Persistent Directional Current at Equilibrium in Nonreciprocal Many-Body Near Field Electromagnetic Heat Transfer
We consider the consequence of nonreciprocity in near-field heat transfer by studying systems consisting of magneto-optical nanoparticles. We demonstrate that, in thermal equilibrium, a nonreciprocal many-body system in heat transfer can support a persistent directional heat current, without violati...
Saved in:
Published in | Physical review letters Vol. 117; no. 13; p. 134303 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
23.09.2016
|
Online Access | Get more information |
Cover
Loading…
Abstract | We consider the consequence of nonreciprocity in near-field heat transfer by studying systems consisting of magneto-optical nanoparticles. We demonstrate that, in thermal equilibrium, a nonreciprocal many-body system in heat transfer can support a persistent directional heat current, without violating the second law of thermodynamics. Such a persistent directional heat current cannot occur in reciprocal systems, and can only arise in many-body systems in heat transfer. The use of nonreciprocity therefore points to a new regime of near-field heat transfer for the control of heat flow in the nanoscale. |
---|---|
AbstractList | We consider the consequence of nonreciprocity in near-field heat transfer by studying systems consisting of magneto-optical nanoparticles. We demonstrate that, in thermal equilibrium, a nonreciprocal many-body system in heat transfer can support a persistent directional heat current, without violating the second law of thermodynamics. Such a persistent directional heat current cannot occur in reciprocal systems, and can only arise in many-body systems in heat transfer. The use of nonreciprocity therefore points to a new regime of near-field heat transfer for the control of heat flow in the nanoscale. |
Author | Fan, Shanhui Zhu, Linxiao |
Author_xml | – sequence: 1 givenname: Linxiao surname: Zhu fullname: Zhu, Linxiao organization: Department of Applied Physics, Stanford University, Stanford, California 94305, USA – sequence: 2 givenname: Shanhui surname: Fan fullname: Fan, Shanhui organization: Department of Electrical Engineering, Ginzton Laboratory, Stanford University, Stanford, California 94305, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27715122$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j9FKwzAYRoMozk1fYeQFOpM_TbNc6tycMKcX83qk7V-NtGmXpELf3op69cHhcOCbknPXOiRkztmCcyZuu48hePyqMcYRqAUXqWDijFxxpnSiOE8nZBrCJ2OMQ7a8JBNQiksOcEVOr-iDDRFdpA_WYxFt60xNV733P8xEuj71tra5t31DraP71o2a7XxbjN6zcUNy35YD3aPxdGOxLum6Hju-bcy7w2gLusUxc_DGhQr9NbmoTB3w5m9n5G2zPqy2ye7l8Wl1t0uKVKiYiEyXKTdMVVKzJVQFoskU1yxVUMhSZoCoqwwlSoCS55AbA1IxoUFqCSnMyPy32_V5g-Wx87Yxfjj-f4dvId1f6Q |
CitedBy_id | crossref_primary_10_1063_5_0057446 crossref_primary_10_1103_PhysRevB_101_085407 crossref_primary_10_1103_PhysRevApplied_21_064022 crossref_primary_10_1103_PhysRevE_104_014601 crossref_primary_10_1103_PhysRevB_101_085411 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122635 crossref_primary_10_1103_PhysRevB_106_235430 crossref_primary_10_1103_PhysRevB_100_035414 crossref_primary_10_1103_PhysRevB_99_201406 crossref_primary_10_1364_OL_43_005623 crossref_primary_10_1016_j_icheatmasstransfer_2023_107137 crossref_primary_10_1103_PhysRevApplied_20_014053 crossref_primary_10_1103_PhysRevB_97_201406 crossref_primary_10_1103_PhysRevB_111_L121405 crossref_primary_10_1103_PhysRevLett_131_040401 crossref_primary_10_1016_j_mtphys_2024_101489 crossref_primary_10_1103_PhysRevB_108_064307 crossref_primary_10_1103_PhysRevB_95_115103 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124081 crossref_primary_10_1364_OME_435823 crossref_primary_10_1038_s41566_024_01409_y crossref_primary_10_1016_j_jqsrt_2024_109260 crossref_primary_10_1103_PhysRevApplied_13_024054 crossref_primary_10_1103_PhysRevB_111_035441 crossref_primary_10_1016_j_jqsrt_2020_107404 crossref_primary_10_1007_s11467_023_1260_z crossref_primary_10_1063_5_0142651 crossref_primary_10_1103_PhysRevApplied_15_064073 crossref_primary_10_1103_PhysRevB_104_165407 crossref_primary_10_1021_acsphotonics_1c01294 crossref_primary_10_1051_epjconf_202023810001 crossref_primary_10_1103_PhysRevB_95_235428 crossref_primary_10_1038_s41467_017_02678_8 crossref_primary_10_1364_OPTICA_6_000104 crossref_primary_10_1038_s41578_021_00283_2 crossref_primary_10_1103_PhysRevB_101_155428 crossref_primary_10_1016_j_jqsrt_2020_106904 crossref_primary_10_1021_acsaom_4c00030 crossref_primary_10_1038_s41565_019_0595_7 crossref_primary_10_1103_PhysRevLett_130_096902 crossref_primary_10_1103_PhysRevLett_134_113804 crossref_primary_10_1016_j_jqsrt_2020_107279 crossref_primary_10_1103_PhysRevLett_133_113805 crossref_primary_10_1021_acsphotonics_4c01379 crossref_primary_10_1103_PhysRevB_108_205142 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121794 crossref_primary_10_1021_acsphotonics_1c01561 crossref_primary_10_1103_PhysRevB_104_024301 crossref_primary_10_1364_OME_444308 crossref_primary_10_1103_PhysRevLett_126_193601 crossref_primary_10_1038_s41598_020_60603_4 crossref_primary_10_1103_PhysRevB_99_125155 crossref_primary_10_1103_PhysRevB_107_205405 crossref_primary_10_1103_PhysRevApplied_16_044047 crossref_primary_10_1021_acsphotonics_8b01585 crossref_primary_10_1103_PhysRevApplied_18_027001 crossref_primary_10_1103_PhysRevB_102_085403 crossref_primary_10_1209_0295_5075_127_44001 crossref_primary_10_1103_PhysRevB_102_085401 crossref_primary_10_1103_PhysRevB_106_235412 crossref_primary_10_1063_5_0187105 crossref_primary_10_1021_acsphotonics_1c01350 crossref_primary_10_1103_RevModPhys_93_025009 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122796 crossref_primary_10_1103_PhysRevX_12_021023 crossref_primary_10_1186_s43593_022_00025_z crossref_primary_10_1103_PhysRevB_100_205422 crossref_primary_10_1117_1_JPE_9_015501 crossref_primary_10_1364_OL_44_004203 crossref_primary_10_1103_PhysRevB_106_115106 crossref_primary_10_1209_0295_5075_130_44003 crossref_primary_10_1103_PhysRevE_105_064111 crossref_primary_10_1016_j_jqsrt_2020_107337 crossref_primary_10_1103_PhysRevB_109_075413 crossref_primary_10_1051_epjconf_202226607001 crossref_primary_10_1073_pnas_2401514121 crossref_primary_10_1021_acsphotonics_8b01031 crossref_primary_10_1021_acsphotonics_7b01223 crossref_primary_10_1103_PhysRevB_95_205404 crossref_primary_10_1103_PhysRevB_100_205416 crossref_primary_10_1103_PhysRevB_104_245433 crossref_primary_10_1103_PhysRevB_105_205422 crossref_primary_10_1103_PhysRevB_101_241411 crossref_primary_10_1103_PhysRevLett_121_023903 crossref_primary_10_1103_PhysRevApplied_19_024019 crossref_primary_10_1103_PhysRevX_9_011037 crossref_primary_10_1103_PhysRevB_110_045103 crossref_primary_10_1103_PhysRevLett_126_170401 crossref_primary_10_1103_PhysRevLett_130_110401 crossref_primary_10_1103_PhysRevA_96_062505 crossref_primary_10_1021_acsphotonics_4c01622 crossref_primary_10_1103_PhysRevB_97_205414 crossref_primary_10_1088_1367_2630_ab494d crossref_primary_10_1103_PhysRevA_99_062509 crossref_primary_10_1103_PhysRevLett_127_247401 crossref_primary_10_1103_PhysRevResearch_2_043343 crossref_primary_10_1103_PhysRevB_101_041409 crossref_primary_10_1038_s41467_018_08215_5 crossref_primary_10_1016_j_jqsrt_2020_106947 crossref_primary_10_1103_PhysRevApplied_11_054020 crossref_primary_10_1103_PhysRevB_97_094302 crossref_primary_10_1103_PhysRevA_108_042201 crossref_primary_10_1103_PhysRevLett_118_173902 crossref_primary_10_1103_PhysRevB_103_115440 crossref_primary_10_1364_JOSAB_36_000935 crossref_primary_10_1103_PhysRevB_98_144101 crossref_primary_10_1016_j_icheatmasstransfer_2024_107251 crossref_primary_10_1103_PhysRevB_103_075432 crossref_primary_10_1021_acsnano_4c11893 crossref_primary_10_1103_PhysRevB_102_115417 crossref_primary_10_7498_aps_74_20241565 crossref_primary_10_1186_s43593_022_00036_w crossref_primary_10_1016_j_ijheatmasstransfer_2019_05_102 crossref_primary_10_1126_science_abm9293 crossref_primary_10_1063_1_5093626 crossref_primary_10_1103_PhysRevApplied_18_034083 crossref_primary_10_1016_j_mtphys_2022_100891 crossref_primary_10_1103_PhysRevA_96_033831 crossref_primary_10_1117_1_JPE_9_032702 crossref_primary_10_1021_acsnano_7b08231 crossref_primary_10_1515_nanoph_2019_0092 crossref_primary_10_1103_PhysRevX_10_021036 crossref_primary_10_1038_s41598_020_65555_3 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123318 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1103/physrevlett.117.134303 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
ExternalDocumentID | 27715122 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 |
ID | FETCH-LOGICAL-c437t-369d41a07f59082fceea67190472c5d562ee9f6e5e522d1b2baa2570392595242 |
IngestDate | Thu Jan 02 23:10:12 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-369d41a07f59082fceea67190472c5d562ee9f6e5e522d1b2baa2570392595242 |
PMID | 27715122 |
ParticipantIDs | pubmed_primary_27715122 |
PublicationCentury | 2000 |
PublicationDate | 2016-09-23 |
PublicationDateYYYYMMDD | 2016-09-23 |
PublicationDate_xml | – month: 09 year: 2016 text: 2016-09-23 day: 23 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2016 |
SSID | ssj0001268 |
Score | 2.5898657 |
Snippet | We consider the consequence of nonreciprocity in near-field heat transfer by studying systems consisting of magneto-optical nanoparticles. We demonstrate that,... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 134303 |
Title | Persistent Directional Current at Equilibrium in Nonreciprocal Many-Body Near Field Electromagnetic Heat Transfer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27715122 |
Volume | 117 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBb9QaEvpe26tes29LC3oiy2Zdl6XEdCGTT0IYHQlyLZ8hJY7KZ1YNtfvztJdrI0ZVtfjLGwEbrP5-_O950I-Sh1qgqeSgbxj2bcBCGTKs6ZEGmX6zwKlP0Vcz0QVyP-dRyPl2VFVl1S6072a6Ou5CVWhWtgV1TJ_odl24fCBTgH-8IRLAzHf7Ixlq-jmcq6cV02r9f0XILYvzdfTG1V_2KGmY1BVWI3C_xqoSYXHAG7rPKf4OrUw0Ufi9kuem5fnJn6VqK-EXVKtWuBXvhCXk9lbxoLe_XLdysMain67WThY_4fU1W1MPH51okqJ4vpasohEFgf4VTBHePcZDeRLAmc_LP1o06E2QAmWnGLQcQj28pgg8fuYucITOPAbHGm-Bu58_QGWPn7mbVjmCRIU8K_j6510m6Gtsk2xBS4SSpmdvabfJxIvYIcpvRp84SwdbR_yFoYYunI8JAc-DiCfnagOCJbpjwme84mj6_IfAkNugIN6qFBVU1XoEGnJf0DGrSFBkVoUAsNugYNitCgDTROyKjfG365Yn53DZbxKKlZJGTO4VVMCrvtfQFsSYkE-CFPwizOgRcbIwthYgMUPQ90qJXCLQ-BUMcyBmb3muyUVWlOCZUiMFEG5C_TBVdcKhOmsQKiyOF7mGt9Rt64tbq7dy1U7ppVfPvsyDnZX0LvHdkt4J0174EA1vqDtdxvTZJeOA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+Directional+Current+at+Equilibrium+in+Nonreciprocal+Many-Body+Near+Field+Electromagnetic+Heat+Transfer&rft.jtitle=Physical+review+letters&rft.au=Zhu%2C+Linxiao&rft.au=Fan%2C+Shanhui&rft.date=2016-09-23&rft.eissn=1079-7114&rft.volume=117&rft.issue=13&rft.spage=134303&rft_id=info:doi/10.1103%2Fphysrevlett.117.134303&rft_id=info%3Apmid%2F27715122&rft_id=info%3Apmid%2F27715122&rft.externalDocID=27715122 |