B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction

B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst, affording large current densities of 500 and 1000 mA cm–2 at overpotentials of only 286 and 381 mV, respectively. [Display omitted] •B-doping-indu...

Full description

Saved in:
Bibliographic Details
Published inApplied catalysis. B, Environmental Vol. 261; p. 118240
Main Authors Yang, Hongyuan, Chen, Ziliang, Guo, Peifang, Fei, Ben, Wu, Renbing
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst, affording large current densities of 500 and 1000 mA cm–2 at overpotentials of only 286 and 381 mV, respectively. [Display omitted] •B-doping-induced amorphization of LDH was developed to activate catalytic performance.•Amorphous NiCo LDH/NF catalyst could afford large current densities at very small overpotentials.•The strategy of B-doping-induced amorphization is versatile. Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a commercially electrochemical water splitting technology. Herein, we show that the B-doping-induced amorphization of crystalline layered double hydroxide (LDH) activates it as an extremely efficient HER catalyst. The amorphous B-incorporated nickel-cobalt LDH supported on the nickel foam (A-NiCo LDH/NF) can yield large current densities at small overpotentials (100 mA cm–2 at 151 mV, 500 mA cm–2 at 286 mV, and 1000 mA cm–2 at 381 mV) with high durability in alkaline medium even after 72 h, which is even better than commercial platinum. This work may provide a promising way for structure tuning of transition metal LDH to effectively boost HER efficiency towards practical water electrolysis.
AbstractList Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a commercially electrochemical water splitting technology. Herein, we show that the B-doping-induced amorphization of crystalline layered double hydroxide (LDH) activates it as an extremely efficient HER catalyst. The amorphous B-incorporated nickel-cobalt LDH supported on the nickel foam (A-NiCo LDH/NF) can yield large current densities at small overpotentials (100 mA cm–2 at 151 mV, 500 mA cm–2 at 286 mV, and 1000 mA cm–2 at 381 mV) with high durability in alkaline medium even after 72 h, which is even better than commercial platinum. This work may provide a promising way for structure tuning of transition metal LDH to effectively boost HER efficiency towards practical water electrolysis.
B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst, affording large current densities of 500 and 1000 mA cm–2 at overpotentials of only 286 and 381 mV, respectively. [Display omitted] •B-doping-induced amorphization of LDH was developed to activate catalytic performance.•Amorphous NiCo LDH/NF catalyst could afford large current densities at very small overpotentials.•The strategy of B-doping-induced amorphization is versatile. Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a commercially electrochemical water splitting technology. Herein, we show that the B-doping-induced amorphization of crystalline layered double hydroxide (LDH) activates it as an extremely efficient HER catalyst. The amorphous B-incorporated nickel-cobalt LDH supported on the nickel foam (A-NiCo LDH/NF) can yield large current densities at small overpotentials (100 mA cm–2 at 151 mV, 500 mA cm–2 at 286 mV, and 1000 mA cm–2 at 381 mV) with high durability in alkaline medium even after 72 h, which is even better than commercial platinum. This work may provide a promising way for structure tuning of transition metal LDH to effectively boost HER efficiency towards practical water electrolysis.
ArticleNumber 118240
Author Chen, Ziliang
Guo, Peifang
Fei, Ben
Yang, Hongyuan
Wu, Renbing
Author_xml – sequence: 1
  givenname: Hongyuan
  surname: Yang
  fullname: Yang, Hongyuan
– sequence: 2
  givenname: Ziliang
  orcidid: 0000-0001-5307-7309
  surname: Chen
  fullname: Chen, Ziliang
– sequence: 3
  givenname: Peifang
  surname: Guo
  fullname: Guo, Peifang
– sequence: 4
  givenname: Ben
  surname: Fei
  fullname: Fei, Ben
– sequence: 5
  givenname: Renbing
  surname: Wu
  fullname: Wu, Renbing
  email: rbwu@fudan.edu.cn
BookMark eNqFkDtPwzAQgC1UJNrCP2CIxOziR5o4DEhQHkWqxAITg-U459ZVawfHqVR-PWnDxADTne7uu9N9IzRw3gFCl5RMKKHZ9Xqiaq1iOWGEFhNKBUvJCRpSkXPMheADNCQFyzDnOT9Do6ZZE0IYZ2KIPu5x5Wvrlti6qtVQJWrrQ72yXypa7xJvksXDPDE-JBsVloB1GwK4iCtwjY37ZLWvgl-CS2DnN-2RCaD0ITlHp0ZtGrj4iWP0_vT4Npvjxevzy-xugXXK84hpZcrScKqmXKeUZlOleVmJvDSZoIapMiWQKiOUKaaMa5ZCV-g6PDNCFGXBx-iq31sH_9lCE-Xat8F1JyXjNMvzKUmzbirtp3TwTRPAyDrYrQp7SYk8aJRr2WuUB42y19hhN78wbePRTQzKbv6Db3sYuvd3FoJstAXXabYBdJSVt38v-AbVrJN9
CitedBy_id crossref_primary_10_1021_acssensors_4c00954
crossref_primary_10_1002_aenm_202102134
crossref_primary_10_1016_j_cej_2022_136031
crossref_primary_10_1016_j_jcis_2022_02_072
crossref_primary_10_1016_j_jcis_2024_01_024
crossref_primary_10_1039_D0NR08408E
crossref_primary_10_1002_sstr_202200404
crossref_primary_10_1039_D2CY01982E
crossref_primary_10_1016_j_jcis_2023_02_113
crossref_primary_10_1016_j_apcatb_2023_123352
crossref_primary_10_1021_acs_langmuir_2c02435
crossref_primary_10_1002_smll_202412576
crossref_primary_10_1016_j_cej_2020_127671
crossref_primary_10_1002_smll_202103307
crossref_primary_10_1002_adfm_202300149
crossref_primary_10_1007_s10311_023_01616_z
crossref_primary_10_1016_j_mssp_2021_106128
crossref_primary_10_1016_j_cej_2022_139796
crossref_primary_10_1002_adma_202400140
crossref_primary_10_1016_j_apsusc_2021_149108
crossref_primary_10_1002_anie_202420295
crossref_primary_10_1016_j_jcis_2022_07_103
crossref_primary_10_1002_cey2_485
crossref_primary_10_3390_nano14181533
crossref_primary_10_1007_s12598_024_02742_5
crossref_primary_10_2139_ssrn_4116211
crossref_primary_10_1016_j_ces_2024_120818
crossref_primary_10_1002_aenm_202404077
crossref_primary_10_1039_D1NJ04344G
crossref_primary_10_1016_j_jechem_2022_02_010
crossref_primary_10_1021_acsaem_1c03601
crossref_primary_10_1007_s12274_021_3641_3
crossref_primary_10_1016_j_mtener_2022_101082
crossref_primary_10_1016_j_surfin_2021_101447
crossref_primary_10_1002_advs_202207519
crossref_primary_10_1021_acsanm_1c01236
crossref_primary_10_1021_acssuschemeng_1c06295
crossref_primary_10_1016_j_apmt_2024_102466
crossref_primary_10_1002_smll_202208076
crossref_primary_10_1016_S1872_2067_20_63741_X
crossref_primary_10_1021_acsabm_1c00258
crossref_primary_10_1016_j_ccr_2024_215832
crossref_primary_10_1002_idm2_12169
crossref_primary_10_1039_D1NR03186D
crossref_primary_10_1039_D1TC05863K
crossref_primary_10_1016_j_mattod_2024_08_008
crossref_primary_10_1088_1361_6528_ac28d6
crossref_primary_10_1016_j_apcatb_2022_122072
crossref_primary_10_1016_j_ijhydene_2023_07_026
crossref_primary_10_1016_j_apcatb_2022_121666
crossref_primary_10_1016_j_nanoen_2023_108624
crossref_primary_10_1016_j_cej_2020_126474
crossref_primary_10_1021_acscatal_4c00294
crossref_primary_10_1002_cctc_202100707
crossref_primary_10_1002_adma_202108432
crossref_primary_10_1002_adfm_202423760
crossref_primary_10_1016_j_porgcoat_2023_108074
crossref_primary_10_3390_catal12111417
crossref_primary_10_1016_j_nanoen_2019_104371
crossref_primary_10_1039_D2CE01081J
crossref_primary_10_1021_acs_iecr_4c04646
crossref_primary_10_1016_S1872_2067_24_60076_8
crossref_primary_10_1002_chem_202002134
crossref_primary_10_1002_adfm_202008578
crossref_primary_10_1016_j_electacta_2021_137796
crossref_primary_10_1016_j_ces_2020_116075
crossref_primary_10_1021_acs_inorgchem_0c00089
crossref_primary_10_1002_cssc_202401415
crossref_primary_10_1016_j_ijhydene_2024_10_420
crossref_primary_10_1007_s11705_023_2320_1
crossref_primary_10_3390_molecules28031475
crossref_primary_10_1002_smtd_202000827
crossref_primary_10_1016_j_fuel_2025_134505
crossref_primary_10_1002_aesr_202200178
crossref_primary_10_1016_j_cej_2025_159520
crossref_primary_10_1016_j_cej_2024_158011
crossref_primary_10_1016_j_electacta_2023_143215
crossref_primary_10_1039_D1TA01409A
crossref_primary_10_3390_en13184651
crossref_primary_10_1016_j_catcom_2024_106880
crossref_primary_10_1016_j_seppur_2024_128576
crossref_primary_10_1016_j_electacta_2023_141956
crossref_primary_10_1016_j_jcis_2025_01_077
crossref_primary_10_3390_catal11060689
crossref_primary_10_1002_adfm_202313770
crossref_primary_10_1016_j_apcatb_2022_121762
crossref_primary_10_1016_j_cej_2023_143274
crossref_primary_10_1007_s40820_021_00639_x
crossref_primary_10_1016_j_cej_2024_158120
crossref_primary_10_1016_j_ijhydene_2022_02_167
crossref_primary_10_2139_ssrn_4147429
crossref_primary_10_1021_acs_energyfuels_1c02056
crossref_primary_10_1016_j_jcis_2023_10_002
crossref_primary_10_1039_D2DT00037G
crossref_primary_10_1039_D3DT00160A
crossref_primary_10_1039_D3QM00940H
crossref_primary_10_1016_j_ijhydene_2024_06_185
crossref_primary_10_1039_D3TA02293E
crossref_primary_10_1021_acs_chemrev_3c00252
crossref_primary_10_1007_s40843_021_1890_7
crossref_primary_10_1016_j_ijhydene_2022_01_247
crossref_primary_10_1002_eem2_12714
crossref_primary_10_1016_j_apsusc_2021_151911
crossref_primary_10_1002_smll_202301610
crossref_primary_10_1016_j_jallcom_2020_156095
crossref_primary_10_1016_j_cej_2021_129842
crossref_primary_10_1016_j_apcatb_2020_118782
crossref_primary_10_1149_1945_7111_ac7172
crossref_primary_10_1016_j_flatc_2022_100368
crossref_primary_10_1039_D2TA08073G
crossref_primary_10_1016_j_apcatb_2021_120350
crossref_primary_10_1039_D2CE00924B
crossref_primary_10_1021_acsomega_0c01853
crossref_primary_10_1002_adfm_202003556
crossref_primary_10_1016_j_ijhydene_2025_01_219
crossref_primary_10_3390_nano12152640
crossref_primary_10_1016_j_jechem_2024_07_010
crossref_primary_10_1016_j_mtener_2020_100600
crossref_primary_10_1016_j_jcis_2023_05_042
crossref_primary_10_1002_adma_202402156
crossref_primary_10_1016_j_cclet_2021_09_034
crossref_primary_10_1016_j_apsusc_2023_158330
crossref_primary_10_1016_j_nanoen_2021_105838
crossref_primary_10_1039_D2DT01394K
crossref_primary_10_1016_j_cej_2022_137886
crossref_primary_10_1016_j_jcis_2022_04_088
crossref_primary_10_1016_j_psep_2025_106866
crossref_primary_10_1002_adma_202107548
crossref_primary_10_1002_ece2_25
crossref_primary_10_1002_cssc_202400900
crossref_primary_10_1002_smll_202311221
crossref_primary_10_1002_adfm_202402699
crossref_primary_10_1021_acsmaterialslett_2c00324
crossref_primary_10_1016_j_cej_2020_125407
crossref_primary_10_1039_D2NR00143H
crossref_primary_10_1016_j_colcom_2023_100727
crossref_primary_10_1002_aenm_202203002
crossref_primary_10_1016_j_cej_2024_153442
crossref_primary_10_1016_j_susmat_2025_e01258
crossref_primary_10_1021_acs_energyfuels_2c01618
crossref_primary_10_1002_adma_202210671
crossref_primary_10_1016_j_apmt_2020_100913
crossref_primary_10_1016_j_jallcom_2023_171273
crossref_primary_10_1039_D2CC02947B
crossref_primary_10_1021_acs_jpclett_3c01697
crossref_primary_10_1016_j_matchemphys_2023_127412
crossref_primary_10_1016_j_jmst_2021_04_016
crossref_primary_10_1016_j_apsusc_2022_155562
crossref_primary_10_1021_acsanm_2c04794
crossref_primary_10_1002_ange_202420295
crossref_primary_10_1016_j_jelechem_2025_119073
crossref_primary_10_1039_D3QM00730H
crossref_primary_10_1016_j_apcatb_2019_118404
crossref_primary_10_1039_D2CE01205G
crossref_primary_10_1016_j_fuel_2023_130653
crossref_primary_10_1021_acs_cgd_2c01124
crossref_primary_10_1016_j_apcatb_2022_122249
crossref_primary_10_1007_s40242_022_2254_z
crossref_primary_10_1016_j_ijhydene_2020_11_172
crossref_primary_10_1016_j_jcis_2025_02_083
crossref_primary_10_1021_acs_energyfuels_4c04519
crossref_primary_10_1039_D3NJ03167E
crossref_primary_10_1039_D1TA09892F
crossref_primary_10_1002_smll_202403005
crossref_primary_10_1016_j_apsusc_2020_146753
crossref_primary_10_3390_catal11060659
crossref_primary_10_1002_celc_202200566
crossref_primary_10_1039_D3QI00799E
crossref_primary_10_1002_sstr_202300194
crossref_primary_10_1021_acsami_0c20294
crossref_primary_10_1016_j_apcatb_2021_120395
crossref_primary_10_1016_j_ijhydene_2021_04_201
crossref_primary_10_1016_j_apsusc_2022_153245
crossref_primary_10_1016_S1872_2067_24_60105_1
crossref_primary_10_3390_nano14030243
crossref_primary_10_1016_j_cej_2020_126302
crossref_primary_10_1039_D4QI00310A
crossref_primary_10_1021_acsami_1c22092
crossref_primary_10_1007_s40820_023_01164_9
crossref_primary_10_1002_smll_202407061
crossref_primary_10_1016_j_cej_2024_151105
crossref_primary_10_1016_j_cjche_2021_02_010
crossref_primary_10_1016_j_ceramint_2021_12_216
crossref_primary_10_1039_D2TA06791A
crossref_primary_10_1016_j_jpowsour_2024_236085
crossref_primary_10_20517_energymater_2024_41
crossref_primary_10_1039_D1NR02592A
crossref_primary_10_1016_j_coco_2024_102064
crossref_primary_10_1016_j_fuel_2023_130711
crossref_primary_10_1038_s41467_022_31077_x
crossref_primary_10_1016_j_apcatb_2021_120601
crossref_primary_10_1021_acsmaterialslett_0c00502
crossref_primary_10_1002_adma_202404658
crossref_primary_10_1002_smll_202101727
crossref_primary_10_1021_acsmaterialslett_4c00716
crossref_primary_10_1016_S1872_2067_21_63982_7
crossref_primary_10_1016_j_cej_2020_125685
crossref_primary_10_1002_cctc_202000558
crossref_primary_10_1039_D1TA06100C
crossref_primary_10_3390_ma16093372
crossref_primary_10_1016_j_isci_2024_109616
crossref_primary_10_1016_j_jcis_2024_10_141
crossref_primary_10_1016_j_ijhydene_2022_06_306
crossref_primary_10_1021_acsanm_3c01221
crossref_primary_10_1016_j_ijhydene_2021_10_099
crossref_primary_10_2139_ssrn_4176826
crossref_primary_10_1016_j_apcatb_2024_124197
crossref_primary_10_1016_j_jtice_2021_10_018
crossref_primary_10_1021_acsnano_2c02820
crossref_primary_10_1039_D2DT00044J
crossref_primary_10_1039_D0RA10169A
crossref_primary_10_1016_j_ijhydene_2021_08_188
crossref_primary_10_1039_D3TA02524A
crossref_primary_10_1039_D1NR07355A
crossref_primary_10_1039_D4NR04433A
crossref_primary_10_1002_aenm_202102074
crossref_primary_10_1016_j_fuel_2023_127689
crossref_primary_10_1016_j_ijhydene_2024_04_179
crossref_primary_10_1016_j_jpowsour_2024_235403
crossref_primary_10_1088_1361_6528_ac084d
crossref_primary_10_1002_ente_202200655
crossref_primary_10_1016_j_jpowsour_2021_230635
crossref_primary_10_1002_adfm_202316296
crossref_primary_10_1002_cctc_202200293
crossref_primary_10_1016_j_ijhydene_2021_04_092
crossref_primary_10_1016_j_jmst_2022_03_021
crossref_primary_10_1016_j_jpowsour_2025_236472
crossref_primary_10_1016_j_jallcom_2025_179010
crossref_primary_10_1002_smll_202205719
crossref_primary_10_1016_j_ijhydene_2024_02_355
crossref_primary_10_1002_smll_202405468
crossref_primary_10_1088_2752_5724_ada99c
crossref_primary_10_1039_D1NR03409J
crossref_primary_10_1007_s40820_022_00933_2
crossref_primary_10_1016_j_fuel_2022_127259
crossref_primary_10_1016_j_jpowsour_2022_231353
crossref_primary_10_1016_j_jpowsour_2022_232563
crossref_primary_10_1039_D2NJ05032C
crossref_primary_10_1021_acsaem_0c02181
crossref_primary_10_1021_acs_energyfuels_4c05376
crossref_primary_10_1002_cnma_202400430
crossref_primary_10_3390_polym15061462
crossref_primary_10_1016_j_apcatb_2023_123387
crossref_primary_10_1039_D2NR04657A
crossref_primary_10_1002_tcr_202200176
crossref_primary_10_1039_D2SE01098D
Cites_doi 10.1038/s41467-018-07790-x
10.1039/c2tb00389a
10.1021/acssuschemeng.9b00258
10.1016/j.energy.2017.09.035
10.1002/celc.201801617
10.1016/j.nanoen.2015.11.020
10.1021/acsami.8b04553
10.1039/C7RA01202K
10.1021/ja806565t
10.1021/acsanm.7b00210
10.1016/j.apcatb.2019.03.032
10.1038/ncomms4519
10.1007/s12274-017-1806-x
10.1038/s41467-018-03429-z
10.1021/acsami.7b18858
10.1021/acsami.8b14603
10.1007/s10562-018-2626-7
10.1038/ncomms14430
10.1039/C8TA05065A
10.1039/C8QM00677F
10.1002/adfm.201200994
10.1002/adfm.201704594
10.1021/nl300173j
10.1039/C4TA01275E
10.1038/s41929-018-0195-1
10.1016/j.apcatb.2009.06.003
10.1039/C0JM01921F
10.1016/j.jpowsour.2003.11.044
10.1039/C7TA02115A
10.1002/adfm.201604804
10.1021/acsnano.7b04368
10.1016/j.apcatb.2019.04.021
10.1039/C8TA02595A
10.1021/ja0396753
10.1016/0368-2048(94)02238-0
10.1039/C6CS00343E
10.1038/nmat4588
10.1002/adma.201700017
10.1021/acsenergylett.8b00514
10.1039/C8TA01244J
10.1016/j.nanoen.2017.09.045
10.1002/advs.201900272
10.1039/C6NR00988C
10.1039/C8NR05974H
10.1149/1.1837437
10.1016/j.jcat.2018.03.011
10.1021/acssuschemeng.8b03232
10.1021/cm8002063
10.1039/C8EE00076J
10.1021/acsaem.7b00305
10.1039/C6TA05679B
10.1002/aenm.201801372
10.1039/C4CS00470A
10.1039/C8EE03282C
10.1038/ncomms9696
10.1039/b605422f
10.1002/asia.201800016
10.1002/aenm.201802327
10.1039/C4CC08856E
10.1002/aenm.201970066
10.1039/C8NR02091D
10.1149/1.1562593
10.1016/j.jallcom.2003.12.011
10.1021/acsami.6b12803
10.1039/C3TA14237J
10.1039/c2cc31773g
10.1016/S0008-6223(02)00004-0
10.1016/j.matlet.2008.06.026
10.1021/acsami.8b07835
10.1016/j.apcatb.2017.04.005
10.1016/j.saa.2018.08.038
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Feb 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 2020
DBID AAYXX
CITATION
7SR
7ST
7U5
8BQ
8FD
C1K
FR3
JG9
KR7
L7M
SOI
DOI 10.1016/j.apcatb.2019.118240
DatabaseName CrossRef
Engineered Materials Abstracts
Environment Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
METADEX
Environmental Sciences and Pollution Management
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
EISSN 1873-3883
ExternalDocumentID 10_1016_j_apcatb_2019_118240
S0926337319309877
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
VH1
WUQ
XFK
XPP
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
BNPGV
CITATION
SSH
7SR
7ST
7U5
8BQ
8FD
C1K
EFKBS
FR3
JG9
KR7
L7M
SOI
ID FETCH-LOGICAL-c437t-1dfbbf31a53c41165ac3bd87bf681f2ab40e4af8af9523c24e40e81f36f889b93
IEDL.DBID .~1
ISSN 0926-3373
IngestDate Wed Aug 13 11:23:55 EDT 2025
Thu Apr 24 23:11:38 EDT 2025
Tue Jul 01 04:34:59 EDT 2025
Sat Mar 02 16:00:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Amorphization of crystalline LDH
Large current density
B-doping
HER catalyst
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-1dfbbf31a53c41165ac3bd87bf681f2ab40e4af8af9523c24e40e81f36f889b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5307-7309
PQID 2316775046
PQPubID 2045281
ParticipantIDs proquest_journals_2316775046
crossref_primary_10_1016_j_apcatb_2019_118240
crossref_citationtrail_10_1016_j_apcatb_2019_118240
elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118240
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-01
PublicationDateYYYYMMDD 2020-02-01
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liu, Pan, Gao, Wang (bib0025) 2011; 21
Liu, Chen, Hsueh, Ku, Tsau, Hwang (bib0295) 2009; 91
Lamiel, Nguyen, Hussain, Shim (bib0290) 2017; 140
Zhou, Cao, Wang, Gao, Li, Ma, Zhao (bib0390) 2017; 7
Long, Xiao, Wang, Zheng, Yang (bib0315) 2015; 51
Pascuta, Pop, Rada, Bosca, Culea (bib0285) 2008; 19
Yuan, Li, Hou, Zhang, Shen, Lou (bib0335) 2012; 22
Ma, Ma, Wu, Sun, Liu, Zhou, Sasaki (bib0215) 2016; 8
Zhang, Zhao, Guo, Chen, Dong, Liu, Han, Li, Gogotsi, Wang (bib0090) 2018; 1
Liang, Lin, Jia, Chen, Qi, Cao, Lin, Fei, Feng (bib0255) 2018; 6
Tan, Han, Cong, Cheng, Luo (bib0250) 2019; 7
Pan, Liu, Gao, Lei, Wang (bib0050) 2003; 150
Wu, Wang, Zhou, Srikanth, Wei, Chen (bib0060) 2016; 4
Kuang, Han, Wang, Li, Zheng (bib0385) 2016; 26
Yang, Yang, Wang, Feng (bib0360) 2014; 2
Hui, Xue, Yu, Zhang, Zhang, Jia, Zhao, Li, Liu, Li (bib0205) 2018; 9
Chen, Ha, Liu, Wang, Yang, Xu, Li, Wu (bib0100) 2018; 10
Chen, Ha, Jia, Yan, Chen, Liu, Wu (bib0125) 2019; 9
Arif, Yasin, Shakeel, Fang, Gao, Ji, Yan (bib0170) 2018; 13
Liao, Lei, Chen, Lu, Pan, Wang (bib0030) 2004; 129
Ksibi, Rossignol, Tatibouët, Trapalis (bib0265) 2008; 62
Ma, Liu, Li, Iyi, Sasaki (bib0220) 2006; 16
Jin, Chen, Mao, Wang (bib0085) 2018; 10
Hao, Wu, Zhang, Ha, Chen, Wang, Yang, Ma, Fang, Guo (bib0105) 2018; 8
Jiao, Zheng, Jaroniec, Qiao (bib0175) 2015; 44
Qiu, Tai, Niklassona, Edvinsson (bib0155) 2019; 12
Wang, Xu, Jin, Chen, Wang (bib0165) 2017; 29
Kostecki, McLarnont (bib0310) 1997; 144
Bhowmik, Kundu, Barman (bib0150) 2018; 1
Chen, Wu, Liu, Ha, Guo, Sun, Liu, Fang (bib0115) 2018; 30
Jin, Zhang, Chen, Mao, Jiang, Wang (bib0040) 2018; 6
Ha, Shi, Chen, Wu (bib0140) 2019; 6
Tang, Jiang, Niu, Liu, Luo, Zhang, Wen, Chen, Huang, Gao, Hu (bib0210) 2018; 28
Liu, Yang, Zhang, Yang (bib0145) 2016; 8
Liao, Lei, Chen, Lu, Pan, Wang (bib0035) 2004; 376
Deng, Li, Wang, Ding, Chen, Liu, Tian, Novoselov, Ma, Deng, Bao (bib0065) 2016; 8
Zhang, Gao, Hensen, Hofmann (bib0375) 2018; 3
Yu, Zhou, Sun, Qin, Luo, Xie, Yu, Bao, Li, Yu, Chen, Ren (bib0190) 2017; 41
Zhao, Xu, Li, Wang, Liu, Feng, Ding, Li, Wu (bib0240) 2018; 14
Zhang, Wang, Yu, Wen, Zhu, Yang, Sun, Wang, Hu (bib0395) 2017; 29
Zhang, Zhang, Lee (bib0305) 2018; 1
Wang, Li, Wu, Shen, Zou, Feng, Liu, Dong, Du (bib0160) 2019; 15
Seh, Kibsǵaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib0010) 2017; 335
Lu, Wang, Zhai, Yu, Gan, Tong, Li (bib0370) 2012; 12
Gao, Yan (bib0080) 2019; 9
Zhang, Zhang, Lee (bib0300) 2019; 6
Zheng, Fang, Zhou, Chen, Ouyang, Zhu, Sun (bib0045) 2008; 20
Jiménez, Fernández, Espinós, González-Elipe (bib0340) 1995; 71
Tran, Tran, Torelli, Truong, Nayuki, Sasaki, Chiam, Yi, Honma, Barber, Artero (bib0350) 2016; 15
Zhu, Yin, Lai, Sun, Liu, Zhang, Chen, Chou (bib0355) 2018; 8
Lu, Wang, Xie, Shi, Li, Tong, Li (bib0365) 2012; 48
Gao, Yan (bib0225) 2018; 11
Zhang, Wang, Yang, Yao, Han, Sun (bib0325) 2016; 19
Li, Guo, Kang, Wei, Zhang, Chen (bib0180) 2018; 6
Pei, Gong, Zhang, Zhang, Chen, Mu, Yu (bib0320) 2015; 6
Ye, Fang, Chen, Yan (bib0185) 2018; 10
Liu, Zhong, Luo, Gao, Pan, Wang (bib0005) 2009; 131
Wu, Zou, Huang, Gao (bib0200) 2018; 10
Li, Zhang, Xiang, Yan, Li (bib0015) 2014; 2
Chen, Liu, Wu (bib0075) 2018; 361
Wang, Wei, Wang, Chen, Wang (bib0055) 2017; 5
Chen, Wu, Liu, Liu, Xu, Ha, Guo, Yu, Sun, Fang (bib0070) 2018; 6
Nagaraju, Sekhar, Bharat, Yu (bib0235) 2017; 11
Kaur, Singh, Thakur, Singh, Bajwa (bib0280) 2019; 206
Han, Yang, Lu, Li, Xu, Gao, Cai, Zhang, Batista, Liu, Sun (bib0120) 2018; 9
Zhao, Ma, Chen, Zhao, Shuai (bib0260) 2004; 126
Chen, Xu, Ha, Li, Liu, Wu (bib0110) 2019; 250
Jian, Yuan, Qi, Sun, Zhang, Li, Yuan, Feng (bib0230) 2018; 10
Paladini, Arzac, Godinho, Hufschmidt, de Haro, Beltrán, Fernández (bib0245) 2017; 210
Burg, Fydrych, Cagniant, Nanse, Bimer, Jankowska (bib0330) 2002; 40
Yin, Tang (bib0345) 2016; 45
Arif, Yasin, Shakeel, Mushtaq, Ye, Fang, Ji, Yan (bib0135) 2019; 3
Li, Du, Guo, Wang, Hou, Wu (bib0270) 2019; 149
Hu, Feng, Nai, Zhao, Hu, Lou (bib0095) 2018; 11
Zhao, Xie, Yuan, Li, Liu, Zheng, Hou (bib0275) 2013; 1
Pang, Liu, Gao, Ouyang, Liu, Wang, Zhu, Pan (bib0020) 2014; 5
Jia, Zhang, Gao, Chen, Wang, Zhou, Soo, Hong, Yan, Qian, Zou, Du, Yao (bib0195) 2017; 29
Kim, Park, Jin, Oh, Baik, Joo, Lee (bib0380) 2018; 10
Yang, Chen, Hao, Xu, Guo, Wu (bib0130) 2019; 252
Yang (10.1016/j.apcatb.2019.118240_bib0130) 2019; 252
Liang (10.1016/j.apcatb.2019.118240_bib0255) 2018; 6
Ma (10.1016/j.apcatb.2019.118240_bib0215) 2016; 8
Zhang (10.1016/j.apcatb.2019.118240_bib0305) 2018; 1
Chen (10.1016/j.apcatb.2019.118240_bib0075) 2018; 361
Jia (10.1016/j.apcatb.2019.118240_bib0195) 2017; 29
Wu (10.1016/j.apcatb.2019.118240_bib0060) 2016; 4
Arif (10.1016/j.apcatb.2019.118240_bib0170) 2018; 13
Zhang (10.1016/j.apcatb.2019.118240_bib0090) 2018; 1
Pei (10.1016/j.apcatb.2019.118240_bib0320) 2015; 6
Ksibi (10.1016/j.apcatb.2019.118240_bib0265) 2008; 62
Zhang (10.1016/j.apcatb.2019.118240_bib0325) 2016; 19
Wang (10.1016/j.apcatb.2019.118240_bib0160) 2019; 15
Chen (10.1016/j.apcatb.2019.118240_bib0110) 2019; 250
Gao (10.1016/j.apcatb.2019.118240_bib0080) 2019; 9
Bhowmik (10.1016/j.apcatb.2019.118240_bib0150) 2018; 1
Zhang (10.1016/j.apcatb.2019.118240_bib0375) 2018; 3
Arif (10.1016/j.apcatb.2019.118240_bib0135) 2019; 3
Paladini (10.1016/j.apcatb.2019.118240_bib0245) 2017; 210
Wang (10.1016/j.apcatb.2019.118240_bib0165) 2017; 29
Ye (10.1016/j.apcatb.2019.118240_bib0185) 2018; 10
Jiménez (10.1016/j.apcatb.2019.118240_bib0340) 1995; 71
Ha (10.1016/j.apcatb.2019.118240_bib0140) 2019; 6
Han (10.1016/j.apcatb.2019.118240_bib0120) 2018; 9
Hao (10.1016/j.apcatb.2019.118240_bib0105) 2018; 8
Qiu (10.1016/j.apcatb.2019.118240_bib0155) 2019; 12
Chen (10.1016/j.apcatb.2019.118240_bib0115) 2018; 30
Zhao (10.1016/j.apcatb.2019.118240_bib0260) 2004; 126
Lamiel (10.1016/j.apcatb.2019.118240_bib0290) 2017; 140
Wang (10.1016/j.apcatb.2019.118240_bib0055) 2017; 5
Liu (10.1016/j.apcatb.2019.118240_bib0295) 2009; 91
Zhao (10.1016/j.apcatb.2019.118240_bib0240) 2018; 14
Pascuta (10.1016/j.apcatb.2019.118240_bib0285) 2008; 19
Liu (10.1016/j.apcatb.2019.118240_bib0025) 2011; 21
Jiao (10.1016/j.apcatb.2019.118240_bib0175) 2015; 44
Liao (10.1016/j.apcatb.2019.118240_bib0030) 2004; 129
Zhao (10.1016/j.apcatb.2019.118240_bib0275) 2013; 1
Pang (10.1016/j.apcatb.2019.118240_bib0020) 2014; 5
Zhang (10.1016/j.apcatb.2019.118240_bib0395) 2017; 29
Tan (10.1016/j.apcatb.2019.118240_bib0250) 2019; 7
Tang (10.1016/j.apcatb.2019.118240_bib0210) 2018; 28
Pan (10.1016/j.apcatb.2019.118240_bib0050) 2003; 150
Li (10.1016/j.apcatb.2019.118240_bib0270) 2019; 149
Seh (10.1016/j.apcatb.2019.118240_bib0010) 2017; 335
Zheng (10.1016/j.apcatb.2019.118240_bib0045) 2008; 20
Liao (10.1016/j.apcatb.2019.118240_bib0035) 2004; 376
Long (10.1016/j.apcatb.2019.118240_bib0315) 2015; 51
Liu (10.1016/j.apcatb.2019.118240_bib0005) 2009; 131
Zhu (10.1016/j.apcatb.2019.118240_bib0355) 2018; 8
Burg (10.1016/j.apcatb.2019.118240_bib0330) 2002; 40
Tran (10.1016/j.apcatb.2019.118240_bib0350) 2016; 15
Zhou (10.1016/j.apcatb.2019.118240_bib0390) 2017; 7
Jin (10.1016/j.apcatb.2019.118240_bib0040) 2018; 6
Kaur (10.1016/j.apcatb.2019.118240_bib0280) 2019; 206
Yuan (10.1016/j.apcatb.2019.118240_bib0335) 2012; 22
Hui (10.1016/j.apcatb.2019.118240_bib0205) 2018; 9
Chen (10.1016/j.apcatb.2019.118240_bib0125) 2019; 9
Chen (10.1016/j.apcatb.2019.118240_bib0070) 2018; 6
Chen (10.1016/j.apcatb.2019.118240_bib0100) 2018; 10
Kim (10.1016/j.apcatb.2019.118240_bib0380) 2018; 10
Yin (10.1016/j.apcatb.2019.118240_bib0345) 2016; 45
Yang (10.1016/j.apcatb.2019.118240_bib0360) 2014; 2
Yu (10.1016/j.apcatb.2019.118240_bib0190) 2017; 41
Wu (10.1016/j.apcatb.2019.118240_bib0200) 2018; 10
Nagaraju (10.1016/j.apcatb.2019.118240_bib0235) 2017; 11
Li (10.1016/j.apcatb.2019.118240_bib0180) 2018; 6
Ma (10.1016/j.apcatb.2019.118240_bib0220) 2006; 16
Kuang (10.1016/j.apcatb.2019.118240_bib0385) 2016; 26
Deng (10.1016/j.apcatb.2019.118240_bib0065) 2016; 8
Gao (10.1016/j.apcatb.2019.118240_bib0225) 2018; 11
Lu (10.1016/j.apcatb.2019.118240_bib0365) 2012; 48
Zhang (10.1016/j.apcatb.2019.118240_bib0300) 2019; 6
Kostecki (10.1016/j.apcatb.2019.118240_bib0310) 1997; 144
Lu (10.1016/j.apcatb.2019.118240_bib0370) 2012; 12
Li (10.1016/j.apcatb.2019.118240_bib0015) 2014; 2
Jin (10.1016/j.apcatb.2019.118240_bib0085) 2018; 10
Liu (10.1016/j.apcatb.2019.118240_bib0145) 2016; 8
Hu (10.1016/j.apcatb.2019.118240_bib0095) 2018; 11
Jian (10.1016/j.apcatb.2019.118240_bib0230) 2018; 10
References_xml – volume: 15
  start-page: 640
  year: 2016
  end-page: 646
  ident: bib0350
  article-title: Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulphide
  publication-title: Nat. Mater.
– volume: 21
  start-page: 4743
  year: 2011
  end-page: 4755
  ident: bib0025
  article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries
  publication-title: J. Mater. Chem.
– volume: 45
  start-page: 4873
  year: 2016
  end-page: 4891
  ident: bib0345
  article-title: Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage
  publication-title: Chem. Soc. Rev.
– volume: 15
  year: 2019
  ident: bib0160
  article-title: Porous cobalt–nickel hydroxide nanosheets with active cobalt ions for overall water splitting
  publication-title: Small
– volume: 51
  start-page: 1120
  year: 2015
  end-page: 1123
  ident: bib0315
  article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction
  publication-title: Chem. Commun.
– volume: 2
  start-page: 13250
  year: 2014
  end-page: 13258
  ident: bib0015
  article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation
  publication-title: J. Mater. Chem. A
– volume: 91
  start-page: 368
  year: 2009
  end-page: 379
  ident: bib0295
  article-title: Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH
  publication-title: Appl. Catal. B: Environ.
– volume: 9
  start-page: 924
  year: 2018
  ident: bib0120
  article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid
  publication-title: Nat. Commun.
– volume: 14
  year: 2018
  ident: bib0240
  article-title: Amorphous iron (III)‐borate nanolattices as multifunctional electrodes for self‐driven overall water splitting and rechargeable Zinc–air battery
  publication-title: Small
– volume: 12
  start-page: 1690
  year: 2012
  end-page: 1696
  ident: bib0370
  article-title: Hydrogenated TiO
  publication-title: Nano Lett.
– volume: 40
  start-page: 1521
  year: 2002
  end-page: 1531
  ident: bib0330
  article-title: The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods
  publication-title: Carbon
– volume: 13
  start-page: 1045
  year: 2018
  end-page: 1052
  ident: bib0170
  article-title: Coupling of bifunctional CoMn-Layered double hydroxide@graphitic C
  publication-title: Chem. Asian J.
– volume: 11
  start-page: 1883
  year: 2018
  end-page: 1894
  ident: bib0225
  article-title: Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting
  publication-title: Nano Res.
– volume: 28
  year: 2018
  ident: bib0210
  article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting
  publication-title: Adv. Funct. Mater.
– volume: 149
  start-page: 456
  year: 2019
  end-page: 464
  ident: bib0270
  article-title: Synthesis of a novel NiMnTi mixed metal oxides from LDH precursor and its catalytic application for selective catalytic eeduction of NO
  publication-title: Catal. Lett.
– volume: 9
  start-page: 5309
  year: 2018
  ident: bib0205
  article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays
  publication-title: Nat. Commun.
– volume: 3
  start-page: 520
  year: 2019
  end-page: 531
  ident: bib0135
  article-title: Hierarchical CoFe-layered double hydroxide and g-C3N
  publication-title: Mater. Chem. Front.
– volume: 19
  start-page: 424
  year: 2008
  end-page: 428
  ident: bib0285
  article-title: The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 361
  start-page: 322
  year: 2018
  end-page: 330
  ident: bib0075
  article-title: Strongly coupling of Co
  publication-title: J. Catal.
– volume: 6
  year: 2019
  ident: bib0140
  article-title: Phase-transited lysozyme-driven formation of self-supported Co
  publication-title: Adv. Sci.
– volume: 150
  start-page: A565
  year: 2003
  end-page: A570
  ident: bib0050
  article-title: A study of the structural and electrochemical properties of La
  publication-title: J. Electrochem. Soc.
– volume: 30
  year: 2018
  ident: bib0115
  article-title: Ultrafine Co nanoparticles encapsulated in carbon‐nanotubes‐grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction
  publication-title: Adv. Mater.
– volume: 335
  start-page: 146
  year: 2017
  ident: bib0010
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 376
  start-page: 186
  year: 2004
  end-page: 195
  ident: bib0035
  article-title: A study on the structure and electrochemical properties of La
  publication-title: J. Alloys. Compd.
– volume: 8
  start-page: 14430
  year: 2016
  ident: bib0065
  article-title: Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production
  publication-title: Nat. Commun.
– volume: 48
  start-page: 7717
  year: 2012
  end-page: 7719
  ident: bib0365
  article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays
  publication-title: Chem. Commun.
– volume: 11
  start-page: 10860
  year: 2017
  end-page: 10874
  ident: bib0235
  article-title: Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors
  publication-title: ACS Nano
– volume: 10
  start-page: 9845
  year: 2018
  end-page: 9850
  ident: bib0380
  article-title: A facet-controlled Rh
  publication-title: Nanoscale
– volume: 8
  start-page: 34474
  year: 2016
  end-page: 34481
  ident: bib0145
  article-title: Defect-rich ultrathin cobalt–iron layered double hydroxide for electrochemical overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 16
  start-page: 3809
  year: 2006
  end-page: 3813
  ident: bib0220
  article-title: Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets
  publication-title: J. Mater. Chem.
– volume: 10
  start-page: 40568
  year: 2018
  end-page: 40576
  ident: bib0230
  article-title: Sn–Ni
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  year: 2018
  ident: bib0355
  article-title: Fe‐Ni‐Mo nitride porous nanotubes for full water splitting and Zn‐air batteries
  publication-title: Adv. Energy Mater.
– volume: 2
  start-page: 785
  year: 2014
  end-page: 791
  ident: bib0360
  article-title: Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries
  publication-title: J. Mater. Chem. A
– volume: 131
  start-page: 1862
  year: 2009
  end-page: 1870
  ident: bib0005
  article-title: Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 14641
  year: 2018
  end-page: 14651
  ident: bib0180
  article-title: Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery
  publication-title: ACS Sustainable Chem. Eng.
– volume: 6
  start-page: 1443
  year: 2019
  end-page: 1449
  ident: bib0300
  article-title: Electrochemical performance of Borate‐doped nickel sulfide: enhancement of the bifunctional activity for total water splitting
  publication-title: ChemElectroChem
– volume: 10
  start-page: 26283
  year: 2018
  end-page: 26292
  ident: bib0200
  article-title: NiFe
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 15040
  year: 2018
  end-page: 15046
  ident: bib0255
  article-title: Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors
  publication-title: J. Mater. Chem. A
– volume: 19
  start-page: 98
  year: 2016
  end-page: 107
  ident: bib0325
  article-title: Electroless plated Ni–B
  publication-title: Nano Energy
– volume: 10
  start-page: 22094
  year: 2018
  end-page: 22101
  ident: bib0085
  article-title: Transition metal induced the contraction of tungsten carbide lattice as superior hydrogen evolution reaction catalyst
  publication-title: ACS Appl. Mater. Interfaces
– volume: 252
  start-page: 214
  year: 2019
  end-page: 221
  ident: bib0130
  article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon
  publication-title: Appl. Catal. B: Environ.
– volume: 6
  start-page: 10967
  year: 2018
  end-page: 10975
  ident: bib0040
  article-title: A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
– volume: 144
  start-page: 485
  year: 1997
  end-page: 493
  ident: bib0310
  article-title: Electrochemical and
  publication-title: J. Electrochem. Soc.
– volume: 140
  start-page: 901
  year: 2017
  end-page: 911
  ident: bib0290
  article-title: Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte
  publication-title: Energy
– volume: 8
  start-page: 10425
  year: 2016
  end-page: 10432
  ident: bib0215
  article-title: Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene
  publication-title: Nanoscale
– volume: 3
  start-page: 1360
  year: 2018
  end-page: 1365
  ident: bib0375
  article-title: Evaluating the stability of Co
  publication-title: ACS Energy Lett.
– volume: 9
  year: 2019
  ident: bib0080
  article-title: Recent Development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation
  publication-title: Adv. Energy Mater.
– volume: 12
  start-page: 572
  year: 2019
  end-page: 581
  ident: bib0155
  article-title: Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 7134
  year: 2018
  end-page: 7144
  ident: bib0100
  article-title: In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
– volume: 62
  start-page: 4204
  year: 2008
  end-page: 4206
  ident: bib0265
  article-title: Synthesis and solid characterization of nitrogen and sulfur-doped TiO
  publication-title: Mater. Lett.
– volume: 1
  start-page: 1200
  year: 2018
  end-page: 1209
  ident: bib0150
  article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions
  publication-title: ACS Appl. Energy Mater.
– volume: 29
  year: 2017
  ident: bib0195
  article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
– volume: 26
  start-page: 8555
  year: 2016
  end-page: 8561
  ident: bib0385
  article-title: CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting
  publication-title: Adv. Funct. Mater.
– volume: 129
  start-page: 358
  year: 2004
  end-page: 367
  ident: bib0030
  article-title: Effect of the La/Mg ratio on the structure and electrochemical properties of La
  publication-title: J. Power Sources
– volume: 6
  start-page: 8696
  year: 2015
  ident: bib0320
  article-title: Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction
  publication-title: Nat. Commun.
– volume: 206
  start-page: 367
  year: 2019
  end-page: 377
  ident: bib0280
  article-title: Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties
  publication-title: Spectrochim. Acta A.
– volume: 71
  start-page: 61
  year: 1995
  ident: bib0340
  article-title: The state of the oxygen at the surface of polycrystalline cobalt oxide
  publication-title: J. Electron Spectrosc. Relat. Phenom.
– volume: 5
  start-page: 1
  year: 2014
  end-page: 8
  ident: bib0020
  article-title: A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures
  publication-title: Nat. Commun.
– volume: 44
  start-page: 2060
  year: 2015
  end-page: 2086
  ident: bib0175
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
– volume: 9
  year: 2019
  ident: bib0125
  article-title: Oriented transformation of Co‐LDH into 2D/3D ZIF‐67 to achieve Co–N–C hybrids for efficient overall water splitting
  publication-title: Adv. Energy Mater.
– volume: 7
  start-page: 22818
  year: 2017
  end-page: 22824
  ident: bib0390
  article-title: Ultrathin Co–Fe hydroxide nanosheet arrays for improved oxygen evolution during water splitting
  publication-title: RSC Adv.
– volume: 11
  start-page: 872
  year: 2018
  end-page: 880
  ident: bib0095
  article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting
  publication-title: Energy Environ. Sci.
– volume: 22
  start-page: 4592
  year: 2012
  end-page: 4597
  ident: bib0335
  article-title: Ultrathin mesoporous NiCo
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 985
  year: 2018
  end-page: 992
  ident: bib0090
  article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction
  publication-title: Nat. Catal.
– volume: 7
  start-page: 5620
  year: 2019
  end-page: 5625
  ident: bib0250
  article-title: An amorphous cobalt borate nanosheet-coated cobalt boride hybrid for highly efficient alkaline water oxidation reaction
  publication-title: ACS Sustainable Chem. Eng.
– volume: 4
  start-page: 13742
  year: 2016
  end-page: 13745
  ident: bib0060
  article-title: Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  ident: bib0165
  article-title: Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications
  publication-title: Adv. Mater.
– volume: 41
  start-page: 327
  year: 2017
  end-page: 336
  ident: bib0190
  article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting
  publication-title: Nano Energy
– volume: 5
  start-page: 10510
  year: 2017
  end-page: 10516
  ident: bib0055
  article-title: CoOx–carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters
  publication-title: J. Mater. Chem. A
– volume: 20
  start-page: 3954
  year: 2008
  end-page: 3958
  ident: bib0045
  article-title: Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica
  publication-title: Chem. Mater.
– volume: 29
  year: 2017
  ident: bib0395
  article-title: Ternary NiCo
  publication-title: Adv. Mater.
– volume: 126
  start-page: 4782
  year: 2004
  end-page: 4783
  ident: bib0260
  article-title: Efficient Degradation of toxic organic pollutants with Ni
  publication-title: J. Am. Chem. Soc.
– volume: 10
  start-page: 19484
  year: 2018
  end-page: 19491
  ident: bib0185
  article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting
  publication-title: Nanoscale
– volume: 1
  start-page: 751
  year: 2018
  end-page: 758
  ident: bib0305
  article-title: Enhancement effect of borate doping on the oxygen evolution activity of α-Nickel hydroxide
  publication-title: ACS Appl. Nano Mater.
– volume: 6
  start-page: 10304
  year: 2018
  end-page: 10312
  ident: bib0070
  article-title: Tunable electronic coupling of cobalt sulfide/carbon composites for optimizing oxygen evolution reaction activity
  publication-title: J. Mater. Chem. A
– volume: 210
  start-page: 342
  year: 2017
  end-page: 351
  ident: bib0245
  article-title: The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis
  publication-title: Appl. Catal. B: Environ.
– volume: 250
  start-page: 213
  year: 2019
  end-page: 223
  ident: bib0110
  article-title: Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting
  publication-title: Appl. Catal. B: Environ.
– volume: 8
  year: 2018
  ident: bib0105
  article-title: Electroless plating of highly efficient bifunctional boride‐based electrodes toward practical overall water splitting
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 1263
  year: 2013
  end-page: 1269
  ident: bib0275
  article-title: A hierarchical Co–Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity
  publication-title: J. Mater. Chem. B
– volume: 9
  start-page: 5309
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0205
  article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07790-x
– volume: 1
  start-page: 1263
  year: 2013
  ident: 10.1016/j.apcatb.2019.118240_bib0275
  article-title: A hierarchical Co–Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity
  publication-title: J. Mater. Chem. B
  doi: 10.1039/c2tb00389a
– volume: 7
  start-page: 5620
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0250
  article-title: An amorphous cobalt borate nanosheet-coated cobalt boride hybrid for highly efficient alkaline water oxidation reaction
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b00258
– volume: 140
  start-page: 901
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0290
  article-title: Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.035
– volume: 6
  start-page: 1443
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0300
  article-title: Electrochemical performance of Borate‐doped nickel sulfide: enhancement of the bifunctional activity for total water splitting
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201801617
– volume: 19
  start-page: 98
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0325
  article-title: Electroless plated Ni–Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.11.020
– volume: 10
  start-page: 22094
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0085
  article-title: Transition metal induced the contraction of tungsten carbide lattice as superior hydrogen evolution reaction catalyst
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b04553
– volume: 7
  start-page: 22818
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0390
  article-title: Ultrathin Co–Fe hydroxide nanosheet arrays for improved oxygen evolution during water splitting
  publication-title: RSC Adv.
  doi: 10.1039/C7RA01202K
– volume: 131
  start-page: 1862
  year: 2009
  ident: 10.1016/j.apcatb.2019.118240_bib0005
  article-title: Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806565t
– volume: 1
  start-page: 751
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0305
  article-title: Enhancement effect of borate doping on the oxygen evolution activity of α-Nickel hydroxide
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.7b00210
– volume: 250
  start-page: 213
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0110
  article-title: Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.03.032
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.apcatb.2019.118240_bib0020
  article-title: A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4519
– volume: 11
  start-page: 1883
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0225
  article-title: Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1806-x
– volume: 9
  start-page: 924
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0120
  article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03429-z
– volume: 10
  start-page: 7134
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0100
  article-title: In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b18858
– volume: 10
  start-page: 40568
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0230
  article-title: Sn–Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b14603
– volume: 149
  start-page: 456
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0270
  article-title: Synthesis of a novel NiMnTi mixed metal oxides from LDH precursor and its catalytic application for selective catalytic eeduction of NOx with NH3
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-018-2626-7
– volume: 8
  start-page: 14430
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0065
  article-title: Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14430
– volume: 6
  start-page: 15040
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0255
  article-title: Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA05065A
– volume: 19
  start-page: 424
  year: 2008
  ident: 10.1016/j.apcatb.2019.118240_bib0285
  article-title: The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy
  publication-title: J. Mater. Sci: Mater. Electron.
– volume: 3
  start-page: 520
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0135
  article-title: Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00677F
– volume: 22
  start-page: 4592
  year: 2012
  ident: 10.1016/j.apcatb.2019.118240_bib0335
  article-title: Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200994
– volume: 28
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0210
  article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704594
– volume: 12
  start-page: 1690
  year: 2012
  ident: 10.1016/j.apcatb.2019.118240_bib0370
  article-title: Hydrogenated TiO2 nanotube arrays for supercapacitors
  publication-title: Nano Lett.
  doi: 10.1021/nl300173j
– volume: 2
  start-page: 13250
  year: 2014
  ident: 10.1016/j.apcatb.2019.118240_bib0015
  article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01275E
– volume: 1
  start-page: 985
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0090
  article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
– volume: 91
  start-page: 368
  year: 2009
  ident: 10.1016/j.apcatb.2019.118240_bib0295
  article-title: Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2009.06.003
– volume: 21
  start-page: 4743
  year: 2011
  ident: 10.1016/j.apcatb.2019.118240_bib0025
  article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries
  publication-title: J. Mater. Chem.
  doi: 10.1039/C0JM01921F
– volume: 129
  start-page: 358
  year: 2004
  ident: 10.1016/j.apcatb.2019.118240_bib0030
  article-title: Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3−xNi9 (x=1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2003.11.044
– volume: 5
  start-page: 10510
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0055
  article-title: CoOx–carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA02115A
– volume: 26
  start-page: 8555
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0385
  article-title: CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604804
– volume: 11
  start-page: 10860
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0235
  article-title: Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04368
– volume: 252
  start-page: 214
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0130
  article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2019.04.021
– volume: 335
  start-page: 146
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0010
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
– volume: 14
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0240
  article-title: Amorphous iron (III)‐borate nanolattices as multifunctional electrodes for self‐driven overall water splitting and rechargeable Zinc–air battery
  publication-title: Small
– volume: 6
  start-page: 10967
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0040
  article-title: A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA02595A
– volume: 126
  start-page: 4782
  year: 2004
  ident: 10.1016/j.apcatb.2019.118240_bib0260
  article-title: Efficient Degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0396753
– volume: 71
  start-page: 61
  year: 1995
  ident: 10.1016/j.apcatb.2019.118240_bib0340
  article-title: The state of the oxygen at the surface of polycrystalline cobalt oxide
  publication-title: J. Electron Spectrosc. Relat. Phenom.
  doi: 10.1016/0368-2048(94)02238-0
– volume: 45
  start-page: 4873
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0345
  article-title: Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00343E
– volume: 15
  start-page: 640
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0350
  article-title: Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulphide
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4588
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0195
  article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700017
– volume: 3
  start-page: 1360
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0375
  article-title: Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00514
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0165
  article-title: Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications
  publication-title: Adv. Mater.
– volume: 29
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0395
  article-title: Ternary NiCo2Px nanowires as pH‐universal electrocatalysts for highly efficient hydrogen evolution reaction
  publication-title: Adv. Mater.
– volume: 6
  start-page: 10304
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0070
  article-title: Tunable electronic coupling of cobalt sulfide/carbon composites for optimizing oxygen evolution reaction activity
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA01244J
– volume: 41
  start-page: 327
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0190
  article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.09.045
– volume: 6
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0140
  article-title: Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900272
– volume: 9
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0080
  article-title: Recent Development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 10425
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0215
  article-title: Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene
  publication-title: Nanoscale
  doi: 10.1039/C6NR00988C
– volume: 10
  start-page: 19484
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0185
  article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting
  publication-title: Nanoscale
  doi: 10.1039/C8NR05974H
– volume: 144
  start-page: 485
  year: 1997
  ident: 10.1016/j.apcatb.2019.118240_bib0310
  article-title: Electrochemical and in situ Raman spectroscopic characterization of Nickel Hydroxide electrodes
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1837437
– volume: 361
  start-page: 322
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0075
  article-title: Strongly coupling of Co9S8/Zn-Co-S heterostructures rooted in carbon nanocages towards efficient oxygen evolution reaction
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2018.03.011
– volume: 6
  start-page: 14641
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0180
  article-title: Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b03232
– volume: 20
  start-page: 3954
  year: 2008
  ident: 10.1016/j.apcatb.2019.118240_bib0045
  article-title: Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica
  publication-title: Chem. Mater.
  doi: 10.1021/cm8002063
– volume: 11
  start-page: 872
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0095
  article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE00076J
– volume: 1
  start-page: 1200
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0150
  article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.7b00305
– volume: 4
  start-page: 13742
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0060
  article-title: Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05679B
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0105
  article-title: Electroless plating of highly efficient bifunctional boride‐based electrodes toward practical overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801372
– volume: 44
  start-page: 2060
  year: 2015
  ident: 10.1016/j.apcatb.2019.118240_bib0175
  article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00470A
– volume: 12
  start-page: 572
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0155
  article-title: Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C8EE03282C
– volume: 6
  start-page: 8696
  year: 2015
  ident: 10.1016/j.apcatb.2019.118240_bib0320
  article-title: Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9696
– volume: 16
  start-page: 3809
  year: 2006
  ident: 10.1016/j.apcatb.2019.118240_bib0220
  article-title: Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets
  publication-title: J. Mater. Chem.
  doi: 10.1039/b605422f
– volume: 13
  start-page: 1045
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0170
  article-title: Coupling of bifunctional CoMn-Layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800016
– volume: 8
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0355
  article-title: Fe‐Ni‐Mo nitride porous nanotubes for full water splitting and Zn‐air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802327
– volume: 51
  start-page: 1120
  year: 2015
  ident: 10.1016/j.apcatb.2019.118240_bib0315
  article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC08856E
– volume: 9
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0125
  article-title: Oriented transformation of Co‐LDH into 2D/3D ZIF‐67 to achieve Co–N–C hybrids for efficient overall water splitting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201970066
– volume: 10
  start-page: 9845
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0380
  article-title: A facet-controlled Rh3Pb2S2 nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction
  publication-title: Nanoscale
  doi: 10.1039/C8NR02091D
– volume: 15
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0160
  article-title: Porous cobalt–nickel hydroxide nanosheets with active cobalt ions for overall water splitting
  publication-title: Small
– volume: 150
  start-page: A565
  year: 2003
  ident: 10.1016/j.apcatb.2019.118240_bib0050
  article-title: A study of the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x=2.5˜5.0) hydrogen storage electrode alloys
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1562593
– volume: 376
  start-page: 186
  year: 2004
  ident: 10.1016/j.apcatb.2019.118240_bib0035
  article-title: A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys
  publication-title: J. Alloys. Compd.
  doi: 10.1016/j.jallcom.2003.12.011
– volume: 8
  start-page: 34474
  year: 2016
  ident: 10.1016/j.apcatb.2019.118240_bib0145
  article-title: Defect-rich ultrathin cobalt–iron layered double hydroxide for electrochemical overall water splitting
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12803
– volume: 2
  start-page: 785
  year: 2014
  ident: 10.1016/j.apcatb.2019.118240_bib0360
  article-title: Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14237J
– volume: 48
  start-page: 7717
  year: 2012
  ident: 10.1016/j.apcatb.2019.118240_bib0365
  article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31773g
– volume: 40
  start-page: 1521
  year: 2002
  ident: 10.1016/j.apcatb.2019.118240_bib0330
  article-title: The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods
  publication-title: Carbon
  doi: 10.1016/S0008-6223(02)00004-0
– volume: 62
  start-page: 4204
  year: 2008
  ident: 10.1016/j.apcatb.2019.118240_bib0265
  article-title: Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2008.06.026
– volume: 30
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0115
  article-title: Ultrafine Co nanoparticles encapsulated in carbon‐nanotubes‐grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction
  publication-title: Adv. Mater.
– volume: 10
  start-page: 26283
  year: 2018
  ident: 10.1016/j.apcatb.2019.118240_bib0200
  article-title: NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b07835
– volume: 210
  start-page: 342
  year: 2017
  ident: 10.1016/j.apcatb.2019.118240_bib0245
  article-title: The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis
  publication-title: Appl. Catal. B: Environ.
  doi: 10.1016/j.apcatb.2017.04.005
– volume: 206
  start-page: 367
  year: 2019
  ident: 10.1016/j.apcatb.2019.118240_bib0280
  article-title: Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties
  publication-title: Spectrochim. Acta A.
  doi: 10.1016/j.saa.2018.08.038
SSID ssj0002328
Score 2.6683958
Snippet B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst,...
Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118240
SubjectTerms Amorphization
Amorphization of crystalline LDH
B-doping
Catalysts
Cobalt
Current density
Doping
Electrochemistry
Electrolysis
HER catalyst
Hydrogen evolution reactions
Hydroxides
Large current density
Metal foams
Nickel
Platinum
Transition metals
Water splitting
Title B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction
URI https://dx.doi.org/10.1016/j.apcatb.2019.118240
https://www.proquest.com/docview/2316775046
Volume 261
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLQ9ILotKo8iH3o1u4m9iXOEBbR9wIUiIfVg-amCYHcFAYkLv50ZxyltVQmpV8dOIs94PGN932eAT1LFscS0nvsqGi69c1zZ2nIRVCD9MqOSHMPxSTU9k1_Ox-dLMOm5MASrzLG_i-kpWueWYZ7N4eLiYng6aspKiBp9SIywciZGuZQ1efnu4zPMAzOGFI2xM6fePX0uYbzMwpnWEsCr2aVMm45A_r09_RWo0-5ztAarOW1ke92fvYWlMBvAq0l_W9sA3vwmLDiA9cNn_hoOywv49h382Oc-UaQ41uJoVc_M9RynOrMx2TyybwdThpksuyKMOHedfhP3BHRvH9jPB38zR6dj4T47LcO0M5Ej3sPZ0eH3yZTn-xW4k6JueeGjtVEUZiycJBke44T1qraxUkUsjZWjIE1UJjZYrrpSBmzAJ6KKSjW2EeuwPJvPwgdgaNiiiS4aUsuv66IZeyOck8EE_ICNGyD6adUui4_THRhXukeZXerOGJqMoTtjbAD_NWrRiW-80L_uLab_cCKN-8MLI7d7A-u8iG91SSoBJH9fbf73i7fgdUkVesJ5b8Nye3MXPmIa09qd5Kc7sLL3-ev05AmDxvNx
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UB7qOhSVCgfPnA1u4mdxDnCAgqw7AWQkHqw_Cmo6O4KQiX-fceJAxQhIXF1MknkNx7PRG-eAXa48BnHtJ7a3CvKrTFU6EJT5oQL-mVKNHIMZ5O8uuQnV9nVAoy6XphAq4yxv43pTbSOI4M4m4P5zc3gfFimOWMF-hAbYuVcfILFoE6V9WBx7_i0mjwFZEwamoCM99Ng0HXQNTQvNTeq1oHjVe6GZDv8BXl7h3oVq5sN6GgZvsbMkey1H_cNFty0D0uj7sC2Pnx5oS3Yh9XD5xY2NItr-H4Ffu1T23RJUSzHEVhL1J8ZznZsyCQzT8YHFcFkltwGmjg1rYQTtYHrXj-S60d7N0O_I-5v9FuCmWfTH_EdLo8OL0YVjUcsUMNZUdPEeq09S1TGDA9KPMowbUWhfS4SnyrNh44rL5QvsWI1KXc4gFdY7oUodclWoTedTd0PIIhtUnrjVRDML4qkzKxixnCnHL5A-zVg3bRKE_XHwzEYt7Ijmv2WLRgygCFbMNaAPlnNW_2Nd-4vOsTkf34kcYt4x3KjA1jGdXwv0yAUEBTw8_UPP3gblqqLs7EcH09Of8LnNBTsDe17A3r13YPbxKym1lvRa_8B2RH2Ig
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B-doping-induced+amorphization+of+LDH+for+large-current-density+hydrogen+evolution+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yang%2C+Hongyuan&rft.au=Chen%2C+Ziliang&rft.au=Guo%2C+Peifang&rft.au=Fei%2C+Ben&rft.date=2020-02-01&rft.issn=0926-3373&rft.volume=261&rft.spage=118240&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2019_118240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon