Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance
A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) bonded with NH2-MIL-125(Ti) or NH2-UiO-66(Zr) via amide bonds are obtained. The resultant hybrid materials show superior photocatalytic activ...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 243; pp. 621 - 628 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.04.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) bonded with NH2-MIL-125(Ti) or NH2-UiO-66(Zr) via amide bonds are obtained. The resultant hybrid materials show superior photocatalytic activity and higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force.
[Display omitted]
•A novel strategy based on postsynthetic modification was proposed for fabrication of MOF/COF hybrids.•The as-prepared MOF/COF hybrids show superior photocatalytic performance of hydrogen evolution.•The role of as-formed amide bonds in MOF/COF hybrids was well investigated.•MOF/COF hybrids exhibit high stability and reusability during the catalytic reaction.•A mechanism for enhanced photocatalytic hydrogen evolution over MOF/COF hybrids was proposed.
The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we report a novel strategy based on postsynthetic covalent modification for fabrication of hierarchical porous metal-organic frameworks/covalent organic frameworks (MOF/COF) hybrid materials. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) are covalently bonded with MOFs (NH2-MIL-125(Ti) or NH2-UiO-66(Zr)) by using this strategy. Photocatalytic results show that the hydrogen production rate over 15 wt% NH2-MIL-125(Ti)/B-CTF-1 (15TBC) is 360 μmol·h−1·g−1 under visible light irradiation, which is more than twice as much as that of the B-CTF-1. Meanwhile, the hybrid materials show higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. Photoelectrochemical analyses and controlled experiments indicate that the superior photocatalytic performance of the MOF/COF hybrids can be attributed to the formation of amide bonds between B-CTF-1 and MOFs, which facilitate the charge separation efficiency and improve the stability of the photocatalyst. Finally, a possible mechanism to well explain the improved photocatalytic performance of the photocatalytic system was proposed. The present work provides a new idea to construct highly efficient and stable MOF/COF hybrid systems and broaden the applications of COF-based materials. |
---|---|
AbstractList | A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) bonded with NH2-MIL-125(Ti) or NH2-UiO-66(Zr) via amide bonds are obtained. The resultant hybrid materials show superior photocatalytic activity and higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force.
[Display omitted]
•A novel strategy based on postsynthetic modification was proposed for fabrication of MOF/COF hybrids.•The as-prepared MOF/COF hybrids show superior photocatalytic performance of hydrogen evolution.•The role of as-formed amide bonds in MOF/COF hybrids was well investigated.•MOF/COF hybrids exhibit high stability and reusability during the catalytic reaction.•A mechanism for enhanced photocatalytic hydrogen evolution over MOF/COF hybrids was proposed.
The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we report a novel strategy based on postsynthetic covalent modification for fabrication of hierarchical porous metal-organic frameworks/covalent organic frameworks (MOF/COF) hybrid materials. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) are covalently bonded with MOFs (NH2-MIL-125(Ti) or NH2-UiO-66(Zr)) by using this strategy. Photocatalytic results show that the hydrogen production rate over 15 wt% NH2-MIL-125(Ti)/B-CTF-1 (15TBC) is 360 μmol·h−1·g−1 under visible light irradiation, which is more than twice as much as that of the B-CTF-1. Meanwhile, the hybrid materials show higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. Photoelectrochemical analyses and controlled experiments indicate that the superior photocatalytic performance of the MOF/COF hybrids can be attributed to the formation of amide bonds between B-CTF-1 and MOFs, which facilitate the charge separation efficiency and improve the stability of the photocatalyst. Finally, a possible mechanism to well explain the improved photocatalytic performance of the photocatalytic system was proposed. The present work provides a new idea to construct highly efficient and stable MOF/COF hybrid systems and broaden the applications of COF-based materials. The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we report a novel strategy based on postsynthetic covalent modification for fabrication of hierarchical porous metal-organic frameworks/covalent organic frameworks (MOF/COF) hybrid materials. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1) are covalently bonded with MOFs (NH2-MIL-125(Ti) or NH2-UiO-66(Zr)) by using this strategy. Photocatalytic results show that the hydrogen production rate over 15 wt% NH2-MIL-125(Ti)/B-CTF-1 (15TBC) is 360 μmol·h−1·g−1 under visible light irradiation, which is more than twice as much as that of the B-CTF-1. Meanwhile, the hybrid materials show higher stability as compared to the simple heterostructures of MOFs and COFs connected via Van der Waals force. Photoelectrochemical analyses and controlled experiments indicate that the superior photocatalytic performance of the MOF/COF hybrids can be attributed to the formation of amide bonds between B-CTF-1 and MOFs, which facilitate the charge separation efficiency and improve the stability of the photocatalyst. Finally, a possible mechanism to well explain the improved photocatalytic performance of the photocatalytic system was proposed. The present work provides a new idea to construct highly efficient and stable MOF/COF hybrid systems and broaden the applications of COF-based materials. |
Author | Liu, Shan-Shan Ye, Peng Zheng, Ling-Ling Zou, Jian-Ping Li, Yan Li, Fei Wang, Dengke Xing, Qiu-Ju Zhou, Gang |
Author_xml | – sequence: 1 givenname: Fei surname: Li fullname: Li, Fei organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China – sequence: 2 givenname: Dengke surname: Wang fullname: Wang, Dengke organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China – sequence: 3 givenname: Qiu-Ju surname: Xing fullname: Xing, Qiu-Ju organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China – sequence: 4 givenname: Gang surname: Zhou fullname: Zhou, Gang organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China – sequence: 5 givenname: Shan-Shan surname: Liu fullname: Liu, Shan-Shan organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China – sequence: 6 givenname: Yan surname: Li fullname: Li, Yan organization: School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China – sequence: 7 givenname: Ling-Ling surname: Zheng fullname: Zheng, Ling-Ling organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China – sequence: 8 givenname: Peng surname: Ye fullname: Ye, Peng organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China – sequence: 9 givenname: Jian-Ping surname: Zou fullname: Zou, Jian-Ping email: zjp_112@126.com organization: Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R.China |
BookMark | eNqFUcuOEzEQtNAikV34Aw6WOE_Wj4nH2QPSKhBAWpQLnC3H0046mtiD7Y00_8RH4iGcOMDJdndVdZfrltyEGICQt5wtOePq_rS0o7NlvxSM61pasla-IAuuO9lIreUNWbC1UI2UnXxFbnM-McaEFHpBfn6AjIdAbehpnkI5QoZMo6dfd9v7zW5Lj9M-YU_PtkBCO2R6QUvHmMsVXdBRFy92gFDoOfbosW6CMTzQx0DB1yfOrVxSVThMtES6j5VOK7lqZdwP0Ax4OJamT3iBQMdjLLGK2GGa1UdIPqazDQ5ek5e-rgBv_px35Pv247fN5-Zp9-nL5vGpca3sSiN8t1bCr9r1ykshO66UboWsvW7tGePgVvXSAoBgSggtWyW0Ytq1TLm-A3lH3l11xxR_PEMu5hSfU6gjjeCKCy2EZBX1cEW5FHNO4I3D8tt79YqD4czM6ZiTuaZj5nTmak2nktu_yGPCs03T_2jvrzSo9i8IyeT5fx30mMAV00f8t8AvxUmwIg |
CitedBy_id | crossref_primary_10_1016_j_bios_2019_111699 crossref_primary_10_1016_j_chemosphere_2024_141143 crossref_primary_10_1016_j_foodchem_2022_133056 crossref_primary_10_1039_D1TA04493A crossref_primary_10_1039_D1TA06006F crossref_primary_10_1002_rcm_8909 crossref_primary_10_1039_D0TA00364F crossref_primary_10_1016_j_polymer_2024_127973 crossref_primary_10_1016_j_matchemphys_2020_122659 crossref_primary_10_1002_ange_201904766 crossref_primary_10_1007_s44169_022_00018_6 crossref_primary_10_1016_j_micromeso_2020_110713 crossref_primary_10_1002_adfm_202419735 crossref_primary_10_1002_aic_17906 crossref_primary_10_1016_j_seppur_2022_122848 crossref_primary_10_1016_j_jechem_2024_03_042 crossref_primary_10_1016_j_jhazmat_2020_125021 crossref_primary_10_1021_acs_inorgchem_4c04859 crossref_primary_10_1021_acs_langmuir_9b03786 crossref_primary_10_1021_acs_chemrev_2c00460 crossref_primary_10_1002_adma_202405399 crossref_primary_10_1016_j_fuel_2023_129470 crossref_primary_10_1021_acsami_3c15490 crossref_primary_10_1002_adfm_202304071 crossref_primary_10_1016_j_ccr_2022_214602 crossref_primary_10_1016_j_jechem_2020_10_008 crossref_primary_10_1039_D0CE01363C crossref_primary_10_1002_cctc_202401977 crossref_primary_10_1016_j_jclepro_2024_143263 crossref_primary_10_1002_adfm_202304990 crossref_primary_10_1016_j_cej_2022_137011 crossref_primary_10_1016_j_cemconcomp_2022_104406 crossref_primary_10_1016_j_enchem_2022_100078 crossref_primary_10_1016_j_jchromb_2019_121831 crossref_primary_10_1016_j_mtchem_2024_101927 crossref_primary_10_1016_j_ccr_2024_215926 crossref_primary_10_1002_aenm_202003052 crossref_primary_10_1016_j_compscitech_2022_109788 crossref_primary_10_1016_j_foodchem_2022_134818 crossref_primary_10_1016_j_mtchem_2022_100832 crossref_primary_10_1007_s40820_023_01180_9 crossref_primary_10_1002_cctc_201900058 crossref_primary_10_1016_j_bios_2022_115017 crossref_primary_10_1016_j_apsusc_2019_06_265 crossref_primary_10_1002_aoc_5631 crossref_primary_10_1002_batt_202000094 crossref_primary_10_1016_j_seppur_2024_130323 crossref_primary_10_1039_D4CE01293C crossref_primary_10_1021_acs_iecr_9b03188 crossref_primary_10_1016_j_apcatb_2022_121791 crossref_primary_10_1016_j_flatc_2025_100835 crossref_primary_10_1016_j_corsci_2020_108920 crossref_primary_10_1016_j_microc_2023_109214 crossref_primary_10_1021_acs_jpcc_2c03793 crossref_primary_10_1039_D4TA03518F crossref_primary_10_1016_j_jcis_2020_05_023 crossref_primary_10_1039_D3CY00869J crossref_primary_10_1021_acsami_1c01131 crossref_primary_10_1016_j_apcatb_2020_118989 crossref_primary_10_12677_MS_2023_133013 crossref_primary_10_3390_coatings10121172 crossref_primary_10_1002_smll_202400259 crossref_primary_10_1021_acsanm_9b01102 crossref_primary_10_1021_acscatal_4c04888 crossref_primary_10_1016_j_apcatb_2020_119035 crossref_primary_10_1016_j_jmst_2024_04_052 crossref_primary_10_1002_chem_202101956 crossref_primary_10_1039_D4CY00531G crossref_primary_10_1016_j_jcis_2020_07_121 crossref_primary_10_1021_acsanm_1c01466 crossref_primary_10_1016_j_jallcom_2020_156578 crossref_primary_10_1016_j_cej_2021_132401 crossref_primary_10_1007_s12274_022_4593_y crossref_primary_10_1039_C9TA01942A crossref_primary_10_1016_j_mtsust_2025_101096 crossref_primary_10_1016_j_jnoncrysol_2022_121870 crossref_primary_10_1002_sstr_202000078 crossref_primary_10_1016_j_jechem_2019_07_014 crossref_primary_10_1007_s11356_024_34552_8 crossref_primary_10_1016_j_apcatb_2019_118462 crossref_primary_10_1016_j_cclet_2022_107903 crossref_primary_10_1039_D3NR02868B crossref_primary_10_1016_j_apcatb_2019_118101 crossref_primary_10_1016_j_indcrop_2022_115829 crossref_primary_10_1021_acsami_4c19759 crossref_primary_10_1007_s10118_020_2394_x crossref_primary_10_1016_j_cclet_2019_01_025 crossref_primary_10_1016_j_seppur_2024_128588 crossref_primary_10_1016_j_apcatb_2023_123317 crossref_primary_10_1016_j_memsci_2022_120394 crossref_primary_10_1007_s42114_022_00432_3 crossref_primary_10_1039_D0CS00278J crossref_primary_10_1016_j_chemosphere_2021_131646 crossref_primary_10_1039_D0NR03041D crossref_primary_10_1016_j_cej_2022_139114 crossref_primary_10_1016_j_jallcom_2019_152519 crossref_primary_10_1016_j_apcatb_2020_119733 crossref_primary_10_1002_solr_202000458 crossref_primary_10_1016_j_mtchem_2022_101209 crossref_primary_10_1039_D0TA00901F crossref_primary_10_1007_s12598_019_01259_6 crossref_primary_10_1021_acs_langmuir_1c02253 crossref_primary_10_1016_j_jcis_2024_02_167 crossref_primary_10_1007_s11705_019_1872_6 crossref_primary_10_1016_j_apcatb_2020_119174 crossref_primary_10_1016_j_chemosphere_2021_132743 crossref_primary_10_1039_D2NR05076E crossref_primary_10_1016_j_mtchem_2023_101505 crossref_primary_10_1016_j_ijhydene_2022_08_060 crossref_primary_10_1002_cssc_202400556 crossref_primary_10_1039_D4TA01108B crossref_primary_10_1002_cssc_202100837 crossref_primary_10_1002_EXP_20220144 crossref_primary_10_1016_j_jclepro_2021_125822 crossref_primary_10_1016_j_matlet_2019_02_124 crossref_primary_10_1021_acsami_2c02439 crossref_primary_10_1016_j_ijhydene_2020_07_143 crossref_primary_10_1002_cjoc_202200571 crossref_primary_10_1021_acsaem_0c02102 crossref_primary_10_1016_j_talanta_2024_125959 crossref_primary_10_1016_j_jechem_2023_12_029 crossref_primary_10_1021_acs_inorgchem_0c00422 crossref_primary_10_1039_D3TA04403C crossref_primary_10_1039_D0NJ03692G crossref_primary_10_1021_acs_jpcc_0c11551 crossref_primary_10_3390_molecules28020822 crossref_primary_10_1039_D0TA10165F crossref_primary_10_1016_j_cej_2020_127011 crossref_primary_10_1002_advs_202101883 crossref_primary_10_1016_j_envpol_2019_03_096 crossref_primary_10_1021_acssuschemeng_1c04112 crossref_primary_10_1016_j_apcatb_2021_120108 crossref_primary_10_1088_1742_6596_2705_1_012006 crossref_primary_10_3390_catal10010103 crossref_primary_10_1016_j_jhazmat_2021_125835 crossref_primary_10_1016_j_jcis_2024_04_090 crossref_primary_10_1016_j_apcatb_2020_119633 crossref_primary_10_1016_j_talanta_2025_127990 crossref_primary_10_1039_D3TA00580A crossref_primary_10_1016_j_apenergy_2024_124977 crossref_primary_10_1016_j_snb_2020_129144 crossref_primary_10_1002_admi_202201971 crossref_primary_10_1021_acsanm_4c00896 crossref_primary_10_1039_D0TA00818D crossref_primary_10_1039_D3NJ00771E crossref_primary_10_1016_j_inoche_2024_113262 crossref_primary_10_1016_j_jcis_2021_08_135 crossref_primary_10_1002_aenm_202303638 crossref_primary_10_1016_j_molliq_2025_126869 crossref_primary_10_1016_j_mssp_2023_107623 crossref_primary_10_1039_D3TC00757J crossref_primary_10_1007_s10853_021_06321_2 crossref_primary_10_4155_bio_2023_0256 crossref_primary_10_1016_j_materresbull_2019_110584 crossref_primary_10_1016_j_microc_2019_104522 crossref_primary_10_1002_cctc_202301291 crossref_primary_10_1016_j_micromeso_2021_110957 crossref_primary_10_1002_aenm_202100346 crossref_primary_10_1016_j_chemosphere_2021_132795 crossref_primary_10_1016_j_ijhydene_2024_04_193 crossref_primary_10_1016_j_molstruc_2024_138475 crossref_primary_10_1021_acs_inorgchem_1c02673 crossref_primary_10_1021_acs_iecr_3c03776 crossref_primary_10_1016_j_jcis_2019_07_021 crossref_primary_10_1016_j_jpcs_2019_109199 crossref_primary_10_1039_D0TA03749D crossref_primary_10_1021_acs_analchem_4c07058 crossref_primary_10_1016_j_molliq_2024_124850 crossref_primary_10_1016_j_seppur_2025_131794 crossref_primary_10_1016_j_apcatb_2019_118436 crossref_primary_10_1016_j_fuel_2022_124120 crossref_primary_10_1021_acsami_9b07874 crossref_primary_10_1016_j_gee_2021_02_001 crossref_primary_10_1016_j_jcis_2023_04_013 crossref_primary_10_1021_acsami_2c02917 crossref_primary_10_1002_solr_201900438 crossref_primary_10_1016_j_chroma_2020_461364 crossref_primary_10_1039_D1NJ00609F crossref_primary_10_1007_s00604_024_06519_6 crossref_primary_10_1016_j_jssc_2023_124129 crossref_primary_10_1007_s12598_023_02539_y crossref_primary_10_1021_acsami_1c03151 crossref_primary_10_1016_j_cej_2020_126886 crossref_primary_10_1016_j_fuel_2025_134416 crossref_primary_10_1515_revce_2024_0088 crossref_primary_10_1016_j_ccr_2025_216498 crossref_primary_10_1016_j_apcatb_2020_119782 crossref_primary_10_1021_acs_cgd_1c01071 crossref_primary_10_1002_aenm_202301918 crossref_primary_10_1016_S1872_2067_21_63892_5 crossref_primary_10_1016_j_ccr_2020_213266 crossref_primary_10_1016_j_trac_2022_116741 crossref_primary_10_1002_cssc_202002847 crossref_primary_10_1002_smll_202202928 crossref_primary_10_1016_j_ijhydene_2019_03_039 crossref_primary_10_1039_D4TA07330D crossref_primary_10_1016_j_ccr_2022_214428 crossref_primary_10_1039_D0TA00556H crossref_primary_10_1016_j_micromeso_2021_111386 crossref_primary_10_1016_j_apcatb_2022_121710 crossref_primary_10_1021_acsanm_1c02043 crossref_primary_10_1016_j_microc_2024_112181 crossref_primary_10_1016_j_cej_2019_122342 crossref_primary_10_1002_smtd_202200265 crossref_primary_10_1007_s42247_024_00788_w crossref_primary_10_1002_sstr_202100176 crossref_primary_10_1016_j_envres_2023_117777 crossref_primary_10_1002_cplu_201900329 crossref_primary_10_1016_j_apcatb_2020_118586 crossref_primary_10_1016_S1872_2067_23_64457_2 crossref_primary_10_1016_j_jhazmat_2020_122865 crossref_primary_10_1002_adfm_202102511 crossref_primary_10_1016_j_jece_2024_111899 crossref_primary_10_1016_j_cej_2023_142806 crossref_primary_10_1016_j_talo_2023_100262 crossref_primary_10_1016_j_seppur_2022_120717 crossref_primary_10_1039_D3CS00302G crossref_primary_10_1016_j_dyepig_2021_109588 crossref_primary_10_1016_j_ijhydene_2021_02_176 crossref_primary_10_1021_acsaem_2c03322 crossref_primary_10_1016_j_seppur_2021_120416 crossref_primary_10_1002_asia_202300033 crossref_primary_10_1002_cptc_202400131 crossref_primary_10_1016_j_apcatb_2021_120156 crossref_primary_10_1016_j_saa_2024_124915 crossref_primary_10_1016_j_apcatb_2019_118182 crossref_primary_10_1039_D1RA09063A crossref_primary_10_1039_D0EE02309D crossref_primary_10_1021_acssuschemeng_8b04917 crossref_primary_10_1002_smll_202408395 crossref_primary_10_1016_j_mtchem_2024_102140 crossref_primary_10_1039_D2RE00086E crossref_primary_10_1039_D2NJ00945E crossref_primary_10_1016_S1872_2067_20_63715_9 crossref_primary_10_1002_adfm_202305527 crossref_primary_10_1021_acs_energyfuels_3c00162 crossref_primary_10_1007_s10904_021_02150_7 crossref_primary_10_1016_S1872_2067_24_60132_4 crossref_primary_10_1016_j_apsusc_2019_06_247 crossref_primary_10_1016_j_molstruc_2020_127826 crossref_primary_10_1021_acs_inorgchem_1c02198 crossref_primary_10_1016_j_chroma_2020_461275 crossref_primary_10_1016_j_mtchem_2023_101577 crossref_primary_10_1016_j_apcatb_2021_120605 crossref_primary_10_1039_C9NJ05503G crossref_primary_10_1016_j_ccr_2022_214889 crossref_primary_10_1039_D0AN01885F crossref_primary_10_1039_D3QM00565H crossref_primary_10_1016_j_molliq_2021_116108 crossref_primary_10_1039_D0CY00809E crossref_primary_10_1039_D3TA05435G crossref_primary_10_1016_j_fuel_2024_133271 crossref_primary_10_1021_acs_jpcc_9b07403 crossref_primary_10_1002_smll_202303884 crossref_primary_10_1039_D3NR05797F crossref_primary_10_1016_j_matt_2021_03_022 crossref_primary_10_1016_j_scib_2019_10_015 crossref_primary_10_1039_D1FD00058F crossref_primary_10_1016_j_cej_2023_144750 crossref_primary_10_1007_s12274_021_3980_0 crossref_primary_10_1016_j_mtchem_2022_101150 crossref_primary_10_1007_s11356_023_30258_5 crossref_primary_10_1016_j_seppur_2021_119696 crossref_primary_10_1039_C9TA07319A crossref_primary_10_3390_polym16040539 crossref_primary_10_1002_anie_201904766 crossref_primary_10_1016_j_mser_2024_100858 crossref_primary_10_1016_j_seppur_2021_119216 crossref_primary_10_1039_C9SE00749K crossref_primary_10_1039_C9TA12870K crossref_primary_10_1007_s10904_023_02893_5 crossref_primary_10_1002_cssc_202000103 crossref_primary_10_1016_j_nantod_2021_101247 crossref_primary_10_1016_j_jcis_2024_06_077 crossref_primary_10_1016_j_ccr_2024_216294 crossref_primary_10_1039_D2EN00393G crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1016_j_ccr_2020_213735 crossref_primary_10_1016_j_electacta_2023_143749 crossref_primary_10_1016_j_mtchem_2022_101037 crossref_primary_10_1039_C9AY00900K crossref_primary_10_1002_smll_202303632 crossref_primary_10_1016_j_apsusc_2023_157538 crossref_primary_10_1016_j_heliyon_2024_e32202 crossref_primary_10_2174_2210298101999200716191729 crossref_primary_10_1016_j_coelec_2020_100669 crossref_primary_10_1016_j_inoche_2024_113373 crossref_primary_10_1021_acsami_9b05829 crossref_primary_10_2139_ssrn_4127684 crossref_primary_10_1016_j_colsurfa_2023_131124 crossref_primary_10_1016_j_ccr_2024_216163 crossref_primary_10_1007_s10853_021_05872_8 crossref_primary_10_1021_acsaem_2c03806 crossref_primary_10_1016_S1872_2067_21_63869_X crossref_primary_10_1002_smll_202100607 crossref_primary_10_1016_j_ijhydene_2024_08_163 crossref_primary_10_1021_acs_energyfuels_3c00011 crossref_primary_10_1002_adfm_202313233 crossref_primary_10_1016_j_jiec_2020_07_009 |
Cites_doi | 10.1016/j.ccr.2015.12.010 10.1021/jacs.7b02186 10.1016/j.apcatb.2018.01.062 10.1039/C7CS00058H 10.1002/asia.201800444 10.1002/anie.201606155 10.1039/C4CS00305E 10.1038/srep23676 10.1016/j.apcatb.2016.04.017 10.1021/ja403008j 10.1002/adma.201705454 10.1039/c2cs35157a 10.1039/C6CS00724D 10.1002/adfm.201707110 10.1002/anie.201505581 10.1016/j.apcatb.2017.08.086 10.1039/C7CS00033B 10.1021/jacs.6b03348 10.1021/cm301605w 10.1039/C4CS00001C 10.1021/ja303588m 10.1002/adma.201703399 10.1021/ja513058h 10.1002/anie.201101924 10.1039/C7CC01827D 10.1021/ja105089w 10.1002/ange.201702162 10.1016/j.apcatb.2016.07.057 10.1002/adma.201700102 10.1016/j.jcat.2018.02.033 10.1038/s41560-017-0018-7 10.1038/ncomms6979 10.1016/j.apcatb.2017.06.082 10.1021/jacs.6b01233 10.1002/adfm.201202996 10.1021/ja308229p |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Apr 2019 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Apr 2019 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2018.10.043 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
EndPage | 628 |
ExternalDocumentID | 10_1016_j_apcatb_2018_10_043 S0926337318309998 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c437t-2f7962f5495f3237166842343779f001ec579f4eee20622834628608c406cd7e3 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 05:26:43 EDT 2025 Tue Jul 01 03:10:52 EDT 2025 Thu Apr 24 22:57:18 EDT 2025 Sat Mar 02 16:00:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Covalent organic frameworks MOF/COF hybrid material Metal-organic frameworks Hydrogen evolution Photocatalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-2f7962f5495f3237166842343779f001ec579f4eee20622834628608c406cd7e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2161282230 |
PQPubID | 2045281 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2161282230 crossref_citationtrail_10_1016_j_apcatb_2018_10_043 crossref_primary_10_1016_j_apcatb_2018_10_043 elsevier_sciencedirect_doi_10_1016_j_apcatb_2018_10_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-01 |
PublicationDateYYYYMMDD | 2019-04-01 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Huang, Zhao, Han, Lai, Yang, Tan, Ma, Lu, Chen, Zhang, Zhang, Li, Chen, Zong, Zhang (bib0060) 2017; 29 Kuecken, Acharjya, Zhi, Schwarze, Schomäcker, Thomas (bib0145) 2017; 53 Schwarz, Noda, Klouda, Karolina, Tarábek. Rybáček, Janouek, Simon, Opanasenko, Čejka, Acharjya, Schmidt, Selve, Valentin, Severin, Rabe, Ecorchard, He, Polozij, Nachtigall, Bojdys (bib0135) 2017; 29 Ma, Guo, Ying, Liu, Zhong (bib0170) 2017; 313 Nguyen, Gándara, Furukawa, Doan, Cordova, Yaghi (bib0125) 2016; 138 Shieh, Wang, Yen, Wu, Dutta, Chou, Morabito, Hu, Hsu, Wu, Tsung (bib0065) 2015; 137 Wen, Mori, Kuwahara, An, Yamashita (bib0025) 2017; 218 Feng, Liu, Su, Bosch, Wei, Wan, Yuan, Chen, Wang, Wang, Lian, Gu, Park, Zou, Zhou (bib0070) 2015; 6 Hirai, Furukawa, Kondo, Uehara, Sakata, Kitagawa (bib0080) 2011; 50 Feng, Ding, Jiang (bib0045) 2012; 41 Wen, Mori, Kuwahara, Kuwahara, An, Yamashita (bib0030) 2018; 13 Song, Kim, Kim, Kim, Jeong, Moon, Lah (bib0090) 2012; 24 Zou, Wang, Luo, Nie, Xing, Luo, Du, Luo, Suib (bib0190) 2016; 193 Yang, Xu, Jiang (bib0010) 2017; 46 Dhakshinamoorthy, Asiri, García (bib0020) 2016; 55 Fu, Das, Xing, Ben, Valtchev, Qiu (bib0130) 2016; 138 Chambers, Wang, Ellezam, Ersen, Fontecave, Sanchez, Rozes, Caroline (bib0155) 2017; 139 Zhou, Wu, Xing, Li, Liu, Luo, Zou, Luo, Zhang (bib0165) 2018; 220 Rogge, Bavykina, Hajek, Garcia, Olivos-Suarez, Sepú lveda-Escribano, Vimont, Clet, Bazin, Kapteijn, Daturi, Ramos-Fernandez, Llabre i Xamena, Van Speybroeck, Gascon (bib0015) 2017; 46 Yang, Xu, Dou, Wang, Zhang, Wu, Zhou, Li, Chen (bib0100) 2017; 2 Gao, Chrzanowski, Ma (bib0035) 2014; 43 Sun, Jang, Yim, Ye, Kim (bib0115) 2018; 28 Li, Sullivan, Rosi (bib0085) 2013; 135 Wang, Pan, Xu, Li (bib0055) 2018; 361 Wang, Liu, Lin (bib0075) 2013; 135 Lian, Fang, Joseph, Wang, Li, Banerjee, Lollar, Wang, Zhou (bib0005) 2017; 46 Gu, Li, Zheng, Kang, Wçll, Zhang (bib0105) 2017; 129 Liu, Tu, Zacher, Fischer (bib0095) 2013; 23 Jiang, Xing, Luo, Li, Zou, Liu, Li, Wang (bib0185) 2018; 228 Cao, Wang, Ao, Wang, Hou, Qian (bib0180) 2015; 264 Tan, Namuangruk, Kong, Nawee, Guo, Wang (bib0140) 2016; 55 Nasalevich, Hendon, Santaclara, Svane, Linden, Veber, Fedin, Houtepen, Veen, Kapteijn, Walsh, Gascon (bib0160) 2016; 6 Yang, You, Cheng, Zheng, Chen (bib0175) 2017; 200 Diaz, Corma (bib0040) 2016; 311 Peng, Zhao, Chen, Zhang, Huang, Dai, Lai, Cui, Tan, Zhang (bib0120) 2018; 30 He, Jiang, Schalley (bib0050) 2015; 44 Jahan, Bao, Yang, Loh (bib0150) 2010; 132 Fukushima, Horike, Kobayashi, Tsujimoto, Isoda, Foo, Kubota, Takata, Kitagawa (bib0110) 2012; 134 Feng (10.1016/j.apcatb.2018.10.043_bib0045) 2012; 41 Yang (10.1016/j.apcatb.2018.10.043_bib0175) 2017; 200 Fukushima (10.1016/j.apcatb.2018.10.043_bib0110) 2012; 134 Jahan (10.1016/j.apcatb.2018.10.043_bib0150) 2010; 132 Cao (10.1016/j.apcatb.2018.10.043_bib0180) 2015; 264 Hirai (10.1016/j.apcatb.2018.10.043_bib0080) 2011; 50 Wen (10.1016/j.apcatb.2018.10.043_bib0030) 2018; 13 Zou (10.1016/j.apcatb.2018.10.043_bib0190) 2016; 193 Yang (10.1016/j.apcatb.2018.10.043_bib0010) 2017; 46 Gao (10.1016/j.apcatb.2018.10.043_bib0035) 2014; 43 Fu (10.1016/j.apcatb.2018.10.043_bib0130) 2016; 138 Wen (10.1016/j.apcatb.2018.10.043_bib0025) 2017; 218 Dhakshinamoorthy (10.1016/j.apcatb.2018.10.043_bib0020) 2016; 55 Ma (10.1016/j.apcatb.2018.10.043_bib0170) 2017; 313 Huang (10.1016/j.apcatb.2018.10.043_bib0060) 2017; 29 Gu (10.1016/j.apcatb.2018.10.043_bib0105) 2017; 129 Peng (10.1016/j.apcatb.2018.10.043_bib0120) 2018; 30 Kuecken (10.1016/j.apcatb.2018.10.043_bib0145) 2017; 53 Li (10.1016/j.apcatb.2018.10.043_bib0085) 2013; 135 Nasalevich (10.1016/j.apcatb.2018.10.043_bib0160) 2016; 6 Jiang (10.1016/j.apcatb.2018.10.043_bib0185) 2018; 228 Lian (10.1016/j.apcatb.2018.10.043_bib0005) 2017; 46 Yang (10.1016/j.apcatb.2018.10.043_bib0100) 2017; 2 Shieh (10.1016/j.apcatb.2018.10.043_bib0065) 2015; 137 Tan (10.1016/j.apcatb.2018.10.043_bib0140) 2016; 55 Chambers (10.1016/j.apcatb.2018.10.043_bib0155) 2017; 139 Wang (10.1016/j.apcatb.2018.10.043_bib0075) 2013; 135 Schwarz (10.1016/j.apcatb.2018.10.043_bib0135) 2017; 29 Diaz (10.1016/j.apcatb.2018.10.043_bib0040) 2016; 311 Song (10.1016/j.apcatb.2018.10.043_bib0090) 2012; 24 Nguyen (10.1016/j.apcatb.2018.10.043_bib0125) 2016; 138 Wang (10.1016/j.apcatb.2018.10.043_bib0055) 2018; 361 Sun (10.1016/j.apcatb.2018.10.043_bib0115) 2018; 28 Zhou (10.1016/j.apcatb.2018.10.043_bib0165) 2018; 220 He (10.1016/j.apcatb.2018.10.043_bib0050) 2015; 44 Feng (10.1016/j.apcatb.2018.10.043_bib0070) 2015; 6 Rogge (10.1016/j.apcatb.2018.10.043_bib0015) 2017; 46 Liu (10.1016/j.apcatb.2018.10.043_bib0095) 2013; 23 |
References_xml | – volume: 46 start-page: 3134 year: 2017 ident: bib0015 publication-title: Chem. Soc. Rev. – volume: 41 start-page: 6010 year: 2012 ident: bib0045 publication-title: Chem. Soc. Rev. – volume: 13 start-page: 1767 year: 2018 ident: bib0030 publication-title: Chem. Asian J – volume: 361 start-page: 248 year: 2018 ident: bib0055 publication-title: J. Catal. – volume: 218 start-page: 555 year: 2017 ident: bib0025 publication-title: Appl. Catal. B – volume: 137 start-page: 4276 year: 2015 ident: bib0065 publication-title: J. Am. Chem. Soc. – volume: 200 start-page: 673 year: 2017 ident: bib0175 publication-title: Appl. Catal. B – volume: 50 start-page: 8057 year: 2011 ident: bib0080 publication-title: Angew. Chem. Int. Ed. – volume: 28 start-page: 1707110 year: 2018 ident: bib0115 publication-title: Adv. Funct. Mater. – volume: 53 start-page: 5854 year: 2017 ident: bib0145 publication-title: Chem. Commun. – volume: 6 start-page: 5979 year: 2015 ident: bib0070 publication-title: Nat. Commun. – volume: 132 start-page: 14487 year: 2010 ident: bib0150 publication-title: J. Am. Chem. Soc. – volume: 44 start-page: 779 year: 2015 ident: bib0050 publication-title: Chem. Soc. Rev. – volume: 138 start-page: 4330 year: 2016 ident: bib0125 publication-title: J. Am. Chem. Soc. – volume: 29 start-page: 1703399 year: 2017 ident: bib0135 publication-title: Adv. Mater. – volume: 135 start-page: 13222 year: 2013 ident: bib0075 publication-title: J. Am. Chem. Soc. – volume: 311 start-page: 85 year: 2016 ident: bib0040 publication-title: Coord. Chem. Rev. – volume: 228 start-page: 29 year: 2018 ident: bib0185 publication-title: Appl. Catal. B – volume: 313 start-page: 890 year: 2017 ident: bib0170 publication-title: Chem. Eur. J – volume: 264 start-page: 113 year: 2015 ident: bib0180 publication-title: Chem. Eur. J – volume: 55 start-page: 5414 year: 2016 ident: bib0020 publication-title: Angew. Chem. Int. Ed. – volume: 220 start-page: 607 year: 2018 ident: bib0165 publication-title: Appl. Catal. B – volume: 134 start-page: 13341 year: 2012 ident: bib0110 publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 3790 year: 2013 ident: bib0095 publication-title: Adv. Funct. Mater. – volume: 29 start-page: 1700102 year: 2017 ident: bib0060 publication-title: Adv. Mater. – volume: 135 start-page: 9984 year: 2013 ident: bib0085 publication-title: J. Am. Chem. Soc. – volume: 129 start-page: 6957 year: 2017 ident: bib0105 publication-title: Angew. Chem. Int. Ed. – volume: 30 start-page: 1705454 year: 2018 ident: bib0120 publication-title: Adv. Mater. – volume: 46 start-page: 4774 year: 2017 ident: bib0010 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 23676 year: 2016 ident: bib0160 publication-title: Sci. Rep. – volume: 193 start-page: 103 year: 2016 ident: bib0190 publication-title: Appl. Catal. B – volume: 2 start-page: 877 year: 2017 ident: bib0100 publication-title: Nat. Energy – volume: 46 start-page: 3386 year: 2017 ident: bib0005 publication-title: Chem. Soc. Rev. – volume: 43 start-page: 5841 year: 2014 ident: bib0035 publication-title: Chem. Soc. Rev. – volume: 24 start-page: 3065 year: 2012 ident: bib0090 publication-title: Chem. Mater. – volume: 139 start-page: 8222 year: 2017 ident: bib0155 publication-title: J. Am. Chem. Soc. – volume: 138 start-page: 7673 year: 2016 ident: bib0130 publication-title: J. Am. Chem. Soc. – volume: 55 start-page: 13979 year: 2016 ident: bib0140 publication-title: Angew. Chem. Int. Ed. – volume: 311 start-page: 85 year: 2016 ident: 10.1016/j.apcatb.2018.10.043_bib0040 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2015.12.010 – volume: 139 start-page: 8222 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0155 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02186 – volume: 264 start-page: 113 year: 2015 ident: 10.1016/j.apcatb.2018.10.043_bib0180 publication-title: Chem. Eur. J – volume: 228 start-page: 29 year: 2018 ident: 10.1016/j.apcatb.2018.10.043_bib0185 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2018.01.062 – volume: 46 start-page: 3386 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0005 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00058H – volume: 13 start-page: 1767 year: 2018 ident: 10.1016/j.apcatb.2018.10.043_bib0030 publication-title: Chem. Asian J doi: 10.1002/asia.201800444 – volume: 55 start-page: 13979 year: 2016 ident: 10.1016/j.apcatb.2018.10.043_bib0140 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606155 – volume: 44 start-page: 779 year: 2015 ident: 10.1016/j.apcatb.2018.10.043_bib0050 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00305E – volume: 6 start-page: 23676 year: 2016 ident: 10.1016/j.apcatb.2018.10.043_bib0160 publication-title: Sci. Rep. doi: 10.1038/srep23676 – volume: 193 start-page: 103 year: 2016 ident: 10.1016/j.apcatb.2018.10.043_bib0190 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.04.017 – volume: 135 start-page: 9984 year: 2013 ident: 10.1016/j.apcatb.2018.10.043_bib0085 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja403008j – volume: 30 start-page: 1705454 year: 2018 ident: 10.1016/j.apcatb.2018.10.043_bib0120 publication-title: Adv. Mater. doi: 10.1002/adma.201705454 – volume: 41 start-page: 6010 year: 2012 ident: 10.1016/j.apcatb.2018.10.043_bib0045 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35157a – volume: 46 start-page: 4774 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0010 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00724D – volume: 28 start-page: 1707110 year: 2018 ident: 10.1016/j.apcatb.2018.10.043_bib0115 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707110 – volume: 55 start-page: 5414 year: 2016 ident: 10.1016/j.apcatb.2018.10.043_bib0020 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505581 – volume: 220 start-page: 607 year: 2018 ident: 10.1016/j.apcatb.2018.10.043_bib0165 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.08.086 – volume: 46 start-page: 3134 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0015 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00033B – volume: 138 start-page: 7673 year: 2016 ident: 10.1016/j.apcatb.2018.10.043_bib0130 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b03348 – volume: 24 start-page: 3065 year: 2012 ident: 10.1016/j.apcatb.2018.10.043_bib0090 publication-title: Chem. Mater. doi: 10.1021/cm301605w – volume: 43 start-page: 5841 year: 2014 ident: 10.1016/j.apcatb.2018.10.043_bib0035 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00001C – volume: 134 start-page: 13341 year: 2012 ident: 10.1016/j.apcatb.2018.10.043_bib0110 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303588m – volume: 29 start-page: 1703399 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0135 publication-title: Adv. Mater. doi: 10.1002/adma.201703399 – volume: 137 start-page: 4276 year: 2015 ident: 10.1016/j.apcatb.2018.10.043_bib0065 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja513058h – volume: 50 start-page: 8057 year: 2011 ident: 10.1016/j.apcatb.2018.10.043_bib0080 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101924 – volume: 53 start-page: 5854 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0145 publication-title: Chem. Commun. doi: 10.1039/C7CC01827D – volume: 132 start-page: 14487 year: 2010 ident: 10.1016/j.apcatb.2018.10.043_bib0150 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja105089w – volume: 129 start-page: 6957 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0105 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201702162 – volume: 200 start-page: 673 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0175 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2016.07.057 – volume: 29 start-page: 1700102 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0060 publication-title: Adv. Mater. doi: 10.1002/adma.201700102 – volume: 361 start-page: 248 year: 2018 ident: 10.1016/j.apcatb.2018.10.043_bib0055 publication-title: J. Catal. doi: 10.1016/j.jcat.2018.02.033 – volume: 2 start-page: 877 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0100 publication-title: Nat. Energy doi: 10.1038/s41560-017-0018-7 – volume: 6 start-page: 5979 year: 2015 ident: 10.1016/j.apcatb.2018.10.043_bib0070 publication-title: Nat. Commun. doi: 10.1038/ncomms6979 – volume: 218 start-page: 555 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0025 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2017.06.082 – volume: 138 start-page: 4330 year: 2016 ident: 10.1016/j.apcatb.2018.10.043_bib0125 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b01233 – volume: 23 start-page: 3790 year: 2013 ident: 10.1016/j.apcatb.2018.10.043_bib0095 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201202996 – volume: 313 start-page: 890 year: 2017 ident: 10.1016/j.apcatb.2018.10.043_bib0170 publication-title: Chem. Eur. J – volume: 135 start-page: 13222 year: 2013 ident: 10.1016/j.apcatb.2018.10.043_bib0075 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308229p |
SSID | ssj0002328 |
Score | 2.6668158 |
Snippet | A novel strategy to fabricate hierarchical MOF/COF hybrids is proposed. For the first time, benzoic acid-modified covalent triazine-based frameworks (B-CTF-1)... The search of novel visible-light-responsive porous materials is important because they hold great promise for applications in various fields. Herein, we... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 621 |
SubjectTerms | Benzoic acid Charge efficiency Covalence Covalent organic frameworks Design modifications Fabrication Heterostructures Hybrid systems Hybrids Hydrogen Hydrogen evolution Hydrogen production Irradiation Light irradiation Metal-organic frameworks MOF/COF hybrid material Photocatalysis Porous materials Radiation Stability Strategy Titanium Triazine Van der Waals forces Zirconium |
Title | Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: An efficient strategy to boost the visible-light-driven photocatalytic performance |
URI | https://dx.doi.org/10.1016/j.apcatb.2018.10.043 https://www.proquest.com/docview/2161282230 |
Volume | 243 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1BT9swFH5C7LDtMG0daGwMvcOupontJu1uVUdVQMBhQ-IWJY4tOnVJRDKkXvhF-5F7z0kom4SQuLWp7UR9X54_J9_3DPAlVyOt3FgJK3MjdJ7FIgvDiXAyzLR2JlDeC3N2Hi0u9cnV6GoLZr0XhmWVXe5vc7rP1t2RYfdvDqvlcvg9mMhI0VAESqY5bPjVOmaUH95tZB7EGHw2psaCW_f2Oa_xSiuTNhkLvMaHrPHS6rHp6b9E7Wef-Vt409FGnLZX9g62bDGAl7N-t7YBvH5QWHAAu0cb_xp1627g-j38-eYVG5gWOdbrgthfbWssHZ5dzIezizler9nChcRjW2ji7TLFqqybtjWdHk1J6KSB8VeZs9DIx_YrTgu0vh4F_1S3RW_X2JRIPL5ukDojG9mzlRUrX70kv-FMi9V12ZT-KdKaR682ToYduJwf_ZgtRLdhgzBaxY2QLp5E0tGSc-SUVLQU47d8SnNRQ0fzoTUj-qCttTKIuO6ON8YGY0OswuSxVbuwXZSF_QDIN29IOIosMT5ak2UmDWXM6yMTBE7He6D6OCWmq2bOm2qskl629jNpo5twdPkoRXcPxH2vqq3m8UT7uIdA8g8qE5pwnui53yMm6bJCnUii1yzbVcHHZw_8CV7Rt0krHtqH7ebmt_1MvKjJDjzwD-DF9Ph0cf4XYGQOfA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB2VcigcECxUFArMgau7SexNdrlV264W6LYHWqk3K3FsdasliZqAtJd-UT-SGSfpAhKqxC2yPU6UGY-fkzczAB9zOVLSjaWwUW6EyrNEZGE4ES4KM6WcCaSPhVmcxvML9eVydLkF0z4WhmmVne9vfbr31l3LsHubw2q5HH4LJlEsaSoySoY540fwWNHy5TIGB7cbngdBBu-OabTg4X38nCd5pZVJm4wZXuMDJnkp-a_96S9P7bef2XN41uFGPGwf7QVs2WIAO9O-XNsAnv6WWXAAu8ebADYS61Zw_RLujjxlA9Mix3pdEPyrbY2lw8XZbDg9m-HVmmO4kIBsa5v4c5liVdZNO5puj6Yk86SJ8XuZM9PIK_cTHhZofUIK7qrbrLdrbEokIF83SMLIkezZyoqVT1-S37CrxeqqbEr_GWnNs1ebUIZXcDE7Pp_ORVexQRglk0ZELpnEkaMz58jJSNJZjH_zScVZDR1tiNaM6EJZa6Mg5sQ7PjI2GBuCFSZPrNyF7aIs7GtAXr0hGVJsCfLRoSwzaRglfEAyQeBUsgey15M2XTpzrqqx0j1v7Vq32tWsXW4l7e6BuJeq2nQeD4xPehPQf5ilph3nAcn93mJ05xZqHRG-Zt6uDN7898QfYGd-vjjRJ59Pv76FJ9QzaZlE-7Dd3Pyw7wgkNdl7vwh-AWwXEAo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+syntheses+of+MOF%2FCOF+hybrid+materials+via+postsynthetic+covalent+modification%3A+An+efficient+strategy+to+boost+the+visible-light-driven+photocatalytic+performance&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Li%2C+Fei&rft.au=Wang%2C+Dengke&rft.au=Xing%2C+Qiu-Ju&rft.au=Zhou%2C+Gang&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0926-3373&rft.eissn=1873-3883&rft.volume=243&rft.spage=621&rft_id=info:doi/10.1016%2Fj.apcatb.2018.10.043&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |