam_15201 crossref_primary_10_1007_s11356_023_27857_7 crossref_primary_10_1016_j_envpol_2019_03_063 crossref_primary_10_1016_j_scitotenv_2022_157718 crossref_primary_10_1016_j_soisec_2023_100114 crossref_primary_10_1016_j_ecoenv_2024_117102 crossref_primary_10_1016_j_ecoenv_2025_117823 crossref_primary_10_1016_j_chemosphere_2021_131714 crossref_primary_10_1080_07352689_2020_1792179 crossref_primary_10_1007_s11368_020_02587_2 crossref_primary_10_1016_j_chemosphere_2020_127971 crossref_primary_10_3389_fgene_2022_944529 crossref_primary_10_1016_j_jhazmat_2024_135777 crossref_primary_10_1021_acs_jafc_3c04967 crossref_primary_10_1016_j_scitotenv_2024_172907 crossref_primary_10_3390_su142215026 crossref_primary_10_1007_s11356_020_11053_y crossref_primary_10_1016_j_scitotenv_2021_152898 crossref_primary_10_1111_pce_15182 crossref_primary_10_1186_s43170_023_00185_z crossref_primary_10_1016_j_envpol_2020_113941 crossref_primary_10_1093_jxb_eraa287 crossref_primary_10_1111_tpj_70058 crossref_primary_10_1016_j_envexpbot_2021_104395 crossref_primary_10_1631_jzus_B1900576 crossref_primary_10_1016_j_envpol_2023_121433 crossref_primary_10_1016_j_jhazmat_2020_124647 crossref_primary_10_1007_s00344_019_10034_x crossref_primary_10_1016_j_jhazmat_2021_125917 crossref_primary_10_1016_j_chemosphere_2020_128893 crossref_primary_10_1111_pce_13843 crossref_primary_10_3390_ijms231810379 crossref_primary_10_3390_agronomy12092182 crossref_primary_10_1007_s11356_024_32808_x crossref_primary_10_1021_acs_est_3c04132 crossref_primary_10_1007_s11104_019_04374_6 crossref_primary_10_1186_s12864_020_6474_7 crossref_primary_10_1016_j_scitotenv_2020_143262 crossref_primary_10_1016_j_envexpbot_2022_105097 crossref_primary_10_1016_j_scitotenv_2020_138358 crossref_primary_10_1016_j_chemosphere_2021_133055 crossref_primary_10_3390_plants14050707 crossref_primary_10_1016_j_scitotenv_2024_171005 crossref_primary_10_1016_j_scitotenv_2023_169288 crossref_primary_10_1016_j_jhazmat_2020_122873 crossref_primary_10_1111_jipb_12920 crossref_primary_10_1016_j_scitotenv_2024_173385 crossref_primary_10_1016_j_envpol_2023_122792 crossref_primary_10_1016_j_chemosphere_2021_129690 crossref_primary_10_1016_j_eti_2024_103540 crossref_primary_10_1016_j_molp_2021_09_016 crossref_primary_10_1111_pce_14993 crossref_primary_10_1016_j_jhazmat_2024_136766 crossref_primary_10_1093_jxb_erab329 crossref_primary_10_1016_j_plaphy_2023_107900 crossref_primary_10_1016_j_chemosphere_2023_138177 crossref_primary_10_1016_j_hazadv_2024_100526 crossref_primary_10_1093_jxb_erac364 crossref_primary_10_1016_j_plaphy_2023_108144 crossref_primary_10_1016_j_eti_2024_103942 crossref_primary_10_3390_agronomy12081952 crossref_primary_10_1016_j_jhazmat_2024_134693 crossref_primary_10_1038_s41438_020_0292_6 crossref_primary_10_1016_j_ecoenv_2019_109795 crossref_primary_10_3390_foods13172741 crossref_primary_10_1016_j_jhazmat_2023_131366 crossref_primary_10_1016_j_apgeochem_2024_106149 crossref_primary_10_3390_soilsystems6020036 crossref_primary_10_1007_s42976_023_00453_8 crossref_primary_10_1007_s10725_022_00917_7 crossref_primary_10_1016_j_scitotenv_2021_152603 crossref_primary_10_1080_15320383_2024_2306159 crossref_primary_10_1007_s11104_025_07236_6 crossref_primary_10_1016_j_ecoenv_2025_117863 crossref_primary_10_1016_j_envpol_2024_123786 crossref_primary_10_1111_tpj_15736 crossref_primary_10_3390_horticulturae7100377 crossref_primary_10_3389_fmicb_2022_852697 crossref_primary_10_3390_agronomy14092129 crossref_primary_10_1016_S1002_0160_20_60015_7 crossref_primary_10_1021_acs_est_0c02877 crossref_primary_10_1007_s11104_019_04112_y crossref_primary_10_1021_acssuschemeng_3c04045 crossref_primary_10_1080_10643389_2022_2099192 crossref_primary_10_1016_j_fcr_2023_109222 crossref_primary_10_1016_j_envpol_2024_125574 crossref_primary_10_1016_j_jenvman_2021_113081 crossref_primary_10_1016_j_scitotenv_2022_155006 crossref_primary_10_1016_j_scitotenv_2024_176369 crossref_primary_10_1016_j_cpb_2021_100213 crossref_primary_10_1016_j_envexpbot_2021_104591 crossref_primary_10_1016_j_heliyon_2024_e40910 crossref_primary_10_1016_j_jhazmat_2024_135166 crossref_primary_10_1016_j_chemosphere_2020_129387 crossref_primary_10_3390_toxics12060418 crossref_primary_10_1016_j_chemosphere_2022_134368 crossref_primary_10_1038_s43016_022_00569_w crossref_primary_10_1016_j_chemosphere_2022_135978 crossref_primary_10_1016_j_scitotenv_2022_160421 crossref_primary_10_3390_agriculture13081607 crossref_primary_10_1016_j_ecoenv_2022_114244 crossref_primary_10_1016_j_chemosphere_2021_131113 crossref_primary_10_1021_acs_jafc_1c07896 crossref_primary_10_1016_j_scitotenv_2024_175949 crossref_primary_10_1016_j_ecoenv_2022_114481 crossref_primary_10_1016_j_scitotenv_2024_175947 |
Cites_doi | 10.1038/ncomms3442 10.1016/j.scitotenv.2010.12.028 10.1111/j.1469-8137.2010.03459.x 10.1073/pnas.97.9.4991 10.1073/pnas.1005396107 10.1371/journal.pone.0177978 10.1093/molbev/mst197 10.1007/978-94-007-4470-7_10 10.1289/ehp.1307110 10.1038/srep00286 10.1007/s00122-010-1370-1 10.1016/j.tplants.2012.08.003 10.1038/s41477-017-0067-8 10.1007/PL00007934 10.1016/j.envpol.2016.10.043 10.1371/journal.pgen.1002923 10.1034/j.1399-3054.2002.1160109.x 10.1021/es5047099 10.1093/jxb/erp119 10.1093/jxb/err136 10.1007/s10661-013-3296-y 10.1093/pcp/pcr166 10.1093/jxb/eru259 10.1111/j.1747-0765.2006.00055.x 10.1016/j.chemosphere.2015.09.001 10.1038/s41467-018-03088-0 10.1038/nsmb.2904 10.1021/es400521h 10.1016/B978-012369413-3/50078-1 10.1007/s40726-015-0002-4 10.1016/j.taap.2009.03.015 10.1038/s41598-017-14832-9 10.2903/j.efsa.2012.2551 10.1104/pp.113.216564 10.1111/pce.12747 10.1104/pp.16.01189 10.1021/es103971y 10.1073/pnas.1211132109 10.1016/j.envpol.2018.03.048 10.1105/tpc.112.096925 10.1016/S0048-9697(01)00844-0 10.1016/j.pbi.2013.03.012 10.1073/pnas.1116531109 10.1146/annurev-arplant-043015-112301 10.1111/j.1469-8137.2005.01416.x 10.1093/pcp/pcx087 10.1021/es9022738 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2018 Plant and Soil is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Nature Switzerland AG 2018 – notice: Plant and Soil is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SN 7ST 7T7 7X2 88A 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ LK8 M0K M7P P64 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7S9 L.6 |
DOI | 10.1007/s11104-018-3849-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Biology Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Agricultural Science Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Genetics Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Agricultural Science Collection Biological Science Database ProQuest SciTech Collection Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Agricultural Science Database AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Botany Ecology |
EISSN | 1573-5036 |
EndPage | 389 |
ExternalDocumentID | 10_1007_s11104_018_3849_5 26653227 |
GrantInformation_xml | – fundername: Natural Science Foundation of China grantid: 31520103914 – fundername: Special Fund for Agro-scientific Research in the Public Interest grantid: 201403015 funderid: http://dx.doi.org/10.13039/501100010042 |
GroupedDBID | -~C -~X .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2XV 2~F 2~H 30V 4.4 406 408 409 40D 40E 5VS 67N 67Z 6NX 78A 7X2 8FE 8FH 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAXTN AAYIU AAYQN AAYZH ABAKF ABBBX ABBHK ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ABXSQ ACAOD ACDTI ACGFS ACHIC ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSTC ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADULT ADURQ ADYFF ADZKW AEEJZ AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUPB AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG APEBS AQVQM ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS CCPQU CS3 CSCUP DATOO DDRTE DL5 DNIVK DPUIP EAD EAP EBD EBLON EBS ECGQY EDH EIOEI EJD EMK EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAG IAO IEP IHE IJ- IKXTQ IPSME ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JAAYA JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLS JLXEF JPM JST JZLTJ KDC KOV KPH LAK LK8 LLZTM M0K M4Y M7P MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 PF0 PHGZM PHGZT PQQKQ PROAC PT4 PT5 Q2X QF4 QM4 QN7 QO4 QOK QOR QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3A S3B SA0 SAP SBL SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK8 Y6R YLTOR Z45 ZMTXR ZOVNA ~02 ~8M ~EX ~KM -4W -56 -5G -BR -EM -Y2 1SB 2.D 28- 2P1 2VQ 3SX 3V. 53G 5QI 88A AANXM AARHV AAYTO ABQSL ABULA ACBXY ACKIV ADINQ ADYPR AEBTG AEFIE AFEXP AFFNX AFGCZ AGGDS AIDBO AJBLW BBWZM CAG COF EN4 GQ6 JSODD KOW M0L N2Q NDZJH O9- OVD P0- R4E RNI RZC RZE RZK S1Z S26 S28 SBY SCLPG T16 TEORI WK6 XOL Z5O Z7U Z7V Z7W Z7Y Z83 Z86 Z8O Z8P Z8Q Z8S Z8W Z92 ZCG AAYXX ADHKG AGQPQ CITATION 7SN 7ST 7T7 8FD 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ P64 PKEHL PQEST PQGLB PQUKI PRINS RC3 SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c437t-3cfe231c1fd877f342756fbc2ef414da68b26463bf7aaeb079313b5d8ca7a5803 |
IEDL.DBID | U2A |
ISSN | 0032-079X |
IngestDate | Fri Jul 11 00:05:00 EDT 2025 Fri Jul 25 19:21:15 EDT 2025 Thu Apr 24 23:03:46 EDT 2025 Tue Jul 01 01:47:03 EDT 2025 Fri Feb 21 02:33:33 EST 2025 Thu Jun 19 23:15:30 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1/2 |
Keywords | Cadmium Maize Nramp5 Wheat Uptake Rice |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-3cfe231c1fd877f342756fbc2ef414da68b26463bf7aaeb079313b5d8ca7a5803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0164-169X |
PQID | 2130789659 |
PQPubID | 54098 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2176352483 proquest_journals_2130789659 crossref_primary_10_1007_s11104_018_3849_5 crossref_citationtrail_10_1007_s11104_018_3849_5 springer_journals_10_1007_s11104_018_3849_5 jstor_primary_26653227 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Journal on Plant-Soil Relationships |
PublicationTitle | Plant and soil |
PublicationTitleAbbrev | Plant Soil |
PublicationYear | 2018 |
Publisher | Springer Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer International Publishing – name: Springer Nature B.V |
References | HartJJWelchRMNorvellWAClarkeJMKochianLVZinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentrationNew Phytol20051673914011:CAS:528:DC%2BD2MXpt1ersLs%3D10.1111/j.1469-8137.2005.01416.x ZhaoF-JMaYZhuY-GTangZMcGrathSPSoil contamination in China: current status and mitigation strategiesEnviron Sci Technol2015497507591:CAS:528:DC%2BC2cXitFaqtr3K10.1021/es5047099 LuoJ-SHuangJZengD-LPengJ-SZhangG-BMaH-LGuanYYiH-YFuY-LHanBLinH-XQianQGongJ-MA defensin-like protein drives cadmium efflux and allocation in riceNat Commun2018964510.1038/s41467-018-03088-0 UraguchiSMoriSKuramataMKawasakiAAraoTIshikawaSRoot-to-shoot cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in riceJ Exp Bot200960267726881:CAS:528:DC%2BD1MXntlGisb8%3D10.1093/jxb/erp119 WiebeKHarrisNSFarisJDClarkeJMKnoxRETaylorGJPozniakCJTargeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum)Theor Appl Genet2010121104710581:CAS:528:DC%2BC3cXhtFGhur%2FE10.1007/s00122-010-1370-1 European Food Safety AuthorityCadmium dietary exposure in the European populationEFSA J2012102551258810.2903/j.efsa.2012.2551 IARC (International Agency for Research on Cancer) (1993) Beryllium, cadmium, mercury and exposures in the glass manufacturing industry. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, vol. 58. L. IARC, Lyon, France. 444 p ChaneyRLHow does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmersCurrent Pollut Rep2015113221:CAS:528:DC%2BC2sXpt1Smt7c%3D10.1007/s40726-015-0002-4 WatanabeTZhangZWMoonCSShimboSNakatsukaHMatsuda-InoguchiNHigashikawaKIkedaMCadmium exposure of women in general populations in Japan during 1991-1997 compared with 1977-1981Int Arch Occup Environ Health20007326341:CAS:528:DC%2BD3cXht1Cmtr4%3D10.1007/PL00007934 YanJLWangPTWangPYangMLianXMTangZHuangCFSaltDEZhaoFJA loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivarsPlant Cell Environ201639194119541:CAS:528:DC%2BC28Xhtlamt7zE10.1111/pce.12747 Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for cadmium. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA HartJJWelchRMNorvellWAKochianLVTransport interactions between cadmium and zinc in roots of bread and durum wheat seedlingsPhysiol Plant200211673781:CAS:528:DC%2BD38Xnt1els70%3D10.1034/j.1399-3054.2002.1160109.x MehargAANortonGDeaconCWilliamsPAdomakoEEPriceAZhuYLiGZhaoF-JMcGrathSVilladaASommellaADe SilvaPMCSBrammerHDasguptaTIslamMRVariation in rice cadmium related to human exposureEnviron Sci Technol201347561356181:CAS:528:DC%2BC3sXnsFShu70%3D10.1021/es400521h WangMChenWPengCRisk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, southern ChinaChemosphere20161443463511:CAS:528:DC%2BC2MXhsFShs7fK10.1016/j.chemosphere.2015.09.001 ÅkessonABarregardLBergdahlIANordbergGFNordbergMSkerfvingSNon-renal effects and the risk assessment of environmental cadmium exposureEnviron Health Perspect201412243143810.1289/ehp.1307110 ClemensSAartsMGMThomineSVerbruggenNPlant science: the key to preventing slow cadmium poisoningTrends Plant Sci20131892991:CAS:528:DC%2BC38XhtlGqt7%2FK10.1016/j.tplants.2012.08.003 ZhaoGZouCLiKWangKLiTGaoLZhangXWangHYangZLiuXJiangWMaoLKongXJiaoYJiaJThe Aegilops tauschii genome reveals multiple impacts of transposonsNat Plants201739469551:CAS:528:DC%2BC1cXktVOjsLg%3D10.1038/s41477-017-0067-8 ClemensSMaJFToxic heavy metal and metalloid accumulation in crop plants and foodsAnnu Rev Plant Biol2016674895121:CAS:528:DC%2BC28XntVCnsL4%3D10.1146/annurev-arplant-043015-112301 NordbergGFHistorical perspectives on cadmium toxicologyToxicol Appl Pharmacol20092381922001:CAS:528:DC%2BD1MXosVaqsr4%3D10.1016/j.taap.2009.03.015 WangPKopittkePMMcGrathSPZhaoFJSinghBRMcLaughlinMJBrevikECadmium transfer from soil to plants and its potential risk to human healthThe Nexus of soils, plants, animals and human health2017StuttgartCatena- Schweizerbart138147 YamajiNSasakiAXiaJXYokoshoKMaJFA node-based switch for preferential distribution of manganese in riceNat Commun20134244210.1038/ncomms3442 UraguchiSFujiwaraTRice breaks ground for cadmium-free cerealsCurr Opin Plant Biol2013163283341:CAS:528:DC%2BC3sXmt1Ogtbo%3D10.1016/j.pbi.2013.03.012 YangMZhangYYZhangLHuJZhangXLuKDongHWangDZhaoFJHuangCFLianXMOsNRAMP5 contributes to manganese translocation and distribution in rice shootsJ Exp Bot201465484948611:CAS:528:DC%2BC2MXitl2gtbg%3D10.1093/jxb/eru259 Joint FAO/WHO Expert Committee on Food Additives (2010) Joint FAO/WHO Expert Committee on Food Additives seventy-third meeting, http://www.who.int/foodsafety/publications/chem/summary73.pdf. World Health Organization, Geneva SmoldersEMertensJAllowayBJChapter 10. CadmiumHeavy metals in soils: trace metals and metalloids in soils and their bioavailability2013DordrechtSpringer Science+Business Media28331110.1007/978-94-007-4470-7_10 TangZCaiHLiJLvYZhangWZhaoFJAllelic variation of NtNramp5 associated with cultivar variation in cadmium accumulation in tobaccoPlant Cell Physiol201758158315931:CAS:528:DC%2BC1cXhs1Kqs7fJ10.1093/pcp/pcx087 ChenHTangZWangPZhaoFJGeographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese riceEnviron Pollut20182384824901:CAS:528:DC%2BC1cXmsVaqtLs%3D10.1016/j.envpol.2018.03.048 IshikawaSIshimaruYIguraMKuramataMAbeTSenouraTHaseYAraoTNishizawaNKNakanishiHIon-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium riceProc Natl Acad Sci U S A201210919166191711:CAS:528:DC%2BC38XhvVagtrjN10.1073/pnas.1211132109 European Food Safety AuthorityScientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in foodEFSA J20099801139 NORDBERGGUNNAR F.NOGAWAKOJINORDBERGMONICAFRIBERGLARS T.CadmiumHandbook on the Toxicology of Metals200744548610.1016/B978-012369413-3/50078-1 DuYHuXFWuXHShuYJiangYYanXJAffects of mining activities on cd pollution to the paddy soils and rice grain in Hunan province, central South ChinaEnviron Monit Assess2013185984398561:CAS:528:DC%2BC3sXhslGntb3K10.1007/s10661-013-3296-y NakanishiHOgawaIIshimaruYMoriSNishizawaNKIron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in riceSoil Sci Plant Nutr2006524644691:CAS:528:DC%2BD28XhtVWhurrI10.1111/j.1747-0765.2006.00055.x TakahashiRIshimaruYSenouraTShimoHIshikawaSAraoTNakanishiHNishizawaNKThe OsNRAMP1 iron transporter is involved in Cd accumulation in riceJ Exp Bot201162484348501:CAS:528:DC%2BC3MXhtlejsrbP10.1093/jxb/err136 EhrnstorferIAGeertsmaERPardonESteyaertJDutzlerRCrystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transportNat Struct Mol Biol2014219909961:CAS:528:DC%2BC2cXhslOisrjP10.1038/nsmb.2904 UraguchiSKamiyaTSakamotoTKasaiKSatoYNagamuraYYoshidaAKyozukaJIshikawaSFujiwaraTLow-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grainsProc Natl Acad Sci U S A201110820959209641:CAS:528:DC%2BC38XnvVCqsw%3D%3D10.1073/pnas.1116531109 IshimaruYTakahashiRBashirKShimoHSenouraTSugimotoKOnoKYanoMIshikawaSAraoTNakanishiHNishizawaNKCharacterizing the role of rice NRAMP5 in manganese, iron and cadmium transportSci Rep2012228610.1038/srep00286 KhaokaewSChaneyRLLandrotGGinder-VogelMSparksDLSpeciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditionsEnviron Sci Technol201145424942551:CAS:528:DC%2BC3MXkvFyrtLw%3D10.1021/es103971y TangLMaoBLiYLvQZhangLChenCHeHWangWZengXShaoYPanYHuYPengYFuXLiHXiaSZhaoBKnockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yieldSci Rep2017710.1038/s41598-017-14832-9 Satoh-NagasawaNMoriMNakazawaNKawamotoTNagatoYSakuraiKTakahashiHWatanabeAAkagiHMutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmiumPlant Cell Physiol2012532132241:CAS:528:DC%2BC38XosFGksw%3D%3D10.1093/pcp/pcr166 SasakiAYamajiNYokoshoKMaJFNramp5 is a major transporter responsible for manganese and cadmium uptake in ricePlant Cell201224215521671:CAS:528:DC%2BC38XhtVOktbzP10.1105/tpc.112.096925 de LiveraJMcLaughlinMJHettiarachchiGMKirbyJKBeakDGCadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ionsSci Total Environ20114091489149710.1016/j.scitotenv.2010.12.028 YamajiNXiaJXMitani-UenoNYokoshoKMaJFPreferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2Plant Physiol20131629279391:CAS:528:DC%2BC3sXps1Oqs7s%3D10.1104/pp.113.216564 ZhuHHChenCXuCZhuQHHuangDYEffects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical ChinaEnviron Pollut2016219991061:CAS:528:DC%2BC28XhslGrtbfE10.1016/j.envpol.2016.10.043 ChaoDYSilvaABaxterIHuangYSNordborgMDankuJLahnerBYakubovaESaltDEGenome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thalianaPLoS Genet20128e10029231:CAS:528:DC%2BC38XhtlGitb7I10.1371/journal.pgen.1002923 TamuraKStecherGPetersonDFilipskiAKumarSMEGA6: molecular evolutionary genetics analysis version 6.0Mol Biol Evol201330272527291:CAS:528:DC%2BC3sXhvVKhurzP10.1093/molbev/mst197 ThomineSWangRCWardJMCrawfordNMSchroederJICadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genesProc Natl Acad Sci U S A200097499149961:CAS:528:DC%2BD3cXivFKis70%3D10.1073/pnas.97.9.4991 WuDZYamajiNYamaneMKashino-FujiiMSatoKMaJFThe HvNramp5 tansporter mediates uptake of cadmium and manganese, but not ironPlant Physiol2016172189919101:CAS:528:DC%2BC2s D Ueno (3849_CR37) 2010; 107 M Yang (3849_CR49) 2014; 65 GUNNAR F. NORDBERG (3849_CR26) 2007 3849_CR19 G Zhao (3849_CR51) 2017; 3 3849_CR16 JJ Hart (3849_CR14) 2002; 116 DZ Wu (3849_CR45) 2016; 172 A Åkesson (3849_CR2) 2014; 122 H Chen (3849_CR6) 2018; 238 L Tang (3849_CR34) 2017; 7 S Thomine (3849_CR36) 2000; 97 S Clemens (3849_CR7) 2016; 67 HH Zhu (3849_CR52) 2016; 219 JL Yan (3849_CR48) 2016; 39 Y Song (3849_CR31) 2017; 12 Y Du (3849_CR10) 2013; 185 F-J Zhao (3849_CR50) 2015; 49 T Watanabe (3849_CR43) 2000; 73 S Uraguchi (3849_CR40) 2011; 108 H Nakanishi (3849_CR24) 2006; 52 M Wang (3849_CR41) 2016; 144 GF Nordberg (3849_CR25) 2009; 238 JJ Hart (3849_CR15) 2005; 167 K Tamura (3849_CR33) 2013; 30 S Clemens (3849_CR8) 2013; 18 S Uraguchi (3849_CR39) 2009; 60 S Ishikawa (3849_CR17) 2012; 109 J-S Luo (3849_CR21) 2018; 9 3849_CR1 S Shimbo (3849_CR29) 2001; 281 T Arao (3849_CR3) 2009; 43 Y Ishimaru (3849_CR18) 2012; 2 DY Chao (3849_CR5) 2012; 8 S Khaokaew (3849_CR20) 2011; 45 Z Tang (3849_CR35) 2017; 58 IA Ehrnstorfer (3849_CR11) 2014; 21 E Smolders (3849_CR30) 2013 N Satoh-Nagasawa (3849_CR28) 2012; 53 R Takahashi (3849_CR32) 2011; 62 European Food Safety Authority (3849_CR13) 2012; 10 P Wang (3849_CR42) 2017 H Miyadate (3849_CR23) 2011; 189 K Wiebe (3849_CR44) 2010; 121 N Yamaji (3849_CR46) 2013; 4 RL Chaney (3849_CR4) 2015; 1 European Food Safety Authority (3849_CR12) 2009; 980 N Yamaji (3849_CR47) 2013; 162 AA Meharg (3849_CR22) 2013; 47 S Uraguchi (3849_CR38) 2013; 16 A Sasaki (3849_CR27) 2012; 24 J Livera de (3849_CR9) 2011; 409 |
References_xml | – reference: European Food Safety AuthorityCadmium dietary exposure in the European populationEFSA J2012102551258810.2903/j.efsa.2012.2551 – reference: IshikawaSIshimaruYIguraMKuramataMAbeTSenouraTHaseYAraoTNishizawaNKNakanishiHIon-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium riceProc Natl Acad Sci U S A201210919166191711:CAS:528:DC%2BC38XhvVagtrjN10.1073/pnas.1211132109 – reference: IARC (International Agency for Research on Cancer) (1993) Beryllium, cadmium, mercury and exposures in the glass manufacturing industry. IARC monographs on the evaluation of carcinogenic risk of chemicals to humans, vol. 58. L. IARC, Lyon, France. 444 p – reference: YanJLWangPTWangPYangMLianXMTangZHuangCFSaltDEZhaoFJA loss-of-function allele of OsHMA3 associated with high cadmium accumulation in shoots and grain of japonica rice cultivarsPlant Cell Environ201639194119541:CAS:528:DC%2BC28Xhtlamt7zE10.1111/pce.12747 – reference: MiyadateHAdachiSHiraizumiATezukaKNakazawaNKawamotoTKatouKKodamaISakuraiKTakahashiHSatoh-NagasawaNWatanabeAFujimuraTAkagiHOsHMA3, a P-1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuolesNew Phytol20111891901991:CAS:528:DC%2BC3MXltlGgtQ%3D%3D10.1111/j.1469-8137.2010.03459.x – reference: LuoJ-SHuangJZengD-LPengJ-SZhangG-BMaH-LGuanYYiH-YFuY-LHanBLinH-XQianQGongJ-MA defensin-like protein drives cadmium efflux and allocation in riceNat Commun2018964510.1038/s41467-018-03088-0 – reference: SongYWangYMaoWSuiHYongLYangDJiangDZhangLGongYDietary cadmium exposure assessment among the Chinese populationPLoS One201712e017797810.1371/journal.pone.0177978 – reference: HartJJWelchRMNorvellWAClarkeJMKochianLVZinc effects on cadmium accumulation and partitioning in near-isogenic lines of durum wheat that differ in grain cadmium concentrationNew Phytol20051673914011:CAS:528:DC%2BD2MXpt1ersLs%3D10.1111/j.1469-8137.2005.01416.x – reference: Joint FAO/WHO Expert Committee on Food Additives (2010) Joint FAO/WHO Expert Committee on Food Additives seventy-third meeting, http://www.who.int/foodsafety/publications/chem/summary73.pdf. World Health Organization, Geneva – reference: ZhuHHChenCXuCZhuQHHuangDYEffects of soil acidification and liming on the phytoavailability of cadmium in paddy soils of central subtropical ChinaEnviron Pollut2016219991061:CAS:528:DC%2BC28XhslGrtbfE10.1016/j.envpol.2016.10.043 – reference: YangMZhangYYZhangLHuJZhangXLuKDongHWangDZhaoFJHuangCFLianXMOsNRAMP5 contributes to manganese translocation and distribution in rice shootsJ Exp Bot201465484948611:CAS:528:DC%2BC2MXitl2gtbg%3D10.1093/jxb/eru259 – reference: UenoDYamajiNKonoIHuangCFAndoTYanoMMaJFGene limiting cadmium accumulation in riceProc Natl Acad Sci U S A201010716500165051:CAS:528:DC%2BC3cXht1WrsrzN10.1073/pnas.1005396107 – reference: ClemensSAartsMGMThomineSVerbruggenNPlant science: the key to preventing slow cadmium poisoningTrends Plant Sci20131892991:CAS:528:DC%2BC38XhtlGqt7%2FK10.1016/j.tplants.2012.08.003 – reference: European Food Safety AuthorityScientific opinion of the panel on contaminants in the food chain on a request from the European Commission on cadmium in foodEFSA J20099801139 – reference: SasakiAYamajiNYokoshoKMaJFNramp5 is a major transporter responsible for manganese and cadmium uptake in ricePlant Cell201224215521671:CAS:528:DC%2BC38XhtVOktbzP10.1105/tpc.112.096925 – reference: WangPKopittkePMMcGrathSPZhaoFJSinghBRMcLaughlinMJBrevikECadmium transfer from soil to plants and its potential risk to human healthThe Nexus of soils, plants, animals and human health2017StuttgartCatena- Schweizerbart138147 – reference: IshimaruYTakahashiRBashirKShimoHSenouraTSugimotoKOnoKYanoMIshikawaSAraoTNakanishiHNishizawaNKCharacterizing the role of rice NRAMP5 in manganese, iron and cadmium transportSci Rep2012228610.1038/srep00286 – reference: TamuraKStecherGPetersonDFilipskiAKumarSMEGA6: molecular evolutionary genetics analysis version 6.0Mol Biol Evol201330272527291:CAS:528:DC%2BC3sXhvVKhurzP10.1093/molbev/mst197 – reference: TakahashiRIshimaruYSenouraTShimoHIshikawaSAraoTNakanishiHNishizawaNKThe OsNRAMP1 iron transporter is involved in Cd accumulation in riceJ Exp Bot201162484348501:CAS:528:DC%2BC3MXhtlejsrbP10.1093/jxb/err136 – reference: ChaneyRLHow does contamination of rice soils with Cd and Zn cause high incidence of human Cd disease in subsistence rice farmersCurrent Pollut Rep2015113221:CAS:528:DC%2BC2sXpt1Smt7c%3D10.1007/s40726-015-0002-4 – reference: WatanabeTZhangZWMoonCSShimboSNakatsukaHMatsuda-InoguchiNHigashikawaKIkedaMCadmium exposure of women in general populations in Japan during 1991-1997 compared with 1977-1981Int Arch Occup Environ Health20007326341:CAS:528:DC%2BD3cXht1Cmtr4%3D10.1007/PL00007934 – reference: UraguchiSMoriSKuramataMKawasakiAAraoTIshikawaSRoot-to-shoot cd translocation via the xylem is the major process determining shoot and grain cadmium accumulation in riceJ Exp Bot200960267726881:CAS:528:DC%2BD1MXntlGisb8%3D10.1093/jxb/erp119 – reference: TangLMaoBLiYLvQZhangLChenCHeHWangWZengXShaoYPanYHuYPengYFuXLiHXiaSZhaoBKnockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd-accumulating indica rice without compromising yieldSci Rep2017710.1038/s41598-017-14832-9 – reference: TangZCaiHLiJLvYZhangWZhaoFJAllelic variation of NtNramp5 associated with cultivar variation in cadmium accumulation in tobaccoPlant Cell Physiol201758158315931:CAS:528:DC%2BC1cXhs1Kqs7fJ10.1093/pcp/pcx087 – reference: WuDZYamajiNYamaneMKashino-FujiiMSatoKMaJFThe HvNramp5 tansporter mediates uptake of cadmium and manganese, but not ironPlant Physiol2016172189919101:CAS:528:DC%2BC2sXhs1yrt70%3D10.1104/pp.16.01189 – reference: MehargAANortonGDeaconCWilliamsPAdomakoEEPriceAZhuYLiGZhaoF-JMcGrathSVilladaASommellaADe SilvaPMCSBrammerHDasguptaTIslamMRVariation in rice cadmium related to human exposureEnviron Sci Technol201347561356181:CAS:528:DC%2BC3sXnsFShu70%3D10.1021/es400521h – reference: NakanishiHOgawaIIshimaruYMoriSNishizawaNKIron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in riceSoil Sci Plant Nutr2006524644691:CAS:528:DC%2BD28XhtVWhurrI10.1111/j.1747-0765.2006.00055.x – reference: NORDBERGGUNNAR F.NOGAWAKOJINORDBERGMONICAFRIBERGLARS T.CadmiumHandbook on the Toxicology of Metals200744548610.1016/B978-012369413-3/50078-1 – reference: UraguchiSKamiyaTSakamotoTKasaiKSatoYNagamuraYYoshidaAKyozukaJIshikawaSFujiwaraTLow-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grainsProc Natl Acad Sci U S A201110820959209641:CAS:528:DC%2BC38XnvVCqsw%3D%3D10.1073/pnas.1116531109 – reference: HartJJWelchRMNorvellWAKochianLVTransport interactions between cadmium and zinc in roots of bread and durum wheat seedlingsPhysiol Plant200211673781:CAS:528:DC%2BD38Xnt1els70%3D10.1034/j.1399-3054.2002.1160109.x – reference: Agency for Toxic Substances and Disease Registry (ATSDR) (2012) Toxicological profile for cadmium. https://www.atsdr.cdc.gov/toxprofiles/tp5.pdf. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA – reference: WangMChenWPengCRisk assessment of Cd polluted paddy soils in the industrial and township areas in Hunan, southern ChinaChemosphere20161443463511:CAS:528:DC%2BC2MXhsFShs7fK10.1016/j.chemosphere.2015.09.001 – reference: EhrnstorferIAGeertsmaERPardonESteyaertJDutzlerRCrystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transportNat Struct Mol Biol2014219909961:CAS:528:DC%2BC2cXhslOisrjP10.1038/nsmb.2904 – reference: ChenHTangZWangPZhaoFJGeographical variations of cadmium and arsenic concentrations and arsenic speciation in Chinese riceEnviron Pollut20182384824901:CAS:528:DC%2BC1cXmsVaqtLs%3D10.1016/j.envpol.2018.03.048 – reference: WiebeKHarrisNSFarisJDClarkeJMKnoxRETaylorGJPozniakCJTargeted mapping of Cdu1, a major locus regulating grain cadmium concentration in durum wheat (Triticum turgidum L. var durum)Theor Appl Genet2010121104710581:CAS:528:DC%2BC3cXhtFGhur%2FE10.1007/s00122-010-1370-1 – reference: ClemensSMaJFToxic heavy metal and metalloid accumulation in crop plants and foodsAnnu Rev Plant Biol2016674895121:CAS:528:DC%2BC28XntVCnsL4%3D10.1146/annurev-arplant-043015-112301 – reference: de LiveraJMcLaughlinMJHettiarachchiGMKirbyJKBeakDGCadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ionsSci Total Environ20114091489149710.1016/j.scitotenv.2010.12.028 – reference: ÅkessonABarregardLBergdahlIANordbergGFNordbergMSkerfvingSNon-renal effects and the risk assessment of environmental cadmium exposureEnviron Health Perspect201412243143810.1289/ehp.1307110 – reference: ZhaoF-JMaYZhuY-GTangZMcGrathSPSoil contamination in China: current status and mitigation strategiesEnviron Sci Technol2015497507591:CAS:528:DC%2BC2cXitFaqtr3K10.1021/es5047099 – reference: YamajiNSasakiAXiaJXYokoshoKMaJFA node-based switch for preferential distribution of manganese in riceNat Commun20134244210.1038/ncomms3442 – reference: Satoh-NagasawaNMoriMNakazawaNKawamotoTNagatoYSakuraiKTakahashiHWatanabeAAkagiHMutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmiumPlant Cell Physiol2012532132241:CAS:528:DC%2BC38XosFGksw%3D%3D10.1093/pcp/pcr166 – reference: ChaoDYSilvaABaxterIHuangYSNordborgMDankuJLahnerBYakubovaESaltDEGenome-wide association studies identify heavy metal ATPase3 as the primary determinant of natural variation in leaf cadmium in Arabidopsis thalianaPLoS Genet20128e10029231:CAS:528:DC%2BC38XhtlGitb7I10.1371/journal.pgen.1002923 – reference: YamajiNXiaJXMitani-UenoNYokoshoKMaJFPreferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2Plant Physiol20131629279391:CAS:528:DC%2BC3sXps1Oqs7s%3D10.1104/pp.113.216564 – reference: UraguchiSFujiwaraTRice breaks ground for cadmium-free cerealsCurr Opin Plant Biol2013163283341:CAS:528:DC%2BC3sXmt1Ogtbo%3D10.1016/j.pbi.2013.03.012 – reference: ThomineSWangRCWardJMCrawfordNMSchroederJICadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genesProc Natl Acad Sci U S A200097499149961:CAS:528:DC%2BD3cXivFKis70%3D10.1073/pnas.97.9.4991 – reference: NordbergGFHistorical perspectives on cadmium toxicologyToxicol Appl Pharmacol20092381922001:CAS:528:DC%2BD1MXosVaqsr4%3D10.1016/j.taap.2009.03.015 – reference: ZhaoGZouCLiKWangKLiTGaoLZhangXWangHYangZLiuXJiangWMaoLKongXJiaoYJiaJThe Aegilops tauschii genome reveals multiple impacts of transposonsNat Plants201739469551:CAS:528:DC%2BC1cXktVOjsLg%3D10.1038/s41477-017-0067-8 – reference: AraoTKawasakiABabaKMoriSMatsumotoSEffects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese riceEnviron Sci Technol200943936193671:CAS:528:DC%2BD1MXhtl2qu7rI10.1021/es9022738 – reference: DuYHuXFWuXHShuYJiangYYanXJAffects of mining activities on cd pollution to the paddy soils and rice grain in Hunan province, central South ChinaEnviron Monit Assess2013185984398561:CAS:528:DC%2BC3sXhslGntb3K10.1007/s10661-013-3296-y – reference: KhaokaewSChaneyRLLandrotGGinder-VogelMSparksDLSpeciation and release kinetics of cadmium in an alkaline paddy soil under various flooding periods and draining conditionsEnviron Sci Technol201145424942551:CAS:528:DC%2BC3MXkvFyrtLw%3D10.1021/es103971y – reference: SmoldersEMertensJAllowayBJChapter 10. CadmiumHeavy metals in soils: trace metals and metalloids in soils and their bioavailability2013DordrechtSpringer Science+Business Media28331110.1007/978-94-007-4470-7_10 – reference: ShimboSZhangZWWatanabeTNakatsukaHMatsuda-InoguchiNHigashikawaKIkedaMCadmium and lead contents in rice and other cereal products in Japan in 1998-2000Sci Total Environ20012811651751:CAS:528:DC%2BD3MXovFyls78%3D10.1016/S0048-9697(01)00844-0 – volume: 4 start-page: 2442 year: 2013 ident: 3849_CR46 publication-title: Nat Commun doi: 10.1038/ncomms3442 – volume: 409 start-page: 1489 year: 2011 ident: 3849_CR9 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2010.12.028 – volume: 189 start-page: 190 year: 2011 ident: 3849_CR23 publication-title: New Phytol doi: 10.1111/j.1469-8137.2010.03459.x – ident: 3849_CR19 – volume: 97 start-page: 4991 year: 2000 ident: 3849_CR36 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.97.9.4991 – volume: 107 start-page: 16500 year: 2010 ident: 3849_CR37 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1005396107 – volume: 12 start-page: e0177978 year: 2017 ident: 3849_CR31 publication-title: PLoS One doi: 10.1371/journal.pone.0177978 – volume: 30 start-page: 2725 year: 2013 ident: 3849_CR33 publication-title: Mol Biol Evol doi: 10.1093/molbev/mst197 – start-page: 283 volume-title: Heavy metals in soils: trace metals and metalloids in soils and their bioavailability year: 2013 ident: 3849_CR30 doi: 10.1007/978-94-007-4470-7_10 – volume: 122 start-page: 431 year: 2014 ident: 3849_CR2 publication-title: Environ Health Perspect doi: 10.1289/ehp.1307110 – volume: 2 start-page: 286 year: 2012 ident: 3849_CR18 publication-title: Sci Rep doi: 10.1038/srep00286 – volume: 121 start-page: 1047 year: 2010 ident: 3849_CR44 publication-title: Theor Appl Genet doi: 10.1007/s00122-010-1370-1 – volume: 18 start-page: 92 year: 2013 ident: 3849_CR8 publication-title: Trends Plant Sci doi: 10.1016/j.tplants.2012.08.003 – volume: 3 start-page: 946 year: 2017 ident: 3849_CR51 publication-title: Nat Plants doi: 10.1038/s41477-017-0067-8 – volume: 73 start-page: 26 year: 2000 ident: 3849_CR43 publication-title: Int Arch Occup Environ Health doi: 10.1007/PL00007934 – volume: 219 start-page: 99 year: 2016 ident: 3849_CR52 publication-title: Environ Pollut doi: 10.1016/j.envpol.2016.10.043 – ident: 3849_CR16 – volume: 8 start-page: e1002923 year: 2012 ident: 3849_CR5 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002923 – volume: 116 start-page: 73 year: 2002 ident: 3849_CR14 publication-title: Physiol Plant doi: 10.1034/j.1399-3054.2002.1160109.x – volume: 49 start-page: 750 year: 2015 ident: 3849_CR50 publication-title: Environ Sci Technol doi: 10.1021/es5047099 – volume: 60 start-page: 2677 year: 2009 ident: 3849_CR39 publication-title: J Exp Bot doi: 10.1093/jxb/erp119 – volume: 62 start-page: 4843 year: 2011 ident: 3849_CR32 publication-title: J Exp Bot doi: 10.1093/jxb/err136 – volume: 185 start-page: 9843 year: 2013 ident: 3849_CR10 publication-title: Environ Monit Assess doi: 10.1007/s10661-013-3296-y – volume: 53 start-page: 213 year: 2012 ident: 3849_CR28 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcr166 – volume: 980 start-page: 1 year: 2009 ident: 3849_CR12 publication-title: EFSA J – volume: 65 start-page: 4849 year: 2014 ident: 3849_CR49 publication-title: J Exp Bot doi: 10.1093/jxb/eru259 – volume: 52 start-page: 464 year: 2006 ident: 3849_CR24 publication-title: Soil Sci Plant Nutr doi: 10.1111/j.1747-0765.2006.00055.x – volume: 144 start-page: 346 year: 2016 ident: 3849_CR41 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2015.09.001 – volume: 9 start-page: 645 year: 2018 ident: 3849_CR21 publication-title: Nat Commun doi: 10.1038/s41467-018-03088-0 – volume: 21 start-page: 990 year: 2014 ident: 3849_CR11 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.2904 – volume: 47 start-page: 5613 year: 2013 ident: 3849_CR22 publication-title: Environ Sci Technol doi: 10.1021/es400521h – start-page: 445 volume-title: Handbook on the Toxicology of Metals year: 2007 ident: 3849_CR26 doi: 10.1016/B978-012369413-3/50078-1 – volume: 1 start-page: 13 year: 2015 ident: 3849_CR4 publication-title: Current Pollut Rep doi: 10.1007/s40726-015-0002-4 – volume: 238 start-page: 192 year: 2009 ident: 3849_CR25 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2009.03.015 – ident: 3849_CR1 – volume: 7 year: 2017 ident: 3849_CR34 publication-title: Sci Rep doi: 10.1038/s41598-017-14832-9 – volume: 10 start-page: 2551 year: 2012 ident: 3849_CR13 publication-title: EFSA J doi: 10.2903/j.efsa.2012.2551 – volume: 162 start-page: 927 year: 2013 ident: 3849_CR47 publication-title: Plant Physiol doi: 10.1104/pp.113.216564 – volume: 39 start-page: 1941 year: 2016 ident: 3849_CR48 publication-title: Plant Cell Environ doi: 10.1111/pce.12747 – volume: 172 start-page: 1899 year: 2016 ident: 3849_CR45 publication-title: Plant Physiol doi: 10.1104/pp.16.01189 – volume: 45 start-page: 4249 year: 2011 ident: 3849_CR20 publication-title: Environ Sci Technol doi: 10.1021/es103971y – volume: 109 start-page: 19166 year: 2012 ident: 3849_CR17 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1211132109 – volume: 238 start-page: 482 year: 2018 ident: 3849_CR6 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.03.048 – volume: 24 start-page: 2155 year: 2012 ident: 3849_CR27 publication-title: Plant Cell doi: 10.1105/tpc.112.096925 – volume: 281 start-page: 165 year: 2001 ident: 3849_CR29 publication-title: Sci Total Environ doi: 10.1016/S0048-9697(01)00844-0 – start-page: 138 volume-title: The Nexus of soils, plants, animals and human health year: 2017 ident: 3849_CR42 – volume: 16 start-page: 328 year: 2013 ident: 3849_CR38 publication-title: Curr Opin Plant Biol doi: 10.1016/j.pbi.2013.03.012 – volume: 108 start-page: 20959 year: 2011 ident: 3849_CR40 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1116531109 – volume: 67 start-page: 489 year: 2016 ident: 3849_CR7 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev-arplant-043015-112301 – volume: 167 start-page: 391 year: 2005 ident: 3849_CR15 publication-title: New Phytol doi: 10.1111/j.1469-8137.2005.01416.x – volume: 58 start-page: 1583 year: 2017 ident: 3849_CR35 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcx087 – volume: 43 start-page: 9361 year: 2009 ident: 3849_CR3 publication-title: Environ Sci Technol doi: 10.1021/es9022738 |
SSID | ssj0003216 |
Score | 2.616776 |
Snippet | Background and aims Cereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are... Background and aims Cereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are... Background and aimsCereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are... BACKGROUND AND AIMS: Cereals are the main dietary source of cadmium (Cd). Rice grains often contain higher levels of Cd than other cereals, but the reasons are... |
SourceID | proquest crossref springer jstor |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 377 |
SubjectTerms | Biomedical and Life Sciences Cadmium Cereals Corn crops Cultivars Ecology Gene expression Genes Hydroponics Life Sciences Oryza Plant Physiology Plant Sciences plasma membrane Proteins Regular Article Rice roots Soil Science & Conservation Translocation Transport Triticum Wheat Yeast yeasts Zea mays |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Rb9MwED5BxwM8IBhMCwxkJJ5AFo0dx84T2tCmCYkKISb1Lbo4NqvWpqVrBePX43OdVkNib4lycaKcfffl7vwdwFtfopeVz7nCPPygtEZydLbiTYUovHIoStrv_GVUnl8Un8dqnAJu16mssreJ0VC3c0sx8g8iGFttiP7u4-Inp65RlF1NLTTuw14wwcYMYO_kdPT129YWSxGbn9IBH-pq3Oc14-a54PmoAsNwaYqKq1ueaVOceAt2_pMpjQ7o7Ak8TsiRHW9U_RTuuW4fHh3_WCb2DLcPD07mAevdPIPL0RJnC8Xc71Tn2jHsWkZObBP7C9ibTSdXbnpDMlOcdOwyVnwwi-1ssp6x9WKFV46FC0Q7xCjCTie_yHjHwWY4-eOew8XZ6fdP5zz1VOC2kHrFpfUuQDqb-9Zo7WVB9O--scL5Ii9aLE0TIFIpG68RXUP0eblsVGssalRmKA9g0M07dwjMOasbXwllMFqCgCS9kKr1urDoqzKDYf89a5sIx6nvxbTeUSWTCuqggppUUKsM3m1vWWzYNu4SPohK2koGrKGCfdIZHPVaq9OKvK538yeDN9vLYS1RggQ7N1-TDNHzicLIDN732t4N8d83eXH3A1_CQ0HTLBbBHMFgtVy7VwHKrJrXab7-BcZd79A priority: 102 providerName: ProQuest |
Title | Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize |
URI | https://www.jstor.org/stable/26653227 https://link.springer.com/article/10.1007/s11104-018-3849-5 https://www.proquest.com/docview/2130789659 https://www.proquest.com/docview/2176352483 |
Volume | 433 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RixMxEB70TkEfRKuHq-cRwSdloZtsNtnHVlsPxSJioT4ts9nkrly7Lb0Wrb_eTLrbcqKCT9klsyHsJDNfMpMvAK9chk7kLoklJn6BUmkRozV5XOaI3EmLPKPzzp9G2fk4_TCRk-Yc93Wb7d6GJIOlPhx2856KMiZ0LHSax_I2HEu_dKc8rjHv7c2v4OG-U3qIuyqftKHMPzVxwxnt8hFvIM3fgqPB5wwfwoMGLLLeTruP4JatO3C_d7FqCDNsB-70Fx7ebTtwdxD4p7eP4XK0wvlSMvujSXKtGdYVIw-22_jzwJvNpld2tiWZGU5rdhnSPZjBaj7dzNlmucYry3wFcQ4x2l6nl-9kuUNjc5z-tE9gPBx8fXseNxcqxCYVah0L46zHcyZxlVbKiZS4311puHVpklaY6dLjo0yUTiHakrjzElHKShtUKHVXnMBRvajtU2DWGlW6nEuNwQx4GOm4kJVTqUGXZxF02z9bmIZtnC69mBUHnmRSRuGVUZAyChnB6_0nyx3Vxr-ET4K69pIeaEhvnFQEp63-imY6Xhfce2qliTsxgpf7aj-RKDqCtV1sSIa4-XiqRQRvWr0fmvhrT579l_RzuMdp_IWEmFM4Wq829oWHNevyDI57_Xf9IZXvv30c-LI_GH3-chaG9y_df_Jv |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwED6NDonxgGAwkTHASPACsmjsOHEeENpgU8e2CqFN6lu4ODar1qalazXKH8XfiC9NWg2Jve0tkX8k8p3vPtvn7wBeuxidTF3IFYZ-gVJoydGalOcponDKoojpvvNJN-6cRV96qrcGf5q7MBRW2djEylAXI0N75O-FN7aJJvq7j-OfnLJG0elqk0JjoRZHdn7ll2yXHw4_e_m-EeJg__RTh9dZBbiJZDLl0jjrQY0JXaGTxMmICNBdboR1URgVGOvcg4RY5i5BtDkRyIUyV4U2mKDSben7vQPrkYzbogXre_vdr9-Wtl-KKtkqPXDfsteco1aX9bynpYgPzaWOUq6uecJFMOQ1mPvPyWzl8A4ewoMaqbLdhWo9gjVbbsL93R-Tmq3DbsLdvZHHlvPHcN6d4HCsmP1Vx9WWDMuCkdNc7DV6rM8G_Qs7mFOdAfZLdl5FmDCDxbA_G7LZeIoXlvkCojlitKNPL1fkLKrOhtj_bZ_A2a2M9ha0ylFpnwKz1iS5S4XSWFkej1ydkKpwSWTQpXEA7WY8M1MTnFOejUG2omYmEWReBBmJIFMBvF02GS_YPW6qvFUJaVnTYxvl7WESwE4jtay2AJfZSl8DeLUs9nOXDmSwtKMZ1SE6QBFpGcC7RtqrLv77J9s3f_Al3Oucnhxnx4fdo2ewIUjlqgCcHWhNJzP73MOoaf6i1l0G3297uvwFJCotQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NDiF4QDCYCAwwEryArC12HCcPCG1s1cagmhCT-hYujs2qtWnpWo3yp_HX4ctHqyGxt70l8kci3_nuZ_v8O4DXLkYnUxdyhaFfoBSJ5GhNyvMUUThlUcR03_lLLz48jT71VX8N_rR3YSissrWJlaEuxob2yLeFN7Y6Ifq7bdeERZzsdz9MfnLKIEUnrW06jVpFju3i0i_fLt4f7XtZvxGie_Dt4yFvMgxwE0k949I46wGOCV2RaO1kRGToLjfCuiiMCoyT3AOGWOZOI9qcyORCmasiMahRJTvS93sL1jWtijqwvnfQO_m69ANSVIlX6YH7lv32TLW6uOe9LkV_JFwmUcrVFa9YB0Zegbz_nNJWzq_7AO43qJXt1mr2ENZsuQH3dn9MG-YOuwG398YeZy4ewVlviqOJYvZXE2NbMiwLRg603nf0uJ8NB-d2uKA6QxyU7KyKNmEGi9FgPmLzyQzPLfMFRHnEaHefXi7JcVSdjXDw2z6G0xsZ7U3olOPSPgFmrdG5S4VKsLJCHsU6IVXhdGTQpXEAO-14ZqYhO6ecG8NsRdNMIsi8CDISQaYCeLtsMqmZPq6rvFkJaVnT4xzlbaMOYKuVWtZYg4tspbsBvFoW-3lMhzNY2vGc6hA1oIgSGcC7VtqrLv77J0-v_-BLuOOnSfb5qHf8DO4K0rgqFmcLOrPp3D73iGqWv2hUl8H3m54tfwE5ZjF1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nramp5+expression+and+functionality+likely+explain+higher+cadmium+uptake+in+rice+than+in+wheat+and+maize&rft.jtitle=Plant+and+soil&rft.au=Sui%2C+Fu-Qing&rft.au=Chang%2C+Jia-Dong&rft.au=Tang%2C+Zhong&rft.au=Liu%2C+Wen-Ju&rft.date=2018-12-01&rft.issn=0032-079X&rft.volume=433&rft.issue=1-2+p.377-389&rft.spage=377&rft.epage=389&rft_id=info:doi/10.1007%2Fs11104-018-3849-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-079X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-079X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-079X&client=summon |