Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance

A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) bonded with NH2-MIL-125(Ti) or NH2-UiO-66(Zr) via amide bonds are obtained. The resultant hybrid materials show superior photocatalytic activ...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 243; pp. 621 - 628
Main Authors Li, Fei, Wang, Dengke, Xing, Qiu-Ju, Zhou, Gang, Liu, Shan-Shan, Li, Yan, Zheng, Ling-Ling, Ye, Peng, Zou, Jian-Ping
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.04.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) bonded with NH2-MIL-125(Ti) or NH2-UiO-66(Zr) via amide bonds are obtained. The resultant hybrid materials show superior photocatalytic activity and higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. [Display omitted] •A novel strategy based on postsynthetic modification was proposed for fabrication of MOF/COF hybrids.•The as-prepared MOF/COF hybrids show superior photocatalytic performance of hydrogen evolution.•The role of as-formed amide bonds in MOF/COF hybrids was well investigated.•MOF/COF hybrids exhibit high stability and reusability during the catalytic reaction.•A mechanism for enhanced photocatalytic hydrogen evolution over MOF/COF hybrids was proposed. The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we report a novel strategy based on postsynthetic covalent modification for fabrication of hierarchical porous metal-organic frameworks/covalent organic frameworks (MOF/COF) hybrid materials. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) are covalently bonded with MOFs (NH2-MIL-125(Ti) or NH2-UiO-66(Zr)) by using this strategy. Photocatalytic results show that the hydrogen production rate over 15 wt% NH2-MIL-125(Ti)/B-CTF-1 (15TBC) is 360 μmol·h−1·g−1 under visible light irradiation, which is more than twice as much as that of the B-CTF-1. Meanwhile, the hybrid materials show higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. Photoelectrochemical analyses and controlled experiments indicate that the superior photocatalytic performance of the MOF/COF hybrids can be attributed to the formation of amide bonds between B-CTF-1 and MOFs, which facilitate the charge separation efficiency and improve the stability of the photocatalyst. Finally, a possible mechanism to well explain the improved photocatalytic performance of the photocatalytic system was proposed. The present work provides a new idea to construct highly efficient and stable MOF/COF hybrid systems and broaden the applications of COF-based materials.
AbstractList A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) bonded with NH2-MIL-125(Ti) or NH2-UiO-66(Zr) via amide bonds are obtained. The resultant hybrid materials show superior photocatalytic activity and higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. [Display omitted] •A novel strategy based on postsynthetic modification was proposed for fabrication of MOF/COF hybrids.•The as-prepared MOF/COF hybrids show superior photocatalytic performance of hydrogen evolution.•The role of as-formed amide bonds in MOF/COF hybrids was well investigated.•MOF/COF hybrids exhibit high stability and reusability during the catalytic reaction.•A mechanism for enhanced photocatalytic hydrogen evolution over MOF/COF hybrids was proposed. The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we report a novel strategy based on postsynthetic covalent modification for fabrication of hierarchical porous metal-organic frameworks/covalent organic frameworks (MOF/COF) hybrid materials. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) are covalently bonded with MOFs (NH2-MIL-125(Ti) or NH2-UiO-66(Zr)) by using this strategy. Photocatalytic results show that the hydrogen production rate over 15 wt% NH2-MIL-125(Ti)/B-CTF-1 (15TBC) is 360 μmol·h−1·g−1 under visible light irradiation, which is more than twice as much as that of the B-CTF-1. Meanwhile, the hybrid materials show higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. Photoelectrochemical analyses and controlled experiments indicate that the superior photocatalytic performance of the MOF/COF hybrids can be attributed to the formation of amide bonds between B-CTF-1 and MOFs, which facilitate the charge separation efficiency and improve the stability of the photocatalyst. Finally, a possible mechanism to well explain the improved photocatalytic performance of the photocatalytic system was proposed. The present work provides a new idea to construct highly efficient and stable MOF/COF hybrid systems and broaden the applications of COF-based materials.
The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we report a novel strategy based on postsynthetic covalent modification for fabrication of hierarchical porous metal-organic frameworks/covalent organic frameworks (MOF/COF) hybrid materials. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) are covalently bonded with MOFs (NH2-MIL-125(Ti) or NH2-UiO-66(Zr)) by using this strategy. Photocatalytic results show that the hydrogen production rate over 15 wt% NH2-MIL-125(Ti)/B-CTF-1 (15TBC) is 360 μmol·h−1·g−1 under visible light irradiation, which is more than twice as much as that of the B-CTF-1. Meanwhile, the hybrid materials show higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. Photoelectrochemical analyses and controlled experiments indicate that the superior photocatalytic performance of the MOF/COF hybrids can be attributed to the formation of amide bonds between B-CTF-1 and MOFs, which facilitate the charge separation efficiency and improve the stability of the photocatalyst. Finally, a possible mechanism to well explain the improved photocatalytic performance of the photocatalytic system was proposed. The present work provides a new idea to construct highly efficient and stable MOF/COF hybrid systems and broaden the applications of COF-based materials.
Author Liu, Shan-Shan
Ye, Peng
Zheng, Ling-Ling
Zou, Jian-Ping
Li, Yan
Li, Fei
Wang, Dengke
Xing, Qiu-Ju
Zhou, Gang
Author_xml – sequence: 1
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
– sequence: 2
  givenname: Dengke
  surname: Wang
  fullname: Wang, Dengke
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
– sequence: 3
  givenname: Qiu-Ju
  surname: Xing
  fullname: Xing, Qiu-Ju
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
– sequence: 4
  givenname: Gang
  surname: Zhou
  fullname: Zhou, Gang
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
– sequence: 5
  givenname: Shan-Shan
  surname: Liu
  fullname: Liu, Shan-Shan
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
– sequence: 6
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
– sequence: 7
  givenname: Ling-Ling
  surname: Zheng
  fullname: Zheng, Ling-Ling
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
– sequence: 8
  givenname: Peng
  surname: Ye
  fullname: Ye, Peng
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
– sequence: 9
  givenname: Jian-Ping
  surname: Zou
  fullname: Zou, Jian-Ping
  email: zjp_112@126.com
  organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China
BookMark eNqFUcuOEzEQtNAikV34Aw6WOE_Wj4nH2QPSKhBAWpQLnC3H0046mtiD7Y00_8RH4iGcOMDJdndVdZfrltyEGICQt5wtOePq_rS0o7NlvxSM61pasla-IAuuO9lIreUNWbC1UI2UnXxFbnM-McaEFHpBfn6AjIdAbehpnkI5QoZMo6dfd9v7zW5Lj9M-YU_PtkBCO2R6QUvHmMsVXdBRFy92gFDoOfbosW6CMTzQx0DB1yfOrVxSVThMtES6j5VOK7lqZdwP0Ax4OJamT3iBQMdjLLGK2GGa1UdIPqazDQ5ek5e-rgBv_px35Pv247fN5-Zp9-nL5vGpca3sSiN8t1bCr9r1ykshO66UboWsvW7tGePgVvXSAoBgSggtWyW0Ytq1TLm-A3lH3l11xxR_PEMu5hSfU6gjjeCKCy2EZBX1cEW5FHNO4I3D8tt79YqD4czM6ZiTuaZj5nTmak2nktu_yGPCs03T_2jvrzSo9i8IyeT5fx30mMAV00f8t8AvxUmwIg
CitedBy_id crossref_primary_10_1016_j_bios_2019_111699
crossref_primary_10_1016_j_chemosphere_2024_141143
crossref_primary_10_1016_j_foodchem_2022_133056
crossref_primary_10_1039_D1TA04493A
crossref_primary_10_1039_D1TA06006F
crossref_primary_10_1002_rcm_8909
crossref_primary_10_1039_D0TA00364F
crossref_primary_10_1016_j_polymer_2024_127973
crossref_primary_10_1016_j_matchemphys_2020_122659
crossref_primary_10_1002_ange_201904766
crossref_primary_10_1007_s44169_022_00018_6
crossref_primary_10_1016_j_micromeso_2020_110713
crossref_primary_10_1002_adfm_202419735
crossref_primary_10_1002_aic_17906
crossref_primary_10_1016_j_seppur_2022_122848
crossref_primary_10_1016_j_jechem_2024_03_042
crossref_primary_10_1016_j_jhazmat_2020_125021
crossref_primary_10_1021_acs_inorgchem_4c04859
crossref_primary_10_1021_acs_langmuir_9b03786
crossref_primary_10_1021_acs_chemrev_2c00460
crossref_primary_10_1002_adma_202405399
crossref_primary_10_1016_j_fuel_2023_129470
crossref_primary_10_1021_acsami_3c15490
crossref_primary_10_1002_adfm_202304071
crossref_primary_10_1016_j_ccr_2022_214602
crossref_primary_10_1016_j_jechem_2020_10_008
crossref_primary_10_1039_D0CE01363C
crossref_primary_10_1002_cctc_202401977
crossref_primary_10_1016_j_jclepro_2024_143263
crossref_primary_10_1002_adfm_202304990
crossref_primary_10_1016_j_cej_2022_137011
crossref_primary_10_1016_j_cemconcomp_2022_104406
crossref_primary_10_1016_j_enchem_2022_100078
crossref_primary_10_1016_j_jchromb_2019_121831
crossref_primary_10_1016_j_mtchem_2024_101927
crossref_primary_10_1016_j_ccr_2024_215926
crossref_primary_10_1002_aenm_202003052
crossref_primary_10_1016_j_compscitech_2022_109788
crossref_primary_10_1016_j_foodchem_2022_134818
crossref_primary_10_1016_j_mtchem_2022_100832
crossref_primary_10_1007_s40820_023_01180_9
crossref_primary_10_1002_cctc_201900058
crossref_primary_10_1016_j_bios_2022_115017
crossref_primary_10_1016_j_apsusc_2019_06_265
crossref_primary_10_1002_aoc_5631
crossref_primary_10_1002_batt_202000094
crossref_primary_10_1016_j_seppur_2024_130323
crossref_primary_10_1039_D4CE01293C
crossref_primary_10_1021_acs_iecr_9b03188
crossref_primary_10_1016_j_apcatb_2022_121791
crossref_primary_10_1016_j_flatc_2025_100835
crossref_primary_10_1016_j_corsci_2020_108920
crossref_primary_10_1016_j_microc_2023_109214
crossref_primary_10_1021_acs_jpcc_2c03793
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_1016_j_jcis_2020_05_023
crossref_primary_10_1039_D3CY00869J
crossref_primary_10_1021_acsami_1c01131
crossref_primary_10_1016_j_apcatb_2020_118989
crossref_primary_10_12677_MS_2023_133013
crossref_primary_10_3390_coatings10121172
crossref_primary_10_1002_smll_202400259
crossref_primary_10_1021_acsanm_9b01102
crossref_primary_10_1021_acscatal_4c04888
crossref_primary_10_1016_j_apcatb_2020_119035
crossref_primary_10_1016_j_jmst_2024_04_052
crossref_primary_10_1002_chem_202101956
crossref_primary_10_1039_D4CY00531G
crossref_primary_10_1016_j_jcis_2020_07_121
crossref_primary_10_1021_acsanm_1c01466
crossref_primary_10_1016_j_jallcom_2020_156578
crossref_primary_10_1016_j_cej_2021_132401
crossref_primary_10_1007_s12274_022_4593_y
crossref_primary_10_1039_C9TA01942A
crossref_primary_10_1016_j_mtsust_2025_101096
crossref_primary_10_1016_j_jnoncrysol_2022_121870
crossref_primary_10_1002_sstr_202000078
crossref_primary_10_1016_j_jechem_2019_07_014
crossref_primary_10_1007_s11356_024_34552_8
crossref_primary_10_1016_j_apcatb_2019_118462
crossref_primary_10_1016_j_cclet_2022_107903
crossref_primary_10_1039_D3NR02868B
crossref_primary_10_1016_j_apcatb_2019_118101
crossref_primary_10_1016_j_indcrop_2022_115829
crossref_primary_10_1021_acsami_4c19759
crossref_primary_10_1007_s10118_020_2394_x
crossref_primary_10_1016_j_cclet_2019_01_025
crossref_primary_10_1016_j_seppur_2024_128588
crossref_primary_10_1016_j_apcatb_2023_123317
crossref_primary_10_1016_j_memsci_2022_120394
crossref_primary_10_1007_s42114_022_00432_3
crossref_primary_10_1039_D0CS00278J
crossref_primary_10_1016_j_chemosphere_2021_131646
crossref_primary_10_1039_D0NR03041D
crossref_primary_10_1016_j_cej_2022_139114
crossref_primary_10_1016_j_jallcom_2019_152519
crossref_primary_10_1016_j_apcatb_2020_119733
crossref_primary_10_1002_solr_202000458
crossref_primary_10_1016_j_mtchem_2022_101209
crossref_primary_10_1039_D0TA00901F
crossref_primary_10_1007_s12598_019_01259_6
crossref_primary_10_1021_acs_langmuir_1c02253
crossref_primary_10_1016_j_jcis_2024_02_167
crossref_primary_10_1007_s11705_019_1872_6
crossref_primary_10_1016_j_apcatb_2020_119174
crossref_primary_10_1016_j_chemosphere_2021_132743
crossref_primary_10_1039_D2NR05076E
crossref_primary_10_1016_j_mtchem_2023_101505
crossref_primary_10_1016_j_ijhydene_2022_08_060
crossref_primary_10_1002_cssc_202400556
crossref_primary_10_1039_D4TA01108B
crossref_primary_10_1002_cssc_202100837
crossref_primary_10_1002_EXP_20220144
crossref_primary_10_1016_j_jclepro_2021_125822
crossref_primary_10_1016_j_matlet_2019_02_124
crossref_primary_10_1021_acsami_2c02439
crossref_primary_10_1016_j_ijhydene_2020_07_143
crossref_primary_10_1002_cjoc_202200571
crossref_primary_10_1021_acsaem_0c02102
crossref_primary_10_1016_j_talanta_2024_125959
crossref_primary_10_1016_j_jechem_2023_12_029
crossref_primary_10_1021_acs_inorgchem_0c00422
crossref_primary_10_1039_D3TA04403C
crossref_primary_10_1039_D0NJ03692G
crossref_primary_10_1021_acs_jpcc_0c11551
crossref_primary_10_3390_molecules28020822
crossref_primary_10_1039_D0TA10165F
crossref_primary_10_1016_j_cej_2020_127011
crossref_primary_10_1002_advs_202101883
crossref_primary_10_1016_j_envpol_2019_03_096
crossref_primary_10_1021_acssuschemeng_1c04112
crossref_primary_10_1016_j_apcatb_2021_120108
crossref_primary_10_1088_1742_6596_2705_1_012006
crossref_primary_10_3390_catal10010103
crossref_primary_10_1016_j_jhazmat_2021_125835
crossref_primary_10_1016_j_jcis_2024_04_090
crossref_primary_10_1016_j_apcatb_2020_119633
crossref_primary_10_1016_j_talanta_2025_127990
crossref_primary_10_1039_D3TA00580A
crossref_primary_10_1016_j_apenergy_2024_124977
crossref_primary_10_1016_j_snb_2020_129144
crossref_primary_10_1002_admi_202201971
crossref_primary_10_1021_acsanm_4c00896
crossref_primary_10_1039_D0TA00818D
crossref_primary_10_1039_D3NJ00771E
crossref_primary_10_1016_j_inoche_2024_113262
crossref_primary_10_1016_j_jcis_2021_08_135
crossref_primary_10_1002_aenm_202303638
crossref_primary_10_1016_j_molliq_2025_126869
crossref_primary_10_1016_j_mssp_2023_107623
crossref_primary_10_1039_D3TC00757J
crossref_primary_10_1007_s10853_021_06321_2
crossref_primary_10_4155_bio_2023_0256
crossref_primary_10_1016_j_materresbull_2019_110584
crossref_primary_10_1016_j_microc_2019_104522
crossref_primary_10_1002_cctc_202301291
crossref_primary_10_1016_j_micromeso_2021_110957
crossref_primary_10_1002_aenm_202100346
crossref_primary_10_1016_j_chemosphere_2021_132795
crossref_primary_10_1016_j_ijhydene_2024_04_193
crossref_primary_10_1016_j_molstruc_2024_138475
crossref_primary_10_1021_acs_inorgchem_1c02673
crossref_primary_10_1021_acs_iecr_3c03776
crossref_primary_10_1016_j_jcis_2019_07_021
crossref_primary_10_1016_j_jpcs_2019_109199
crossref_primary_10_1039_D0TA03749D
crossref_primary_10_1021_acs_analchem_4c07058
crossref_primary_10_1016_j_molliq_2024_124850
crossref_primary_10_1016_j_seppur_2025_131794
crossref_primary_10_1016_j_apcatb_2019_118436
crossref_primary_10_1016_j_fuel_2022_124120
crossref_primary_10_1021_acsami_9b07874
crossref_primary_10_1016_j_gee_2021_02_001
crossref_primary_10_1016_j_jcis_2023_04_013
crossref_primary_10_1021_acsami_2c02917
crossref_primary_10_1002_solr_201900438
crossref_primary_10_1016_j_chroma_2020_461364
crossref_primary_10_1039_D1NJ00609F
crossref_primary_10_1007_s00604_024_06519_6
crossref_primary_10_1016_j_jssc_2023_124129
crossref_primary_10_1007_s12598_023_02539_y
crossref_primary_10_1021_acsami_1c03151
crossref_primary_10_1016_j_cej_2020_126886
crossref_primary_10_1016_j_fuel_2025_134416
crossref_primary_10_1515_revce_2024_0088
crossref_primary_10_1016_j_ccr_2025_216498
crossref_primary_10_1016_j_apcatb_2020_119782
crossref_primary_10_1021_acs_cgd_1c01071
crossref_primary_10_1002_aenm_202301918
crossref_primary_10_1016_S1872_2067_21_63892_5
crossref_primary_10_1016_j_ccr_2020_213266
crossref_primary_10_1016_j_trac_2022_116741
crossref_primary_10_1002_cssc_202002847
crossref_primary_10_1002_smll_202202928
crossref_primary_10_1016_j_ijhydene_2019_03_039
crossref_primary_10_1039_D4TA07330D
crossref_primary_10_1016_j_ccr_2022_214428
crossref_primary_10_1039_D0TA00556H
crossref_primary_10_1016_j_micromeso_2021_111386
crossref_primary_10_1016_j_apcatb_2022_121710
crossref_primary_10_1021_acsanm_1c02043
crossref_primary_10_1016_j_microc_2024_112181
crossref_primary_10_1016_j_cej_2019_122342
crossref_primary_10_1002_smtd_202200265
crossref_primary_10_1007_s42247_024_00788_w
crossref_primary_10_1002_sstr_202100176
crossref_primary_10_1016_j_envres_2023_117777
crossref_primary_10_1002_cplu_201900329
crossref_primary_10_1016_j_apcatb_2020_118586
crossref_primary_10_1016_S1872_2067_23_64457_2
crossref_primary_10_1016_j_jhazmat_2020_122865
crossref_primary_10_1002_adfm_202102511
crossref_primary_10_1016_j_jece_2024_111899
crossref_primary_10_1016_j_cej_2023_142806
crossref_primary_10_1016_j_talo_2023_100262
crossref_primary_10_1016_j_seppur_2022_120717
crossref_primary_10_1039_D3CS00302G
crossref_primary_10_1016_j_dyepig_2021_109588
crossref_primary_10_1016_j_ijhydene_2021_02_176
crossref_primary_10_1021_acsaem_2c03322
crossref_primary_10_1016_j_seppur_2021_120416
crossref_primary_10_1002_asia_202300033
crossref_primary_10_1002_cptc_202400131
crossref_primary_10_1016_j_apcatb_2021_120156
crossref_primary_10_1016_j_saa_2024_124915
crossref_primary_10_1016_j_apcatb_2019_118182
crossref_primary_10_1039_D1RA09063A
crossref_primary_10_1039_D0EE02309D
crossref_primary_10_1021_acssuschemeng_8b04917
crossref_primary_10_1002_smll_202408395
crossref_primary_10_1016_j_mtchem_2024_102140
crossref_primary_10_1039_D2RE00086E
crossref_primary_10_1039_D2NJ00945E
crossref_primary_10_1016_S1872_2067_20_63715_9
crossref_primary_10_1002_adfm_202305527
crossref_primary_10_1021_acs_energyfuels_3c00162
crossref_primary_10_1007_s10904_021_02150_7
crossref_primary_10_1016_S1872_2067_24_60132_4
crossref_primary_10_1016_j_apsusc_2019_06_247
crossref_primary_10_1016_j_molstruc_2020_127826
crossref_primary_10_1021_acs_inorgchem_1c02198
crossref_primary_10_1016_j_chroma_2020_461275
crossref_primary_10_1016_j_mtchem_2023_101577
crossref_primary_10_1016_j_apcatb_2021_120605
crossref_primary_10_1039_C9NJ05503G
crossref_primary_10_1016_j_ccr_2022_214889
crossref_primary_10_1039_D0AN01885F
crossref_primary_10_1039_D3QM00565H
crossref_primary_10_1016_j_molliq_2021_116108
crossref_primary_10_1039_D0CY00809E
crossref_primary_10_1039_D3TA05435G
crossref_primary_10_1016_j_fuel_2024_133271
crossref_primary_10_1021_acs_jpcc_9b07403
crossref_primary_10_1002_smll_202303884
crossref_primary_10_1039_D3NR05797F
crossref_primary_10_1016_j_matt_2021_03_022
crossref_primary_10_1016_j_scib_2019_10_015
crossref_primary_10_1039_D1FD00058F
crossref_primary_10_1016_j_cej_2023_144750
crossref_primary_10_1007_s12274_021_3980_0
crossref_primary_10_1016_j_mtchem_2022_101150
crossref_primary_10_1007_s11356_023_30258_5
crossref_primary_10_1016_j_seppur_2021_119696
crossref_primary_10_1039_C9TA07319A
crossref_primary_10_3390_polym16040539
crossref_primary_10_1002_anie_201904766
crossref_primary_10_1016_j_mser_2024_100858
crossref_primary_10_1016_j_seppur_2021_119216
crossref_primary_10_1039_C9SE00749K
crossref_primary_10_1039_C9TA12870K
crossref_primary_10_1007_s10904_023_02893_5
crossref_primary_10_1002_cssc_202000103
crossref_primary_10_1016_j_nantod_2021_101247
crossref_primary_10_1016_j_jcis_2024_06_077
crossref_primary_10_1016_j_ccr_2024_216294
crossref_primary_10_1039_D2EN00393G
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1016_j_ccr_2020_213735
crossref_primary_10_1016_j_electacta_2023_143749
crossref_primary_10_1016_j_mtchem_2022_101037
crossref_primary_10_1039_C9AY00900K
crossref_primary_10_1002_smll_202303632
crossref_primary_10_1016_j_apsusc_2023_157538
crossref_primary_10_1016_j_heliyon_2024_e32202
crossref_primary_10_2174_2210298101999200716191729
crossref_primary_10_1016_j_coelec_2020_100669
crossref_primary_10_1016_j_inoche_2024_113373
crossref_primary_10_1021_acsami_9b05829
crossref_primary_10_2139_ssrn_4127684
crossref_primary_10_1016_j_colsurfa_2023_131124
crossref_primary_10_1016_j_ccr_2024_216163
crossref_primary_10_1007_s10853_021_05872_8
crossref_primary_10_1021_acsaem_2c03806
crossref_primary_10_1016_S1872_2067_21_63869_X
crossref_primary_10_1002_smll_202100607
crossref_primary_10_1016_j_ijhydene_2024_08_163
crossref_primary_10_1021_acs_energyfuels_3c00011
crossref_primary_10_1002_adfm_202313233
crossref_primary_10_1016_j_jiec_2020_07_009
Cites_doi 10.1016/j.ccr.2015.12.010
10.1021/jacs.7b02186
10.1016/j.apcatb.2018.01.062
10.1039/C7CS00058H
10.1002/asia.201800444
10.1002/anie.201606155
10.1039/C4CS00305E
10.1038/srep23676
10.1016/j.apcatb.2016.04.017
10.1021/ja403008j
10.1002/adma.201705454
10.1039/c2cs35157a
10.1039/C6CS00724D
10.1002/adfm.201707110
10.1002/anie.201505581
10.1016/j.apcatb.2017.08.086
10.1039/C7CS00033B
10.1021/jacs.6b03348
10.1021/cm301605w
10.1039/C4CS00001C
10.1021/ja303588m
10.1002/adma.201703399
10.1021/ja513058h
10.1002/anie.201101924
10.1039/C7CC01827D
10.1021/ja105089w
10.1002/ange.201702162
10.1016/j.apcatb.2016.07.057
10.1002/adma.201700102
10.1016/j.jcat.2018.02.033
10.1038/s41560-017-0018-7
10.1038/ncomms6979
10.1016/j.apcatb.2017.06.082
10.1021/jacs.6b01233
10.1002/adfm.201202996
10.1021/ja308229p
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Apr 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 2019
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2018.10.043
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
EndPage 628
ExternalDocumentID 10_1016_j_apcatb_2018_10_043
S0926337318309998
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c437t-2f7962f5495f3237166842343779f001ec579f4eee20622834628608c406cd7e3
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 05:26:43 EDT 2025
Tue Jul 01 03:10:52 EDT 2025
Thu Apr 24 22:57:18 EDT 2025
Sat Mar 02 16:00:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Covalent organic frameworks
MOF/COF hybrid material
Metal-organic frameworks
Hydrogen evolution
Photocatalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-2f7962f5495f3237166842343779f001ec579f4eee20622834628608c406cd7e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2161282230
PQPubID 2045281
PageCount 8
ParticipantIDs proquest_journals_2161282230
crossref_citationtrail_10_1016_j_apcatb_2018_10_043
crossref_primary_10_1016_j_apcatb_2018_10_043
elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_10_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Huang, Zhao, Han, Lai, Yang, Tan, Ma, Lu, Chen, Zhang, Zhang, Li, Chen, Zong, Zhang (bib0060) 2017; 29
Kuecken, Acharjya, Zhi, Schwarze, Schomäcker, Thomas (bib0145) 2017; 53
Schwarz, Noda, Klouda, Karolina, Tarábek. Rybáček, Janouek, Simon, Opanasenko, Čejka, Acharjya, Schmidt, Selve, Valentin, Severin, Rabe, Ecorchard, He, Polozij, Nachtigall, Bojdys (bib0135) 2017; 29
Ma, Guo, Ying, Liu, Zhong (bib0170) 2017; 313
Nguyen, Gándara, Furukawa, Doan, Cordova, Yaghi (bib0125) 2016; 138
Shieh, Wang, Yen, Wu, Dutta, Chou, Morabito, Hu, Hsu, Wu, Tsung (bib0065) 2015; 137
Wen, Mori, Kuwahara, An, Yamashita (bib0025) 2017; 218
Feng, Liu, Su, Bosch, Wei, Wan, Yuan, Chen, Wang, Wang, Lian, Gu, Park, Zou, Zhou (bib0070) 2015; 6
Hirai, Furukawa, Kondo, Uehara, Sakata, Kitagawa (bib0080) 2011; 50
Feng, Ding, Jiang (bib0045) 2012; 41
Wen, Mori, Kuwahara, Kuwahara, An, Yamashita (bib0030) 2018; 13
Song, Kim, Kim, Kim, Jeong, Moon, Lah (bib0090) 2012; 24
Zou, Wang, Luo, Nie, Xing, Luo, Du, Luo, Suib (bib0190) 2016; 193
Yang, Xu, Jiang (bib0010) 2017; 46
Dhakshinamoorthy, Asiri, García (bib0020) 2016; 55
Fu, Das, Xing, Ben, Valtchev, Qiu (bib0130) 2016; 138
Chambers, Wang, Ellezam, Ersen, Fontecave, Sanchez, Rozes, Caroline (bib0155) 2017; 139
Zhou, Wu, Xing, Li, Liu, Luo, Zou, Luo, Zhang (bib0165) 2018; 220
Rogge, Bavykina, Hajek, Garcia, Olivos-Suarez, Sepú lveda-Escribano, Vimont, Clet, Bazin, Kapteijn, Daturi, Ramos-Fernandez, Llabre i Xamena, Van Speybroeck, Gascon (bib0015) 2017; 46
Yang, Xu, Dou, Wang, Zhang, Wu, Zhou, Li, Chen (bib0100) 2017; 2
Gao, Chrzanowski, Ma (bib0035) 2014; 43
Sun, Jang, Yim, Ye, Kim (bib0115) 2018; 28
Li, Sullivan, Rosi (bib0085) 2013; 135
Wang, Pan, Xu, Li (bib0055) 2018; 361
Wang, Liu, Lin (bib0075) 2013; 135
Lian, Fang, Joseph, Wang, Li, Banerjee, Lollar, Wang, Zhou (bib0005) 2017; 46
Gu, Li, Zheng, Kang, Wçll, Zhang (bib0105) 2017; 129
Liu, Tu, Zacher, Fischer (bib0095) 2013; 23
Jiang, Xing, Luo, Li, Zou, Liu, Li, Wang (bib0185) 2018; 228
Cao, Wang, Ao, Wang, Hou, Qian (bib0180) 2015; 264
Tan, Namuangruk, Kong, Nawee, Guo, Wang (bib0140) 2016; 55
Nasalevich, Hendon, Santaclara, Svane, Linden, Veber, Fedin, Houtepen, Veen, Kapteijn, Walsh, Gascon (bib0160) 2016; 6
Yang, You, Cheng, Zheng, Chen (bib0175) 2017; 200
Diaz, Corma (bib0040) 2016; 311
Peng, Zhao, Chen, Zhang, Huang, Dai, Lai, Cui, Tan, Zhang (bib0120) 2018; 30
He, Jiang, Schalley (bib0050) 2015; 44
Jahan, Bao, Yang, Loh (bib0150) 2010; 132
Fukushima, Horike, Kobayashi, Tsujimoto, Isoda, Foo, Kubota, Takata, Kitagawa (bib0110) 2012; 134
Feng (10.1016/j.apcatb.2018.10.043_bib0045) 2012; 41
Yang (10.1016/j.apcatb.2018.10.043_bib0175) 2017; 200
Fukushima (10.1016/j.apcatb.2018.10.043_bib0110) 2012; 134
Jahan (10.1016/j.apcatb.2018.10.043_bib0150) 2010; 132
Cao (10.1016/j.apcatb.2018.10.043_bib0180) 2015; 264
Hirai (10.1016/j.apcatb.2018.10.043_bib0080) 2011; 50
Wen (10.1016/j.apcatb.2018.10.043_bib0030) 2018; 13
Zou (10.1016/j.apcatb.2018.10.043_bib0190) 2016; 193
Yang (10.1016/j.apcatb.2018.10.043_bib0010) 2017; 46
Gao (10.1016/j.apcatb.2018.10.043_bib0035) 2014; 43
Fu (10.1016/j.apcatb.2018.10.043_bib0130) 2016; 138
Wen (10.1016/j.apcatb.2018.10.043_bib0025) 2017; 218
Dhakshinamoorthy (10.1016/j.apcatb.2018.10.043_bib0020) 2016; 55
Ma (10.1016/j.apcatb.2018.10.043_bib0170) 2017; 313
Huang (10.1016/j.apcatb.2018.10.043_bib0060) 2017; 29
Gu (10.1016/j.apcatb.2018.10.043_bib0105) 2017; 129
Peng (10.1016/j.apcatb.2018.10.043_bib0120) 2018; 30
Kuecken (10.1016/j.apcatb.2018.10.043_bib0145) 2017; 53
Li (10.1016/j.apcatb.2018.10.043_bib0085) 2013; 135
Nasalevich (10.1016/j.apcatb.2018.10.043_bib0160) 2016; 6
Jiang (10.1016/j.apcatb.2018.10.043_bib0185) 2018; 228
Lian (10.1016/j.apcatb.2018.10.043_bib0005) 2017; 46
Yang (10.1016/j.apcatb.2018.10.043_bib0100) 2017; 2
Shieh (10.1016/j.apcatb.2018.10.043_bib0065) 2015; 137
Tan (10.1016/j.apcatb.2018.10.043_bib0140) 2016; 55
Chambers (10.1016/j.apcatb.2018.10.043_bib0155) 2017; 139
Wang (10.1016/j.apcatb.2018.10.043_bib0075) 2013; 135
Schwarz (10.1016/j.apcatb.2018.10.043_bib0135) 2017; 29
Diaz (10.1016/j.apcatb.2018.10.043_bib0040) 2016; 311
Song (10.1016/j.apcatb.2018.10.043_bib0090) 2012; 24
Nguyen (10.1016/j.apcatb.2018.10.043_bib0125) 2016; 138
Wang (10.1016/j.apcatb.2018.10.043_bib0055) 2018; 361
Sun (10.1016/j.apcatb.2018.10.043_bib0115) 2018; 28
Zhou (10.1016/j.apcatb.2018.10.043_bib0165) 2018; 220
He (10.1016/j.apcatb.2018.10.043_bib0050) 2015; 44
Feng (10.1016/j.apcatb.2018.10.043_bib0070) 2015; 6
Rogge (10.1016/j.apcatb.2018.10.043_bib0015) 2017; 46
Liu (10.1016/j.apcatb.2018.10.043_bib0095) 2013; 23
References_xml – volume: 46
  start-page: 3134
  year: 2017
  ident: bib0015
  publication-title: Chem. Soc. Rev.
– volume: 41
  start-page: 6010
  year: 2012
  ident: bib0045
  publication-title: Chem. Soc. Rev.
– volume: 13
  start-page: 1767
  year: 2018
  ident: bib0030
  publication-title: Chem. Asian J
– volume: 361
  start-page: 248
  year: 2018
  ident: bib0055
  publication-title: J. Catal.
– volume: 218
  start-page: 555
  year: 2017
  ident: bib0025
  publication-title: Appl. Catal. B
– volume: 137
  start-page: 4276
  year: 2015
  ident: bib0065
  publication-title: J. Am. Chem. Soc.
– volume: 200
  start-page: 673
  year: 2017
  ident: bib0175
  publication-title: Appl. Catal. B
– volume: 50
  start-page: 8057
  year: 2011
  ident: bib0080
  publication-title: Angew. Chem. Int. Ed.
– volume: 28
  start-page: 1707110
  year: 2018
  ident: bib0115
  publication-title: Adv. Funct. Mater.
– volume: 53
  start-page: 5854
  year: 2017
  ident: bib0145
  publication-title: Chem. Commun.
– volume: 6
  start-page: 5979
  year: 2015
  ident: bib0070
  publication-title: Nat. Commun.
– volume: 132
  start-page: 14487
  year: 2010
  ident: bib0150
  publication-title: J. Am. Chem. Soc.
– volume: 44
  start-page: 779
  year: 2015
  ident: bib0050
  publication-title: Chem. Soc. Rev.
– volume: 138
  start-page: 4330
  year: 2016
  ident: bib0125
  publication-title: J. Am. Chem. Soc.
– volume: 29
  start-page: 1703399
  year: 2017
  ident: bib0135
  publication-title: Adv. Mater.
– volume: 135
  start-page: 13222
  year: 2013
  ident: bib0075
  publication-title: J. Am. Chem. Soc.
– volume: 311
  start-page: 85
  year: 2016
  ident: bib0040
  publication-title: Coord. Chem. Rev.
– volume: 228
  start-page: 29
  year: 2018
  ident: bib0185
  publication-title: Appl. Catal. B
– volume: 313
  start-page: 890
  year: 2017
  ident: bib0170
  publication-title: Chem. Eur. J
– volume: 264
  start-page: 113
  year: 2015
  ident: bib0180
  publication-title: Chem. Eur. J
– volume: 55
  start-page: 5414
  year: 2016
  ident: bib0020
  publication-title: Angew. Chem. Int. Ed.
– volume: 220
  start-page: 607
  year: 2018
  ident: bib0165
  publication-title: Appl. Catal. B
– volume: 134
  start-page: 13341
  year: 2012
  ident: bib0110
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 3790
  year: 2013
  ident: bib0095
  publication-title: Adv. Funct. Mater.
– volume: 29
  start-page: 1700102
  year: 2017
  ident: bib0060
  publication-title: Adv. Mater.
– volume: 135
  start-page: 9984
  year: 2013
  ident: bib0085
  publication-title: J. Am. Chem. Soc.
– volume: 129
  start-page: 6957
  year: 2017
  ident: bib0105
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  start-page: 1705454
  year: 2018
  ident: bib0120
  publication-title: Adv. Mater.
– volume: 46
  start-page: 4774
  year: 2017
  ident: bib0010
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 23676
  year: 2016
  ident: bib0160
  publication-title: Sci. Rep.
– volume: 193
  start-page: 103
  year: 2016
  ident: bib0190
  publication-title: Appl. Catal. B
– volume: 2
  start-page: 877
  year: 2017
  ident: bib0100
  publication-title: Nat. Energy
– volume: 46
  start-page: 3386
  year: 2017
  ident: bib0005
  publication-title: Chem. Soc. Rev.
– volume: 43
  start-page: 5841
  year: 2014
  ident: bib0035
  publication-title: Chem. Soc. Rev.
– volume: 24
  start-page: 3065
  year: 2012
  ident: bib0090
  publication-title: Chem. Mater.
– volume: 139
  start-page: 8222
  year: 2017
  ident: bib0155
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 7673
  year: 2016
  ident: bib0130
  publication-title: J. Am. Chem. Soc.
– volume: 55
  start-page: 13979
  year: 2016
  ident: bib0140
  publication-title: Angew. Chem. Int. Ed.
– volume: 311
  start-page: 85
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.043_bib0040
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2015.12.010
– volume: 139
  start-page: 8222
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0155
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02186
– volume: 264
  start-page: 113
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.043_bib0180
  publication-title: Chem. Eur. J
– volume: 228
  start-page: 29
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.043_bib0185
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2018.01.062
– volume: 46
  start-page: 3386
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0005
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00058H
– volume: 13
  start-page: 1767
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.043_bib0030
  publication-title: Chem. Asian J
  doi: 10.1002/asia.201800444
– volume: 55
  start-page: 13979
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.043_bib0140
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201606155
– volume: 44
  start-page: 779
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.043_bib0050
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00305E
– volume: 6
  start-page: 23676
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.043_bib0160
  publication-title: Sci. Rep.
  doi: 10.1038/srep23676
– volume: 193
  start-page: 103
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.043_bib0190
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.04.017
– volume: 135
  start-page: 9984
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.043_bib0085
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403008j
– volume: 30
  start-page: 1705454
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.043_bib0120
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705454
– volume: 41
  start-page: 6010
  year: 2012
  ident: 10.1016/j.apcatb.2018.10.043_bib0045
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 46
  start-page: 4774
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0010
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00724D
– volume: 28
  start-page: 1707110
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.043_bib0115
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201707110
– volume: 55
  start-page: 5414
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.043_bib0020
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201505581
– volume: 220
  start-page: 607
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.043_bib0165
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.08.086
– volume: 46
  start-page: 3134
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0015
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00033B
– volume: 138
  start-page: 7673
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.043_bib0130
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b03348
– volume: 24
  start-page: 3065
  year: 2012
  ident: 10.1016/j.apcatb.2018.10.043_bib0090
  publication-title: Chem. Mater.
  doi: 10.1021/cm301605w
– volume: 43
  start-page: 5841
  year: 2014
  ident: 10.1016/j.apcatb.2018.10.043_bib0035
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00001C
– volume: 134
  start-page: 13341
  year: 2012
  ident: 10.1016/j.apcatb.2018.10.043_bib0110
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303588m
– volume: 29
  start-page: 1703399
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0135
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703399
– volume: 137
  start-page: 4276
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.043_bib0065
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja513058h
– volume: 50
  start-page: 8057
  year: 2011
  ident: 10.1016/j.apcatb.2018.10.043_bib0080
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101924
– volume: 53
  start-page: 5854
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0145
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01827D
– volume: 132
  start-page: 14487
  year: 2010
  ident: 10.1016/j.apcatb.2018.10.043_bib0150
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja105089w
– volume: 129
  start-page: 6957
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0105
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201702162
– volume: 200
  start-page: 673
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0175
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2016.07.057
– volume: 29
  start-page: 1700102
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0060
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700102
– volume: 361
  start-page: 248
  year: 2018
  ident: 10.1016/j.apcatb.2018.10.043_bib0055
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.02.033
– volume: 2
  start-page: 877
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0100
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0018-7
– volume: 6
  start-page: 5979
  year: 2015
  ident: 10.1016/j.apcatb.2018.10.043_bib0070
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6979
– volume: 218
  start-page: 555
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0025
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2017.06.082
– volume: 138
  start-page: 4330
  year: 2016
  ident: 10.1016/j.apcatb.2018.10.043_bib0125
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b01233
– volume: 23
  start-page: 3790
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.043_bib0095
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201202996
– volume: 313
  start-page: 890
  year: 2017
  ident: 10.1016/j.apcatb.2018.10.043_bib0170
  publication-title: Chem. Eur. J
– volume: 135
  start-page: 13222
  year: 2013
  ident: 10.1016/j.apcatb.2018.10.043_bib0075
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308229p
SSID ssj0002328
Score 2.6668158
Snippet A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1)...
The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 621
SubjectTerms Benzoic acid
Charge efficiency
Covalence
Covalent organic frameworks
Design modifications
Fabrication
Heterostructures
Hybrid systems
Hybrids
Hydrogen
Hydrogen evolution
Hydrogen production
Irradiation
Light irradiation
Metal-organic frameworks
MOF/COF hybrid material
Photocatalysis
Porous materials
Radiation
Stability
Strategy
Titanium
Triazine
Van der Waals forces
Zirconium
Title Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance
URI https://dx.doi.org/10.1016/j.apcatb.2018.10.043
https://www.proquest.com/docview/2161282230
Volume 243
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5C7LDtMG0daGwMvcOupontJu1uVUdVQMBhQ-IWJY4tOnVJRDKkXvhF-5F7z0kom4SQuLWp7UR9X54_J9_3DPAlVyOt3FgJK3MjdJ7FIgvDiXAyzLR2JlDeC3N2Hi0u9cnV6GoLZr0XhmWVXe5vc7rP1t2RYfdvDqvlcvg9mMhI0VAESqY5bPjVOmaUH95tZB7EGHw2psaCW_f2Oa_xSiuTNhkLvMaHrPHS6rHp6b9E7Wef-Vt409FGnLZX9g62bDGAl7N-t7YBvH5QWHAAu0cb_xp1627g-j38-eYVG5gWOdbrgthfbWssHZ5dzIezizler9nChcRjW2ji7TLFqqybtjWdHk1J6KSB8VeZs9DIx_YrTgu0vh4F_1S3RW_X2JRIPL5ukDojG9mzlRUrX70kv-FMi9V12ZT-KdKaR682ToYduJwf_ZgtRLdhgzBaxY2QLp5E0tGSc-SUVLQU47d8SnNRQ0fzoTUj-qCttTKIuO6ON8YGY0OswuSxVbuwXZSF_QDIN29IOIosMT5ak2UmDWXM6yMTBE7He6D6OCWmq2bOm2qskl629jNpo5twdPkoRXcPxH2vqq3m8UT7uIdA8g8qE5pwnui53yMm6bJCnUii1yzbVcHHZw_8CV7Rt0krHtqH7ebmt_1MvKjJDjzwD-DF9Ph0cf4XYGQOfA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VcigcECxUFArMgau7SexNdrlV264W6LYHWqk3K3FsdasliZqAtJd-UT-SGSfpAhKqxC2yPU6UGY-fkzczAB9zOVLSjaWwUW6EyrNEZGE4ES4KM6WcCaSPhVmcxvML9eVydLkF0z4WhmmVne9vfbr31l3LsHubw2q5HH4LJlEsaSoySoY540fwWNHy5TIGB7cbngdBBu-OabTg4X38nCd5pZVJm4wZXuMDJnkp-a_96S9P7bef2XN41uFGPGwf7QVs2WIAO9O-XNsAnv6WWXAAu8ebADYS61Zw_RLujjxlA9Mix3pdEPyrbY2lw8XZbDg9m-HVmmO4kIBsa5v4c5liVdZNO5puj6Yk86SJ8XuZM9PIK_cTHhZofUIK7qrbrLdrbEokIF83SMLIkezZyoqVT1-S37CrxeqqbEr_GWnNs1ebUIZXcDE7Pp_ORVexQRglk0ZELpnEkaMz58jJSNJZjH_zScVZDR1tiNaM6EJZa6Mg5sQ7PjI2GBuCFSZPrNyF7aIs7GtAXr0hGVJsCfLRoSwzaRglfEAyQeBUsgey15M2XTpzrqqx0j1v7Vq32tWsXW4l7e6BuJeq2nQeD4xPehPQf5ilph3nAcn93mJ05xZqHRG-Zt6uDN7898QfYGd-vjjRJ59Pv76FJ9QzaZlE-7Dd3Pyw7wgkNdl7vwh-AWwXEAo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+syntheses+of+MOF%2FCOF+hybrid+materials+via+postsynthetic+covalent+modification%3A+An+efficient+strategy+to+boost+the+visible-light-driven+photocatalytic+performance&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Li%2C+Fei&rft.au=Wang%2C+Dengke&rft.au=Xing%2C+Qiu-Ju&rft.au=Zhou%2C+Gang&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=243&rft.spage=621&rft_id=info:doi/10.1016%2Fj.apcatb.2018.10.043&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon