Relating Catalysis between Fuel Cell and Metal-Air Batteries

With the ever-increasing demand for higher-performing energy-storage systems, electrocatalysis has become a major topic of interest in an attempt to enhance the electrochemical performance of many electrochemical technologies. Discoveries pertaining to the oxygen reduction reaction catalyst helped e...

Full description

Saved in:
Bibliographic Details
Published inMatter Vol. 2; no. 1; pp. 32 - 49
Main Authors Li, Matthew, Bi, Xuanxuan, Wang, Rongyue, Li, Yingbo, Jiang, Gaopeng, Li, Liang, Zhong, Cheng, Chen, Zhongwei, Lu, Jun
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 08.01.2020
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With the ever-increasing demand for higher-performing energy-storage systems, electrocatalysis has become a major topic of interest in an attempt to enhance the electrochemical performance of many electrochemical technologies. Discoveries pertaining to the oxygen reduction reaction catalyst helped enable the commercialization of fuel-cell-based electric vehicles. However, a closely related technology, the metal-air battery, has yet to find commercial application. Much like the Li-ion battery, metal-air batteries can potentially utilize the electrical grid network for charging, bypassing the need for establishing a hydrogen infrastructure. Among the metal-air batteries, Li-air and Zn-air batteries have drawn much interest in the past decade. Unfortunately, state-of-the art metal-air batteries still produce performances that are well below practical levels. In this brief perspective, we hope to bridge some of the ideas from fuel cell to that of metal-air batteries with the aim of inspiring new ideas and directions for future research. [Display omitted] Catalyst research for fuel cells has led to much advancement in humanity's understanding of the underlying physics of the process, significantly enhancing the performance of the technologies. In contrast, metal-air batteries such as Li-air and Zn-air batteries remain to be solved. Although the metal anode used in this these systems does play a large role in limiting their commercial success, catalysis also remains quite challenging. In this perspective, a discussion is provided on the similarities and differences between metal-air catalysts and fuel cells for aqueous (alkaline/acidic) and aprotic electrolytes. By attempting to bridge the discussion between the fields and providing our own opinion on the subject, we hope that this perspective will present itself as a starting point in emulating the success of catalysis in fuel cells in the metal-air systems. Metal-air and fuel cells are both highly attractive energy options for electric vehicles. However, differences among their catalyst design have diverged the two fields with particular separation between aprotic Li-air and aqueous fuel cells. This perspective clarifies the specific differences between the different types of catalyst (aqueous alkaline/acidic and aprotic electrolytes) and attempts to draw analogies for the reader in hopes of sparking new research ideas.
AbstractList With the ever-increasing demand for higher-performing energy-storage systems, electrocatalysis has become a major topic of interest in an attempt to enhance the electrochemical performance of many electrochemical technologies. Discoveries pertaining to the oxygen reduction reaction catalyst helped enable the commercialization of fuel-cell-based electric vehicles. However, a closely related technology, the metal-air battery, has yet to find commercial application. Much like the Li-ion battery, metal-air batteries can potentially utilize the electrical grid network for charging, bypassing the need for establishing a hydrogen infrastructure. Among the metal-air batteries, Li-air and Zn-air batteries have drawn much interest in the past decade. Unfortunately, state-of-the art metal-air batteries still produce performances that are well below practical levels. In this brief perspective, we hope to bridge some of the ideas from fuel cell to that of metal-air batteries with the aim of inspiring new ideas and directions for future research. [Display omitted] Catalyst research for fuel cells has led to much advancement in humanity's understanding of the underlying physics of the process, significantly enhancing the performance of the technologies. In contrast, metal-air batteries such as Li-air and Zn-air batteries remain to be solved. Although the metal anode used in this these systems does play a large role in limiting their commercial success, catalysis also remains quite challenging. In this perspective, a discussion is provided on the similarities and differences between metal-air catalysts and fuel cells for aqueous (alkaline/acidic) and aprotic electrolytes. By attempting to bridge the discussion between the fields and providing our own opinion on the subject, we hope that this perspective will present itself as a starting point in emulating the success of catalysis in fuel cells in the metal-air systems. Metal-air and fuel cells are both highly attractive energy options for electric vehicles. However, differences among their catalyst design have diverged the two fields with particular separation between aprotic Li-air and aqueous fuel cells. This perspective clarifies the specific differences between the different types of catalyst (aqueous alkaline/acidic and aprotic electrolytes) and attempts to draw analogies for the reader in hopes of sparking new research ideas.
Author Jiang, Gaopeng
Li, Yingbo
Wang, Rongyue
Li, Liang
Zhong, Cheng
Li, Matthew
Chen, Zhongwei
Lu, Jun
Bi, Xuanxuan
Author_xml – sequence: 1
  givenname: Matthew
  surname: Li
  fullname: Li, Matthew
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA
– sequence: 2
  givenname: Xuanxuan
  surname: Bi
  fullname: Bi, Xuanxuan
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA
– sequence: 3
  givenname: Rongyue
  surname: Wang
  fullname: Wang, Rongyue
  organization: Applied Materials Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA
– sequence: 4
  givenname: Yingbo
  surname: Li
  fullname: Li, Yingbo
  organization: Materials Science Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA
– sequence: 5
  givenname: Gaopeng
  surname: Jiang
  fullname: Jiang, Gaopeng
  organization: Department of Chemical Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
– sequence: 6
  givenname: Liang
  surname: Li
  fullname: Li, Liang
  organization: College of Physics, Optoelectronics and Energy, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou 215006, P. R. China
– sequence: 7
  givenname: Cheng
  surname: Zhong
  fullname: Zhong, Cheng
  email: cheng.zhong@tju.edu.cn
  organization: Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) and Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
– sequence: 8
  givenname: Zhongwei
  surname: Chen
  fullname: Chen, Zhongwei
  email: zhwchen@uwaterloo.ca
  organization: Department of Chemical Engineering, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
– sequence: 9
  givenname: Jun
  orcidid: 0000-0003-0858-8577
  surname: Lu
  fullname: Lu, Jun
  email: junlu@anl.gov
  organization: Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue, Lemont, IL 60439, USA
BackLink https://www.osti.gov/biblio/1581680$$D View this record in Osti.gov
BookMark eNp9kE1LAzEQQINUsNb-AU-L910z2c9AL3WxKlQE0XPIJlNN2WYliUr_vVnqQTz0NMNk3szknZOJHSwScgk0AwrV9TbbyRAyRoHHQkZpfUKmrOQ0ZXlTTv7kZ2Tu_ZZSyhjkdZFPyeIZexmMfUtaGWS_98YnHYZvRJusPrFPWuz7RFqdPGJ8T5fGJTdxGzqD_oKcbmTvcf4bZ-R1dfvS3qfrp7uHdrlOVZHXIYWu4hRRV10NDas3rNAcJNVIiwo006gAYJNDJcui7jjlBXSQc9kUXPESZD4jV4e5gw9GeGUCqnc1WIsqCCgbqBoam9ihSbnBe4cb8eHMTrq9ACpGT2IrRk9i9DTWoqcINf-gODz6GGxw0vTH0cUBxfjzL4NuPAytQm3ceJcezDH8B38Yg6o
CitedBy_id crossref_primary_10_1016_j_cej_2023_145148
crossref_primary_10_17721_moca_2024_139_144
crossref_primary_10_1002_adfm_202210236
crossref_primary_10_1021_acssuschemeng_3c00987
crossref_primary_10_1515_ntrev_2020_0057
crossref_primary_10_1002_aenm_202002887
crossref_primary_10_1021_acs_energyfuels_1c03446
crossref_primary_10_1002_smsc_202100044
crossref_primary_10_1021_acsenergylett_4c01319
crossref_primary_10_1016_j_cclet_2024_109569
crossref_primary_10_1016_j_matt_2021_05_005
crossref_primary_10_1016_j_envres_2021_111684
crossref_primary_10_1016_j_jallcom_2021_162815
crossref_primary_10_1088_2632_959X_ad585c
crossref_primary_10_1007_s41779_024_01082_y
crossref_primary_10_1016_j_nanoen_2022_107341
crossref_primary_10_1021_acs_energyfuels_1c03292
crossref_primary_10_2139_ssrn_4049704
crossref_primary_10_2139_ssrn_4049705
crossref_primary_10_1016_j_fmre_2023_07_006
crossref_primary_10_1016_j_fuel_2024_130919
crossref_primary_10_1002_anie_202314565
crossref_primary_10_1002_smll_202408983
crossref_primary_10_1021_acsanm_4c01808
crossref_primary_10_1021_acs_jpcc_2c05083
crossref_primary_10_1021_jacs_1c04339
crossref_primary_10_1002_aenm_202003291
crossref_primary_10_1016_j_apsusc_2022_155203
crossref_primary_10_1016_j_nanoen_2020_105276
crossref_primary_10_1021_acsami_2c09271
crossref_primary_10_1021_acsaem_2c01005
crossref_primary_10_1016_j_jiec_2024_11_057
crossref_primary_10_1016_j_mattod_2021_05_004
crossref_primary_10_3390_electrochem3010001
crossref_primary_10_1016_j_carbon_2021_09_042
crossref_primary_10_1016_j_rechem_2023_100896
crossref_primary_10_1016_j_jallcom_2024_175802
crossref_primary_10_1021_acs_analchem_3c03423
crossref_primary_10_1002_ange_202315182
crossref_primary_10_1002_er_6881
crossref_primary_10_1016_j_inoche_2022_109853
crossref_primary_10_1021_acsami_2c08572
crossref_primary_10_1002_adfm_202006855
crossref_primary_10_1016_j_jechem_2022_03_022
crossref_primary_10_1002_smll_202300683
crossref_primary_10_1002_sstr_202000064
crossref_primary_10_1039_D1RA03293C
crossref_primary_10_1007_s40820_022_00984_5
crossref_primary_10_1021_acsaem_3c01880
crossref_primary_10_1021_acssusresmgt_4c00329
crossref_primary_10_1002_ente_202001117
crossref_primary_10_1016_j_ijhydene_2022_05_025
crossref_primary_10_1016_j_cej_2021_130995
crossref_primary_10_1016_j_elecom_2024_107748
crossref_primary_10_1016_j_energy_2023_127256
crossref_primary_10_1039_D2EE02998G
crossref_primary_10_1021_acssensors_4c00685
crossref_primary_10_1039_D1TA09278B
crossref_primary_10_1002_cnma_202300546
crossref_primary_10_1021_acscatal_3c01837
crossref_primary_10_1016_j_cej_2023_144380
crossref_primary_10_1039_D4DT02635G
crossref_primary_10_1038_s43246_024_00662_6
crossref_primary_10_1016_j_jpowsour_2025_236364
crossref_primary_10_1039_D0TA04019C
crossref_primary_10_1016_j_matt_2023_04_004
crossref_primary_10_1007_s12274_021_3938_2
crossref_primary_10_1016_j_electacta_2023_143720
crossref_primary_10_1016_j_cej_2020_127917
crossref_primary_10_1016_j_jelechem_2022_116381
crossref_primary_10_1002_ente_202000409
crossref_primary_10_1016_j_ceramint_2022_06_191
crossref_primary_10_1021_acsnano_0c07907
crossref_primary_10_1016_j_electacta_2021_137833
crossref_primary_10_1016_j_mtnano_2024_100467
crossref_primary_10_3390_nano11123174
crossref_primary_10_1002_smsc_202100015
crossref_primary_10_1002_adfm_202209273
crossref_primary_10_1039_D1CS00135C
crossref_primary_10_3390_nano14010064
crossref_primary_10_1002_celc_202100574
crossref_primary_10_1002_anie_202202650
crossref_primary_10_1002_celc_202100571
crossref_primary_10_1016_S1872_5805_22_60575_4
crossref_primary_10_1007_s12274_020_3234_6
crossref_primary_10_1007_s41918_020_00089_w
crossref_primary_10_1002_anie_202315182
crossref_primary_10_3390_ma17122837
crossref_primary_10_1002_adfm_202215185
crossref_primary_10_1021_acs_energyfuels_1c00534
crossref_primary_10_1002_ange_202202650
crossref_primary_10_1016_j_carbon_2022_05_032
crossref_primary_10_1002_anie_202016977
crossref_primary_10_1021_acs_cgd_3c00206
crossref_primary_10_2174_2211544712666230110152506
crossref_primary_10_1002_ange_202314565
crossref_primary_10_1002_celc_202100560
crossref_primary_10_1016_j_cej_2023_143706
crossref_primary_10_1039_D2CS00003B
crossref_primary_10_1002_cplu_202300186
crossref_primary_10_1016_j_ijhydene_2024_09_106
crossref_primary_10_1016_j_energy_2022_123456
crossref_primary_10_1016_j_ijoes_2023_100103
crossref_primary_10_1016_j_jpowsour_2024_234797
crossref_primary_10_1039_D1DT00302J
crossref_primary_10_3390_catal12050482
crossref_primary_10_1039_D1GC03433B
crossref_primary_10_1002_ange_202010745
crossref_primary_10_1002_cjce_24921
crossref_primary_10_1002_aenm_202101937
crossref_primary_10_1002_cssc_202101252
crossref_primary_10_3390_catal12050525
crossref_primary_10_1021_acsenergylett_3c00823
crossref_primary_10_1002_anie_202010745
crossref_primary_10_1021_acscatal_3c02455
crossref_primary_10_4139_sfj_74_118
crossref_primary_10_1088_1361_6528_ad8097
crossref_primary_10_1002_ange_202016977
crossref_primary_10_1021_jacs_1c03788
crossref_primary_10_1002_advs_202407061
crossref_primary_10_3390_molecules26185476
crossref_primary_10_1021_acsami_0c23125
crossref_primary_10_1002_aenm_202100695
crossref_primary_10_1002_cctc_202201016
crossref_primary_10_26599_NRE_2023_9120082
crossref_primary_10_1002_aenm_202303352
crossref_primary_10_1016_j_apcatb_2022_121987
crossref_primary_10_1002_aenm_202302388
crossref_primary_10_2139_ssrn_4059037
crossref_primary_10_1016_j_jpcs_2021_110226
Cites_doi 10.1002/adma.201503211
10.1002/aenm.201301389
10.1126/science.aas9343
10.1039/C8SC04521F
10.1038/nenergy.2016.111
10.1063/1.4878480
10.1016/j.electacta.2016.09.052
10.1021/jacs.5b07792
10.1021/ja806400e
10.1016/S0167-5729(01)00022-X
10.1149/2.068112jes
10.1038/nchem.2695
10.1002/adma.201705431
10.1126/science.1135941
10.1002/asia.201500640
10.1021/acs.chemmater.6b02282
10.1039/C5TA03335G
10.1002/aenm.201401302
10.1038/nenergy.2016.128
10.1016/j.jpowsour.2005.10.086
10.1021/ja207229n
10.1002/chem.201604188
10.1038/ncomms3383
10.1021/acs.accounts.8b00332
10.1038/nchem.2101
10.1002/adfm.201803329
10.1149/2.0581809jes
10.1039/c3ra40394g
10.1016/j.nanoen.2018.04.046
10.1149/2.0631606jes
10.1016/j.apcatb.2018.05.073
10.1038/s41467-018-07850-2
10.1002/aenm.201301863
10.1021/nn303275d
10.1021/jp1047584
10.1021/ar400011z
10.1021/acsami.9b02077
10.1021/jp906408y
10.1002/aenm.201502054
10.1038/s41560-018-0104-5
10.1126/science.aah6133
10.1149/2.F03152if
10.1016/S0013-4686(01)00897-0
10.1002/aenm.201601275
10.1002/cphc.201300404
10.1002/adma.200903896
10.1002/aenm.201700544
10.1002/admi.201901035
10.1039/c2ee03590a
10.1039/c3ee23966g
10.1039/c0ee00558d
10.1016/j.jpowsour.2018.11.086
10.1038/nature13700
10.1021/ja208608s
10.1002/anie.201701290
10.1016/j.ssi.2018.01.020
10.1021/acs.chemmater.6b02796
10.1016/j.elecom.2011.11.007
10.1021/nl2044327
10.1126/science.1212858
10.1016/j.jpowsour.2015.04.029
10.1021/acscatal.6b02866
10.1002/ange.200504386
10.1039/c0jm04170j
10.1016/j.energy.2019.02.018
10.1016/j.joule.2018.11.002
10.1016/j.joule.2017.07.001
10.1021/acsami.7b17795
10.1039/C6TA00173D
10.1002/anie.201709455
10.1039/c1ee01496j
10.1021/cs501392p
10.1021/jacs.9b05992
10.1002/aenm.201000010
10.1016/j.jpowsour.2015.07.058
10.1002/chem.201704211
10.1016/j.jpowsour.2005.07.023
10.1038/nchem.1646
10.1002/adma.201604685
10.1038/s41467-019-08767-0
10.1038/nchem.1499
10.1021/am5047476
10.1002/aenm.201900429
10.1021/ja403199d
10.1039/C8MH01375F
10.1149/2.0721711jes
10.1039/C9TA03763B
10.1039/C6SC02123A
10.1002/aenm.201500991
10.1073/pnas.1804221116
10.1021/jz400019y
10.1016/j.nanoen.2018.02.057
10.1002/celc.201600236
10.1002/aenm.201801156
10.1038/nchem.2032
10.1002/anie.201711858
10.1021/ja501877e
10.1002/cctc.201900287
10.1038/nchem.330
10.1021/acsenergylett.9b01541
10.1038/s41467-019-08657-5
10.1021/jz301476w
10.1021/ja4016765
10.1021/acs.jpcc.6b08718
10.1021/ja505186m
10.1021/ja01028a048
10.1002/cctc.201000126
10.1149/06917.0213ecst
10.1021/acscatal.5b00524
10.1126/science.aab3501
10.1016/j.rser.2016.11.054
10.1039/c1cp21228a
10.1002/anie.201400711
10.1002/adma.201702752
10.1126/science.1249061
10.1038/s41467-019-09638-4
10.1002/aenm.201802605
10.1038/s41467-018-07678-w
10.1021/acscatal.9b00532
10.1039/c1cc14466a
10.1038/nchem.1069
10.1016/j.jelechem.2006.11.008
10.1039/c1cs15228a
10.1021/acs.nanolett.5b05006
10.1039/c3ta01402a
10.1016/S0378-7753(99)00047-6
10.1002/anie.201501214
10.1021/acs.jpclett.7b00680
10.1007/s10800-013-0620-8
10.1002/adfm.201700564
ContentType Journal Article
Copyright 2019 Elsevier Inc.
Copyright_xml – notice: 2019 Elsevier Inc.
DBID AAYXX
CITATION
OTOTI
DOI 10.1016/j.matt.2019.10.007
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2590-2385
EndPage 49
ExternalDocumentID 1581680
10_1016_j_matt_2019_10_007
S2590238519302772
GroupedDBID AAEDW
AAIAV
AALRI
AAXUO
ADJPV
AFTJW
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
EJD
FDB
HX~
M3Z
M41
OK1
ROL
0R~
AAMRU
AAYWO
AAYXX
ABDGV
ABJNI
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AGCQF
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
OTOTI
ID FETCH-LOGICAL-c437t-1b690eed6b71827f24d91a0de0461d2dec111f316a547b90941b139a849c951a3
ISSN 2590-2385
IngestDate Fri May 19 01:23:07 EDT 2023
Thu Apr 24 22:54:17 EDT 2025
Tue Jul 01 03:52:33 EDT 2025
Thu Jul 20 20:18:47 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords oxygen evolution reaction
Zn-air battery
fuel cell
oxygen reduction reaction
Li-O2 battery
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-1b690eed6b71827f24d91a0de0461d2dec111f316a547b90941b139a849c951a3
Notes USDOE Office of Energy Efficiency and Renewable Energy (EERE)
ORCID 0000-0003-0858-8577
0000000308588577
OpenAccessLink http://www.cell.com/article/S2590238519302772/pdf
PageCount 18
ParticipantIDs osti_scitechconnect_1581680
crossref_primary_10_1016_j_matt_2019_10_007
crossref_citationtrail_10_1016_j_matt_2019_10_007
elsevier_sciencedirect_doi_10_1016_j_matt_2019_10_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-08
PublicationDateYYYYMMDD 2020-01-08
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-08
  day: 08
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Matter
PublicationYear 2020
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Hou, Han, Liu, Yang, Huang, Fujita, Hirata, Chen (bib19) 2018; 47
Hu, Peng, Li (bib63) 2008; 130
Wu, Mack, Gao, Ma, Zhong, Han, Baldwin, Zelenay (bib76) 2012; 6
Xu, Hui, Dinh, Hui, Wang (bib14) 2019; 6
Frydendal, Paoli, Chorkendorff, Rossmeisl, Stephens (bib36) 2015; 5
Zhang, Dai, Zheng, Chen, Dai (bib56) 2018; 30
Pointon, Lakeman, Irvine, Bradley, Jain (bib16) 2006; 162
Meinholz, Carl, Kriemen, Stalke (bib118) 2011; 47
Bu, Zhang, Guo, Zhang, Li, Yao, Wu, Lu, Ma, Su (bib26) 2016; 354
Calle-Vallejo, Tymoczko, Colic, Vu, Pohl, Morgenstern, Loffreda, Sautet, Schuhmann, Bandarenka (bib27) 2015; 350
Chen, Higgins, Yu, Zhang, Zhang (bib30) 2011; 4
Ge, Sumboja, Wuu, An, Li, Goh, Hor, Zong, Liu (bib40) 2015; 5
Li, Zhao, Manthiram (bib58) 2012; 14
Zhu, Wang, Wang, Wang, Liu, Zhang, Wen (bib111) 2015; 137
Aurbach, McCloskey, Nazar, Bruce (bib83) 2016; 1
Xiao, Ren, McCulloch, Gourdin, Wu (bib13) 2018; 51
Yufit, Tariq, Eastwood, Biton, Wu, Lee, Brandon (bib18) 2019; 3
Zhao, Li, Zhang, Dai, Xia (bib22) 2015; 27
Stamenkovic, Mun, Mayrhofer, Ross, Markovic, Rossmeisl, Greeley, Nørskov (bib25) 2006; 118
Reier, Nong, Teschner, Schlögl, Strasser (bib34) 2017; 7
Calle-Vallejo, Krabbe, García-Lastra (bib73) 2017; 8
Li, Fu, Zhong, Wu, Chen, Hu, Amine, Lu (bib11) 2019; 9
Lu, Gasteiger, Shao-Horn (bib77) 2011; 133
Sun, Zhao, Wu, Lu, Bao, Sun, Xie, Liu (bib130) 2018; 10
Fu, Cano, Park, Yu, Fowler, Chen (bib2) 2017; 29
Koizumi, Nobusada, Boero (bib68) 2017; 23
Li, Chen, Wu, Lu (bib113) 2018; 30
Zhang, Zhang, Chen, Bao, Zhou, Xie, Wei, Zhou (bib126) 2015; 54
Zhu, Kushima, Yin, Qi, Amine, Lu, Li (bib116) 2016; 1
Chen, Freunberger, Peng, Fontaine, Bruce (bib79) 2013; 5
Park, Kim, Lim, Kang, Kim, Oh, Her, Cho, Sung (bib55) 2018; 237
Zhao, Fan, Ding, Hu, Zhong, Lu (bib124) 2019; 4
Eftekhari (bib120) 2018; 8
Chen, Yu, Higgins, Li, Wang, Chen (bib117) 2012; 12
Sun, Shen, Zhang, Yu, Yi, Yin, Wang, Huang, Wang, Wang (bib93) 2014; 136
Stephens, Bondarenko, Grønbjerg, Rossmeisl, Chorkendorff (bib24) 2012; 5
Chen, Ji, Zhao, Chen, Dong, Cheong, Shen, Wen, Zheng, Rykov (bib39) 2018; 9
Li, Hasin, Wu (bib66) 2010; 22
Gorlin, Patel, Freiberg, He, Piana, Tromp, Gasteiger (bib114) 2016; 163
Govindarajan, Koper, Meijer, Calle-Vallejo (bib54) 2019; 9
Lu, Lei, Lau, Luo, Du, Wen, Assary, Das, Miller, Elam (bib106) 2013; 4
Gupta, Kellogg, Xu, Liu, Cho, Wu (bib67) 2016; 11
Lim, Song, Kim, Gwon, Bae, Park, Hong, Kim, Kim, Kim (bib108) 2014; 53
Marković, Ross (bib23) 2002; 45
Ren, Zhang, Tran, Read (bib75) 2011; 21
Gnana Kumar, Christy, Jang, Nahm (bib78) 2015; 288
Zhai, Wang, Yang, Lau, Li, Amine, Curtiss (bib88) 2013; 135
Suntivich, May, Gasteiger, Goodenough, Shao-Horn (bib48) 2011; 334
Xu, Das, Archer (bib125) 2013; 3
Lee, Choi, Feng, Park, Chen (bib69) 2014; 4
Li, Manthiram (bib37) 2016; 6
Liu, Ye (bib107) 2016; 120
Jensen, Tymoczko, Rossmeisl, Bandarenka, Chorkendorff, Escudero-Escribano, Stephens (bib71) 2018; 57
Mainar, Colmenares, Leonet, Alcaide, Iruin, Weinberger, Hacker, Iruin, Urdanpilleta, Blazquez (bib41) 2016; 217
Michan, Parimalam, Leskes, Kerber, Yoon, Grey, Lucht (bib80) 2016; 28
Ryabova, Bonnefont, Zagrebin, Poux, Paria Sena, Hadermann, Abakumov, Kéranguéven, Istomin, Antipov (bib101) 2016; 3
Deyab (bib10) 2019; 412
He, Bi, Yuan, Foroozan, Song, Amine, Lu, Shahbazian-Yassar (bib82) 2018; 49
Yang, Wong, Hong, Yamanaka, Ohta, Byon (bib84) 2016; 16
Lim, Lim, Park, Seo, Gwon, Hong, Goddard, Kim, Kang (bib128) 2013; 135
Yang, Yu, Ai, Yan, Duan, Chen, Li, Wang, Zhang, Huang (bib35) 2018; 9
Nemori, Shang, Minami, Mitsuoka, Nomura, Sonoki, Morita, Mori, Takeda, Yamamoto (bib121) 2018; 317
Oh, Black, Pomerantseva, Lee, Nazar (bib90) 2012; 4
Yao, Yuan, Tan, Liu, Cheng, Yurkiv, Bi, Long, Friedrich, Mashayek (bib92) 2019; 141
Rashkova, Kitova, Konstantinov, Vitanov (bib62) 2002; 47
Shen, Li, Qian, Liu, Zhou, Yan, Goodenough (bib123) 2019; 10
Behm, Jusys (bib100) 2006; 154
Yoshida, Kojima (bib4) 2015; 24
Wang, Zhao, Lu, Xu, Zhang, Ruoff, Stevenson, Goodenough (bib43) 2011; 158
Grübl, Bessler (bib44) 2015; 297
Strmcnik, Kodama, van der Vliet, Greeley, Stamenkovic, Marković (bib53) 2009; 1
Rahman, Wang, Wen (bib119) 2014; 44
Meng, Song, Huang, Ren, Chen, Suib (bib42) 2014; 136
Cheng, Redfern, Lau, Assary, Narayanan, Curtiss (bib85) 2017; 164
Huang, Wang, Tao, Tian, Xu (bib110) 2019; 10
Bai, Viswanathan, Bazant (bib15) 2015; 3
Johnson, Li, Liu, Chen, Freunberger, Ashok, Praveen, Dholakia, Tarascon, Bruce (bib87) 2014; 6
Stamenkovic, Fowler, Mun, Wang, Ross, Lucas, Marković (bib28) 2007; 315
Chen, Kang, Huo, Zhu, Huang, Xin, Snyder, Li, Herron, Mavrikakis (bib29) 2014; 343
Prabu, Ramakrishnan, Nara, Momma, Osaka, Shanmugam (bib45) 2014; 6
Lee, Kim, Park (bib33) 2019; 11
Andrews (bib86) 1968; 90
Guo, Li, Liu, Wang, Xia (bib95) 2017; 56
Suntivich, Gasteiger, Yabuuchi, Nakanishi, Goodenough, Shao-Horn (bib21) 2011; 3
McCloskey, Addison (bib104) 2016; 7
Wang, Leung, Xuan, Wang (bib59) 2017; 75
Viswanathan, Hansen, Rossmeisl, Nørskov (bib99) 2012; 3
Mitchell, Gallant, Thompson, Shao-Horn (bib91) 2011; 4
Weber, Geiger, Falusi, Roth (bib127) 2014; 1597
Manthiram, Li (bib122) 2015; 5
Rossmeisl, Qu, Zhu, Kroes, Nørskov (bib47) 2007; 607
Bryantsev, Blanco, Faglioni (bib81) 2010; 114
Li, Bai, Li, Ma, Dai, Wang, Luo, Wu, Liu, Yang (bib112) 2019; 10
Lu, Gallant, Kwabi, Harding, Mitchell, Whittingham, Shao-Horn (bib8) 2013; 6
McCloskey, Scheffler, Speidel, Bethune, Shelby, Luntz (bib105) 2011; 133
Cheng, Chen (bib1) 2012; 41
Kojima, Fukazawa (bib5) 2015; 69
Zhang, Guo, Gan, Zhang, Wang, Johnson, Bruce, Peng (bib89) 2017; 8
Stevens, Enman, Batchellor, Cosby, Vise, Trang, Boettcher (bib32) 2017; 29
Huang, Wang, Peng, Jung, Fisher, Wang (bib70) 2017; 7
Wang, Zeng, Hong, Xu, Yang, Wang, Duan, Tang, Jiang (bib17) 2018; 3
Lee, Tai Kim, Cao, Choi, Liu, Lee, Cho (bib20) 2011; 1
Wang, Jiang, Chung, Ouchi, Burke, Boysen, Bradwell, Kim, Muecke, Sadoway (bib102) 2014; 514
Lee, Kim, Chen (bib64) 2013; 1
Mahoor, Hosseini, Khodaei (bib9) 2019; 172
Yang, Han, Liu, Hou, Huang, Fujita, Hirata, Chen (bib109) 2017; 29
Wang, Gao, Qin, Wang, Song, Zhou, Zhu, Cao, Lin, Zhou (bib49) 2019; 10
Nakamura, Nakajima, Hoshi, Tajiri, Sakata (bib72) 2013; 14
Dau, Limberg, Reier, Risch, Roggan, Strasser (bib103) 2010; 2
Calle-Vallejo, Martínez, Rossmeisl (bib52) 2011; 13
Viswanathan, Nørskov, Speidel, Scheffler, Gowda, Luntz (bib94) 2013; 4
Bender, Hartmann, Vračar, Adelhelm, Janek (bib97) 2014; 4
Sikdar, Konkena, Masa, Schuhmann, Maji (bib61) 2017; 23
Chen, McCrum, Schwarz, Janik, Koper (bib74) 2017; 56
Retuerto, Calle-Vallejo, Pascual, Lumbeeck, Fernandez-Diaz, Croft, Gopalakrishnan, Peña, Hadermann, Greenblatt (bib38) 2019; 11
Hou, Wang, Liu, Liu, Chou, Shi, Liu, Wu, Zhang, Chen (bib131) 2017; 27
Whiston, Azevedo, Litster, Whitefoot, Samaras, Whitacre (bib7) 2019; 116
Li, Ma, Wang, Ren, Zhu, Song (bib12) 2018; 165
Wang, Tang, Zhang (bib3) 2018; 28
Xia, Kwok, Nazar (bib98) 2018; 361
Wu, Zelenay (bib31) 2013; 46
Grimaud, Diaz-Morales, Han, Hong, Lee, Giordano, Stoerzinger, Koper, Shao-Horn (bib50) 2017; 9
Holewinski, Idrobo, Linic (bib6) 2014; 6
Zhang, Amine, Bi, Qin, Li, Al-Hallaj, Huo, Lu, Amine (bib115) 2019; 7
Ren, Zhang, Fan, Ajayan, Tour (bib96) 2019; 0
Qiao, Yi, Wu, Liu, Yang, He, Zhou (bib129) 2017; 1
Cao, Liu, Xie, Zhang, Cao, Zhao (bib60) 2015; 5
Lee, Xu, Cano, Kashkooli, Park, Chen (bib65) 2016; 4
Chen, Li, Chu, Wang (bib46) 2009; 113
She, Zhu, Chen, Lu, Zhou, Shao (bib51) 2019; 9
Zhigang, Baolian, Ming (bib57) 1999; 79
Xiao (10.1016/j.matt.2019.10.007_bib13) 2018; 51
Prabu (10.1016/j.matt.2019.10.007_bib45) 2014; 6
Lu (10.1016/j.matt.2019.10.007_bib106) 2013; 4
Shen (10.1016/j.matt.2019.10.007_bib123) 2019; 10
Wang (10.1016/j.matt.2019.10.007_bib3) 2018; 28
Li (10.1016/j.matt.2019.10.007_bib66) 2010; 22
Zhigang (10.1016/j.matt.2019.10.007_bib57) 1999; 79
Cheng (10.1016/j.matt.2019.10.007_bib1) 2012; 41
Reier (10.1016/j.matt.2019.10.007_bib34) 2017; 7
Li (10.1016/j.matt.2019.10.007_bib37) 2016; 6
Mahoor (10.1016/j.matt.2019.10.007_bib9) 2019; 172
Suntivich (10.1016/j.matt.2019.10.007_bib21) 2011; 3
Gupta (10.1016/j.matt.2019.10.007_bib67) 2016; 11
Yang (10.1016/j.matt.2019.10.007_bib35) 2018; 9
Yao (10.1016/j.matt.2019.10.007_bib92) 2019; 141
Huang (10.1016/j.matt.2019.10.007_bib110) 2019; 10
Yang (10.1016/j.matt.2019.10.007_bib84) 2016; 16
Bender (10.1016/j.matt.2019.10.007_bib97) 2014; 4
Sikdar (10.1016/j.matt.2019.10.007_bib61) 2017; 23
Wang (10.1016/j.matt.2019.10.007_bib49) 2019; 10
Zhang (10.1016/j.matt.2019.10.007_bib115) 2019; 7
Viswanathan (10.1016/j.matt.2019.10.007_bib99) 2012; 3
Hou (10.1016/j.matt.2019.10.007_bib19) 2018; 47
Lee (10.1016/j.matt.2019.10.007_bib64) 2013; 1
Weber (10.1016/j.matt.2019.10.007_bib127) 2014; 1597
Koizumi (10.1016/j.matt.2019.10.007_bib68) 2017; 23
Liu (10.1016/j.matt.2019.10.007_bib107) 2016; 120
Aurbach (10.1016/j.matt.2019.10.007_bib83) 2016; 1
Meng (10.1016/j.matt.2019.10.007_bib42) 2014; 136
Hu (10.1016/j.matt.2019.10.007_bib63) 2008; 130
Ren (10.1016/j.matt.2019.10.007_bib96) 2019; 0
Xu (10.1016/j.matt.2019.10.007_bib125) 2013; 3
Li (10.1016/j.matt.2019.10.007_bib58) 2012; 14
Li (10.1016/j.matt.2019.10.007_bib112) 2019; 10
Yang (10.1016/j.matt.2019.10.007_bib109) 2017; 29
Yufit (10.1016/j.matt.2019.10.007_bib18) 2019; 3
Hou (10.1016/j.matt.2019.10.007_bib131) 2017; 27
Lee (10.1016/j.matt.2019.10.007_bib20) 2011; 1
Zhang (10.1016/j.matt.2019.10.007_bib126) 2015; 54
Sun (10.1016/j.matt.2019.10.007_bib130) 2018; 10
Chen (10.1016/j.matt.2019.10.007_bib39) 2018; 9
Govindarajan (10.1016/j.matt.2019.10.007_bib54) 2019; 9
Wu (10.1016/j.matt.2019.10.007_bib76) 2012; 6
Calle-Vallejo (10.1016/j.matt.2019.10.007_bib73) 2017; 8
Jensen (10.1016/j.matt.2019.10.007_bib71) 2018; 57
Xu (10.1016/j.matt.2019.10.007_bib14) 2019; 6
Gnana Kumar (10.1016/j.matt.2019.10.007_bib78) 2015; 288
Ryabova (10.1016/j.matt.2019.10.007_bib101) 2016; 3
Xia (10.1016/j.matt.2019.10.007_bib98) 2018; 361
Nemori (10.1016/j.matt.2019.10.007_bib121) 2018; 317
Grübl (10.1016/j.matt.2019.10.007_bib44) 2015; 297
Lu (10.1016/j.matt.2019.10.007_bib8) 2013; 6
Li (10.1016/j.matt.2019.10.007_bib12) 2018; 165
Calle-Vallejo (10.1016/j.matt.2019.10.007_bib52) 2011; 13
He (10.1016/j.matt.2019.10.007_bib82) 2018; 49
Gorlin (10.1016/j.matt.2019.10.007_bib114) 2016; 163
Rashkova (10.1016/j.matt.2019.10.007_bib62) 2002; 47
Fu (10.1016/j.matt.2019.10.007_bib2) 2017; 29
Zhang (10.1016/j.matt.2019.10.007_bib89) 2017; 8
Oh (10.1016/j.matt.2019.10.007_bib90) 2012; 4
Holewinski (10.1016/j.matt.2019.10.007_bib6) 2014; 6
Rahman (10.1016/j.matt.2019.10.007_bib119) 2014; 44
Zhu (10.1016/j.matt.2019.10.007_bib116) 2016; 1
Calle-Vallejo (10.1016/j.matt.2019.10.007_bib27) 2015; 350
Ge (10.1016/j.matt.2019.10.007_bib40) 2015; 5
Chen (10.1016/j.matt.2019.10.007_bib74) 2017; 56
Sun (10.1016/j.matt.2019.10.007_bib93) 2014; 136
Viswanathan (10.1016/j.matt.2019.10.007_bib94) 2013; 4
Zhao (10.1016/j.matt.2019.10.007_bib22) 2015; 27
Stephens (10.1016/j.matt.2019.10.007_bib24) 2012; 5
Cheng (10.1016/j.matt.2019.10.007_bib85) 2017; 164
Stamenkovic (10.1016/j.matt.2019.10.007_bib28) 2007; 315
Huang (10.1016/j.matt.2019.10.007_bib70) 2017; 7
McCloskey (10.1016/j.matt.2019.10.007_bib105) 2011; 133
Whiston (10.1016/j.matt.2019.10.007_bib7) 2019; 116
Li (10.1016/j.matt.2019.10.007_bib11) 2019; 9
Nakamura (10.1016/j.matt.2019.10.007_bib72) 2013; 14
Deyab (10.1016/j.matt.2019.10.007_bib10) 2019; 412
Bu (10.1016/j.matt.2019.10.007_bib26) 2016; 354
Chen (10.1016/j.matt.2019.10.007_bib46) 2009; 113
Chen (10.1016/j.matt.2019.10.007_bib30) 2011; 4
Michan (10.1016/j.matt.2019.10.007_bib80) 2016; 28
Pointon (10.1016/j.matt.2019.10.007_bib16) 2006; 162
Wang (10.1016/j.matt.2019.10.007_bib17) 2018; 3
Mitchell (10.1016/j.matt.2019.10.007_bib91) 2011; 4
McCloskey (10.1016/j.matt.2019.10.007_bib104) 2016; 7
Lu (10.1016/j.matt.2019.10.007_bib77) 2011; 133
Zhu (10.1016/j.matt.2019.10.007_bib111) 2015; 137
Guo (10.1016/j.matt.2019.10.007_bib95) 2017; 56
Retuerto (10.1016/j.matt.2019.10.007_bib38) 2019; 11
Lee (10.1016/j.matt.2019.10.007_bib69) 2014; 4
Wang (10.1016/j.matt.2019.10.007_bib43) 2011; 158
Rossmeisl (10.1016/j.matt.2019.10.007_bib47) 2007; 607
Park (10.1016/j.matt.2019.10.007_bib55) 2018; 237
Lee (10.1016/j.matt.2019.10.007_bib33) 2019; 11
Lim (10.1016/j.matt.2019.10.007_bib128) 2013; 135
Wu (10.1016/j.matt.2019.10.007_bib31) 2013; 46
Dau (10.1016/j.matt.2019.10.007_bib103) 2010; 2
She (10.1016/j.matt.2019.10.007_bib51) 2019; 9
Meinholz (10.1016/j.matt.2019.10.007_bib118) 2011; 47
Stevens (10.1016/j.matt.2019.10.007_bib32) 2017; 29
Chen (10.1016/j.matt.2019.10.007_bib79) 2013; 5
Marković (10.1016/j.matt.2019.10.007_bib23) 2002; 45
Zhai (10.1016/j.matt.2019.10.007_bib88) 2013; 135
Behm (10.1016/j.matt.2019.10.007_bib100) 2006; 154
Bryantsev (10.1016/j.matt.2019.10.007_bib81) 2010; 114
Eftekhari (10.1016/j.matt.2019.10.007_bib120) 2018; 8
Grimaud (10.1016/j.matt.2019.10.007_bib50) 2017; 9
Wang (10.1016/j.matt.2019.10.007_bib102) 2014; 514
Manthiram (10.1016/j.matt.2019.10.007_bib122) 2015; 5
Lee (10.1016/j.matt.2019.10.007_bib65) 2016; 4
Strmcnik (10.1016/j.matt.2019.10.007_bib53) 2009; 1
Mainar (10.1016/j.matt.2019.10.007_bib41) 2016; 217
Wang (10.1016/j.matt.2019.10.007_bib59) 2017; 75
Lim (10.1016/j.matt.2019.10.007_bib108) 2014; 53
Kojima (10.1016/j.matt.2019.10.007_bib5) 2015; 69
Ren (10.1016/j.matt.2019.10.007_bib75) 2011; 21
Chen (10.1016/j.matt.2019.10.007_bib29) 2014; 343
Chen (10.1016/j.matt.2019.10.007_bib117) 2012; 12
Andrews (10.1016/j.matt.2019.10.007_bib86) 1968; 90
Johnson (10.1016/j.matt.2019.10.007_bib87) 2014; 6
Cao (10.1016/j.matt.2019.10.007_bib60) 2015; 5
Zhang (10.1016/j.matt.2019.10.007_bib56) 2018; 30
Qiao (10.1016/j.matt.2019.10.007_bib129) 2017; 1
Li (10.1016/j.matt.2019.10.007_bib113) 2018; 30
Suntivich (10.1016/j.matt.2019.10.007_bib48) 2011; 334
Zhao (10.1016/j.matt.2019.10.007_bib124) 2019; 4
Stamenkovic (10.1016/j.matt.2019.10.007_bib25) 2006; 118
Frydendal (10.1016/j.matt.2019.10.007_bib36) 2015; 5
Bai (10.1016/j.matt.2019.10.007_bib15) 2015; 3
Yoshida (10.1016/j.matt.2019.10.007_bib4) 2015; 24
References_xml – volume: 7
  start-page: 1601275
  year: 2017
  ident: bib34
  article-title: Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 241
  year: 2015
  end-page: 245
  ident: bib60
  article-title: Tips-bundled Pt/Co
  publication-title: ACS Catal.
– volume: 11
  start-page: 21454
  year: 2019
  end-page: 21464
  ident: bib38
  article-title: La
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 489
  year: 2013
  ident: bib79
  article-title: Charging a Li-O
  publication-title: Nat. Chem.
– volume: 2
  start-page: 724
  year: 2010
  end-page: 761
  ident: bib103
  article-title: The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis
  publication-title: ChemCatChem
– volume: 10
  start-page: 900
  year: 2019
  ident: bib123
  article-title: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery
  publication-title: Nat. Commun.
– volume: 69
  start-page: 213
  year: 2015
  end-page: 219
  ident: bib5
  article-title: Current status and future outlook of fuel cell vehicle development in Toyota
  publication-title: ECS Trans.
– volume: 133
  start-page: 18038
  year: 2011
  end-page: 18041
  ident: bib105
  article-title: On the efficacy of electrocatalysis in nonaqueous Li-O
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 9764
  year: 2012
  end-page: 9776
  ident: bib76
  article-title: Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O
  publication-title: ACS Nano
– volume: 6
  start-page: 750
  year: 2013
  end-page: 768
  ident: bib8
  article-title: Lithium-oxygen batteries: bridging mechanistic understanding and battery performance
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 120
  year: 2017
  end-page: 140
  ident: bib32
  article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts
  publication-title: Chem. Mater.
– volume: 41
  start-page: 2172
  year: 2012
  end-page: 2192
  ident: bib1
  article-title: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts
  publication-title: Chem. Soc. Rev.
– volume: 29
  year: 2017
  ident: bib2
  article-title: Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives
  publication-title: Adv. Mater.
– volume: 47
  start-page: 1555
  year: 2002
  end-page: 1560
  ident: bib62
  article-title: Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction
  publication-title: Electrochim Acta
– volume: 6
  year: 2019
  ident: bib14
  article-title: Recent advances in hybrid sodium-air batteries
  publication-title: Mater. Horiz.
– volume: 1
  start-page: 4754
  year: 2013
  end-page: 4762
  ident: bib64
  article-title: One-pot synthesis of a mesoporous NiCo
  publication-title: J. Mater. Chem. A
– volume: 49
  start-page: 338
  year: 2018
  end-page: 345
  ident: bib82
  article-title: Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries
  publication-title: Nano Energy
– volume: 54
  start-page: 6550
  year: 2015
  end-page: 6553
  ident: bib126
  article-title: The first introduction of graphene to rechargeable Li-CO
  publication-title: Angew. Chem. Int. Ed.
– volume: 114
  start-page: 8165
  year: 2010
  end-page: 8169
  ident: bib81
  article-title: Stability of lithium superoxide LiO
  publication-title: J. Phys. Chem. A
– volume: 9
  start-page: 5236
  year: 2018
  ident: bib35
  article-title: Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO
  publication-title: Nat. Commun.
– volume: 1
  start-page: 466
  year: 2009
  ident: bib53
  article-title: The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum
  publication-title: Nat. Chem.
– volume: 7
  start-page: 1700544
  year: 2017
  ident: bib70
  article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives
  publication-title: Adv. Energy Mater.
– volume: 47
  start-page: 427
  year: 2018
  end-page: 433
  ident: bib19
  article-title: Operando observations of RuO
  publication-title: Nano Energy
– volume: 607
  start-page: 83
  year: 2007
  end-page: 89
  ident: bib47
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
– volume: 4
  start-page: 7107
  year: 2016
  end-page: 7134
  ident: bib65
  article-title: Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries
  publication-title: J. Mater. Chem. A
– volume: 135
  start-page: 9733
  year: 2013
  end-page: 9742
  ident: bib128
  article-title: Toward a lithium-“air” battery: the effect of CO
  publication-title: J. Am. Chem. Soc.
– volume: 120
  start-page: 25246
  year: 2016
  end-page: 25255
  ident: bib107
  article-title: In situ atomic force microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution
  publication-title: J. Phys. Chem. C
– volume: 514
  start-page: 348
  year: 2014
  ident: bib102
  article-title: Lithium-antimony-lead liquid metal battery for grid-level energy storage
  publication-title: Nature
– volume: 163
  start-page: A930
  year: 2016
  end-page: A939
  ident: bib114
  article-title: Understanding the charging mechanism of lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy
  publication-title: J. Electrochem. Soc.
– volume: 136
  start-page: 11452
  year: 2014
  end-page: 11464
  ident: bib42
  article-title: Structure-property relationship of bifunctional MnO
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 34
  year: 2011
  end-page: 50
  ident: bib20
  article-title: Metal-air batteries with high energy density: Li-air versus Zn-air
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 359
  year: 2017
  end-page: 370
  ident: bib129
  article-title: Li-CO
  publication-title: Joule
– volume: 6
  start-page: 1091
  year: 2014
  ident: bib87
  article-title: The role of LiO
  publication-title: Nat. Chem.
– volume: 47
  start-page: 10948
  year: 2011
  end-page: 10950
  ident: bib118
  article-title: Peroxide solvation by a toroidal lithium inverse crown ether complex assembled by multidentate polyimido sulfonates
  publication-title: Chem. Commun. (Camb.)
– volume: 51
  start-page: 2335
  year: 2018
  end-page: 2343
  ident: bib13
  article-title: Potassium superoxide: a unique alternative for metal-air batteries
  publication-title: Acc. Chem. Res.
– volume: 30
  start-page: 1705431
  year: 2018
  ident: bib56
  article-title: Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting
  publication-title: Adv. Mater.
– volume: 24
  start-page: 45
  year: 2015
  end-page: 49
  ident: bib4
  article-title: Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society
  publication-title: Electrochem. Soc. Interfaces
– volume: 172
  start-page: 913
  year: 2019
  end-page: 921
  ident: bib9
  article-title: Least-cost operation of a battery swapping station with random customer requests
  publication-title: Energy
– volume: 75
  start-page: 775
  year: 2017
  end-page: 795
  ident: bib59
  article-title: A review on unitized regenerative fuel cell technologies, part B: unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell
  publication-title: Renew. Sustain. Energ. Rev.
– volume: 297
  start-page: 481
  year: 2015
  end-page: 491
  ident: bib44
  article-title: Cell design concepts for aqueous lithium-oxygen batteries: a model-based assessment
  publication-title: J. Power Sources
– volume: 3
  start-page: 546
  year: 2011
  ident: bib21
  article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries
  publication-title: Nat. Chem.
– volume: 4
  start-page: 2952
  year: 2011
  end-page: 2958
  ident: bib91
  article-title: All-carbon-nanofiber electrodes for high-energy rechargeable Li-O
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 1946
  year: 2012
  end-page: 1952
  ident: bib117
  article-title: Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application
  publication-title: Nano Lett.
– volume: 6
  start-page: 1502054
  year: 2016
  ident: bib37
  article-title: Long-life, high-voltage acidic Zn-air batteries
  publication-title: Adv. Energy Mater.
– volume: 5
  start-page: 6744
  year: 2012
  end-page: 6762
  ident: bib24
  article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
  publication-title: Energy Environ. Sci.
– volume: 10
  start-page: 704
  year: 2019
  ident: bib49
  article-title: e
  publication-title: Nat. Commun.
– volume: 3
  start-page: 2948
  year: 2012
  end-page: 2951
  ident: bib99
  article-title: Unifying the 2e
  publication-title: J. Phys. Chem. Lett.
– volume: 237
  start-page: 140
  year: 2018
  end-page: 148
  ident: bib55
  article-title: Graphitic carbon nitride-carbon nanofiber as oxygen catalyst in anion-exchange membrane water electrolyzer and rechargeable metal-air cells
  publication-title: Appl. Catal. B Environ.
– volume: 57
  start-page: 2800
  year: 2018
  end-page: 2805
  ident: bib71
  article-title: Elucidation of the oxygen reduction volcano in alkaline media using a copper-platinum(111) alloy
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 14165
  year: 2015
  end-page: 14172
  ident: bib15
  article-title: A dual-mode rechargeable lithium-bromine/oxygen fuel cell
  publication-title: J. Mater. Chem. A
– volume: 46
  start-page: 1878
  year: 2013
  end-page: 1889
  ident: bib31
  article-title: Nanostructured nonprecious metal catalysts for oxygen reduction reaction
  publication-title: Acc. Chem. Res.
– volume: 7
  start-page: 772
  year: 2016
  end-page: 778
  ident: bib104
  article-title: A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O
  publication-title: ACS Catal.
– volume: 79
  start-page: 82
  year: 1999
  end-page: 85
  ident: bib57
  article-title: Bifunctional electrodes with a thin catalyst layer for `unitized' proton exchange membrane regenerative fuel cell
  publication-title: J. Power Sources
– volume: 45
  start-page: 117
  year: 2002
  end-page: 229
  ident: bib23
  article-title: Surface science studies of model fuel cell electrocatalysts
  publication-title: Surf. Sci. Rep.
– volume: 21
  start-page: 10118
  year: 2011
  end-page: 10125
  ident: bib75
  article-title: Oxygen reduction reaction catalyst on lithium/air battery discharge performance
  publication-title: J. Mater. Chem.
– volume: 22
  start-page: 1926
  year: 2010
  end-page: 1929
  ident: bib66
  article-title: Ni
  publication-title: Adv. Mater.
– volume: 10
  start-page: 3340
  year: 2019
  end-page: 3345
  ident: bib110
  article-title: An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces
  publication-title: Chem. Sci.
– volume: 9
  start-page: 1900429
  year: 2019
  ident: bib51
  article-title: Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites
  publication-title: Adv. Energy Mater.
– volume: 118
  start-page: 2963
  year: 2006
  end-page: 2967
  ident: bib25
  article-title: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure
  publication-title: Angew. Chem. Int. Ed.
– volume: 8
  start-page: 2334
  year: 2017
  end-page: 2338
  ident: bib89
  article-title: LiO
  publication-title: J. Phys. Chem. Lett.
– volume: 23
  start-page: 1531
  year: 2017
  end-page: 1538
  ident: bib68
  article-title: Simple but efficient method for inhibiting sintering and aggregation of catalytic Pt nanoclusters on metal-oxide supports
  publication-title: Chem. Eur. J.
– volume: 162
  start-page: 750
  year: 2006
  end-page: 756
  ident: bib16
  article-title: The development of a carbon-air semi fuel cell
  publication-title: J. Power Sources
– volume: 350
  start-page: 185
  year: 2015
  end-page: 189
  ident: bib27
  article-title: Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
  publication-title: Science
– volume: 136
  start-page: 8941
  year: 2014
  end-page: 8946
  ident: bib93
  article-title: A solution-phase bifunctional catalyst for lithium-oxygen batteries
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 4643
  year: 2015
  end-page: 4667
  ident: bib40
  article-title: Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts
  publication-title: ACS Catal.
– volume: 165
  start-page: A1713
  year: 2018
  end-page: A1717
  ident: bib12
  article-title: Investigation of sodium phosphate and sodium dodecylbenzenesulfonate as electrolyte additives for AZ91 magnesium-air battery
  publication-title: J. Electrochem. Soc.
– volume: 164
  start-page: E3696
  year: 2017
  end-page: E3701
  ident: bib85
  article-title: Computational studies of solubilities of LiO
  publication-title: J. Electrochem. Soc.
– volume: 14
  start-page: 2426
  year: 2013
  end-page: 2431
  ident: bib72
  article-title: Effect of non-specifically adsorbed ions on the surface oxidation of Pt(111)
  publication-title: ChemPhysChem
– volume: 141
  start-page: 12832
  year: 2019
  end-page: 12838
  ident: bib92
  article-title: Tuning Li
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 16136
  year: 2008
  end-page: 16137
  ident: bib63
  article-title: Selective synthesis of Co
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 227
  year: 2018
  end-page: 235
  ident: bib17
  article-title: Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates
  publication-title: Nat. Energy
– volume: 354
  start-page: 1410
  year: 2016
  end-page: 1414
  ident: bib26
  article-title: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
  publication-title: Science
– volume: 56
  start-page: 15025
  year: 2017
  end-page: 15029
  ident: bib74
  article-title: Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1802605
  year: 2019
  ident: bib11
  article-title: Recent advances in flexible zinc-based rechargeable batteries
  publication-title: Adv. Energy Mater.
– volume: 16
  start-page: 2969
  year: 2016
  end-page: 2974
  ident: bib84
  article-title: Unexpected Li
  publication-title: Nano Lett.
– volume: 5
  start-page: 1500991
  year: 2015
  ident: bib36
  article-title: Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO
  publication-title: Adv. Energy Mater.
– volume: 1
  start-page: 16128
  year: 2016
  ident: bib83
  article-title: Advances in understanding mechanisms underpinning lithium-air batteries
  publication-title: Nat. Energy
– volume: 317
  start-page: 136
  year: 2018
  end-page: 141
  ident: bib121
  article-title: Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte Li
  publication-title: Solid State Ionics
– volume: 8
  start-page: 1801156
  year: 2018
  ident: bib120
  article-title: High-energy aqueous lithium batteries
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 1004
  year: 2012
  ident: bib90
  article-title: Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O
  publication-title: Nat. Chem.
– volume: 44
  start-page: 5
  year: 2014
  end-page: 22
  ident: bib119
  article-title: A review of high energy density lithium-air battery technology
  publication-title: J. Appl. Electrochem.
– volume: 6
  start-page: 16545
  year: 2014
  end-page: 16555
  ident: bib45
  article-title: Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 10
  year: 2016
  end-page: 21
  ident: bib67
  article-title: Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media
  publication-title: Chem. Asian J.
– volume: 3
  start-page: 1667
  year: 2016
  end-page: 1677
  ident: bib101
  article-title: Study of hydrogen peroxide reactions on manganese oxides as a tool to decode the oxygen reduction reaction mechanism
  publication-title: ChemElectroChem
– volume: 3
  start-page: 485
  year: 2019
  end-page: 502
  ident: bib18
  article-title: Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries
  publication-title: Joule
– volume: 8
  start-page: 124
  year: 2017
  end-page: 130
  ident: bib73
  article-title: How covalence breaks adsorption-energy scaling relations and solvation restores them
  publication-title: Chem. Sci.
– volume: 23
  start-page: 18049
  year: 2017
  end-page: 18056
  ident: bib61
  article-title: Co
  publication-title: Chem. Eur. J.
– volume: 4
  start-page: 2383
  year: 2013
  ident: bib106
  article-title: A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
  publication-title: Nat. Commun.
– volume: 343
  start-page: 1339
  year: 2014
  end-page: 1343
  ident: bib29
  article-title: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces
  publication-title: Science
– volume: 334
  start-page: 1383
  year: 2011
  end-page: 1385
  ident: bib48
  article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
  publication-title: Science
– volume: 361
  start-page: 777
  year: 2018
  end-page: 781
  ident: bib98
  article-title: A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide
  publication-title: Science
– volume: 13
  start-page: 15639
  year: 2011
  end-page: 15643
  ident: bib52
  article-title: Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions
  publication-title: Phys. Chem. Chem. Phys.
– volume: 0
  start-page: 1901035
  year: 2019
  ident: bib96
  article-title: Li-breathing air batteries catalyzed by MnNiFe/laser-induced graphene catalysts
  publication-title: Adv. Mater. Interfaces
– volume: 28
  start-page: 8149
  year: 2016
  end-page: 8159
  ident: bib80
  article-title: Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation
  publication-title: Chem. Mater.
– volume: 5
  start-page: 1401302
  year: 2015
  ident: bib122
  article-title: Hybrid and aqueous lithium-air batteries
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1702752
  year: 2017
  ident: bib109
  article-title: Direct observations of the formation and redox-mediator-assisted decomposition of Li
  publication-title: Adv. Mater.
– volume: 1597
  start-page: 66
  year: 2014
  end-page: 81
  ident: bib127
  article-title: Material review of Li ion battery separators
  publication-title: AIP Conf. Proc.
– volume: 133
  start-page: 19048
  year: 2011
  end-page: 19051
  ident: bib77
  article-title: Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 6834
  year: 2015
  end-page: 6840
  ident: bib22
  article-title: Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries
  publication-title: Adv. Mater.
– volume: 154
  start-page: 327
  year: 2006
  end-page: 342
  ident: bib100
  article-title: The potential of model studies for the understanding of catalyst poisoning and temperature effects in polymer electrolyte fuel cell reactions
  publication-title: J. Power Sources
– volume: 14
  start-page: 78
  year: 2012
  end-page: 81
  ident: bib58
  article-title: A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte
  publication-title: Electrochem. Commun.
– volume: 53
  start-page: 3926
  year: 2014
  end-page: 3931
  ident: bib108
  article-title: Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst
  publication-title: Angew. Chem. Int. Ed.
– volume: 158
  start-page: A1379
  year: 2011
  end-page: A1382
  ident: bib43
  article-title: CoMn
  publication-title: J. Electrochem. Soc.
– volume: 56
  start-page: 7505
  year: 2017
  end-page: 7509
  ident: bib95
  article-title: A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator
  publication-title: Angew. Chem. Int. Ed.
– volume: 30
  year: 2018
  ident: bib113
  article-title: Li
  publication-title: Adv. Mater.
– volume: 27
  start-page: 1700564
  year: 2017
  ident: bib131
  article-title: Mo
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 6327
  year: 2018
  end-page: 6335
  ident: bib130
  article-title: 3D foam-like composites of Mo
  publication-title: ACS Appl. Mater. Interfaces
– volume: 315
  start-page: 493
  year: 2007
  end-page: 497
  ident: bib28
  article-title: Improved oxygen reduction activity on Pt
  publication-title: Science
– volume: 9
  start-page: 457
  year: 2017
  ident: bib50
  article-title: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
  publication-title: Nat. Chem.
– volume: 7
  start-page: 15615
  year: 2019
  end-page: 15620
  ident: bib115
  article-title: Exploring the charge reactions in a Li-O
  publication-title: J. Mater. Chem. A
– volume: 1
  start-page: 16111
  year: 2016
  ident: bib116
  article-title: Anion-redox nanolithia cathodes for Li-ion batteries
  publication-title: Nat. Energy
– volume: 10
  start-page: 1890
  year: 2019
  ident: bib112
  article-title: Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte
  publication-title: Nat. Commun.
– volume: 3
  start-page: 6656
  year: 2013
  end-page: 6660
  ident: bib125
  article-title: The Li-CO
  publication-title: RSC Adv.
– volume: 9
  start-page: 4218
  year: 2019
  end-page: 4225
  ident: bib54
  article-title: Outlining the scaling-based and scaling-free optimization of electrocatalysts
  publication-title: ACS Catal.
– volume: 6
  start-page: 828
  year: 2014
  ident: bib6
  article-title: High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction
  publication-title: Nat. Chem.
– volume: 4
  start-page: 1301389
  year: 2014
  ident: bib69
  article-title: Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries
  publication-title: Adv. Energy Mater.
– volume: 116
  start-page: 4899
  year: 2019
  end-page: 4904
  ident: bib7
  article-title: Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 9
  start-page: 5422
  year: 2018
  ident: bib39
  article-title: Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell
  publication-title: Nat. Commun.
– volume: 28
  start-page: 1803329
  year: 2018
  ident: bib3
  article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn-air batteries
  publication-title: Adv. Funct. Mater.
– volume: 113
  start-page: 20689
  year: 2009
  end-page: 20697
  ident: bib46
  article-title: Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions
  publication-title: J. Phys. Chem. C
– volume: 288
  start-page: 451
  year: 2015
  end-page: 460
  ident: bib78
  article-title: Cobaltite oxide nanosheets anchored graphene nanocomposite as an efficient oxygen reduction reaction (ORR) catalyst for the application of lithium-air batteries
  publication-title: J. Power Sources
– volume: 90
  start-page: 7368
  year: 1968
  end-page: 7370
  ident: bib86
  article-title: Matrix infrared spectrum and bonding in the lithium superoxide molecule, LiO
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 1301863
  year: 2014
  ident: bib97
  article-title: On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO
  publication-title: Adv. Energy Mater.
– volume: 135
  start-page: 15364
  year: 2013
  end-page: 15372
  ident: bib88
  article-title: Disproportionation in Li-O
  publication-title: J. Am. Chem. Soc.
– volume: 217
  start-page: 80
  year: 2016
  end-page: 91
  ident: bib41
  article-title: Manganese oxide catalysts for secondary zinc air batteries: from electrocatalytic activity to bifunctional air electrode performance
  publication-title: Electrochim Acta
– volume: 4
  start-page: 556
  year: 2013
  end-page: 560
  ident: bib94
  article-title: Li-O
  publication-title: J. Phys. Chem. Lett.
– volume: 11
  start-page: 2615
  year: 2019
  end-page: 2623
  ident: bib33
  article-title: Boosting stability and activity of oxygen evolution catalyst in acidic medium: bimetallic Ir-Fe oxides on reduced graphene oxide prepared through ultrasonic spray pyrolysis
  publication-title: ChemCatChem
– volume: 412
  start-page: 520
  year: 2019
  end-page: 526
  ident: bib10
  article-title: Effect of nonionic surfactant as an electrolyte additive on the performance of aluminum-air battery
  publication-title: J. Power Sources
– volume: 4
  start-page: 3167
  year: 2011
  end-page: 3192
  ident: bib30
  article-title: A review on non-precious metal electrocatalysts for PEM fuel cells
  publication-title: Energy Environ. Sci.
– volume: 137
  start-page: 13572
  year: 2015
  end-page: 13579
  ident: bib111
  article-title: Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O
  publication-title: J. Am. Chem. Soc.
– volume: 4
  start-page: 2259
  year: 2019
  end-page: 2270
  ident: bib124
  article-title: Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization
  publication-title: ACS Energy Lett.
– volume: 27
  start-page: 6834
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib22
  article-title: Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal-air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503211
– volume: 4
  start-page: 1301389
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib69
  article-title: Advanced extremely durable 3D bifunctional air electrodes for rechargeable zinc-air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301389
– volume: 361
  start-page: 777
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib98
  article-title: A high-energy-density lithium-oxygen battery based on a reversible four-electron conversion to lithium oxide
  publication-title: Science
  doi: 10.1126/science.aas9343
– volume: 10
  start-page: 3340
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib110
  article-title: An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC04521F
– volume: 1
  start-page: 16111
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib116
  article-title: Anion-redox nanolithia cathodes for Li-ion batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.111
– volume: 1597
  start-page: 66
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib127
  article-title: Material review of Li ion battery separators
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4878480
– volume: 217
  start-page: 80
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib41
  article-title: Manganese oxide catalysts for secondary zinc air batteries: from electrocatalytic activity to bifunctional air electrode performance
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2016.09.052
– volume: 137
  start-page: 13572
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib111
  article-title: Surface acidity as descriptor of catalytic activity for oxygen evolution reaction in Li-O2 battery
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b07792
– volume: 130
  start-page: 16136
  year: 2008
  ident: 10.1016/j.matt.2019.10.007_bib63
  article-title: Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja806400e
– volume: 45
  start-page: 117
  year: 2002
  ident: 10.1016/j.matt.2019.10.007_bib23
  article-title: Surface science studies of model fuel cell electrocatalysts
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(01)00022-X
– volume: 158
  start-page: A1379
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib43
  article-title: CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.068112jes
– volume: 9
  start-page: 457
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib50
  article-title: Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2695
– volume: 30
  start-page: 1705431
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib56
  article-title: Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201705431
– volume: 315
  start-page: 493
  year: 2007
  ident: 10.1016/j.matt.2019.10.007_bib28
  article-title: Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability
  publication-title: Science
  doi: 10.1126/science.1135941
– volume: 11
  start-page: 10
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib67
  article-title: Bifunctional perovskite oxide catalysts for oxygen reduction and evolution in alkaline media
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201500640
– volume: 28
  start-page: 8149
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib80
  article-title: Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02282
– volume: 3
  start-page: 14165
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib15
  article-title: A dual-mode rechargeable lithium-bromine/oxygen fuel cell
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03335G
– volume: 5
  start-page: 1401302
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib122
  article-title: Hybrid and aqueous lithium-air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401302
– volume: 1
  start-page: 16128
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib83
  article-title: Advances in understanding mechanisms underpinning lithium-air batteries
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.128
– volume: 154
  start-page: 327
  year: 2006
  ident: 10.1016/j.matt.2019.10.007_bib100
  article-title: The potential of model studies for the understanding of catalyst poisoning and temperature effects in polymer electrolyte fuel cell reactions
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.10.086
– volume: 133
  start-page: 18038
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib105
  article-title: On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja207229n
– volume: 23
  start-page: 1531
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib68
  article-title: Simple but efficient method for inhibiting sintering and aggregation of catalytic Pt nanoclusters on metal-oxide supports
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201604188
– volume: 4
  start-page: 2383
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib106
  article-title: A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3383
– volume: 51
  start-page: 2335
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib13
  article-title: Potassium superoxide: a unique alternative for metal-air batteries
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00332
– volume: 6
  start-page: 1091
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib87
  article-title: The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2101
– volume: 28
  start-page: 1803329
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib3
  article-title: A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn-air batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803329
– volume: 165
  start-page: A1713
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib12
  article-title: Investigation of sodium phosphate and sodium dodecylbenzenesulfonate as electrolyte additives for AZ91 magnesium-air battery
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0581809jes
– volume: 3
  start-page: 6656
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib125
  article-title: The Li-CO2 battery: a novel method for CO2 capture and utilization
  publication-title: RSC Adv.
  doi: 10.1039/c3ra40394g
– volume: 49
  start-page: 338
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib82
  article-title: Operando liquid cell electron microscopy of discharge and charge kinetics in lithium-oxygen batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.04.046
– volume: 163
  start-page: A930
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib114
  article-title: Understanding the charging mechanism of lithium-sulfur batteries using spatially resolved operando X-ray absorption spectroscopy
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0631606jes
– volume: 237
  start-page: 140
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib55
  article-title: Graphitic carbon nitride-carbon nanofiber as oxygen catalyst in anion-exchange membrane water electrolyzer and rechargeable metal-air cells
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2018.05.073
– volume: 9
  start-page: 5422
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib39
  article-title: Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07850-2
– volume: 4
  start-page: 1301863
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib97
  article-title: On the thermodynamics, the role of the carbon cathode, and the cycle life of the sodium superoxide (NaO2) battery
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201301863
– volume: 6
  start-page: 9764
  year: 2012
  ident: 10.1016/j.matt.2019.10.007_bib76
  article-title: Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium-O2 battery cathodes
  publication-title: ACS Nano
  doi: 10.1021/nn303275d
– volume: 114
  start-page: 8165
  year: 2010
  ident: 10.1016/j.matt.2019.10.007_bib81
  article-title: Stability of lithium superoxide LiO2 in the gas phase: computational study of dimerization and disproportionation reactions
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp1047584
– volume: 46
  start-page: 1878
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib31
  article-title: Nanostructured nonprecious metal catalysts for oxygen reduction reaction
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400011z
– volume: 11
  start-page: 21454
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib38
  article-title: La1.5Sr0.5NiMn0.5Ru0.5O6 double perovskite with enhanced ORR/OER bifunctional catalytic activity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b02077
– volume: 113
  start-page: 20689
  year: 2009
  ident: 10.1016/j.matt.2019.10.007_bib46
  article-title: Unraveling oxygen reduction reaction mechanisms on carbon-supported Fe-phthalocyanine and Co-phthalocyanine catalysts in alkaline solutions
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp906408y
– volume: 6
  start-page: 1502054
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib37
  article-title: Long-life, high-voltage acidic Zn-air batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201502054
– volume: 3
  start-page: 227
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib17
  article-title: Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0104-5
– volume: 354
  start-page: 1410
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib26
  article-title: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 24
  start-page: 45
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib4
  article-title: Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society
  publication-title: Electrochem. Soc. Interfaces
  doi: 10.1149/2.F03152if
– volume: 47
  start-page: 1555
  year: 2002
  ident: 10.1016/j.matt.2019.10.007_bib62
  article-title: Vacuum evaporated thin films of mixed cobalt and nickel oxides as electrocatalyst for oxygen evolution and reduction
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(01)00897-0
– volume: 7
  start-page: 1601275
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib34
  article-title: Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601275
– volume: 14
  start-page: 2426
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib72
  article-title: Effect of non-specifically adsorbed ions on the surface oxidation of Pt(111)
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.201300404
– volume: 22
  start-page: 1926
  year: 2010
  ident: 10.1016/j.matt.2019.10.007_bib66
  article-title: NixCo3-xO4 nanowire arrays for electrocatalytic oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903896
– volume: 7
  start-page: 1700544
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib70
  article-title: Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700544
– volume: 0
  start-page: 1901035
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib96
  article-title: Li-breathing air batteries catalyzed by MnNiFe/laser-induced graphene catalysts
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901035
– volume: 5
  start-page: 6744
  year: 2012
  ident: 10.1016/j.matt.2019.10.007_bib24
  article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03590a
– volume: 6
  start-page: 750
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib8
  article-title: Lithium-oxygen batteries: bridging mechanistic understanding and battery performance
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee23966g
– volume: 4
  start-page: 3167
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib30
  article-title: A review on non-precious metal electrocatalysts for PEM fuel cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00558d
– volume: 412
  start-page: 520
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib10
  article-title: Effect of nonionic surfactant as an electrolyte additive on the performance of aluminum-air battery
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.11.086
– volume: 514
  start-page: 348
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib102
  article-title: Lithium-antimony-lead liquid metal battery for grid-level energy storage
  publication-title: Nature
  doi: 10.1038/nature13700
– volume: 133
  start-page: 19048
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib77
  article-title: Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja208608s
– volume: 56
  start-page: 7505
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib95
  article-title: A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201701290
– volume: 317
  start-page: 136
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib121
  article-title: Aqueous lithium-air batteries with a lithium-ion conducting solid electrolyte Li1.3Al0.5Nb0.2Ti1.3(PO4)3
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2018.01.020
– volume: 29
  start-page: 120
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib32
  article-title: Measurement techniques for the study of thin film heterogeneous water oxidation electrocatalysts
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02796
– volume: 14
  start-page: 78
  year: 2012
  ident: 10.1016/j.matt.2019.10.007_bib58
  article-title: A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.11.007
– volume: 12
  start-page: 1946
  year: 2012
  ident: 10.1016/j.matt.2019.10.007_bib117
  article-title: Highly active and durable core-corona structured bifunctional catalyst for rechargeable metal-air battery application
  publication-title: Nano Lett.
  doi: 10.1021/nl2044327
– volume: 334
  start-page: 1383
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib48
  article-title: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles
  publication-title: Science
  doi: 10.1126/science.1212858
– volume: 288
  start-page: 451
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib78
  article-title: Cobaltite oxide nanosheets anchored graphene nanocomposite as an efficient oxygen reduction reaction (ORR) catalyst for the application of lithium-air batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.04.029
– volume: 7
  start-page: 772
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib104
  article-title: A viewpoint on heterogeneous electrocatalysis and redox mediation in nonaqueous Li-O2 batteries
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02866
– volume: 118
  start-page: 2963
  year: 2006
  ident: 10.1016/j.matt.2019.10.007_bib25
  article-title: Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.200504386
– volume: 21
  start-page: 10118
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib75
  article-title: Oxygen reduction reaction catalyst on lithium/air battery discharge performance
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm04170j
– volume: 172
  start-page: 913
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib9
  article-title: Least-cost operation of a battery swapping station with random customer requests
  publication-title: Energy
  doi: 10.1016/j.energy.2019.02.018
– volume: 3
  start-page: 485
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib18
  article-title: Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2018.11.002
– volume: 1
  start-page: 359
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib129
  article-title: Li-CO2 electrochemistry: a new strategy for CO2 fixation and energy storage
  publication-title: Joule
  doi: 10.1016/j.joule.2017.07.001
– volume: 10
  start-page: 6327
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib130
  article-title: 3D foam-like composites of Mo2C nanorods coated by N-doped carbon: a novel self-standing and binder-free O2 electrode for Li-O2 batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b17795
– volume: 4
  start-page: 7107
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib65
  article-title: Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA00173D
– volume: 56
  start-page: 15025
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib74
  article-title: Co-adsorption of cations as the cause of the apparent pH dependence of hydrogen adsorption on a stepped platinum single-crystal electrode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201709455
– volume: 4
  start-page: 2952
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib91
  article-title: All-carbon-nanofiber electrodes for high-energy rechargeable Li-O2 batteries
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01496j
– volume: 5
  start-page: 241
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib60
  article-title: Tips-bundled Pt/Co3O4 nanowires with directed peripheral growth of Li2O2 as efficient binder/carbon-free catalytic cathode for lithium-oxygen battery
  publication-title: ACS Catal.
  doi: 10.1021/cs501392p
– volume: 141
  start-page: 12832
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib92
  article-title: Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05992
– volume: 1
  start-page: 34
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib20
  article-title: Metal-air batteries with high energy density: Li-air versus Zn-air
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201000010
– volume: 297
  start-page: 481
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib44
  article-title: Cell design concepts for aqueous lithium-oxygen batteries: a model-based assessment
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.07.058
– volume: 23
  start-page: 18049
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib61
  article-title: Co3O4@Co/NCNT nanostructure derived from a dicyanamide-based metal-organic framework as an efficient Bi-functional electrocatalyst for oxygen reduction and evolution reactions
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201704211
– volume: 162
  start-page: 750
  year: 2006
  ident: 10.1016/j.matt.2019.10.007_bib16
  article-title: The development of a carbon-air semi fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.07.023
– volume: 5
  start-page: 489
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib79
  article-title: Charging a Li-O2 battery using a redox mediator
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1646
– volume: 29
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib2
  article-title: Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604685
– volume: 10
  start-page: 900
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib123
  article-title: Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08767-0
– volume: 4
  start-page: 1004
  year: 2012
  ident: 10.1016/j.matt.2019.10.007_bib90
  article-title: Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O2 batteries
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1499
– volume: 6
  start-page: 16545
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib45
  article-title: Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn2O4 bifunctional catalysts under practical rechargeable conditions
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am5047476
– volume: 9
  start-page: 1900429
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib51
  article-title: Realizing ultrafast oxygen evolution by introducing proton acceptor into perovskites
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900429
– volume: 135
  start-page: 15364
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib88
  article-title: Disproportionation in Li-O2 batteries based on a large surface area carbon cathode
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja403199d
– volume: 6
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib14
  article-title: Recent advances in hybrid sodium-air batteries
  publication-title: Mater. Horiz.
  doi: 10.1039/C8MH01375F
– volume: 164
  start-page: E3696
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib85
  article-title: Computational studies of solubilities of LiO2 and Li2O2 in aprotic solvents
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0721711jes
– volume: 7
  start-page: 15615
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib115
  article-title: Exploring the charge reactions in a Li-O2 system with lithium oxide cathodes and nonaqueous electrolytes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03763B
– volume: 8
  start-page: 124
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib73
  article-title: How covalence breaks adsorption-energy scaling relations and solvation restores them
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC02123A
– volume: 5
  start-page: 1500991
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib36
  article-title: Toward an active and stable catalyst for oxygen evolution in acidic media: Ti-stabilized MnO2
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500991
– volume: 116
  start-page: 4899
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib7
  article-title: Expert assessments of the cost and expected future performance of proton exchange membrane fuel cells for vehicles
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1804221116
– volume: 4
  start-page: 556
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib94
  article-title: Li-O2 kinetic overpotentials: Tafel plots from experiment and first-principles theory
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400019y
– volume: 47
  start-page: 427
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib19
  article-title: Operando observations of RuO2 catalyzed Li2O2 formation and decomposition in a Li-O2 micro-battery
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.057
– volume: 3
  start-page: 1667
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib101
  article-title: Study of hydrogen peroxide reactions on manganese oxides as a tool to decode the oxygen reduction reaction mechanism
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201600236
– volume: 8
  start-page: 1801156
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib120
  article-title: High-energy aqueous lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801156
– volume: 6
  start-page: 828
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib6
  article-title: High-performance Ag-Co alloy catalysts for electrochemical oxygen reduction
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2032
– volume: 57
  start-page: 2800
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib71
  article-title: Elucidation of the oxygen reduction volcano in alkaline media using a copper-platinum(111) alloy
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711858
– volume: 136
  start-page: 8941
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib93
  article-title: A solution-phase bifunctional catalyst for lithium-oxygen batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501877e
– volume: 11
  start-page: 2615
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib33
  article-title: Boosting stability and activity of oxygen evolution catalyst in acidic medium: bimetallic Ir-Fe oxides on reduced graphene oxide prepared through ultrasonic spray pyrolysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900287
– volume: 1
  start-page: 466
  year: 2009
  ident: 10.1016/j.matt.2019.10.007_bib53
  article-title: The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.330
– volume: 4
  start-page: 2259
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib124
  article-title: Challenges in zinc electrodes for alkaline zinc-air batteries: obstacles to commercialization
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b01541
– volume: 10
  start-page: 704
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib49
  article-title: eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08657-5
– volume: 3
  start-page: 2948
  year: 2012
  ident: 10.1016/j.matt.2019.10.007_bib99
  article-title: Unifying the 2e- and 4e- reduction of oxygen on metal surfaces
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz301476w
– volume: 135
  start-page: 9733
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib128
  article-title: Toward a lithium-“air” battery: the effect of CO2 on the chemistry of a lithium-oxygen cell
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4016765
– volume: 120
  start-page: 25246
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib107
  article-title: In situ atomic force microscopy (AFM) study of oxygen reduction reaction on a gold electrode surface in a dimethyl sulfoxide (DMSO)-based electrolyte solution
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b08718
– volume: 136
  start-page: 11452
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib42
  article-title: Structure-property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505186m
– volume: 90
  start-page: 7368
  year: 1968
  ident: 10.1016/j.matt.2019.10.007_bib86
  article-title: Matrix infrared spectrum and bonding in the lithium superoxide molecule, LiO2
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01028a048
– volume: 2
  start-page: 724
  year: 2010
  ident: 10.1016/j.matt.2019.10.007_bib103
  article-title: The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201000126
– volume: 69
  start-page: 213
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib5
  article-title: Current status and future outlook of fuel cell vehicle development in Toyota
  publication-title: ECS Trans.
  doi: 10.1149/06917.0213ecst
– volume: 5
  start-page: 4643
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib40
  article-title: Oxygen reduction in alkaline media: from mechanisms to recent advances of catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00524
– volume: 350
  start-page: 185
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib27
  article-title: Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors
  publication-title: Science
  doi: 10.1126/science.aab3501
– volume: 75
  start-page: 775
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib59
  article-title: A review on unitized regenerative fuel cell technologies, part B: unitized regenerative alkaline fuel cell, solid oxide fuel cell, and microfluidic fuel cell
  publication-title: Renew. Sustain. Energ. Rev.
  doi: 10.1016/j.rser.2016.11.054
– volume: 13
  start-page: 15639
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib52
  article-title: Density functional studies of functionalized graphitic materials with late transition metals for oxygen reduction reactions
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c1cp21228a
– volume: 53
  start-page: 3926
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib108
  article-title: Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400711
– volume: 29
  start-page: 1702752
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib109
  article-title: Direct observations of the formation and redox-mediator-assisted decomposition of Li2O2 in a liquid-cell Li-O2 microbattery by scanning transmission electron microscopy
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702752
– volume: 343
  start-page: 1339
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib29
  article-title: Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces
  publication-title: Science
  doi: 10.1126/science.1249061
– volume: 10
  start-page: 1890
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib112
  article-title: Electrochemically primed functional redox mediator generator from the decomposition of solid state electrolyte
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09638-4
– volume: 9
  start-page: 1802605
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib11
  article-title: Recent advances in flexible zinc-based rechargeable batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802605
– volume: 9
  start-page: 5236
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib35
  article-title: Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07678-w
– volume: 9
  start-page: 4218
  year: 2019
  ident: 10.1016/j.matt.2019.10.007_bib54
  article-title: Outlining the scaling-based and scaling-free optimization of electrocatalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00532
– volume: 47
  start-page: 10948
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib118
  article-title: Peroxide solvation by a toroidal lithium inverse crown ether complex assembled by multidentate polyimido sulfonates
  publication-title: Chem. Commun. (Camb.)
  doi: 10.1039/c1cc14466a
– volume: 3
  start-page: 546
  year: 2011
  ident: 10.1016/j.matt.2019.10.007_bib21
  article-title: Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal-air batteries
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1069
– volume: 607
  start-page: 83
  year: 2007
  ident: 10.1016/j.matt.2019.10.007_bib47
  article-title: Electrolysis of water on oxide surfaces
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2006.11.008
– volume: 41
  start-page: 2172
  year: 2012
  ident: 10.1016/j.matt.2019.10.007_bib1
  article-title: Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15228a
– volume: 30
  year: 2018
  ident: 10.1016/j.matt.2019.10.007_bib113
  article-title: Li2S- or S-based lithium-ion batteries
  publication-title: Adv. Mater.
– volume: 16
  start-page: 2969
  year: 2016
  ident: 10.1016/j.matt.2019.10.007_bib84
  article-title: Unexpected Li2O2 film growth on carbon nanotube electrodes with CeO2 nanoparticles in Li-O2 batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05006
– volume: 1
  start-page: 4754
  year: 2013
  ident: 10.1016/j.matt.2019.10.007_bib64
  article-title: One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta01402a
– volume: 79
  start-page: 82
  year: 1999
  ident: 10.1016/j.matt.2019.10.007_bib57
  article-title: Bifunctional electrodes with a thin catalyst layer for `unitized' proton exchange membrane regenerative fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00047-6
– volume: 54
  start-page: 6550
  year: 2015
  ident: 10.1016/j.matt.2019.10.007_bib126
  article-title: The first introduction of graphene to rechargeable Li-CO2 batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201501214
– volume: 8
  start-page: 2334
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib89
  article-title: LiO2: cryosynthesis and chemical/electrochemical reactivities
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.7b00680
– volume: 44
  start-page: 5
  year: 2014
  ident: 10.1016/j.matt.2019.10.007_bib119
  article-title: A review of high energy density lithium-air battery technology
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-013-0620-8
– volume: 27
  start-page: 1700564
  year: 2017
  ident: 10.1016/j.matt.2019.10.007_bib131
  article-title: Mo2C/CNT: an efficient catalyst for rechargeable Li-CO2 batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700564
SSID ssj0002213743
Score 2.4809299
SecondaryResourceType review_article
Snippet With the ever-increasing demand for higher-performing energy-storage systems, electrocatalysis has become a major topic of interest in an attempt to enhance...
SourceID osti
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 32
SubjectTerms fuel cell
Li-O2 battery
oxygen evolution reaction
oxygen reduction reaction
Zn-air battery
Title Relating Catalysis between Fuel Cell and Metal-Air Batteries
URI https://dx.doi.org/10.1016/j.matt.2019.10.007
https://www.osti.gov/biblio/1581680
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELXKcukFFVFUPop84LbKKnbsBEtcVqgIQdsDArE9RbbjVCCURSiRgF_fmdhJFgqr0ku0mqyTyG_iGU_ezBCyr6QE1S3h_QZrFgnNZKTKTEZWJE7HxjLeJgr_-JmeXIrTmZwN3dva7JLaTOzTq3kl_4MqyABXzJJ9B7L9RUEAvwFfOALCcPwnjD2TDT_cYxCmrS3S8a6OG3c7PsLAXMukcHA-ml7fj309zY452LVy0vUCS_f7tU_iaRuBD0F0FM4aXT00g0JdhWjz-bz6_di451f4BU9m5othBR63YYWDIdYVDPOwHME-KY7AwPtv0O4VWVhP-Uu1-WuV9gGDmwn45EhnZWrSEuyywSb1TEEmsTFIvEJWOewD-IisTs_Or876MBrnLPFpFP2zhNQoz-J7eYu33I_RHFbUBc_i4hNZC1sCOvX4rpMPrtoghx22tMeWBmwpYksRWwrY0h5b2mP7mVwef7s4OolCpwt8J7I6YiZVMXgrqQFXgWclF4ViOi4clsMveOEsmKQyYamWIjMKtuTMgOuuD4Sy4CLrZJOMqnnlvhBqMTXYKi15YQVnhTKxFkWSClcq2JuWW4R1E5DbUAYeu5Hc5h3f7ybHSctx0lAGk7ZFxv2YO18EZem_ZTeveXDjvHuWA_5Lx-0gCDgG6xdbJHrBoKAB20vP7pCPgxLvklF937iv4C3WZi9ozB9uBWcL
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Relating+Catalysis+between+Fuel+Cell+and+Metal-Air+Batteries&rft.jtitle=Matter&rft.au=Li%2C+Matthew&rft.au=Bi%2C+Xuanxuan&rft.au=Wang%2C+Rongyue&rft.au=Li%2C+Yingbo&rft.date=2020-01-08&rft.pub=Elsevier&rft.issn=2590-2385&rft.eissn=2590-2385&rft.volume=2&rft.issue=1&rft_id=info:doi/10.1016%2Fj.matt.2019.10.007&rft.externalDocID=1581680
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-2385&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-2385&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-2385&client=summon