Assessing the Severity of Verticillium Wilt in Cotton Fields and Constructing Pesticide Application Prescription Maps Using Unmanned Aerial Vehicle (UAV) Multispectral Images

Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigati...

Full description

Saved in:
Bibliographic Details
Published inDrones (Basel) Vol. 8; no. 5; p. 176
Main Authors Li, Xiaojuan, Liang, Zhi, Yang, Guang, Lin, Tao, Liu, Bo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text
ISSN2504-446X
2504-446X
DOI10.3390/drones8050176

Cover

Loading…
Abstract Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigation, which are inefficient and costly, and the methods of applying pesticides in cotton fields are singular, with issues of low pesticide efficiency and uneven application. This study aims to combine UAV remote sensing monitoring of cotton Verticillium wilt with the precision spraying characteristics of agricultural drones, to provide a methodological reference for monitoring and precision application of pesticides for cotton diseases. Taking the cotton fields of Shihezi City, Xinjiang as the research subject, high-resolution multispectral images were collected using drones. Simultaneously, 150 sets of field samples with varying degrees of Verticillium wilt were collected through ground data collection, utilizing data analysis methods such as partial least squares regression (PLSR) and neural network models; additionally, a cotton Verticillium wilt monitoring model based on drone remote sensing images was constructed. The results showed that the estimation accuracy R2 of the PLSR and BP neural network models based on EVI, RENDVI, SAVI, MSAVI, and RDVI vegetation indices were 0.778 and 0.817, respectively, with RMSE of 0.126 and 0.117, respectively. Based on this, an analysis of the condition of the areas to be treated was performed, combining the operational parameters of agricultural drones, resulting in a prescription map for spraying against cotton Verticillium wilt.
AbstractList Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigation, which are inefficient and costly, and the methods of applying pesticides in cotton fields are singular, with issues of low pesticide efficiency and uneven application. This study aims to combine UAV remote sensing monitoring of cotton Verticillium wilt with the precision spraying characteristics of agricultural drones, to provide a methodological reference for monitoring and precision application of pesticides for cotton diseases. Taking the cotton fields of Shihezi City, Xinjiang as the research subject, high-resolution multispectral images were collected using drones. Simultaneously, 150 sets of field samples with varying degrees of Verticillium wilt were collected through ground data collection, utilizing data analysis methods such as partial least squares regression (PLSR) and neural network models; additionally, a cotton Verticillium wilt monitoring model based on drone remote sensing images was constructed. The results showed that the estimation accuracy R[sup.2] of the PLSR and BP neural network models based on EVI, RENDVI, SAVI, MSAVI, and RDVI vegetation indices were 0.778 and 0.817, respectively, with RMSE of 0.126 and 0.117, respectively. Based on this, an analysis of the condition of the areas to be treated was performed, combining the operational parameters of agricultural drones, resulting in a prescription map for spraying against cotton Verticillium wilt.
Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely affecting the yield and quality of cotton. Current monitoring methods for Verticillium wilt mainly rely on manual inspection and field investigation, which are inefficient and costly, and the methods of applying pesticides in cotton fields are singular, with issues of low pesticide efficiency and uneven application. This study aims to combine UAV remote sensing monitoring of cotton Verticillium wilt with the precision spraying characteristics of agricultural drones, to provide a methodological reference for monitoring and precision application of pesticides for cotton diseases. Taking the cotton fields of Shihezi City, Xinjiang as the research subject, high-resolution multispectral images were collected using drones. Simultaneously, 150 sets of field samples with varying degrees of Verticillium wilt were collected through ground data collection, utilizing data analysis methods such as partial least squares regression (PLSR) and neural network models; additionally, a cotton Verticillium wilt monitoring model based on drone remote sensing images was constructed. The results showed that the estimation accuracy R2 of the PLSR and BP neural network models based on EVI, RENDVI, SAVI, MSAVI, and RDVI vegetation indices were 0.778 and 0.817, respectively, with RMSE of 0.126 and 0.117, respectively. Based on this, an analysis of the condition of the areas to be treated was performed, combining the operational parameters of agricultural drones, resulting in a prescription map for spraying against cotton Verticillium wilt.
Audience Academic
Author Li, Xiaojuan
Liu, Bo
Yang, Guang
Lin, Tao
Liang, Zhi
Author_xml – sequence: 1
  givenname: Xiaojuan
  surname: Li
  fullname: Li, Xiaojuan
– sequence: 2
  givenname: Zhi
  orcidid: 0009-0007-9385-2040
  surname: Liang
  fullname: Liang, Zhi
– sequence: 3
  givenname: Guang
  surname: Yang
  fullname: Yang, Guang
– sequence: 4
  givenname: Tao
  surname: Lin
  fullname: Lin, Tao
– sequence: 5
  givenname: Bo
  surname: Liu
  fullname: Liu, Bo
BookMark eNp1Uk9vFCEUn5iaWGuP3km86GErM8DMcJxsrG7Sxia61duEhTfbt2FgBKZJv5SfUXbXqDUaEuA9fn_g8Z4XJ847KIqXJb1gTNK3JuQ4tlTQsqmfFKeVoHzBef315I_9s-I8xh2ltKq4qGV5WnzvYoQY0W1JugPyCe4hYHogfiC3EBJqtBbnkXxBmwg6svQpeUcuEayJRDmTMy6mMOu017iBuOcYIN00WdQqYUbfBIg64HQIrtUUyfrguHajcg4M6bKpstnxDrUF8nrd3b4h17NNGCfQKeSz1ai2EF8UTwdlI5z_XM-K9eW7z8sPi6uP71fL7mqhOWvSoio115UUrDabxhgzQLvRpt20bCiNVIKKARrB9FAxRWmrDW8HybVibVnLulHsrFgddY1Xu34KOKrw0HuF_SHhw7ZX--pY6BUXm1pz4LmseZYt17SSqmoptLzhNGu9OmpNwX-bc4H6nZ-Dy9fvGRWSl7WQzW_UVmVRdIPPz9YjRt13jRScVo2QGXXxD1QeBkbUuQMGzPlHhMWRoIOPMcDw6zEl7feN0z9qnIxnf-E1psMvZiO0_2H9AC1Iy2E
CitedBy_id crossref_primary_10_3390_rs16244637
crossref_primary_10_1016_j_compbiomed_2024_109630
crossref_primary_10_3390_agriculture15010081
crossref_primary_10_3390_rs16163046
crossref_primary_10_3390_drones9040229
Cites_doi 10.3390/agronomy12071625
10.1038/323533a0
10.1186/s13007-023-01056-4
10.1016/j.atech.2022.100138
10.3390/rs15092450
10.3390/drones6090254
10.2307/1936256
10.1109/ACCESS.2023.3312191
10.1016/j.compag.2022.106775
10.3390/agriculture13020293
10.1016/j.cj.2022.12.002
10.1016/j.eja.2023.126754
10.1007/s11119-023-10089-7
10.1016/j.fcr.2022.108765
10.3390/agronomy13061499
10.1007/s11119-023-10014-y
10.3390/rs15164108
10.3390/agronomy13051222
10.3390/su14031458
10.3390/rs15133373
10.1155/2021/1790171
10.3390/agronomy12112893
10.1016/j.compag.2022.107484
10.1016/j.compag.2023.107743
10.1002/ps.7683
10.1038/s41598-022-09607-w
10.1007/s13593-023-00877-w
10.1109/GCRAIT55928.2022.00022
10.1007/s11119-021-09856-1
10.1111/1365-2745.13957
10.1016/j.sjbs.2021.12.030
10.3390/drones3020033
10.3390/rs15133301
10.3390/rs12081310
10.3390/s21072363
10.1016/j.biosystemseng.2023.12.014
10.3390/rs14112576
10.1109/ACCESS.2023.3235912
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOA
DOI 10.3390/drones8050176
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2504-446X
ExternalDocumentID oai_doaj_org_article_a45b6c4e40004e4984c029a280e84740
A795402759
10_3390_drones8050176
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID AADQD
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PMFND
8FE
8FG
ABUWG
AZQEC
DWQXO
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c437t-21c4c29536db7dddfe8bcd8b83f1d9a505fe753cf23a008cd48f94ca3816967a3
IEDL.DBID 8FG
ISSN 2504-446X
IngestDate Wed Aug 27 01:23:51 EDT 2025
Mon Jul 14 10:36:58 EDT 2025
Tue Jun 17 22:09:05 EDT 2025
Tue Jun 10 21:09:01 EDT 2025
Tue Jul 01 01:49:54 EDT 2025
Thu Apr 24 23:07:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-21c4c29536db7dddfe8bcd8b83f1d9a505fe753cf23a008cd48f94ca3816967a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-9385-2040
OpenAccessLink https://www.proquest.com/docview/3059416597?pq-origsite=%requestingapplication%
PQID 3059416597
PQPubID 5046906
ParticipantIDs doaj_primary_oai_doaj_org_article_a45b6c4e40004e4984c029a280e84740
proquest_journals_3059416597
gale_infotracmisc_A795402759
gale_infotracacademiconefile_A795402759
crossref_primary_10_3390_drones8050176
crossref_citationtrail_10_3390_drones8050176
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Drones (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zanin (ref_19) 2022; 12
Kumar (ref_5) 2021; 2021
Zhang (ref_7) 2022; 203
ref_13
ref_12
ref_34
ref_11
ref_10
Aldubai (ref_26) 2022; 29
ref_31
Seol (ref_17) 2022; 23
Zhao (ref_30) 2023; 207
Chin (ref_6) 2023; 24
ref_18
Zhang (ref_35) 2023; 79
ref_39
Azath (ref_4) 2021; 2021
ref_15
ref_37
Xu (ref_41) 2021; 104
Li (ref_23) 2023; 11
Jiang (ref_32) 2023; 11
Shu (ref_36) 2023; 144
Lu (ref_16) 2023; 19
Jordan (ref_29) 1969; 50
Rumelhart (ref_40) 1986; 323
ref_24
ref_45
Abdalla (ref_14) 2024; 237
ref_22
ref_44
ref_21
ref_20
Kang (ref_2) 2023; 11
Siegfried (ref_42) 2023; 291
ref_1
ref_3
Lizarazo (ref_33) 2023; 3
Farella (ref_43) 2022; 110
Pergner (ref_9) 2023; 43
ref_28
Sahoo (ref_38) 2024; 25
ref_27
ref_8
Qiao (ref_25) 2022; 196
References_xml – ident: ref_8
  doi: 10.3390/agronomy12071625
– volume: 104
  start-page: 102511
  year: 2021
  ident: ref_41
  article-title: Cotton yield estimation model based on machine learning using time series uav remote sensing data
  publication-title: Int. J. Appl. Earth Obs.
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_40
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 19
  start-page: 75
  year: 2023
  ident: ref_16
  article-title: Intelligent identification on cotton verticillium wilt based on spectral and image feature fusion
  publication-title: Plant Methods
  doi: 10.1186/s13007-023-01056-4
– volume: 3
  start-page: 100138
  year: 2023
  ident: ref_33
  article-title: Identification of symptoms related to potato verticillium wilt from uav-based multispectral imagery using an ensemble of gradient boosting machines
  publication-title: Smart Agric. Technol.
  doi: 10.1016/j.atech.2022.100138
– ident: ref_28
  doi: 10.3390/rs15092450
– ident: ref_1
  doi: 10.3390/drones6090254
– ident: ref_11
– volume: 50
  start-page: 663
  year: 1969
  ident: ref_29
  article-title: Derivation of leaf-area index from quality of light on the forest floor
  publication-title: Ecology
  doi: 10.2307/1936256
– volume: 11
  start-page: 98244
  year: 2023
  ident: ref_23
  article-title: Weed density detection method based on a high weed pressure dataset and improved psp net
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3312191
– volume: 196
  start-page: 106775
  year: 2022
  ident: ref_25
  article-title: Uav-based chlorophyll content estimation by evaluating vegetation index responses under different crop coverages
  publication-title: Comput. Electron. Agr.
  doi: 10.1016/j.compag.2022.106775
– ident: ref_31
  doi: 10.3390/agriculture13020293
– volume: 11
  start-page: 933
  year: 2023
  ident: ref_2
  article-title: Assessing the severity of cotton verticillium wilt disease from in situ canopy images and spectra using convolutional neural networks
  publication-title: Crop J.
  doi: 10.1016/j.cj.2022.12.002
– volume: 144
  start-page: 126754
  year: 2023
  ident: ref_36
  article-title: Assessing maize lodging severity using multitemporal uav-based digital images
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2023.126754
– volume: 25
  start-page: 704
  year: 2024
  ident: ref_38
  article-title: Drone remote sensing of wheat n using hyperspectral sensor and machine learning
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-023-10089-7
– volume: 291
  start-page: 108765
  year: 2023
  ident: ref_42
  article-title: Combining a cotton ‘boll area index’ with in-season unmanned aerial multispectral and thermal imagery for yield estimation
  publication-title: Field Crop. Res.
  doi: 10.1016/j.fcr.2022.108765
– ident: ref_44
– ident: ref_27
  doi: 10.3390/agronomy13061499
– volume: 24
  start-page: 1663
  year: 2023
  ident: ref_6
  article-title: Plant disease detection using drones in precision agriculture
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-023-10014-y
– ident: ref_37
  doi: 10.3390/rs15164108
– ident: ref_15
  doi: 10.3390/agronomy13051222
– ident: ref_18
  doi: 10.3390/su14031458
– ident: ref_3
  doi: 10.3390/rs15133373
– volume: 2021
  start-page: 1790171
  year: 2021
  ident: ref_5
  article-title: A comparative analysis of machine learning algorithms for detection of organic and nonorganic cotton diseases
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2021/1790171
– ident: ref_21
  doi: 10.3390/agronomy12112893
– volume: 203
  start-page: 107484
  year: 2022
  ident: ref_7
  article-title: Accurate cotton diseases and pests detection in complex background based on an improved yolox model
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.107484
– volume: 207
  start-page: 107743
  year: 2023
  ident: ref_30
  article-title: Evaluation of spatial resolution on crop disease detection based on multiscale images and category variance ratio
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2023.107743
– volume: 79
  start-page: 4123
  year: 2023
  ident: ref_35
  article-title: Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control
  publication-title: Pest Manag. Sci.
  doi: 10.1002/ps.7683
– volume: 12
  start-page: 5638
  year: 2022
  ident: ref_19
  article-title: Reduction of pesticide application via real-time precision spraying
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-09607-w
– volume: 43
  start-page: 24
  year: 2023
  ident: ref_9
  article-title: On the effects that motivate pesticide use in perspective of designing a cropping system without pesticides but with mineral fertilizer—A review
  publication-title: Agron. Sustain. Dev.
  doi: 10.1007/s13593-023-00877-w
– ident: ref_24
  doi: 10.1109/GCRAIT55928.2022.00022
– volume: 23
  start-page: 712
  year: 2022
  ident: ref_17
  article-title: Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-021-09856-1
– ident: ref_10
– volume: 110
  start-page: 1996
  year: 2022
  ident: ref_43
  article-title: Thermal remote sensing for plant ecology from leaf to globe
  publication-title: J. Ecol.
  doi: 10.1111/1365-2745.13957
– volume: 29
  start-page: 2506
  year: 2022
  ident: ref_26
  article-title: Utilizing spectral vegetation indices for yield assessment of tomato genotypes grown in arid conditions
  publication-title: Saudi J. Biol. Sci.
  doi: 10.1016/j.sjbs.2021.12.030
– ident: ref_12
  doi: 10.3390/drones3020033
– volume: 2021
  start-page: 9981437
  year: 2021
  ident: ref_4
  article-title: Deep learning-based image processing for cotton leaf disease and pest diagnosis
  publication-title: J. Electr. Comput. Eng.
– ident: ref_34
  doi: 10.3390/rs15133301
– ident: ref_13
  doi: 10.3390/rs12081310
– ident: ref_20
  doi: 10.3390/s21072363
– ident: ref_45
– volume: 237
  start-page: 220
  year: 2024
  ident: ref_14
  article-title: Assessing fusarium oxysporum disease severity in cotton using unmanned aerial system images and a hybrid domain adaptation deep learning time series model
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2023.12.014
– ident: ref_39
  doi: 10.3390/rs14112576
– ident: ref_22
– volume: 11
  start-page: 5908
  year: 2023
  ident: ref_32
  article-title: Prediction dynamics in cotton aphid using unmanned aerial vehicle multispectral images and vegetation indices
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3235912
SSID ssj0002245691
Score 2.3184018
Snippet Cotton Verticillium wilt is a common fungal disease during the growth of cotton, leading to the yellowing of leaves, stem dryness, and root rot, severely...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 176
SubjectTerms Agricultural production
Algorithms
Back propagation networks
Classification
Control
Cotton
Cotton verticillium wilt
Crop diseases
Crops
Data analysis
Data collection
Datasets
Drone aircraft
Drones
Field investigations
Flowers & plants
Fungal diseases
Image resolution
Least squares method
Leaves
Machine learning
Medical imaging
Methods
monitoring model
Neural networks
Pesticides
Plant diseases
precision spraying
prescription map
Remote monitoring
Remote sensing
Rice
Spraying
unmanned aerial vehicle (UAV) remote sensing
Unmanned aerial vehicles
Vegetation
Vegetation index
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhp15CSluyzYM5lD6gJrYs29LRDV3SQkqh3ZCb0JNu2XVCdvO3-hs7I3mT7CH00qslLKH5NPMNGn1i7I3xlcdAJ4qaK1EIaVVhWhcLKesojVK2VHTf-eJbez4TX6-aq0dPfVFNWJYHzgt3akRjWyeCIPYRhJLClVwZLsuAjlWkbL1U5aNk6ncSdUFioKosqlljXn_qb0n7XpYNQrDdCkJJq_8pj5zCzHSf7Y38EPo8r-dsJwwv2J98NItRBpCvwY-A-EP2DNcRLnNd9GIxv1sCbvE1zAc4u14jpYMpVaetwAwe6F3OrBSL__hOyhpu7gP0D8fXQMUYGxcCF-ZmBamcAGbD0pAzhj6BFUf8RVOD97P-8gOkC7zpuuYttn1ZontavWSz6eefZ-fF-NBC4UTdrQteOeE4HeR623nvY5DWeWnRXpVXBklSDJjWuMhrg5zBeSGjEs7QoaNqO1O_YrsDLu8BA24jBcXGqhJTR7J9I1WsQlsGIZvQTtjHzcprN6qQ02MYC43ZCBlKbxlqwt7ed7_J8htPdfxEZrzvRKrZ6QNiSY9Y0v_C0oS9IxBo2ts4KWfGKwo4Dqlk6b5TSHB516gJO9rqiXvSbTdvYKRHn7DSNUnjVC1mcK__x2QP2TOOBCsXXx6xXQRROEaCtLYnaS_8BZeZDv0
  priority: 102
  providerName: Directory of Open Access Journals
Title Assessing the Severity of Verticillium Wilt in Cotton Fields and Constructing Pesticide Application Prescription Maps Using Unmanned Aerial Vehicle (UAV) Multispectral Images
URI https://www.proquest.com/docview/3059416597
https://doaj.org/article/a45b6c4e40004e4984c029a280e84740
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9NAEF1Be-GCQIAIlGgOiA8Jq_Z6be-ekFs1FKRWFZCqN2s_S6TECXH4W_xGZtZOqhzKNbuKLc_bmbc7s28Ye6td5jDQiSTnSiRCGpXo0oZEyjxIrZRJFd13vrgsz6fi201xMxy4dUNZ5dYnRkftlpbOyI9zEhbJSuS_n1e_E-oaRdnVoYXGQ3aYYaQhnMvJl90ZC6esnsp6ac0cd_fHbk0K-DItEIjlXiiKiv33-eUYbCZP2OOBJULdm_Upe-DbZ-xvn6DFWAPI2uCHRxQih4ZlgOu-Ono-n_1ZAC70DcxaOF1ukNjBhGrUOtCtA-rO2evF4n9ckb6GnTkP9V0SG6gkY-tI4EKvOohFBTBtF5pcMtQRsvjEX_Rq8GFaX3-EeI03Xtpc49jXBTqp7jmbTs5-np4nQ7uFxIq82iQ8s8JySuc6UznngpfGOmnQaplTGqlS8Li5sYHnGpmDdUIGJaym1KMqK52_YActft6XDLgJFBoLo1LcQBICCqlC5svUC1n4csQ-bb98YwctcmqJMW9wT0KGavYMNWLvdtNXvQjHfRNPyIy7SaSdHX9Yrm-bYSk2WhSmtMIL4rNeKClsypXmMvUYqkU6Yu8JBA2tcHwpq4eLCvgc0spq6kohzeVVoUbsaG8mrky7P7yFUTN4hq65w_Gr_w-_Zo84Eqi-uPKIHSA8_BskQBszjigfs8OTs8ur7-N4jPAPmD4KkA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdG9wAvCASIwoB74FMiWuI4if2AUDZWtWytJlinvWWO7UClNi1tEeKf2t_IXT469WG87TW2HCt3vvs5d_c7xl5rG1h0dMILuRKekLnydGwKT8qwkFqp3FdU7zwcxf2x-HoRXeywq7YWhtIqW5tYGWo7N_SPfD8kYpEgRvz7efHLo65RFF1tW2jUanHs_v7BK9vq0-ALyvcN572js8O-13QV8IwIk7XHAyMMp6ilzRNrbeFkbqzMcXOBVRoRQeEQw5uChxodpLFCFkoYTRE2FSc6xHXvsF1BFa0dtntwNDr9tvmrwymOqIKazDMMlb9vl8S5L_0IVT_ecn5Vj4CbPEHl3noP2P0Gl0JaK9JDtuPKR-yqDgmjdwPEifDdod4jaod5Aed1PvZ0Ovk9AzQta5iUcDhfI5SEHmXFrUCXFqgfaM1Qi2ucEqOHmVgH6XXYHCgJpDVdMNSLFVRpDDAuZ5qcAKTVIcE3_qStwftxev4BqsLhqkx0iWODGZrF1WM2vhVRPGGdEj_vUwY8L8gZR7ny8cpKOhdJVQQu9p2QkYu77GP75TPTsJ9TE45phrcgElS2Jague7uZvqhpP26aeEBi3Ewitu7qwXz5I2sOf6ZFlMdGOEEI2gklhfG50lz6DsGB8LvsHSlBRjYFN2V0UxqB7yF2rixNFAJrnkSqy_a2ZqItMNvDrRpljS1aZdcn59n_h1-xu_2z4Ul2MhgdP2f3OMK3OrVzj3VQVdwLhF_r_GWj88Aub_uY_QPQ3Uda
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkBAvCASIwgbngatE1MRxEvsBobARVsamSdBpb5ljO6xSm5amCPGn-AH8Os7JpVMfxtteY8u2cm6ffW6MPdc2sGjohBdyJTwhC-Xp2JSelGEptVKFryjf-eg4PhiLz2fR2Rb72-fCUFhlrxMbRW3nht7IhyEVFglixL_DsguLONnP3i9-eNRBijytfTuNlkUO3e9feH2r3432kdYvOM8-fts78LoOA54RYbLyeGCE4eTBtEVirS2dLIyVBR40sEojOigd4nlT8lCjsTRWyFIJo8nbpuJEh7juDXYzCRNFFz-ZfVq_73DyKKqgLesZhsof2iVV35d-hEIQb5jBplvAVTahMXTZXXanQ6iQtix1j2256j770zqH0c4BIkb46lACEL_DvITTNjJ7Op38nAEqmRVMKtibrxBUQkbxcTXoygJ1Bm1r1eIaJ1Tbw0ysg_TSgQ4UDtIrMTjSixqagAYYVzNN5gDSRlxwxws6Grwep6dvoEkhbhJGlzg2mqGCrB-w8bUQ4iHbrvD3PmLAi5LMclQoHy-vxH2RVGXgYt8JGbl4wN72fz43XR10ascxzfE-RITKNwg1YC_X0xdtAZCrJn4gMq4nUd3u5sN8-T3v1ECuRVTERjhBWNoJJYXxudJc-g5hgvAH7BUxQU7aBQ9ldJckgftQna48TRRCbJ5EasB2NmaiVjCbwz0b5Z1WqvNLGXr8_-Fn7BYKV_5ldHz4hN3miOPaGM8dto2c4nYRh62Kpw3DAzu_bgn7BzgOSio
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Severity+of+Verticillium+Wilt+in+Cotton+Fields+and+Constructing+Pesticide+Application+Prescription+Maps+Using+Unmanned+Aerial+Vehicle+Multispectral+Images&rft.jtitle=Drones+%28Basel%29&rft.au=Li%2C+Xiaojuan&rft.au=Liang%2C+Zhi&rft.au=Yang%2C+Guang&rft.au=Lin%2C+Tao&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.issn=2504-446X&rft.eissn=2504-446X&rft.volume=8&rft.issue=5&rft_id=info:doi/10.3390%2Fdrones8050176&rft.externalDocID=A795402759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2504-446X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2504-446X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2504-446X&client=summon