B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction
B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst, affording large current densities of 500 and 1000 mA cm–2 at overpotentials of only 286 and 381 mV, respectively. [Display omitted] •B-doping-indu...
Saved in:
Published in | Applied catalysis. B, Environmental Vol. 261; p. 118240 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.02.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst, affording large current densities of 500 and 1000 mA cm–2 at overpotentials of only 286 and 381 mV, respectively.
[Display omitted]
•B-doping-induced amorphization of LDH was developed to activate catalytic performance.•Amorphous NiCo LDH/NF catalyst could afford large current densities at very small overpotentials.•The strategy of B-doping-induced amorphization is versatile.
Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a commercially electrochemical water splitting technology. Herein, we show that the B-doping-induced amorphization of crystalline layered double hydroxide (LDH) activates it as an extremely efficient HER catalyst. The amorphous B-incorporated nickel-cobalt LDH supported on the nickel foam (A-NiCo LDH/NF) can yield large current densities at small overpotentials (100 mA cm–2 at 151 mV, 500 mA cm–2 at 286 mV, and 1000 mA cm–2 at 381 mV) with high durability in alkaline medium even after 72 h, which is even better than commercial platinum. This work may provide a promising way for structure tuning of transition metal LDH to effectively boost HER efficiency towards practical water electrolysis. |
---|---|
AbstractList | Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a commercially electrochemical water splitting technology. Herein, we show that the B-doping-induced amorphization of crystalline layered double hydroxide (LDH) activates it as an extremely efficient HER catalyst. The amorphous B-incorporated nickel-cobalt LDH supported on the nickel foam (A-NiCo LDH/NF) can yield large current densities at small overpotentials (100 mA cm–2 at 151 mV, 500 mA cm–2 at 286 mV, and 1000 mA cm–2 at 381 mV) with high durability in alkaline medium even after 72 h, which is even better than commercial platinum. This work may provide a promising way for structure tuning of transition metal LDH to effectively boost HER efficiency towards practical water electrolysis. B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst, affording large current densities of 500 and 1000 mA cm–2 at overpotentials of only 286 and 381 mV, respectively. [Display omitted] •B-doping-induced amorphization of LDH was developed to activate catalytic performance.•Amorphous NiCo LDH/NF catalyst could afford large current densities at very small overpotentials.•The strategy of B-doping-induced amorphization is versatile. Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a commercially electrochemical water splitting technology. Herein, we show that the B-doping-induced amorphization of crystalline layered double hydroxide (LDH) activates it as an extremely efficient HER catalyst. The amorphous B-incorporated nickel-cobalt LDH supported on the nickel foam (A-NiCo LDH/NF) can yield large current densities at small overpotentials (100 mA cm–2 at 151 mV, 500 mA cm–2 at 286 mV, and 1000 mA cm–2 at 381 mV) with high durability in alkaline medium even after 72 h, which is even better than commercial platinum. This work may provide a promising way for structure tuning of transition metal LDH to effectively boost HER efficiency towards practical water electrolysis. |
ArticleNumber | 118240 |
Author | Chen, Ziliang Guo, Peifang Fei, Ben Yang, Hongyuan Wu, Renbing |
Author_xml | – sequence: 1 givenname: Hongyuan surname: Yang fullname: Yang, Hongyuan – sequence: 2 givenname: Ziliang orcidid: 0000-0001-5307-7309 surname: Chen fullname: Chen, Ziliang – sequence: 3 givenname: Peifang surname: Guo fullname: Guo, Peifang – sequence: 4 givenname: Ben surname: Fei fullname: Fei, Ben – sequence: 5 givenname: Renbing surname: Wu fullname: Wu, Renbing email: rbwu@fudan.edu.cn |
BookMark | eNqFkDtPwzAQgC1UJNrCP2CIxOziR5o4DEhQHkWqxAITg-U459ZVawfHqVR-PWnDxADTne7uu9N9IzRw3gFCl5RMKKHZ9Xqiaq1iOWGEFhNKBUvJCRpSkXPMheADNCQFyzDnOT9Do6ZZE0IYZ2KIPu5x5Wvrlti6qtVQJWrrQ72yXypa7xJvksXDPDE-JBsVloB1GwK4iCtwjY37ZLWvgl-CS2DnN-2RCaD0ITlHp0ZtGrj4iWP0_vT4Npvjxevzy-xugXXK84hpZcrScKqmXKeUZlOleVmJvDSZoIapMiWQKiOUKaaMa5ZCV-g6PDNCFGXBx-iq31sH_9lCE-Xat8F1JyXjNMvzKUmzbirtp3TwTRPAyDrYrQp7SYk8aJRr2WuUB42y19hhN78wbePRTQzKbv6Db3sYuvd3FoJstAXXabYBdJSVt38v-AbVrJN9 |
CitedBy_id | crossref_primary_10_1021_acssensors_4c00954 crossref_primary_10_1002_aenm_202102134 crossref_primary_10_1016_j_cej_2022_136031 crossref_primary_10_1016_j_jcis_2022_02_072 crossref_primary_10_1016_j_jcis_2024_01_024 crossref_primary_10_1039_D0NR08408E crossref_primary_10_1002_sstr_202200404 crossref_primary_10_1039_D2CY01982E crossref_primary_10_1016_j_jcis_2023_02_113 crossref_primary_10_1016_j_apcatb_2023_123352 crossref_primary_10_1021_acs_langmuir_2c02435 crossref_primary_10_1002_smll_202412576 crossref_primary_10_1016_j_cej_2020_127671 crossref_primary_10_1002_smll_202103307 crossref_primary_10_1002_adfm_202300149 crossref_primary_10_1007_s10311_023_01616_z crossref_primary_10_1016_j_mssp_2021_106128 crossref_primary_10_1016_j_cej_2022_139796 crossref_primary_10_1002_adma_202400140 crossref_primary_10_1016_j_apsusc_2021_149108 crossref_primary_10_1002_anie_202420295 crossref_primary_10_1016_j_jcis_2022_07_103 crossref_primary_10_1002_cey2_485 crossref_primary_10_3390_nano14181533 crossref_primary_10_1007_s12598_024_02742_5 crossref_primary_10_2139_ssrn_4116211 crossref_primary_10_1016_j_ces_2024_120818 crossref_primary_10_1002_aenm_202404077 crossref_primary_10_1039_D1NJ04344G crossref_primary_10_1016_j_jechem_2022_02_010 crossref_primary_10_1021_acsaem_1c03601 crossref_primary_10_1007_s12274_021_3641_3 crossref_primary_10_1016_j_mtener_2022_101082 crossref_primary_10_1016_j_surfin_2021_101447 crossref_primary_10_1002_advs_202207519 crossref_primary_10_1021_acsanm_1c01236 crossref_primary_10_1021_acssuschemeng_1c06295 crossref_primary_10_1016_j_apmt_2024_102466 crossref_primary_10_1002_smll_202208076 crossref_primary_10_1016_S1872_2067_20_63741_X crossref_primary_10_1021_acsabm_1c00258 crossref_primary_10_1016_j_ccr_2024_215832 crossref_primary_10_1002_idm2_12169 crossref_primary_10_1039_D1NR03186D crossref_primary_10_1039_D1TC05863K crossref_primary_10_1016_j_mattod_2024_08_008 crossref_primary_10_1088_1361_6528_ac28d6 crossref_primary_10_1016_j_apcatb_2022_122072 crossref_primary_10_1016_j_ijhydene_2023_07_026 crossref_primary_10_1016_j_apcatb_2022_121666 crossref_primary_10_1016_j_nanoen_2023_108624 crossref_primary_10_1016_j_cej_2020_126474 crossref_primary_10_1021_acscatal_4c00294 crossref_primary_10_1002_cctc_202100707 crossref_primary_10_1002_adma_202108432 crossref_primary_10_1002_adfm_202423760 crossref_primary_10_1016_j_porgcoat_2023_108074 crossref_primary_10_3390_catal12111417 crossref_primary_10_1016_j_nanoen_2019_104371 crossref_primary_10_1039_D2CE01081J crossref_primary_10_1021_acs_iecr_4c04646 crossref_primary_10_1016_S1872_2067_24_60076_8 crossref_primary_10_1002_chem_202002134 crossref_primary_10_1002_adfm_202008578 crossref_primary_10_1016_j_electacta_2021_137796 crossref_primary_10_1016_j_ces_2020_116075 crossref_primary_10_1021_acs_inorgchem_0c00089 crossref_primary_10_1002_cssc_202401415 crossref_primary_10_1016_j_ijhydene_2024_10_420 crossref_primary_10_1007_s11705_023_2320_1 crossref_primary_10_3390_molecules28031475 crossref_primary_10_1002_smtd_202000827 crossref_primary_10_1016_j_fuel_2025_134505 crossref_primary_10_1002_aesr_202200178 crossref_primary_10_1016_j_cej_2025_159520 crossref_primary_10_1016_j_cej_2024_158011 crossref_primary_10_1016_j_electacta_2023_143215 crossref_primary_10_1039_D1TA01409A crossref_primary_10_3390_en13184651 crossref_primary_10_1016_j_catcom_2024_106880 crossref_primary_10_1016_j_seppur_2024_128576 crossref_primary_10_1016_j_electacta_2023_141956 crossref_primary_10_1016_j_jcis_2025_01_077 crossref_primary_10_3390_catal11060689 crossref_primary_10_1002_adfm_202313770 crossref_primary_10_1016_j_apcatb_2022_121762 crossref_primary_10_1016_j_cej_2023_143274 crossref_primary_10_1007_s40820_021_00639_x crossref_primary_10_1016_j_cej_2024_158120 crossref_primary_10_1016_j_ijhydene_2022_02_167 crossref_primary_10_2139_ssrn_4147429 crossref_primary_10_1021_acs_energyfuels_1c02056 crossref_primary_10_1016_j_jcis_2023_10_002 crossref_primary_10_1039_D2DT00037G crossref_primary_10_1039_D3DT00160A crossref_primary_10_1039_D3QM00940H crossref_primary_10_1016_j_ijhydene_2024_06_185 crossref_primary_10_1039_D3TA02293E crossref_primary_10_1021_acs_chemrev_3c00252 crossref_primary_10_1007_s40843_021_1890_7 crossref_primary_10_1016_j_ijhydene_2022_01_247 crossref_primary_10_1002_eem2_12714 crossref_primary_10_1016_j_apsusc_2021_151911 crossref_primary_10_1002_smll_202301610 crossref_primary_10_1016_j_jallcom_2020_156095 crossref_primary_10_1016_j_cej_2021_129842 crossref_primary_10_1016_j_apcatb_2020_118782 crossref_primary_10_1149_1945_7111_ac7172 crossref_primary_10_1016_j_flatc_2022_100368 crossref_primary_10_1039_D2TA08073G crossref_primary_10_1016_j_apcatb_2021_120350 crossref_primary_10_1039_D2CE00924B crossref_primary_10_1021_acsomega_0c01853 crossref_primary_10_1002_adfm_202003556 crossref_primary_10_1016_j_ijhydene_2025_01_219 crossref_primary_10_3390_nano12152640 crossref_primary_10_1016_j_jechem_2024_07_010 crossref_primary_10_1016_j_mtener_2020_100600 crossref_primary_10_1016_j_jcis_2023_05_042 crossref_primary_10_1002_adma_202402156 crossref_primary_10_1016_j_cclet_2021_09_034 crossref_primary_10_1016_j_apsusc_2023_158330 crossref_primary_10_1016_j_nanoen_2021_105838 crossref_primary_10_1039_D2DT01394K crossref_primary_10_1016_j_cej_2022_137886 crossref_primary_10_1016_j_jcis_2022_04_088 crossref_primary_10_1016_j_psep_2025_106866 crossref_primary_10_1002_adma_202107548 crossref_primary_10_1002_ece2_25 crossref_primary_10_1002_cssc_202400900 crossref_primary_10_1002_smll_202311221 crossref_primary_10_1002_adfm_202402699 crossref_primary_10_1021_acsmaterialslett_2c00324 crossref_primary_10_1016_j_cej_2020_125407 crossref_primary_10_1039_D2NR00143H crossref_primary_10_1016_j_colcom_2023_100727 crossref_primary_10_1002_aenm_202203002 crossref_primary_10_1016_j_cej_2024_153442 crossref_primary_10_1016_j_susmat_2025_e01258 crossref_primary_10_1021_acs_energyfuels_2c01618 crossref_primary_10_1002_adma_202210671 crossref_primary_10_1016_j_apmt_2020_100913 crossref_primary_10_1016_j_jallcom_2023_171273 crossref_primary_10_1039_D2CC02947B crossref_primary_10_1021_acs_jpclett_3c01697 crossref_primary_10_1016_j_matchemphys_2023_127412 crossref_primary_10_1016_j_jmst_2021_04_016 crossref_primary_10_1016_j_apsusc_2022_155562 crossref_primary_10_1021_acsanm_2c04794 crossref_primary_10_1002_ange_202420295 crossref_primary_10_1016_j_jelechem_2025_119073 crossref_primary_10_1039_D3QM00730H crossref_primary_10_1016_j_apcatb_2019_118404 crossref_primary_10_1039_D2CE01205G crossref_primary_10_1016_j_fuel_2023_130653 crossref_primary_10_1021_acs_cgd_2c01124 crossref_primary_10_1016_j_apcatb_2022_122249 crossref_primary_10_1007_s40242_022_2254_z crossref_primary_10_1016_j_ijhydene_2020_11_172 crossref_primary_10_1016_j_jcis_2025_02_083 crossref_primary_10_1021_acs_energyfuels_4c04519 crossref_primary_10_1039_D3NJ03167E crossref_primary_10_1039_D1TA09892F crossref_primary_10_1002_smll_202403005 crossref_primary_10_1016_j_apsusc_2020_146753 crossref_primary_10_3390_catal11060659 crossref_primary_10_1002_celc_202200566 crossref_primary_10_1039_D3QI00799E crossref_primary_10_1002_sstr_202300194 crossref_primary_10_1021_acsami_0c20294 crossref_primary_10_1016_j_apcatb_2021_120395 crossref_primary_10_1016_j_ijhydene_2021_04_201 crossref_primary_10_1016_j_apsusc_2022_153245 crossref_primary_10_1016_S1872_2067_24_60105_1 crossref_primary_10_3390_nano14030243 crossref_primary_10_1016_j_cej_2020_126302 crossref_primary_10_1039_D4QI00310A crossref_primary_10_1021_acsami_1c22092 crossref_primary_10_1007_s40820_023_01164_9 crossref_primary_10_1002_smll_202407061 crossref_primary_10_1016_j_cej_2024_151105 crossref_primary_10_1016_j_cjche_2021_02_010 crossref_primary_10_1016_j_ceramint_2021_12_216 crossref_primary_10_1039_D2TA06791A crossref_primary_10_1016_j_jpowsour_2024_236085 crossref_primary_10_20517_energymater_2024_41 crossref_primary_10_1039_D1NR02592A crossref_primary_10_1016_j_coco_2024_102064 crossref_primary_10_1016_j_fuel_2023_130711 crossref_primary_10_1038_s41467_022_31077_x crossref_primary_10_1016_j_apcatb_2021_120601 crossref_primary_10_1021_acsmaterialslett_0c00502 crossref_primary_10_1002_adma_202404658 crossref_primary_10_1002_smll_202101727 crossref_primary_10_1021_acsmaterialslett_4c00716 crossref_primary_10_1016_S1872_2067_21_63982_7 crossref_primary_10_1016_j_cej_2020_125685 crossref_primary_10_1002_cctc_202000558 crossref_primary_10_1039_D1TA06100C crossref_primary_10_3390_ma16093372 crossref_primary_10_1016_j_isci_2024_109616 crossref_primary_10_1016_j_jcis_2024_10_141 crossref_primary_10_1016_j_ijhydene_2022_06_306 crossref_primary_10_1021_acsanm_3c01221 crossref_primary_10_1016_j_ijhydene_2021_10_099 crossref_primary_10_2139_ssrn_4176826 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1016_j_jtice_2021_10_018 crossref_primary_10_1021_acsnano_2c02820 crossref_primary_10_1039_D2DT00044J crossref_primary_10_1039_D0RA10169A crossref_primary_10_1016_j_ijhydene_2021_08_188 crossref_primary_10_1039_D3TA02524A crossref_primary_10_1039_D1NR07355A crossref_primary_10_1039_D4NR04433A crossref_primary_10_1002_aenm_202102074 crossref_primary_10_1016_j_fuel_2023_127689 crossref_primary_10_1016_j_ijhydene_2024_04_179 crossref_primary_10_1016_j_jpowsour_2024_235403 crossref_primary_10_1088_1361_6528_ac084d crossref_primary_10_1002_ente_202200655 crossref_primary_10_1016_j_jpowsour_2021_230635 crossref_primary_10_1002_adfm_202316296 crossref_primary_10_1002_cctc_202200293 crossref_primary_10_1016_j_ijhydene_2021_04_092 crossref_primary_10_1016_j_jmst_2022_03_021 crossref_primary_10_1016_j_jpowsour_2025_236472 crossref_primary_10_1016_j_jallcom_2025_179010 crossref_primary_10_1002_smll_202205719 crossref_primary_10_1016_j_ijhydene_2024_02_355 crossref_primary_10_1002_smll_202405468 crossref_primary_10_1088_2752_5724_ada99c crossref_primary_10_1039_D1NR03409J crossref_primary_10_1007_s40820_022_00933_2 crossref_primary_10_1016_j_fuel_2022_127259 crossref_primary_10_1016_j_jpowsour_2022_231353 crossref_primary_10_1016_j_jpowsour_2022_232563 crossref_primary_10_1039_D2NJ05032C crossref_primary_10_1021_acsaem_0c02181 crossref_primary_10_1021_acs_energyfuels_4c05376 crossref_primary_10_1002_cnma_202400430 crossref_primary_10_3390_polym15061462 crossref_primary_10_1016_j_apcatb_2023_123387 crossref_primary_10_1039_D2NR04657A crossref_primary_10_1002_tcr_202200176 crossref_primary_10_1039_D2SE01098D |
Cites_doi | 10.1038/s41467-018-07790-x 10.1039/c2tb00389a 10.1021/acssuschemeng.9b00258 10.1016/j.energy.2017.09.035 10.1002/celc.201801617 10.1016/j.nanoen.2015.11.020 10.1021/acsami.8b04553 10.1039/C7RA01202K 10.1021/ja806565t 10.1021/acsanm.7b00210 10.1016/j.apcatb.2019.03.032 10.1038/ncomms4519 10.1007/s12274-017-1806-x 10.1038/s41467-018-03429-z 10.1021/acsami.7b18858 10.1021/acsami.8b14603 10.1007/s10562-018-2626-7 10.1038/ncomms14430 10.1039/C8TA05065A 10.1039/C8QM00677F 10.1002/adfm.201200994 10.1002/adfm.201704594 10.1021/nl300173j 10.1039/C4TA01275E 10.1038/s41929-018-0195-1 10.1016/j.apcatb.2009.06.003 10.1039/C0JM01921F 10.1016/j.jpowsour.2003.11.044 10.1039/C7TA02115A 10.1002/adfm.201604804 10.1021/acsnano.7b04368 10.1016/j.apcatb.2019.04.021 10.1039/C8TA02595A 10.1021/ja0396753 10.1016/0368-2048(94)02238-0 10.1039/C6CS00343E 10.1038/nmat4588 10.1002/adma.201700017 10.1021/acsenergylett.8b00514 10.1039/C8TA01244J 10.1016/j.nanoen.2017.09.045 10.1002/advs.201900272 10.1039/C6NR00988C 10.1039/C8NR05974H 10.1149/1.1837437 10.1016/j.jcat.2018.03.011 10.1021/acssuschemeng.8b03232 10.1021/cm8002063 10.1039/C8EE00076J 10.1021/acsaem.7b00305 10.1039/C6TA05679B 10.1002/aenm.201801372 10.1039/C4CS00470A 10.1039/C8EE03282C 10.1038/ncomms9696 10.1039/b605422f 10.1002/asia.201800016 10.1002/aenm.201802327 10.1039/C4CC08856E 10.1002/aenm.201970066 10.1039/C8NR02091D 10.1149/1.1562593 10.1016/j.jallcom.2003.12.011 10.1021/acsami.6b12803 10.1039/C3TA14237J 10.1039/c2cc31773g 10.1016/S0008-6223(02)00004-0 10.1016/j.matlet.2008.06.026 10.1021/acsami.8b07835 10.1016/j.apcatb.2017.04.005 10.1016/j.saa.2018.08.038 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Feb 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Feb 2020 |
DBID | AAYXX CITATION 7SR 7ST 7U5 8BQ 8FD C1K FR3 JG9 KR7 L7M SOI |
DOI | 10.1016/j.apcatb.2019.118240 |
DatabaseName | CrossRef Engineered Materials Abstracts Environment Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace METADEX Environmental Sciences and Pollution Management |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Environmental Sciences |
EISSN | 1873-3883 |
ExternalDocumentID | 10_1016_j_apcatb_2019_118240 S0926337319309877 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADMUD AEBSH AEKER AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ IHE J1W KOM LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SES SEW SPC SPD SSG SSZ T5K VH1 WUQ XFK XPP ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU BNPGV CITATION SSH 7SR 7ST 7U5 8BQ 8FD C1K EFKBS FR3 JG9 KR7 L7M SOI |
ID | FETCH-LOGICAL-c437t-1dfbbf31a53c41165ac3bd87bf681f2ab40e4af8af9523c24e40e81f36f889b93 |
IEDL.DBID | .~1 |
ISSN | 0926-3373 |
IngestDate | Wed Aug 13 11:23:55 EDT 2025 Thu Apr 24 23:11:38 EDT 2025 Tue Jul 01 04:34:59 EDT 2025 Sat Mar 02 16:00:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Amorphization of crystalline LDH Large current density B-doping HER catalyst |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-1dfbbf31a53c41165ac3bd87bf681f2ab40e4af8af9523c24e40e81f36f889b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5307-7309 |
PQID | 2316775046 |
PQPubID | 2045281 |
ParticipantIDs | proquest_journals_2316775046 crossref_primary_10_1016_j_apcatb_2019_118240 crossref_citationtrail_10_1016_j_apcatb_2019_118240 elsevier_sciencedirect_doi_10_1016_j_apcatb_2019_118240 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied catalysis. B, Environmental |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Liu, Pan, Gao, Wang (bib0025) 2011; 21 Liu, Chen, Hsueh, Ku, Tsau, Hwang (bib0295) 2009; 91 Lamiel, Nguyen, Hussain, Shim (bib0290) 2017; 140 Zhou, Cao, Wang, Gao, Li, Ma, Zhao (bib0390) 2017; 7 Long, Xiao, Wang, Zheng, Yang (bib0315) 2015; 51 Pascuta, Pop, Rada, Bosca, Culea (bib0285) 2008; 19 Yuan, Li, Hou, Zhang, Shen, Lou (bib0335) 2012; 22 Ma, Ma, Wu, Sun, Liu, Zhou, Sasaki (bib0215) 2016; 8 Zhang, Zhao, Guo, Chen, Dong, Liu, Han, Li, Gogotsi, Wang (bib0090) 2018; 1 Liang, Lin, Jia, Chen, Qi, Cao, Lin, Fei, Feng (bib0255) 2018; 6 Tan, Han, Cong, Cheng, Luo (bib0250) 2019; 7 Pan, Liu, Gao, Lei, Wang (bib0050) 2003; 150 Wu, Wang, Zhou, Srikanth, Wei, Chen (bib0060) 2016; 4 Kuang, Han, Wang, Li, Zheng (bib0385) 2016; 26 Yang, Yang, Wang, Feng (bib0360) 2014; 2 Hui, Xue, Yu, Zhang, Zhang, Jia, Zhao, Li, Liu, Li (bib0205) 2018; 9 Chen, Ha, Liu, Wang, Yang, Xu, Li, Wu (bib0100) 2018; 10 Chen, Ha, Jia, Yan, Chen, Liu, Wu (bib0125) 2019; 9 Arif, Yasin, Shakeel, Fang, Gao, Ji, Yan (bib0170) 2018; 13 Liao, Lei, Chen, Lu, Pan, Wang (bib0030) 2004; 129 Ksibi, Rossignol, Tatibouët, Trapalis (bib0265) 2008; 62 Ma, Liu, Li, Iyi, Sasaki (bib0220) 2006; 16 Jin, Chen, Mao, Wang (bib0085) 2018; 10 Hao, Wu, Zhang, Ha, Chen, Wang, Yang, Ma, Fang, Guo (bib0105) 2018; 8 Jiao, Zheng, Jaroniec, Qiao (bib0175) 2015; 44 Qiu, Tai, Niklassona, Edvinsson (bib0155) 2019; 12 Wang, Xu, Jin, Chen, Wang (bib0165) 2017; 29 Kostecki, McLarnont (bib0310) 1997; 144 Bhowmik, Kundu, Barman (bib0150) 2018; 1 Chen, Wu, Liu, Ha, Guo, Sun, Liu, Fang (bib0115) 2018; 30 Jin, Zhang, Chen, Mao, Jiang, Wang (bib0040) 2018; 6 Ha, Shi, Chen, Wu (bib0140) 2019; 6 Tang, Jiang, Niu, Liu, Luo, Zhang, Wen, Chen, Huang, Gao, Hu (bib0210) 2018; 28 Liu, Yang, Zhang, Yang (bib0145) 2016; 8 Liao, Lei, Chen, Lu, Pan, Wang (bib0035) 2004; 376 Deng, Li, Wang, Ding, Chen, Liu, Tian, Novoselov, Ma, Deng, Bao (bib0065) 2016; 8 Zhang, Gao, Hensen, Hofmann (bib0375) 2018; 3 Yu, Zhou, Sun, Qin, Luo, Xie, Yu, Bao, Li, Yu, Chen, Ren (bib0190) 2017; 41 Zhao, Xu, Li, Wang, Liu, Feng, Ding, Li, Wu (bib0240) 2018; 14 Zhang, Wang, Yu, Wen, Zhu, Yang, Sun, Wang, Hu (bib0395) 2017; 29 Zhang, Zhang, Lee (bib0305) 2018; 1 Wang, Li, Wu, Shen, Zou, Feng, Liu, Dong, Du (bib0160) 2019; 15 Seh, Kibsǵaard, Dickens, Chorkendorff, Nørskov, Jaramillo (bib0010) 2017; 335 Lu, Wang, Zhai, Yu, Gan, Tong, Li (bib0370) 2012; 12 Gao, Yan (bib0080) 2019; 9 Zhang, Zhang, Lee (bib0300) 2019; 6 Zheng, Fang, Zhou, Chen, Ouyang, Zhu, Sun (bib0045) 2008; 20 Jiménez, Fernández, Espinós, González-Elipe (bib0340) 1995; 71 Tran, Tran, Torelli, Truong, Nayuki, Sasaki, Chiam, Yi, Honma, Barber, Artero (bib0350) 2016; 15 Zhu, Yin, Lai, Sun, Liu, Zhang, Chen, Chou (bib0355) 2018; 8 Lu, Wang, Xie, Shi, Li, Tong, Li (bib0365) 2012; 48 Gao, Yan (bib0225) 2018; 11 Zhang, Wang, Yang, Yao, Han, Sun (bib0325) 2016; 19 Li, Guo, Kang, Wei, Zhang, Chen (bib0180) 2018; 6 Pei, Gong, Zhang, Zhang, Chen, Mu, Yu (bib0320) 2015; 6 Ye, Fang, Chen, Yan (bib0185) 2018; 10 Liu, Zhong, Luo, Gao, Pan, Wang (bib0005) 2009; 131 Wu, Zou, Huang, Gao (bib0200) 2018; 10 Li, Zhang, Xiang, Yan, Li (bib0015) 2014; 2 Chen, Liu, Wu (bib0075) 2018; 361 Wang, Wei, Wang, Chen, Wang (bib0055) 2017; 5 Chen, Wu, Liu, Liu, Xu, Ha, Guo, Yu, Sun, Fang (bib0070) 2018; 6 Nagaraju, Sekhar, Bharat, Yu (bib0235) 2017; 11 Kaur, Singh, Thakur, Singh, Bajwa (bib0280) 2019; 206 Han, Yang, Lu, Li, Xu, Gao, Cai, Zhang, Batista, Liu, Sun (bib0120) 2018; 9 Zhao, Ma, Chen, Zhao, Shuai (bib0260) 2004; 126 Chen, Xu, Ha, Li, Liu, Wu (bib0110) 2019; 250 Jian, Yuan, Qi, Sun, Zhang, Li, Yuan, Feng (bib0230) 2018; 10 Paladini, Arzac, Godinho, Hufschmidt, de Haro, Beltrán, Fernández (bib0245) 2017; 210 Burg, Fydrych, Cagniant, Nanse, Bimer, Jankowska (bib0330) 2002; 40 Yin, Tang (bib0345) 2016; 45 Arif, Yasin, Shakeel, Mushtaq, Ye, Fang, Ji, Yan (bib0135) 2019; 3 Li, Du, Guo, Wang, Hou, Wu (bib0270) 2019; 149 Hu, Feng, Nai, Zhao, Hu, Lou (bib0095) 2018; 11 Zhao, Xie, Yuan, Li, Liu, Zheng, Hou (bib0275) 2013; 1 Pang, Liu, Gao, Ouyang, Liu, Wang, Zhu, Pan (bib0020) 2014; 5 Jia, Zhang, Gao, Chen, Wang, Zhou, Soo, Hong, Yan, Qian, Zou, Du, Yao (bib0195) 2017; 29 Kim, Park, Jin, Oh, Baik, Joo, Lee (bib0380) 2018; 10 Yang, Chen, Hao, Xu, Guo, Wu (bib0130) 2019; 252 Yang (10.1016/j.apcatb.2019.118240_bib0130) 2019; 252 Liang (10.1016/j.apcatb.2019.118240_bib0255) 2018; 6 Ma (10.1016/j.apcatb.2019.118240_bib0215) 2016; 8 Zhang (10.1016/j.apcatb.2019.118240_bib0305) 2018; 1 Chen (10.1016/j.apcatb.2019.118240_bib0075) 2018; 361 Jia (10.1016/j.apcatb.2019.118240_bib0195) 2017; 29 Wu (10.1016/j.apcatb.2019.118240_bib0060) 2016; 4 Arif (10.1016/j.apcatb.2019.118240_bib0170) 2018; 13 Zhang (10.1016/j.apcatb.2019.118240_bib0090) 2018; 1 Pei (10.1016/j.apcatb.2019.118240_bib0320) 2015; 6 Ksibi (10.1016/j.apcatb.2019.118240_bib0265) 2008; 62 Zhang (10.1016/j.apcatb.2019.118240_bib0325) 2016; 19 Wang (10.1016/j.apcatb.2019.118240_bib0160) 2019; 15 Chen (10.1016/j.apcatb.2019.118240_bib0110) 2019; 250 Gao (10.1016/j.apcatb.2019.118240_bib0080) 2019; 9 Bhowmik (10.1016/j.apcatb.2019.118240_bib0150) 2018; 1 Zhang (10.1016/j.apcatb.2019.118240_bib0375) 2018; 3 Arif (10.1016/j.apcatb.2019.118240_bib0135) 2019; 3 Paladini (10.1016/j.apcatb.2019.118240_bib0245) 2017; 210 Wang (10.1016/j.apcatb.2019.118240_bib0165) 2017; 29 Ye (10.1016/j.apcatb.2019.118240_bib0185) 2018; 10 Jiménez (10.1016/j.apcatb.2019.118240_bib0340) 1995; 71 Ha (10.1016/j.apcatb.2019.118240_bib0140) 2019; 6 Han (10.1016/j.apcatb.2019.118240_bib0120) 2018; 9 Hao (10.1016/j.apcatb.2019.118240_bib0105) 2018; 8 Qiu (10.1016/j.apcatb.2019.118240_bib0155) 2019; 12 Chen (10.1016/j.apcatb.2019.118240_bib0115) 2018; 30 Zhao (10.1016/j.apcatb.2019.118240_bib0260) 2004; 126 Lamiel (10.1016/j.apcatb.2019.118240_bib0290) 2017; 140 Wang (10.1016/j.apcatb.2019.118240_bib0055) 2017; 5 Liu (10.1016/j.apcatb.2019.118240_bib0295) 2009; 91 Zhao (10.1016/j.apcatb.2019.118240_bib0240) 2018; 14 Pascuta (10.1016/j.apcatb.2019.118240_bib0285) 2008; 19 Liu (10.1016/j.apcatb.2019.118240_bib0025) 2011; 21 Jiao (10.1016/j.apcatb.2019.118240_bib0175) 2015; 44 Liao (10.1016/j.apcatb.2019.118240_bib0030) 2004; 129 Zhao (10.1016/j.apcatb.2019.118240_bib0275) 2013; 1 Pang (10.1016/j.apcatb.2019.118240_bib0020) 2014; 5 Zhang (10.1016/j.apcatb.2019.118240_bib0395) 2017; 29 Tan (10.1016/j.apcatb.2019.118240_bib0250) 2019; 7 Tang (10.1016/j.apcatb.2019.118240_bib0210) 2018; 28 Pan (10.1016/j.apcatb.2019.118240_bib0050) 2003; 150 Li (10.1016/j.apcatb.2019.118240_bib0270) 2019; 149 Seh (10.1016/j.apcatb.2019.118240_bib0010) 2017; 335 Zheng (10.1016/j.apcatb.2019.118240_bib0045) 2008; 20 Liao (10.1016/j.apcatb.2019.118240_bib0035) 2004; 376 Long (10.1016/j.apcatb.2019.118240_bib0315) 2015; 51 Liu (10.1016/j.apcatb.2019.118240_bib0005) 2009; 131 Zhu (10.1016/j.apcatb.2019.118240_bib0355) 2018; 8 Burg (10.1016/j.apcatb.2019.118240_bib0330) 2002; 40 Tran (10.1016/j.apcatb.2019.118240_bib0350) 2016; 15 Zhou (10.1016/j.apcatb.2019.118240_bib0390) 2017; 7 Jin (10.1016/j.apcatb.2019.118240_bib0040) 2018; 6 Kaur (10.1016/j.apcatb.2019.118240_bib0280) 2019; 206 Yuan (10.1016/j.apcatb.2019.118240_bib0335) 2012; 22 Hui (10.1016/j.apcatb.2019.118240_bib0205) 2018; 9 Chen (10.1016/j.apcatb.2019.118240_bib0125) 2019; 9 Chen (10.1016/j.apcatb.2019.118240_bib0070) 2018; 6 Chen (10.1016/j.apcatb.2019.118240_bib0100) 2018; 10 Kim (10.1016/j.apcatb.2019.118240_bib0380) 2018; 10 Yin (10.1016/j.apcatb.2019.118240_bib0345) 2016; 45 Yang (10.1016/j.apcatb.2019.118240_bib0360) 2014; 2 Yu (10.1016/j.apcatb.2019.118240_bib0190) 2017; 41 Wu (10.1016/j.apcatb.2019.118240_bib0200) 2018; 10 Nagaraju (10.1016/j.apcatb.2019.118240_bib0235) 2017; 11 Li (10.1016/j.apcatb.2019.118240_bib0180) 2018; 6 Ma (10.1016/j.apcatb.2019.118240_bib0220) 2006; 16 Kuang (10.1016/j.apcatb.2019.118240_bib0385) 2016; 26 Deng (10.1016/j.apcatb.2019.118240_bib0065) 2016; 8 Gao (10.1016/j.apcatb.2019.118240_bib0225) 2018; 11 Lu (10.1016/j.apcatb.2019.118240_bib0365) 2012; 48 Zhang (10.1016/j.apcatb.2019.118240_bib0300) 2019; 6 Kostecki (10.1016/j.apcatb.2019.118240_bib0310) 1997; 144 Lu (10.1016/j.apcatb.2019.118240_bib0370) 2012; 12 Li (10.1016/j.apcatb.2019.118240_bib0015) 2014; 2 Jin (10.1016/j.apcatb.2019.118240_bib0085) 2018; 10 Liu (10.1016/j.apcatb.2019.118240_bib0145) 2016; 8 Hu (10.1016/j.apcatb.2019.118240_bib0095) 2018; 11 Jian (10.1016/j.apcatb.2019.118240_bib0230) 2018; 10 |
References_xml | – volume: 15 start-page: 640 year: 2016 end-page: 646 ident: bib0350 article-title: Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulphide publication-title: Nat. Mater. – volume: 21 start-page: 4743 year: 2011 end-page: 4755 ident: bib0025 article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries publication-title: J. Mater. Chem. – volume: 45 start-page: 4873 year: 2016 end-page: 4891 ident: bib0345 article-title: Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage publication-title: Chem. Soc. Rev. – volume: 15 year: 2019 ident: bib0160 article-title: Porous cobalt–nickel hydroxide nanosheets with active cobalt ions for overall water splitting publication-title: Small – volume: 51 start-page: 1120 year: 2015 end-page: 1123 ident: bib0315 article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction publication-title: Chem. Commun. – volume: 2 start-page: 13250 year: 2014 end-page: 13258 ident: bib0015 article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation publication-title: J. Mater. Chem. A – volume: 91 start-page: 368 year: 2009 end-page: 379 ident: bib0295 article-title: Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH publication-title: Appl. Catal. B: Environ. – volume: 9 start-page: 924 year: 2018 ident: bib0120 article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid publication-title: Nat. Commun. – volume: 14 year: 2018 ident: bib0240 article-title: Amorphous iron (III)‐borate nanolattices as multifunctional electrodes for self‐driven overall water splitting and rechargeable Zinc–air battery publication-title: Small – volume: 12 start-page: 1690 year: 2012 end-page: 1696 ident: bib0370 article-title: Hydrogenated TiO publication-title: Nano Lett. – volume: 40 start-page: 1521 year: 2002 end-page: 1531 ident: bib0330 article-title: The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods publication-title: Carbon – volume: 13 start-page: 1045 year: 2018 end-page: 1052 ident: bib0170 article-title: Coupling of bifunctional CoMn-Layered double hydroxide@graphitic C publication-title: Chem. Asian J. – volume: 11 start-page: 1883 year: 2018 end-page: 1894 ident: bib0225 article-title: Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting publication-title: Nano Res. – volume: 28 year: 2018 ident: bib0210 article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting publication-title: Adv. Funct. Mater. – volume: 149 start-page: 456 year: 2019 end-page: 464 ident: bib0270 article-title: Synthesis of a novel NiMnTi mixed metal oxides from LDH precursor and its catalytic application for selective catalytic eeduction of NO publication-title: Catal. Lett. – volume: 9 start-page: 5309 year: 2018 ident: bib0205 article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays publication-title: Nat. Commun. – volume: 3 start-page: 520 year: 2019 end-page: 531 ident: bib0135 article-title: Hierarchical CoFe-layered double hydroxide and g-C3N publication-title: Mater. Chem. Front. – volume: 19 start-page: 424 year: 2008 end-page: 428 ident: bib0285 article-title: The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy publication-title: J. Mater. Sci: Mater. Electron. – volume: 361 start-page: 322 year: 2018 end-page: 330 ident: bib0075 article-title: Strongly coupling of Co publication-title: J. Catal. – volume: 6 year: 2019 ident: bib0140 article-title: Phase-transited lysozyme-driven formation of self-supported Co publication-title: Adv. Sci. – volume: 150 start-page: A565 year: 2003 end-page: A570 ident: bib0050 article-title: A study of the structural and electrochemical properties of La publication-title: J. Electrochem. Soc. – volume: 30 year: 2018 ident: bib0115 article-title: Ultrafine Co nanoparticles encapsulated in carbon‐nanotubes‐grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction publication-title: Adv. Mater. – volume: 335 start-page: 146 year: 2017 ident: bib0010 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 376 start-page: 186 year: 2004 end-page: 195 ident: bib0035 article-title: A study on the structure and electrochemical properties of La publication-title: J. Alloys. Compd. – volume: 8 start-page: 14430 year: 2016 ident: bib0065 article-title: Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production publication-title: Nat. Commun. – volume: 48 start-page: 7717 year: 2012 end-page: 7719 ident: bib0365 article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays publication-title: Chem. Commun. – volume: 11 start-page: 10860 year: 2017 end-page: 10874 ident: bib0235 article-title: Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors publication-title: ACS Nano – volume: 10 start-page: 9845 year: 2018 end-page: 9850 ident: bib0380 article-title: A facet-controlled Rh publication-title: Nanoscale – volume: 8 start-page: 34474 year: 2016 end-page: 34481 ident: bib0145 article-title: Defect-rich ultrathin cobalt–iron layered double hydroxide for electrochemical overall water splitting publication-title: ACS Appl. Mater. Interfaces – volume: 16 start-page: 3809 year: 2006 end-page: 3813 ident: bib0220 article-title: Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets publication-title: J. Mater. Chem. – volume: 10 start-page: 40568 year: 2018 end-page: 40576 ident: bib0230 article-title: Sn–Ni publication-title: ACS Appl. Mater. Interfaces – volume: 8 year: 2018 ident: bib0355 article-title: Fe‐Ni‐Mo nitride porous nanotubes for full water splitting and Zn‐air batteries publication-title: Adv. Energy Mater. – volume: 2 start-page: 785 year: 2014 end-page: 791 ident: bib0360 article-title: Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries publication-title: J. Mater. Chem. A – volume: 131 start-page: 1862 year: 2009 end-page: 1870 ident: bib0005 article-title: Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system publication-title: J. Am. Chem. Soc. – volume: 6 start-page: 14641 year: 2018 end-page: 14651 ident: bib0180 article-title: Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery publication-title: ACS Sustainable Chem. Eng. – volume: 6 start-page: 1443 year: 2019 end-page: 1449 ident: bib0300 article-title: Electrochemical performance of Borate‐doped nickel sulfide: enhancement of the bifunctional activity for total water splitting publication-title: ChemElectroChem – volume: 10 start-page: 26283 year: 2018 end-page: 26292 ident: bib0200 article-title: NiFe publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 15040 year: 2018 end-page: 15046 ident: bib0255 article-title: Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors publication-title: J. Mater. Chem. A – volume: 19 start-page: 98 year: 2016 end-page: 107 ident: bib0325 article-title: Electroless plated Ni–B publication-title: Nano Energy – volume: 10 start-page: 22094 year: 2018 end-page: 22101 ident: bib0085 article-title: Transition metal induced the contraction of tungsten carbide lattice as superior hydrogen evolution reaction catalyst publication-title: ACS Appl. Mater. Interfaces – volume: 252 start-page: 214 year: 2019 end-page: 221 ident: bib0130 article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon publication-title: Appl. Catal. B: Environ. – volume: 6 start-page: 10967 year: 2018 end-page: 10975 ident: bib0040 article-title: A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction publication-title: J. Mater. Chem. A – volume: 144 start-page: 485 year: 1997 end-page: 493 ident: bib0310 article-title: Electrochemical and publication-title: J. Electrochem. Soc. – volume: 140 start-page: 901 year: 2017 end-page: 911 ident: bib0290 article-title: Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte publication-title: Energy – volume: 8 start-page: 10425 year: 2016 end-page: 10432 ident: bib0215 article-title: Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene publication-title: Nanoscale – volume: 3 start-page: 1360 year: 2018 end-page: 1365 ident: bib0375 article-title: Evaluating the stability of Co publication-title: ACS Energy Lett. – volume: 9 year: 2019 ident: bib0080 article-title: Recent Development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation publication-title: Adv. Energy Mater. – volume: 12 start-page: 572 year: 2019 end-page: 581 ident: bib0155 article-title: Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting publication-title: Energy Environ. Sci. – volume: 10 start-page: 7134 year: 2018 end-page: 7144 ident: bib0100 article-title: In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting publication-title: ACS Appl. Mater. Interfaces – volume: 62 start-page: 4204 year: 2008 end-page: 4206 ident: bib0265 article-title: Synthesis and solid characterization of nitrogen and sulfur-doped TiO publication-title: Mater. Lett. – volume: 1 start-page: 1200 year: 2018 end-page: 1209 ident: bib0150 article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions publication-title: ACS Appl. Energy Mater. – volume: 29 year: 2017 ident: bib0195 article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. – volume: 26 start-page: 8555 year: 2016 end-page: 8561 ident: bib0385 article-title: CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting publication-title: Adv. Funct. Mater. – volume: 129 start-page: 358 year: 2004 end-page: 367 ident: bib0030 article-title: Effect of the La/Mg ratio on the structure and electrochemical properties of La publication-title: J. Power Sources – volume: 6 start-page: 8696 year: 2015 ident: bib0320 article-title: Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction publication-title: Nat. Commun. – volume: 206 start-page: 367 year: 2019 end-page: 377 ident: bib0280 article-title: Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties publication-title: Spectrochim. Acta A. – volume: 71 start-page: 61 year: 1995 ident: bib0340 article-title: The state of the oxygen at the surface of polycrystalline cobalt oxide publication-title: J. Electron Spectrosc. Relat. Phenom. – volume: 5 start-page: 1 year: 2014 end-page: 8 ident: bib0020 article-title: A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures publication-title: Nat. Commun. – volume: 44 start-page: 2060 year: 2015 end-page: 2086 ident: bib0175 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. – volume: 9 year: 2019 ident: bib0125 article-title: Oriented transformation of Co‐LDH into 2D/3D ZIF‐67 to achieve Co–N–C hybrids for efficient overall water splitting publication-title: Adv. Energy Mater. – volume: 7 start-page: 22818 year: 2017 end-page: 22824 ident: bib0390 article-title: Ultrathin Co–Fe hydroxide nanosheet arrays for improved oxygen evolution during water splitting publication-title: RSC Adv. – volume: 11 start-page: 872 year: 2018 end-page: 880 ident: bib0095 article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting publication-title: Energy Environ. Sci. – volume: 22 start-page: 4592 year: 2012 end-page: 4597 ident: bib0335 article-title: Ultrathin mesoporous NiCo publication-title: Adv. Funct. Mater. – volume: 1 start-page: 985 year: 2018 end-page: 992 ident: bib0090 article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction publication-title: Nat. Catal. – volume: 7 start-page: 5620 year: 2019 end-page: 5625 ident: bib0250 article-title: An amorphous cobalt borate nanosheet-coated cobalt boride hybrid for highly efficient alkaline water oxidation reaction publication-title: ACS Sustainable Chem. Eng. – volume: 4 start-page: 13742 year: 2016 end-page: 13745 ident: bib0060 article-title: Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions publication-title: J. Mater. Chem. A – volume: 29 year: 2017 ident: bib0165 article-title: Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications publication-title: Adv. Mater. – volume: 41 start-page: 327 year: 2017 end-page: 336 ident: bib0190 article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting publication-title: Nano Energy – volume: 5 start-page: 10510 year: 2017 end-page: 10516 ident: bib0055 article-title: CoOx–carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters publication-title: J. Mater. Chem. A – volume: 20 start-page: 3954 year: 2008 end-page: 3958 ident: bib0045 article-title: Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica publication-title: Chem. Mater. – volume: 29 year: 2017 ident: bib0395 article-title: Ternary NiCo publication-title: Adv. Mater. – volume: 126 start-page: 4782 year: 2004 end-page: 4783 ident: bib0260 article-title: Efficient Degradation of toxic organic pollutants with Ni publication-title: J. Am. Chem. Soc. – volume: 10 start-page: 19484 year: 2018 end-page: 19491 ident: bib0185 article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting publication-title: Nanoscale – volume: 1 start-page: 751 year: 2018 end-page: 758 ident: bib0305 article-title: Enhancement effect of borate doping on the oxygen evolution activity of α-Nickel hydroxide publication-title: ACS Appl. Nano Mater. – volume: 6 start-page: 10304 year: 2018 end-page: 10312 ident: bib0070 article-title: Tunable electronic coupling of cobalt sulfide/carbon composites for optimizing oxygen evolution reaction activity publication-title: J. Mater. Chem. A – volume: 210 start-page: 342 year: 2017 end-page: 351 ident: bib0245 article-title: The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis publication-title: Appl. Catal. B: Environ. – volume: 250 start-page: 213 year: 2019 end-page: 223 ident: bib0110 article-title: Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting publication-title: Appl. Catal. B: Environ. – volume: 8 year: 2018 ident: bib0105 article-title: Electroless plating of highly efficient bifunctional boride‐based electrodes toward practical overall water splitting publication-title: Adv. Energy Mater. – volume: 1 start-page: 1263 year: 2013 end-page: 1269 ident: bib0275 article-title: A hierarchical Co–Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity publication-title: J. Mater. Chem. B – volume: 9 start-page: 5309 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0205 article-title: Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays publication-title: Nat. Commun. doi: 10.1038/s41467-018-07790-x – volume: 1 start-page: 1263 year: 2013 ident: 10.1016/j.apcatb.2019.118240_bib0275 article-title: A hierarchical Co–Fe LDH rope-like nanostructure: facile preparation from hexagonal lyotropic liquid crystals and intrinsic oxidase-like catalytic activity publication-title: J. Mater. Chem. B doi: 10.1039/c2tb00389a – volume: 7 start-page: 5620 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0250 article-title: An amorphous cobalt borate nanosheet-coated cobalt boride hybrid for highly efficient alkaline water oxidation reaction publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b00258 – volume: 140 start-page: 901 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0290 article-title: Enhancement of electrochemical performance of nickel cobalt layered double hydroxide@nickel foam with potassium ferricyanide auxiliary electrolyte publication-title: Energy doi: 10.1016/j.energy.2017.09.035 – volume: 6 start-page: 1443 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0300 article-title: Electrochemical performance of Borate‐doped nickel sulfide: enhancement of the bifunctional activity for total water splitting publication-title: ChemElectroChem doi: 10.1002/celc.201801617 – volume: 19 start-page: 98 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0325 article-title: Electroless plated Ni–Bx films as highly active electrocatalysts for hydrogen production from water over a wide pH range publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.11.020 – volume: 10 start-page: 22094 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0085 article-title: Transition metal induced the contraction of tungsten carbide lattice as superior hydrogen evolution reaction catalyst publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b04553 – volume: 7 start-page: 22818 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0390 article-title: Ultrathin Co–Fe hydroxide nanosheet arrays for improved oxygen evolution during water splitting publication-title: RSC Adv. doi: 10.1039/C7RA01202K – volume: 131 start-page: 1862 year: 2009 ident: 10.1016/j.apcatb.2019.118240_bib0005 article-title: Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system publication-title: J. Am. Chem. Soc. doi: 10.1021/ja806565t – volume: 1 start-page: 751 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0305 article-title: Enhancement effect of borate doping on the oxygen evolution activity of α-Nickel hydroxide publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.7b00210 – volume: 250 start-page: 213 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0110 article-title: Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.03.032 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.apcatb.2019.118240_bib0020 article-title: A mechanical-force-driven physical vapour deposition approach to fabricating complex hydride nanostructures publication-title: Nat. Commun. doi: 10.1038/ncomms4519 – volume: 11 start-page: 1883 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0225 article-title: Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting publication-title: Nano Res. doi: 10.1007/s12274-017-1806-x – volume: 9 start-page: 924 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0120 article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid publication-title: Nat. Commun. doi: 10.1038/s41467-018-03429-z – volume: 10 start-page: 7134 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0100 article-title: In situ formation of cobalt nitrides/graphitic carbon composites as efficient bifunctional electrocatalysts for overall water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b18858 – volume: 10 start-page: 40568 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0230 article-title: Sn–Ni3S2 ultrathin nanosheets as efficient bifunctional water-splitting catalysts with a large current density and low overpotential publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b14603 – volume: 149 start-page: 456 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0270 article-title: Synthesis of a novel NiMnTi mixed metal oxides from LDH precursor and its catalytic application for selective catalytic eeduction of NOx with NH3 publication-title: Catal. Lett. doi: 10.1007/s10562-018-2626-7 – volume: 8 start-page: 14430 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0065 article-title: Multiscale structural and electronic control of molybdenum disulfide foam for highly efficient hydrogen production publication-title: Nat. Commun. doi: 10.1038/ncomms14430 – volume: 6 start-page: 15040 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0255 article-title: Hierarchical NiCo-LDH/NiCoP@NiMn-LDH hybrid electrodes on carbon cloth for excellent supercapacitors publication-title: J. Mater. Chem. A doi: 10.1039/C8TA05065A – volume: 19 start-page: 424 year: 2008 ident: 10.1016/j.apcatb.2019.118240_bib0285 article-title: The local structure of bismuth borate glasses doped with europium ions evidenced by FT-IR spectroscopy publication-title: J. Mater. Sci: Mater. Electron. – volume: 3 start-page: 520 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0135 article-title: Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00677F – volume: 22 start-page: 4592 year: 2012 ident: 10.1016/j.apcatb.2019.118240_bib0335 article-title: Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200994 – volume: 28 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0210 article-title: Kinetically controlled coprecipitation for general fast synthesis of sandwiched metal hydroxide nanosheets/graphene composites toward efficient water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704594 – volume: 12 start-page: 1690 year: 2012 ident: 10.1016/j.apcatb.2019.118240_bib0370 article-title: Hydrogenated TiO2 nanotube arrays for supercapacitors publication-title: Nano Lett. doi: 10.1021/nl300173j – volume: 2 start-page: 13250 year: 2014 ident: 10.1016/j.apcatb.2019.118240_bib0015 article-title: Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01275E – volume: 1 start-page: 985 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0090 article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 – volume: 91 start-page: 368 year: 2009 ident: 10.1016/j.apcatb.2019.118240_bib0295 article-title: Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2009.06.003 – volume: 21 start-page: 4743 year: 2011 ident: 10.1016/j.apcatb.2019.118240_bib0025 article-title: Advanced hydrogen storage alloys for Ni/MH rechargeable batteries publication-title: J. Mater. Chem. doi: 10.1039/C0JM01921F – volume: 129 start-page: 358 year: 2004 ident: 10.1016/j.apcatb.2019.118240_bib0030 article-title: Effect of the La/Mg ratio on the structure and electrochemical properties of LaxMg3−xNi9 (x=1.6–2.2) hydrogen storage electrode alloys for nickel–metal hydride batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2003.11.044 – volume: 5 start-page: 10510 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0055 article-title: CoOx–carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02115A – volume: 26 start-page: 8555 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0385 article-title: CuCo hybrid oxides as bifunctional electrocatalyst for efficient water splitting publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604804 – volume: 11 start-page: 10860 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0235 article-title: Wearable fabrics with self-branched bimetallic layered double hydroxide coaxial nanostructures for hybrid supercapacitors publication-title: ACS Nano doi: 10.1021/acsnano.7b04368 – volume: 252 start-page: 214 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0130 article-title: Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2019.04.021 – volume: 335 start-page: 146 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0010 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science – volume: 14 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0240 article-title: Amorphous iron (III)‐borate nanolattices as multifunctional electrodes for self‐driven overall water splitting and rechargeable Zinc–air battery publication-title: Small – volume: 6 start-page: 10967 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0040 article-title: A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction publication-title: J. Mater. Chem. A doi: 10.1039/C8TA02595A – volume: 126 start-page: 4782 year: 2004 ident: 10.1016/j.apcatb.2019.118240_bib0260 article-title: Efficient Degradation of toxic organic pollutants with Ni2O3/TiO2-xBx under visible irradiation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0396753 – volume: 71 start-page: 61 year: 1995 ident: 10.1016/j.apcatb.2019.118240_bib0340 article-title: The state of the oxygen at the surface of polycrystalline cobalt oxide publication-title: J. Electron Spectrosc. Relat. Phenom. doi: 10.1016/0368-2048(94)02238-0 – volume: 45 start-page: 4873 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0345 article-title: Ultrathin two-dimensional layered metal hydroxides: an emerging platform for advanced catalysis, energy conversion and storage publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00343E – volume: 15 start-page: 640 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0350 article-title: Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulphide publication-title: Nat. Mater. doi: 10.1038/nmat4588 – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0195 article-title: A heterostructure coupling of exfoliated Ni–Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201700017 – volume: 3 start-page: 1360 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0375 article-title: Evaluating the stability of Co2P electrocatalysts in the hydrogen evolution reaction for both acidic and alkaline electrolytes publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00514 – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0165 article-title: Non‐noble metal‐based carbon composites in hydrogen evolution reaction: fundamentals to applications publication-title: Adv. Mater. – volume: 29 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0395 article-title: Ternary NiCo2Px nanowires as pH‐universal electrocatalysts for highly efficient hydrogen evolution reaction publication-title: Adv. Mater. – volume: 6 start-page: 10304 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0070 article-title: Tunable electronic coupling of cobalt sulfide/carbon composites for optimizing oxygen evolution reaction activity publication-title: J. Mater. Chem. A doi: 10.1039/C8TA01244J – volume: 41 start-page: 327 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0190 article-title: Hierarchical Cu@CoFe layered double hydroxide core-shell nanoarchitectures as bifunctional electrocatalysts for efficient overall water splitting publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.09.045 – volume: 6 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0140 article-title: Phase-transited lysozyme-driven formation of self-supported Co3O4@C nanomeshes for overall water splitting publication-title: Adv. Sci. doi: 10.1002/advs.201900272 – volume: 9 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0080 article-title: Recent Development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation publication-title: Adv. Energy Mater. – volume: 8 start-page: 10425 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0215 article-title: Development of efficient electrocatalysts via molecular hybridization of NiMn layered double hydroxide nanosheets and graphene publication-title: Nanoscale doi: 10.1039/C6NR00988C – volume: 10 start-page: 19484 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0185 article-title: A three-dimensional nickel–chromium layered double hydroxide micro/nanosheet array as an efficient and stable bifunctional electrocatalyst for overall water splitting publication-title: Nanoscale doi: 10.1039/C8NR05974H – volume: 144 start-page: 485 year: 1997 ident: 10.1016/j.apcatb.2019.118240_bib0310 article-title: Electrochemical and in situ Raman spectroscopic characterization of Nickel Hydroxide electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/1.1837437 – volume: 361 start-page: 322 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0075 article-title: Strongly coupling of Co9S8/Zn-Co-S heterostructures rooted in carbon nanocages towards efficient oxygen evolution reaction publication-title: J. Catal. doi: 10.1016/j.jcat.2018.03.011 – volume: 6 start-page: 14641 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0180 article-title: Hierarchical hollow spheres assembled with ultrathin CoMn double hydroxide nanosheets as trifunctional electrocatalyst for overall water splitting and Zn air battery publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.8b03232 – volume: 20 start-page: 3954 year: 2008 ident: 10.1016/j.apcatb.2019.118240_bib0045 article-title: Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica publication-title: Chem. Mater. doi: 10.1021/cm8002063 – volume: 11 start-page: 872 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0095 article-title: Construction of hierarchical Ni–Co–P hollow nanobricks with oriented nanosheets for efficient overall water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE00076J – volume: 1 start-page: 1200 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0150 article-title: CoFe layered double hydroxide supported on graphitic carbon nitrides: an efficient and durable bifunctional electrocatalyst for oxygen evolution and hydrogen evolution reactions publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.7b00305 – volume: 4 start-page: 13742 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0060 article-title: Porous cobalt phosphide/graphitic carbon polyhedral hybrid composites for efficient oxygen evolution reactions publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05679B – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0105 article-title: Electroless plating of highly efficient bifunctional boride‐based electrodes toward practical overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801372 – volume: 44 start-page: 2060 year: 2015 ident: 10.1016/j.apcatb.2019.118240_bib0175 article-title: Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00470A – volume: 12 start-page: 572 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0155 article-title: Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting publication-title: Energy Environ. Sci. doi: 10.1039/C8EE03282C – volume: 6 start-page: 8696 year: 2015 ident: 10.1016/j.apcatb.2019.118240_bib0320 article-title: Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction publication-title: Nat. Commun. doi: 10.1038/ncomms9696 – volume: 16 start-page: 3809 year: 2006 ident: 10.1016/j.apcatb.2019.118240_bib0220 article-title: Exfoliating layered double hydroxides in formamide: a method to obtain positively charged nanosheets publication-title: J. Mater. Chem. doi: 10.1039/b605422f – volume: 13 start-page: 1045 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0170 article-title: Coupling of bifunctional CoMn-Layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting publication-title: Chem. Asian J. doi: 10.1002/asia.201800016 – volume: 8 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0355 article-title: Fe‐Ni‐Mo nitride porous nanotubes for full water splitting and Zn‐air batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201802327 – volume: 51 start-page: 1120 year: 2015 ident: 10.1016/j.apcatb.2019.118240_bib0315 article-title: Co intake mediated formation of ultrathin nanosheets of transition metal LDH—an advanced electrocatalyst for oxygen evolution reaction publication-title: Chem. Commun. doi: 10.1039/C4CC08856E – volume: 9 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0125 article-title: Oriented transformation of Co‐LDH into 2D/3D ZIF‐67 to achieve Co–N–C hybrids for efficient overall water splitting publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201970066 – volume: 10 start-page: 9845 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0380 article-title: A facet-controlled Rh3Pb2S2 nanocage as an efficient and robust electrocatalyst toward the hydrogen evolution reaction publication-title: Nanoscale doi: 10.1039/C8NR02091D – volume: 15 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0160 article-title: Porous cobalt–nickel hydroxide nanosheets with active cobalt ions for overall water splitting publication-title: Small – volume: 150 start-page: A565 year: 2003 ident: 10.1016/j.apcatb.2019.118240_bib0050 article-title: A study of the structural and electrochemical properties of La0.7Mg0.3(Ni0.85Co0.15)x (x=2.5˜5.0) hydrogen storage electrode alloys publication-title: J. Electrochem. Soc. doi: 10.1149/1.1562593 – volume: 376 start-page: 186 year: 2004 ident: 10.1016/j.apcatb.2019.118240_bib0035 article-title: A study on the structure and electrochemical properties of La2Mg(Ni0.95M0.05)9 (M = Co, Mn, Fe, Al, Cu, Sn) hydrogen storage electrode alloys publication-title: J. Alloys. Compd. doi: 10.1016/j.jallcom.2003.12.011 – volume: 8 start-page: 34474 year: 2016 ident: 10.1016/j.apcatb.2019.118240_bib0145 article-title: Defect-rich ultrathin cobalt–iron layered double hydroxide for electrochemical overall water splitting publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12803 – volume: 2 start-page: 785 year: 2014 ident: 10.1016/j.apcatb.2019.118240_bib0360 article-title: Silver nanoparticle deposited layered double hydroxide nanosheets as a novel and high-performing anode material for enhanced Ni–Zn secondary batteries publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14237J – volume: 48 start-page: 7717 year: 2012 ident: 10.1016/j.apcatb.2019.118240_bib0365 article-title: Efficient photocatalytic hydrogen evolution over hydrogenated ZnO nanorod arrays publication-title: Chem. Commun. doi: 10.1039/c2cc31773g – volume: 40 start-page: 1521 year: 2002 ident: 10.1016/j.apcatb.2019.118240_bib0330 article-title: The characterization of nitrogen-enriched activated carbons by IR, XPS and LSER methods publication-title: Carbon doi: 10.1016/S0008-6223(02)00004-0 – volume: 62 start-page: 4204 year: 2008 ident: 10.1016/j.apcatb.2019.118240_bib0265 article-title: Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light publication-title: Mater. Lett. doi: 10.1016/j.matlet.2008.06.026 – volume: 30 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0115 article-title: Ultrafine Co nanoparticles encapsulated in carbon‐nanotubes‐grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction publication-title: Adv. Mater. – volume: 10 start-page: 26283 year: 2018 ident: 10.1016/j.apcatb.2019.118240_bib0200 article-title: NiFe2O4 nanoparticles/NiFe layered double-hydroxide nanosheet heterostructure array for efficient overall water splitting at large current densities publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b07835 – volume: 210 start-page: 342 year: 2017 ident: 10.1016/j.apcatb.2019.118240_bib0245 article-title: The role of cobalt hydroxide in deactivation of thin film Co-based catalysts for sodium borohydride hydrolysis publication-title: Appl. Catal. B: Environ. doi: 10.1016/j.apcatb.2017.04.005 – volume: 206 start-page: 367 year: 2019 ident: 10.1016/j.apcatb.2019.118240_bib0280 article-title: Investigation of bismuth borate glass system modified with barium for structural and gamma-ray shielding properties publication-title: Spectrochim. Acta A. doi: 10.1016/j.saa.2018.08.038 |
SSID | ssj0002328 |
Score | 2.6683958 |
Snippet | B-doping-induced amorphization of crystalline layered double hydroxide supported on nickel foam could activate it as an extremely efficient HER catalyst,... Developing a platinum-free hydrogen evolution reaction (HER) electrocatalyst that can steadily drive a large current density is of great significance in a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 118240 |
SubjectTerms | Amorphization Amorphization of crystalline LDH B-doping Catalysts Cobalt Current density Doping Electrochemistry Electrolysis HER catalyst Hydrogen evolution reactions Hydroxides Large current density Metal foams Nickel Platinum Transition metals Water splitting |
Title | B-doping-induced amorphization of LDH for large-current-density hydrogen evolution reaction |
URI | https://dx.doi.org/10.1016/j.apcatb.2019.118240 https://www.proquest.com/docview/2316775046 |
Volume | 261 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hOLQ9ILotKo8iH3o1u4m9iXOEBbR9wIUiIfVg-amCYHcFAYkLv50ZxyltVQmpV8dOIs94PGN932eAT1LFscS0nvsqGi69c1zZ2nIRVCD9MqOSHMPxSTU9k1_Ox-dLMOm5MASrzLG_i-kpWueWYZ7N4eLiYng6aspKiBp9SIywciZGuZQ1efnu4zPMAzOGFI2xM6fePX0uYbzMwpnWEsCr2aVMm45A_r09_RWo0-5ztAarOW1ke92fvYWlMBvAq0l_W9sA3vwmLDiA9cNn_hoOywv49h382Oc-UaQ41uJoVc_M9RynOrMx2TyybwdThpksuyKMOHedfhP3BHRvH9jPB38zR6dj4T47LcO0M5Ej3sPZ0eH3yZTn-xW4k6JueeGjtVEUZiycJBke44T1qraxUkUsjZWjIE1UJjZYrrpSBmzAJ6KKSjW2EeuwPJvPwgdgaNiiiS4aUsuv66IZeyOck8EE_ICNGyD6adUui4_THRhXukeZXerOGJqMoTtjbAD_NWrRiW-80L_uLab_cCKN-8MLI7d7A-u8iG91SSoBJH9fbf73i7fgdUkVesJ5b8Nye3MXPmIa09qd5Kc7sLL3-ev05AmDxvNx |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UB7qOhSVCgfPnA1u4mdxDnCAgqw7AWQkHqw_Cmo6O4KQiX-fceJAxQhIXF1MknkNx7PRG-eAXa48BnHtJ7a3CvKrTFU6EJT5oQL-mVKNHIMZ5O8uuQnV9nVAoy6XphAq4yxv43pTbSOI4M4m4P5zc3gfFimOWMF-hAbYuVcfILFoE6V9WBx7_i0mjwFZEwamoCM99Ng0HXQNTQvNTeq1oHjVe6GZDv8BXl7h3oVq5sN6GgZvsbMkey1H_cNFty0D0uj7sC2Pnx5oS3Yh9XD5xY2NItr-H4Ffu1T23RJUSzHEVhL1J8ZznZsyCQzT8YHFcFkltwGmjg1rYQTtYHrXj-S60d7N0O_I-5v9FuCmWfTH_EdLo8OL0YVjUcsUMNZUdPEeq09S1TGDA9KPMowbUWhfS4SnyrNh44rL5QvsWI1KXc4gFdY7oUodclWoTedTd0PIIhtUnrjVRDML4qkzKxixnCnHL5A-zVg3bRKE_XHwzEYt7Ijmv2WLRgygCFbMNaAPlnNW_2Nd-4vOsTkf34kcYt4x3KjA1jGdXwv0yAUEBTw8_UPP3gblqqLs7EcH09Of8LnNBTsDe17A3r13YPbxKym1lvRa_8B2RH2Ig |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=B-doping-induced+amorphization+of+LDH+for+large-current-density+hydrogen+evolution+reaction&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Yang%2C+Hongyuan&rft.au=Chen%2C+Ziliang&rft.au=Guo%2C+Peifang&rft.au=Fei%2C+Ben&rft.date=2020-02-01&rft.issn=0926-3373&rft.volume=261&rft.spage=118240&rft_id=info:doi/10.1016%2Fj.apcatb.2019.118240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apcatb_2019_118240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |