Assessing the Severity of Verticillium Wilt in Cotton Fields and Constructing Pesticide Application Prescription Maps Using Unmanned Aerial Vehicle (UAV) Multispectral Images
Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigati...
Saved in:
Published in | Drones (Basel) Vol. 8; no. 5; p. 176 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.05.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2504-446X 2504-446X |
DOI | 10.3390/drones8050176 |
Cover
Loading…
Abstract | Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigation, which are inefficient and costly, and the methods of applying pesticides in cotton fields are singular, with issues of low pesticide efficiency and uneven application. This study aims to combine UAV remote sensing monitoring of cotton Verticillium wilt with the precision spraying characteristics of agricultural drones, to provide a methodological reference for monitoring and precision application of pesticides for cotton diseases. Taking the cotton fields of Shihezi City, Xinjiang as the research subject, high-resolution multispectral images were collected using drones. Simultaneously, 150 sets of field samples with varying degrees of Verticillium wilt were collected through ground data collection, utilizing data analysis methods such as partial least squares regression (PLSR) and neural network models; additionally, a cotton Verticillium wilt monitoring model based on drone remote sensing images was constructed. The results showed that the estimation accuracy R2 of the PLSR and BP neural network models based on EVI, RENDVI, SAVI, MSAVI, and RDVI vegetation indices were 0.778 and 0.817, respectively, with RMSE of 0.126 and 0.117, respectively. Based on this, an analysis of the condition of the areas to be treated was performed, combining the operational parameters of agricultural drones, resulting in a prescription map for spraying against cotton Verticillium wilt. |
---|---|
AbstractList | Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigation, which are inefficient and costly, and the methods of applying pesticides in cotton fields are singular, with issues of low pesticide efficiency and uneven application. This study aims to combine UAV remote sensing monitoring of cotton Verticillium wilt with the precision spraying characteristics of agricultural drones, to provide a methodological reference for monitoring and precision application of pesticides for cotton diseases. Taking the cotton fields of Shihezi City, Xinjiang as the research subject, high-resolution multispectral images were collected using drones. Simultaneously, 150 sets of field samples with varying degrees of Verticillium wilt were collected through ground data collection, utilizing data analysis methods such as partial least squares regression (PLSR) and neural network models; additionally, a cotton Verticillium wilt monitoring model based on drone remote sensing images was constructed. The results showed that the estimation accuracy R[sup.2] of the PLSR and BP neural network models based on EVI, RENDVI, SAVI, MSAVI, and RDVI vegetation indices were 0.778 and 0.817, respectively, with RMSE of 0.126 and 0.117, respectively. Based on this, an analysis of the condition of the areas to be treated was performed, combining the operational parameters of agricultural drones, resulting in a prescription map for spraying against cotton Verticillium wilt. Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigation, which are inefficient and costly, and the methods of applying pesticides in cotton fields are singular, with issues of low pesticide efficiency and uneven application. This study aims to combine UAV remote sensing monitoring of cotton Verticillium wilt with the precision spraying characteristics of agricultural drones, to provide a methodological reference for monitoring and precision application of pesticides for cotton diseases. Taking the cotton fields of Shihezi City, Xinjiang as the research subject, high-resolution multispectral images were collected using drones. Simultaneously, 150 sets of field samples with varying degrees of Verticillium wilt were collected through ground data collection, utilizing data analysis methods such as partial least squares regression (PLSR) and neural network models; additionally, a cotton Verticillium wilt monitoring model based on drone remote sensing images was constructed. The results showed that the estimation accuracy R2 of the PLSR and BP neural network models based on EVI, RENDVI, SAVI, MSAVI, and RDVI vegetation indices were 0.778 and 0.817, respectively, with RMSE of 0.126 and 0.117, respectively. Based on this, an analysis of the condition of the areas to be treated was performed, combining the operational parameters of agricultural drones, resulting in a prescription map for spraying against cotton Verticillium wilt. |
Audience | Academic |
Author | Li, Xiaojuan Liu, Bo Yang, Guang Lin, Tao Liang, Zhi |
Author_xml | – sequence: 1 givenname: Xiaojuan surname: Li fullname: Li, Xiaojuan – sequence: 2 givenname: Zhi orcidid: 0009-0007-9385-2040 surname: Liang fullname: Liang, Zhi – sequence: 3 givenname: Guang surname: Yang fullname: Yang, Guang – sequence: 4 givenname: Tao surname: Lin fullname: Lin, Tao – sequence: 5 givenname: Bo surname: Liu fullname: Liu, Bo |
BookMark | eNp1Uk9vFCEUn5iaWGuP3km86GErM8DMcJxsrG7Sxia61duEhTfbt2FgBKZJv5SfUXbXqDUaEuA9fn_g8Z4XJ847KIqXJb1gTNK3JuQ4tlTQsqmfFKeVoHzBef315I_9s-I8xh2ltKq4qGV5WnzvYoQY0W1JugPyCe4hYHogfiC3EBJqtBbnkXxBmwg6svQpeUcuEayJRDmTMy6mMOu017iBuOcYIN00WdQqYUbfBIg64HQIrtUUyfrguHajcg4M6bKpstnxDrUF8nrd3b4h17NNGCfQKeSz1ai2EF8UTwdlI5z_XM-K9eW7z8sPi6uP71fL7mqhOWvSoio115UUrDabxhgzQLvRpt20bCiNVIKKARrB9FAxRWmrDW8HybVibVnLulHsrFgddY1Xu34KOKrw0HuF_SHhw7ZX--pY6BUXm1pz4LmseZYt17SSqmoptLzhNGu9OmpNwX-bc4H6nZ-Dy9fvGRWSl7WQzW_UVmVRdIPPz9YjRt13jRScVo2QGXXxD1QeBkbUuQMGzPlHhMWRoIOPMcDw6zEl7feN0z9qnIxnf-E1psMvZiO0_2H9AC1Iy2E |
CitedBy_id | crossref_primary_10_3390_rs16244637 crossref_primary_10_1016_j_compbiomed_2024_109630 crossref_primary_10_3390_agriculture15010081 crossref_primary_10_3390_rs16163046 crossref_primary_10_3390_drones9040229 |
Cites_doi | 10.3390/agronomy12071625 10.1038/323533a0 10.1186/s13007-023-01056-4 10.1016/j.atech.2022.100138 10.3390/rs15092450 10.3390/drones6090254 10.2307/1936256 10.1109/ACCESS.2023.3312191 10.1016/j.compag.2022.106775 10.3390/agriculture13020293 10.1016/j.cj.2022.12.002 10.1016/j.eja.2023.126754 10.1007/s11119-023-10089-7 10.1016/j.fcr.2022.108765 10.3390/agronomy13061499 10.1007/s11119-023-10014-y 10.3390/rs15164108 10.3390/agronomy13051222 10.3390/su14031458 10.3390/rs15133373 10.1155/2021/1790171 10.3390/agronomy12112893 10.1016/j.compag.2022.107484 10.1016/j.compag.2023.107743 10.1002/ps.7683 10.1038/s41598-022-09607-w 10.1007/s13593-023-00877-w 10.1109/GCRAIT55928.2022.00022 10.1007/s11119-021-09856-1 10.1111/1365-2745.13957 10.1016/j.sjbs.2021.12.030 10.3390/drones3020033 10.3390/rs15133301 10.3390/rs12081310 10.3390/s21072363 10.1016/j.biosystemseng.2023.12.014 10.3390/rs14112576 10.1109/ACCESS.2023.3235912 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI DOA |
DOI | 10.3390/drones8050176 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2504-446X |
ExternalDocumentID | oai_doaj_org_article_a45b6c4e40004e4984c029a280e84740 A795402759 10_3390_drones8050176 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | AADQD AAFWJ AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC MODMG M~E OK1 PHGZM PHGZT PIMPY PMFND 8FE 8FG ABUWG AZQEC DWQXO P62 PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c437t-21c4c29536db7dddfe8bcd8b83f1d9a505fe753cf23a008cd48f94ca3816967a3 |
IEDL.DBID | 8FG |
ISSN | 2504-446X |
IngestDate | Wed Aug 27 01:23:51 EDT 2025 Mon Jul 14 10:36:58 EDT 2025 Tue Jun 17 22:09:05 EDT 2025 Tue Jun 10 21:09:01 EDT 2025 Tue Jul 01 01:49:54 EDT 2025 Thu Apr 24 23:07:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-21c4c29536db7dddfe8bcd8b83f1d9a505fe753cf23a008cd48f94ca3816967a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0007-9385-2040 |
OpenAccessLink | https://www.proquest.com/docview/3059416597?pq-origsite=%requestingapplication% |
PQID | 3059416597 |
PQPubID | 5046906 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a45b6c4e40004e4984c029a280e84740 proquest_journals_3059416597 gale_infotracmisc_A795402759 gale_infotracacademiconefile_A795402759 crossref_primary_10_3390_drones8050176 crossref_citationtrail_10_3390_drones8050176 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Drones (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zanin (ref_19) 2022; 12 Kumar (ref_5) 2021; 2021 Zhang (ref_7) 2022; 203 ref_13 ref_12 ref_34 ref_11 ref_10 Aldubai (ref_26) 2022; 29 ref_31 Seol (ref_17) 2022; 23 Zhao (ref_30) 2023; 207 Chin (ref_6) 2023; 24 ref_18 Zhang (ref_35) 2023; 79 ref_39 Azath (ref_4) 2021; 2021 ref_15 ref_37 Xu (ref_41) 2021; 104 Li (ref_23) 2023; 11 Jiang (ref_32) 2023; 11 Shu (ref_36) 2023; 144 Lu (ref_16) 2023; 19 Jordan (ref_29) 1969; 50 Rumelhart (ref_40) 1986; 323 ref_24 ref_45 Abdalla (ref_14) 2024; 237 ref_22 ref_44 ref_21 ref_20 Kang (ref_2) 2023; 11 Siegfried (ref_42) 2023; 291 ref_1 ref_3 Lizarazo (ref_33) 2023; 3 Farella (ref_43) 2022; 110 Pergner (ref_9) 2023; 43 ref_28 Sahoo (ref_38) 2024; 25 ref_27 ref_8 Qiao (ref_25) 2022; 196 |
References_xml | – ident: ref_8 doi: 10.3390/agronomy12071625 – volume: 104 start-page: 102511 year: 2021 ident: ref_41 article-title: Cotton yield estimation model based on machine learning using time series uav remote sensing data publication-title: Int. J. Appl. Earth Obs. – volume: 323 start-page: 533 year: 1986 ident: ref_40 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 19 start-page: 75 year: 2023 ident: ref_16 article-title: Intelligent identification on cotton verticillium wilt based on spectral and image feature fusion publication-title: Plant Methods doi: 10.1186/s13007-023-01056-4 – volume: 3 start-page: 100138 year: 2023 ident: ref_33 article-title: Identification of symptoms related to potato verticillium wilt from uav-based multispectral imagery using an ensemble of gradient boosting machines publication-title: Smart Agric. Technol. doi: 10.1016/j.atech.2022.100138 – ident: ref_28 doi: 10.3390/rs15092450 – ident: ref_1 doi: 10.3390/drones6090254 – ident: ref_11 – volume: 50 start-page: 663 year: 1969 ident: ref_29 article-title: Derivation of leaf-area index from quality of light on the forest floor publication-title: Ecology doi: 10.2307/1936256 – volume: 11 start-page: 98244 year: 2023 ident: ref_23 article-title: Weed density detection method based on a high weed pressure dataset and improved psp net publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3312191 – volume: 196 start-page: 106775 year: 2022 ident: ref_25 article-title: Uav-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages publication-title: Comput. Electron. Agr. doi: 10.1016/j.compag.2022.106775 – ident: ref_31 doi: 10.3390/agriculture13020293 – volume: 11 start-page: 933 year: 2023 ident: ref_2 article-title: Assessing the severity of cotton verticillium wilt disease from in situ canopy images and spectra using convolutional neural networks publication-title: Crop J. doi: 10.1016/j.cj.2022.12.002 – volume: 144 start-page: 126754 year: 2023 ident: ref_36 article-title: Assessing maize lodging severity using multitemporal uav-based digital images publication-title: Eur. J. Agron. doi: 10.1016/j.eja.2023.126754 – volume: 25 start-page: 704 year: 2024 ident: ref_38 article-title: Drone remote sensing of wheat n using hyperspectral sensor and machine learning publication-title: Precis. Agric. doi: 10.1007/s11119-023-10089-7 – volume: 291 start-page: 108765 year: 2023 ident: ref_42 article-title: Combining a cotton ‘boll area index’ with in-season unmanned aerial multispectral and thermal imagery for yield estimation publication-title: Field Crop. Res. doi: 10.1016/j.fcr.2022.108765 – ident: ref_44 – ident: ref_27 doi: 10.3390/agronomy13061499 – volume: 24 start-page: 1663 year: 2023 ident: ref_6 article-title: Plant disease detection using drones in precision agriculture publication-title: Precis. Agric. doi: 10.1007/s11119-023-10014-y – ident: ref_37 doi: 10.3390/rs15164108 – ident: ref_15 doi: 10.3390/agronomy13051222 – ident: ref_18 doi: 10.3390/su14031458 – ident: ref_3 doi: 10.3390/rs15133373 – volume: 2021 start-page: 1790171 year: 2021 ident: ref_5 article-title: A comparative analysis of machine learning algorithms for detection of organic and nonorganic cotton diseases publication-title: Math. Probl. Eng. doi: 10.1155/2021/1790171 – ident: ref_21 doi: 10.3390/agronomy12112893 – volume: 203 start-page: 107484 year: 2022 ident: ref_7 article-title: Accurate cotton diseases and pests detection in complex background based on an improved yolox model publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107484 – volume: 207 start-page: 107743 year: 2023 ident: ref_30 article-title: Evaluation of spatial resolution on crop disease detection based on multiscale images and category variance ratio publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2023.107743 – volume: 79 start-page: 4123 year: 2023 ident: ref_35 article-title: Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control publication-title: Pest Manag. Sci. doi: 10.1002/ps.7683 – volume: 12 start-page: 5638 year: 2022 ident: ref_19 article-title: Reduction of pesticide application via real-time precision spraying publication-title: Sci. Rep. doi: 10.1038/s41598-022-09607-w – volume: 43 start-page: 24 year: 2023 ident: ref_9 article-title: On the effects that motivate pesticide use in perspective of designing a cropping system without pesticides but with mineral fertilizer—A review publication-title: Agron. Sustain. Dev. doi: 10.1007/s13593-023-00877-w – ident: ref_24 doi: 10.1109/GCRAIT55928.2022.00022 – volume: 23 start-page: 712 year: 2022 ident: ref_17 article-title: Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards publication-title: Precis. Agric. doi: 10.1007/s11119-021-09856-1 – ident: ref_10 – volume: 110 start-page: 1996 year: 2022 ident: ref_43 article-title: Thermal remote sensing for plant ecology from leaf to globe publication-title: J. Ecol. doi: 10.1111/1365-2745.13957 – volume: 29 start-page: 2506 year: 2022 ident: ref_26 article-title: Utilizing spectral vegetation indices for yield assessment of tomato genotypes grown in arid conditions publication-title: Saudi J. Biol. Sci. doi: 10.1016/j.sjbs.2021.12.030 – ident: ref_12 doi: 10.3390/drones3020033 – volume: 2021 start-page: 9981437 year: 2021 ident: ref_4 article-title: Deep learning-based image processing for cotton leaf disease and pest diagnosis publication-title: J. Electr. Comput. Eng. – ident: ref_34 doi: 10.3390/rs15133301 – ident: ref_13 doi: 10.3390/rs12081310 – ident: ref_20 doi: 10.3390/s21072363 – ident: ref_45 – volume: 237 start-page: 220 year: 2024 ident: ref_14 article-title: Assessing fusarium oxysporum disease severity in cotton using unmanned aerial system images and a hybrid domain adaptation deep learning time series model publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2023.12.014 – ident: ref_39 doi: 10.3390/rs14112576 – ident: ref_22 – volume: 11 start-page: 5908 year: 2023 ident: ref_32 article-title: Prediction dynamics in cotton aphid using unmanned aerial vehicle multispectral images and vegetation indices publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3235912 |
SSID | ssj0002245691 |
Score | 2.3184018 |
Snippet | Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 176 |
SubjectTerms | Agricultural production Algorithms Back propagation networks Classification Control Cotton Cotton verticillium wilt Crop diseases Crops Data analysis Data collection Datasets Drone aircraft Drones Field investigations Flowers & plants Fungal diseases Image resolution Least squares method Leaves Machine learning Medical imaging Methods monitoring model Neural networks Pesticides Plant diseases precision spraying prescription map Remote monitoring Remote sensing Rice Spraying unmanned aerial vehicle (UAV) remote sensing Unmanned aerial vehicles Vegetation Vegetation index |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CSluyzYM5lD6gJrYs29LRDV3SQkqh3ZCb0JNu2XVCdvO3-hs7I3mT7CH00qslLKH5NPMNGn1i7I3xlcdAJ4qaK1EIaVVhWhcLKesojVK2VHTf-eJbez4TX6-aq0dPfVFNWJYHzgt3akRjWyeCIPYRhJLClVwZLsuAjlWkbL1U5aNk6ncSdUFioKosqlljXn_qb0n7XpYNQrDdCkJJq_8pj5zCzHSf7Y38EPo8r-dsJwwv2J98NItRBpCvwY-A-EP2DNcRLnNd9GIxv1sCbvE1zAc4u14jpYMpVaetwAwe6F3OrBSL__hOyhpu7gP0D8fXQMUYGxcCF-ZmBamcAGbD0pAzhj6BFUf8RVOD97P-8gOkC7zpuuYttn1ZontavWSz6eefZ-fF-NBC4UTdrQteOeE4HeR623nvY5DWeWnRXpVXBklSDJjWuMhrg5zBeSGjEs7QoaNqO1O_YrsDLu8BA24jBcXGqhJTR7J9I1WsQlsGIZvQTtjHzcprN6qQ02MYC43ZCBlKbxlqwt7ed7_J8htPdfxEZrzvRKrZ6QNiSY9Y0v_C0oS9IxBo2ts4KWfGKwo4Dqlk6b5TSHB516gJO9rqiXvSbTdvYKRHn7DSNUnjVC1mcK__x2QP2TOOBCsXXx6xXQRROEaCtLYnaS_8BZeZDv0 priority: 102 providerName: Directory of Open Access Journals |
Title | Assessing the Severity of Verticillium Wilt in Cotton Fields and Constructing Pesticide Application Prescription Maps Using Unmanned Aerial Vehicle (UAV) Multispectral Images |
URI | https://www.proquest.com/docview/3059416597 https://doaj.org/article/a45b6c4e40004e4984c029a280e84740 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1Be-GCQIAIlGgOiA8Jq_Z6be-ekFs1FKRWFZCqN2s_S6TECXH4W_xGZtZOqhzKNbuKLc_bmbc7s28Ye6td5jDQiSTnSiRCGpXo0oZEyjxIrZRJFd13vrgsz6fi201xMxy4dUNZ5dYnRkftlpbOyI9zEhbJSuS_n1e_E-oaRdnVoYXGQ3aYYaQhnMvJl90ZC6esnsp6ac0cd_fHbk0K-DItEIjlXiiKiv33-eUYbCZP2OOBJULdm_Upe-DbZ-xvn6DFWAPI2uCHRxQih4ZlgOu-Ono-n_1ZAC70DcxaOF1ukNjBhGrUOtCtA-rO2evF4n9ckb6GnTkP9V0SG6gkY-tI4EKvOohFBTBtF5pcMtQRsvjEX_Rq8GFaX3-EeI03Xtpc49jXBTqp7jmbTs5-np4nQ7uFxIq82iQ8s8JySuc6UznngpfGOmnQaplTGqlS8Li5sYHnGpmDdUIGJaym1KMqK52_YActft6XDLgJFBoLo1LcQBICCqlC5svUC1n4csQ-bb98YwctcmqJMW9wT0KGavYMNWLvdtNXvQjHfRNPyIy7SaSdHX9Yrm-bYSk2WhSmtMIL4rNeKClsypXmMvUYqkU6Yu8JBA2tcHwpq4eLCvgc0spq6kohzeVVoUbsaG8mrky7P7yFUTN4hq65w_Gr_w-_Zo84Eqi-uPKIHSA8_BskQBszjigfs8OTs8ur7-N4jPAPmD4KkA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCASIwoB74FMiWuI4if2AUDZWtWytJlinvWWO7UClNi1tEeKf2t_IXT469WG87TW2HCt3vvs5d_c7xl5rG1h0dMILuRKekLnydGwKT8qwkFqp3FdU7zwcxf2x-HoRXeywq7YWhtIqW5tYGWo7N_SPfD8kYpEgRvz7efHLo65RFF1tW2jUanHs_v7BK9vq0-ALyvcN572js8O-13QV8IwIk7XHAyMMp6ilzRNrbeFkbqzMcXOBVRoRQeEQw5uChxodpLFCFkoYTRE2FSc6xHXvsF1BFa0dtntwNDr9tvmrwymOqIKazDMMlb9vl8S5L_0IVT_ecn5Vj4CbPEHl3noP2P0Gl0JaK9JDtuPKR-yqDgmjdwPEifDdod4jaod5Aed1PvZ0Ovk9AzQta5iUcDhfI5SEHmXFrUCXFqgfaM1Qi2ucEqOHmVgH6XXYHCgJpDVdMNSLFVRpDDAuZ5qcAKTVIcE3_qStwftxev4BqsLhqkx0iWODGZrF1WM2vhVRPGGdEj_vUwY8L8gZR7ny8cpKOhdJVQQu9p2QkYu77GP75TPTsJ9TE45phrcgElS2Jague7uZvqhpP26aeEBi3Ewitu7qwXz5I2sOf6ZFlMdGOEEI2gklhfG50lz6DsGB8LvsHSlBRjYFN2V0UxqB7yF2rixNFAJrnkSqy_a2ZqItMNvDrRpljS1aZdcn59n_h1-xu_2z4Ul2MhgdP2f3OMK3OrVzj3VQVdwLhF_r_GWj88Aub_uY_QPQ3Uda |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBAvCASIwgbngatE1MRxEvsBobARVsamSdBpb5ljO6xSm5amCPGn-AH8Os7JpVMfxtteY8u2cm6ffW6MPdc2sGjohBdyJTwhC-Xp2JSelGEptVKFryjf-eg4PhiLz2fR2Rb72-fCUFhlrxMbRW3nht7IhyEVFglixL_DsguLONnP3i9-eNRBijytfTuNlkUO3e9feH2r3432kdYvOM8-fts78LoOA54RYbLyeGCE4eTBtEVirS2dLIyVBR40sEojOigd4nlT8lCjsTRWyFIJo8nbpuJEh7juDXYzCRNFFz-ZfVq_73DyKKqgLesZhsof2iVV35d-hEIQb5jBplvAVTahMXTZXXanQ6iQtix1j2256j770zqH0c4BIkb46lACEL_DvITTNjJ7Op38nAEqmRVMKtibrxBUQkbxcTXoygJ1Bm1r1eIaJ1Tbw0ysg_TSgQ4UDtIrMTjSixqagAYYVzNN5gDSRlxwxws6Grwep6dvoEkhbhJGlzg2mqGCrB-w8bUQ4iHbrvD3PmLAi5LMclQoHy-vxH2RVGXgYt8JGbl4wN72fz43XR10ascxzfE-RITKNwg1YC_X0xdtAZCrJn4gMq4nUd3u5sN8-T3v1ECuRVTERjhBWNoJJYXxudJc-g5hgvAH7BUxQU7aBQ9ldJckgftQna48TRRCbJ5EasB2NmaiVjCbwz0b5Z1WqvNLGXr8_-Fn7BYKV_5ldHz4hN3miOPaGM8dto2c4nYRh62Kpw3DAzu_bgn7BzgOSio |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Severity+of+Verticillium+Wilt+in+Cotton+Fields+and+Constructing+Pesticide+Application+Prescription+Maps+Using+Unmanned+Aerial+Vehicle+Multispectral+Images&rft.jtitle=Drones+%28Basel%29&rft.au=Li%2C+Xiaojuan&rft.au=Liang%2C+Zhi&rft.au=Yang%2C+Guang&rft.au=Lin%2C+Tao&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.issn=2504-446X&rft.eissn=2504-446X&rft.volume=8&rft.issue=5&rft_id=info:doi/10.3390%2Fdrones8050176&rft.externalDocID=A795402759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon |