Plasma-grown graphene petals templating Ni–Co–Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes

Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elem...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. A, Materials for energy and sustainability Vol. 3; no. 45; pp. 22940 - 22948
Main Authors Xiong, Guoping, He, Pingge, Liu, Lei, Chen, Tengfei, Fisher, Timothy S.
Format Journal Article
LanguageEnglish
Published 01.01.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni–Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm −2 relative to its low-current (1 mA cm −2 ) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g −1 (based on the mass of NCMTH), high specific energy density (≈30 W h kg −1 ) and power density (≈39 kW kg −1 ) at a high current density of 100 mA cm −2 , and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s −1 (approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles).
AbstractList Ni-Co-Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni-Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm-2 relative to its low-current (1 mA cm-2) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g-1 (based on the mass of NCMTH), high specific energy density ( approximately 30 W h kg-1) and power density ( approximately 39 kW kg-1) at a high current density of 100 mA cm-2, and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s-1 (approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles).
Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni–Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm −2 relative to its low-current (1 mA cm −2 ) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g −1 (based on the mass of NCMTH), high specific energy density (≈30 W h kg −1 ) and power density (≈39 kW kg −1 ) at a high current density of 100 mA cm −2 , and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s −1 (approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles).
Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni–Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm⁻² relative to its low-current (1 mA cm⁻²) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g⁻¹ (based on the mass of NCMTH), high specific energy density (≈30 W h kg⁻¹) and power density (≈39 kW kg⁻¹) at a high current density of 100 mA cm⁻², and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s⁻¹ (approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles).
Author He, Pingge
Xiong, Guoping
Chen, Tengfei
Fisher, Timothy S.
Liu, Lei
Author_xml – sequence: 1
  givenname: Guoping
  surname: Xiong
  fullname: Xiong, Guoping
  organization: Birck Nanotechnology Center, Purdue University, West Lafayette, USA, School of Mechanical Engineering
– sequence: 2
  givenname: Pingge
  surname: He
  fullname: He, Pingge
  organization: Birck Nanotechnology Center, Purdue University, West Lafayette, USA, School of Mechanical Engineering
– sequence: 3
  givenname: Lei
  surname: Liu
  fullname: Liu, Lei
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
– sequence: 4
  givenname: Tengfei
  surname: Chen
  fullname: Chen, Tengfei
  organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
– sequence: 5
  givenname: Timothy S.
  surname: Fisher
  fullname: Fisher, Timothy S.
  organization: Birck Nanotechnology Center, Purdue University, West Lafayette, USA, School of Mechanical Engineering
BookMark eNqNkc1O3DAQx60KpFLg0ifwEVUKtePEcY6rFS2VKHCAczTrTLKuvHZqe6F748i9b8iT4BWolRASzGFmpPnNh_7ziew475CQz5wdcybar_P6asbqquKzD2SvZDUrmqqVO_9ypT6Swxh_sWyKMdm2e-T-0kJcQTEGf-voGGBaokM6YQIbacLVZCEZN9Jz83D3d-6z--noctMH_8f0SB1sj8DeYqSDD3RpxmURICEF11Pr3VjojbZYWDPksRHXvdcwgTbJ3CBFizoF32M8ILtDXomHz3GfXH87uZqfFmcX33_MZ2eFrkSTCl6ViwaY4lLzEhCUqGrOcKFAiIapUuuyHwa-6LVQclG2qJWUsm7kILTMJbFPjp7mTsH_XmNM3cpEjdaCQ7-OXSlEzUVd8fJNlCtRS5G1bd-Bcq5UW_Etyp5QHXyMAYcua5E19i4FMLbjrNt-s_v_zdzy5UXLFMwKwuY1-BEqg6SL
CitedBy_id crossref_primary_10_1007_s10854_019_01703_4
crossref_primary_10_1039_D0RA10377B
crossref_primary_10_1039_C6TA05082D
crossref_primary_10_1016_j_jallcom_2020_157116
crossref_primary_10_1038_s41467_018_03112_3
crossref_primary_10_1039_C7TA04001F
crossref_primary_10_1016_j_materresbull_2018_06_005
crossref_primary_10_1007_s11431_023_2503_8
crossref_primary_10_1016_j_est_2023_109424
crossref_primary_10_1039_C8NR10473E
crossref_primary_10_1039_D2NJ05566J
crossref_primary_10_1016_j_jechem_2024_05_052
crossref_primary_10_1007_s10853_018_2474_2
crossref_primary_10_1039_D3SE00233K
crossref_primary_10_1016_j_jechem_2021_02_005
crossref_primary_10_1016_j_matchemphys_2017_04_027
crossref_primary_10_1039_C6NJ01470D
crossref_primary_10_1016_j_carbon_2019_09_003
crossref_primary_10_1021_acs_energyfuels_1c03299
crossref_primary_10_1002_adfm_201600879
crossref_primary_10_1007_s11356_023_29697_x
crossref_primary_10_1016_j_hydromet_2019_02_015
crossref_primary_10_1039_C7TA04802E
crossref_primary_10_1016_j_est_2023_106941
crossref_primary_10_1016_j_ensm_2018_06_026
crossref_primary_10_1002_celc_202001364
crossref_primary_10_1021_acsanm_4c03962
crossref_primary_10_1039_C7RA03018E
crossref_primary_10_1016_j_jallcom_2019_151932
crossref_primary_10_1016_j_cej_2021_129910
crossref_primary_10_1039_C9TA02583A
crossref_primary_10_1016_j_jmrt_2021_01_027
crossref_primary_10_3390_mi8010020
crossref_primary_10_1016_j_apmt_2021_101297
crossref_primary_10_1016_j_cej_2017_02_004
crossref_primary_10_1016_j_ceramint_2016_11_006
crossref_primary_10_1016_j_ceramint_2019_07_226
crossref_primary_10_1016_j_carbon_2017_11_037
crossref_primary_10_1016_j_est_2021_103496
crossref_primary_10_1039_C6TA05406D
crossref_primary_10_1016_j_micromeso_2017_02_043
crossref_primary_10_1016_j_cej_2018_08_102
crossref_primary_10_1016_j_mattod_2018_11_002
crossref_primary_10_1016_j_jpowsour_2019_226897
crossref_primary_10_3390_nano8100747
crossref_primary_10_1002_cssc_201902753
crossref_primary_10_1016_j_jallcom_2020_155921
crossref_primary_10_1007_s10800_020_01473_6
crossref_primary_10_1142_S1793292020500629
crossref_primary_10_1002_bkcs_11724
crossref_primary_10_1039_C6CE02223E
crossref_primary_10_3390_catal10090969
crossref_primary_10_1016_j_nanoen_2016_08_049
crossref_primary_10_1039_D0TA09655E
crossref_primary_10_1039_D0TA02939D
crossref_primary_10_1021_acsami_7b03709
crossref_primary_10_1021_acsaem_1c00553
crossref_primary_10_1016_j_carbon_2024_119176
crossref_primary_10_1039_C8TA07609J
crossref_primary_10_1016_j_jallcom_2018_10_344
crossref_primary_10_1002_chem_201903244
crossref_primary_10_1016_j_jpowsour_2020_227912
crossref_primary_10_1080_10667857_2019_1603615
crossref_primary_10_1016_j_est_2019_01_010
crossref_primary_10_1007_s40843_020_1562_1
crossref_primary_10_1039_C7TA03932H
crossref_primary_10_1016_j_jallcom_2018_07_168
crossref_primary_10_1016_j_colsurfa_2020_125417
crossref_primary_10_1016_j_electacta_2021_139324
crossref_primary_10_1007_s11581_020_03496_7
crossref_primary_10_1039_C7TA00234C
crossref_primary_10_1016_j_jcis_2021_05_099
crossref_primary_10_1038_s41598_018_22448_w
crossref_primary_10_1016_j_jcis_2020_04_017
crossref_primary_10_1007_s13738_020_01917_y
crossref_primary_10_1016_j_jallcom_2022_167614
crossref_primary_10_1063_1_5044560
crossref_primary_10_1016_j_ensm_2018_07_018
crossref_primary_10_1016_j_nanoen_2017_05_050
crossref_primary_10_1016_j_est_2024_110596
crossref_primary_10_1016_j_mtcomm_2024_109127
crossref_primary_10_2139_ssrn_4181389
crossref_primary_10_1007_s12598_023_02405_x
crossref_primary_10_1016_j_jallcom_2023_172099
crossref_primary_10_1080_1536383X_2022_2154756
crossref_primary_10_1002_slct_201601768
crossref_primary_10_1016_j_vacuum_2019_109055
crossref_primary_10_1039_C8RA01537F
crossref_primary_10_1016_j_est_2024_112704
crossref_primary_10_1007_s11431_021_1941_0
crossref_primary_10_1007_s10854_018_8788_7
crossref_primary_10_1007_s11051_020_04819_5
crossref_primary_10_1039_C6DT00449K
crossref_primary_10_1016_j_est_2020_101652
crossref_primary_10_1016_j_est_2021_102249
crossref_primary_10_1039_C6TA02164F
crossref_primary_10_1016_j_est_2023_108544
crossref_primary_10_1016_j_jpowsour_2018_11_080
crossref_primary_10_1007_s11581_019_03286_w
crossref_primary_10_1016_j_nanoen_2018_12_011
crossref_primary_10_1016_j_carbon_2020_10_034
Cites_doi 10.1002/1616-3028(20020805)12:8<489::AID-ADFM489>3.0.CO;2-X
10.1021/nl401086t
10.1021/cm020818e
10.1126/science.1249625
10.1039/C4CS00352G
10.1002/adfm.201102796
10.1002/aenm.201300580
10.1039/c0jm03830j
10.1007/s10008-009-0984-1
10.1002/elan.201300238
10.1016/j.materresbull.2007.06.006
10.1007/s11051-014-2856-6
10.1021/nl300779a
10.1039/C1CS15078B
10.1021/am4012484
10.1016/j.diamond.2012.05.002
10.1021/cm203831p
10.1021/nl101723g
10.1016/j.carbon.2014.10.042
10.1039/c3ee44164d
10.1021/am301010u
10.1021/jp900028t
10.1016/j.jpowsour.2013.03.069
10.1039/c2nr31590d
10.1002/ente.201402055
10.1016/j.electacta.2004.07.038
10.1039/c2cc31418e
10.1006/jssc.2000.8749
10.1002/aenm.201300431
10.1038/nmat1672
10.1021/nl102203s
10.1039/c2cc18079k
10.1126/science.1194372
10.1039/c3ta10790f
10.1021/am9009154
10.1016/j.jpowsour.2009.06.004
10.1002/adfm.201401216
10.1007/978-1-4757-3058-6
10.1016/j.jpowsour.2013.10.108
10.1007/s12274-010-0024-6
10.1021/nl100865a
10.1016/j.jpowsour.2012.11.040
10.1021/jp804413a
10.1002/aenm.201300515
10.1021/nn4021955
10.1021/jp3028353
10.1016/j.jpowsour.2012.12.069
10.1016/j.jpowsour.2012.07.111
10.1038/nmat2297
10.1021/sc500806s
10.1039/C2NR32040A
10.1039/c2ra01220k
10.1016/j.carbon.2012.05.014
10.1039/C2CC37117K
10.1021/am405213z
10.1039/b902221j
10.1002/adfm.201102839
10.1016/j.jpowsour.2010.06.042
10.1039/c2nr30936j
10.1016/S0378-7753(01)00707-8
10.1016/j.jpowsour.2007.09.004
10.1021/jp201200e
10.1039/c2ee22572g
10.1039/b815647f
ContentType Journal Article
DBID AAYXX
CITATION
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
DOI 10.1039/C5TA05441A
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Environment Abstracts
CrossRef
AGRICOLA
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7496
EndPage 22948
ExternalDocumentID 10_1039_C5TA05441A
GroupedDBID 0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3G
J3H
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
7ST
C1K
SOI
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
7S9
L.6
ID FETCH-LOGICAL-c437t-142b7a0816c12aea834510eb8a337082cc2dff1bdc386b29ec8666576f3c62df3
ISSN 2050-7488
2050-7496
IngestDate Fri Jul 11 10:51:06 EDT 2025
Fri Jul 11 16:12:31 EDT 2025
Fri Jul 11 11:51:23 EDT 2025
Tue Jul 01 04:18:00 EDT 2025
Thu Apr 24 23:08:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c437t-142b7a0816c12aea834510eb8a337082cc2dff1bdc386b29ec8666576f3c62df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1811889419
PQPubID 23462
PageCount 9
ParticipantIDs proquest_miscellaneous_2335135412
proquest_miscellaneous_1835630509
proquest_miscellaneous_1811889419
crossref_citationtrail_10_1039_C5TA05441A
crossref_primary_10_1039_C5TA05441A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-01-01
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of materials chemistry. A, Materials for energy and sustainability
PublicationYear 2015
References Lee (C5TA05441A-(cit42)/*[position()=1]) 2004; 50
Yu (C5TA05441A-(cit15)/*[position()=1]) 2013; 49
Seo (C5TA05441A-(cit31)/*[position()=1]) 2015; 3
Pu (C5TA05441A-(cit19)/*[position()=1]) 2014; 250
Uthaisar (C5TA05441A-(cit39)/*[position()=1]) 2010; 10
Huang (C5TA05441A-(cit7)/*[position()=1]) 2012; 41
Salunkhe (C5TA05441A-(cit20)/*[position()=1]) 2012; 2
Huang (C5TA05441A-(cit16)/*[position()=1]) 2013; 13
Bo (C5TA05441A-(cit29)/*[position()=1]) 2012; 50
Augustyn (C5TA05441A-(cit61)/*[position()=1]) 2014; 7
Taberna (C5TA05441A-(cit4)/*[position()=1]) 2006; 5
Simon (C5TA05441A-(cit3)/*[position()=1]) 2014; 343
Zhao (C5TA05441A-(cit13)/*[position()=1]) 2011; 196
Xiong (C5TA05441A-(cit8)/*[position()=1]) 2014; 4
Wang (C5TA05441A-(cit49)/*[position()=1]) 2012; 116
Meher (C5TA05441A-(cit58)/*[position()=1]) 2011; 115
Conway (C5TA05441A-(cit54)/*[position()=1]) 1999
Lang (C5TA05441A-(cit65)/*[position()=1]) 2010; 14
Yen (C5TA05441A-(cit30)/*[position()=1]) 2015; 82
Zhang (C5TA05441A-(cit59)/*[position()=1]) 2010; 3
Ji (C5TA05441A-(cit9)/*[position()=1]) 2013; 7
Seo (C5TA05441A-(cit33)/*[position()=1]) 2013; 3
Rakhi (C5TA05441A-(cit21)/*[position()=1]) 2012; 12
Xiong (C5TA05441A-(cit25)/*[position()=1]) 2014; 2
Zhu (C5TA05441A-(cit52)/*[position()=1]) 2013; 1
Gomez (C5TA05441A-(cit51)/*[position()=1]) 2013; 230
Wang (C5TA05441A-(cit18)/*[position()=1]) 2015; 17
Liu (C5TA05441A-(cit35)/*[position()=1]) 2012; 4
Bag (C5TA05441A-(cit47)/*[position()=1]) 2014; 6
Yuan (C5TA05441A-(cit60)/*[position()=1]) 2009; 19
Yan (C5TA05441A-(cit63)/*[position()=1]) 2012; 22
Gupta (C5TA05441A-(cit41)/*[position()=1]) 2008; 175
Zhao (C5TA05441A-(cit28)/*[position()=1]) 2009; 194
Jouanneau (C5TA05441A-(cit43)/*[position()=1]) 2003; 15
Gogotsi (C5TA05441A-(cit62)/*[position()=1]) 2011; 334
Wang (C5TA05441A-(cit50)/*[position()=1]) 2012; 4
Bo (C5TA05441A-(cit27)/*[position()=1]) 2015; 44
Zhang (C5TA05441A-(cit14)/*[position()=1]) 2012; 5
Hou (C5TA05441A-(cit53)/*[position()=1]) 2010; 10
Simon (C5TA05441A-(cit2)/*[position()=1]) 2008; 7
Jiang (C5TA05441A-(cit36)/*[position()=1]) 2012; 48
Li (C5TA05441A-(cit34)/*[position()=1]) 2012; 4
Marco (C5TA05441A-(cit45)/*[position()=1]) 2000; 153
Cui (C5TA05441A-(cit46)/*[position()=1]) 2009; 113
Sun (C5TA05441A-(cit17)/*[position()=1]) 2013; 238
Tang (C5TA05441A-(cit64)/*[position()=1]) 2012; 22
Zhi (C5TA05441A-(cit10)/*[position()=1]) 2013; 5
Miller (C5TA05441A-(cit26)/*[position()=1]) 2010; 329
Wang (C5TA05441A-(cit32)/*[position()=1]) 2014; 24
Wu (C5TA05441A-(cit24)/*[position()=1]) 2002; 12
Jiang (C5TA05441A-(cit5)/*[position()=1]) 2012; 48
Xiong (C5TA05441A-(cit6)/*[position()=1]) 2013; 227
Kundu (C5TA05441A-(cit44)/*[position()=1]) 2008; 112
Kim (C5TA05441A-(cit22)/*[position()=1]) 2010; 10
Yang (C5TA05441A-(cit12)/*[position()=1]) 2008
Luo (C5TA05441A-(cit38)/*[position()=1]) 2008; 43
Xiong (C5TA05441A-(cit23)/*[position()=1]) 2012; 27–28
Chen (C5TA05441A-(cit37)/*[position()=1]) 2013; 3
Hu (C5TA05441A-(cit57)/*[position()=1]) 2013; 221
Jiang (C5TA05441A-(cit11)/*[position()=1]) 2011; 21
Gamby (C5TA05441A-(cit55)/*[position()=1]) 2001; 101
Xiong (C5TA05441A-(cit1)/*[position()=1]) 2014; 26
Bhuvana (C5TA05441A-(cit40)/*[position()=1]) 2010; 2
Shao (C5TA05441A-(cit56)/*[position()=1]) 2012; 24
Wang (C5TA05441A-(cit48)/*[position()=1]) 2013; 5
References_xml – volume: 12
  start-page: 489
  year: 2002
  ident: C5TA05441A-(cit24)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/1616-3028(20020805)12:8<489::AID-ADFM489>3.0.CO;2-X
– volume: 13
  start-page: 3135
  year: 2013
  ident: C5TA05441A-(cit16)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl401086t
– volume: 15
  start-page: 495
  year: 2003
  ident: C5TA05441A-(cit43)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm020818e
– volume: 343
  start-page: 1210
  year: 2014
  ident: C5TA05441A-(cit3)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 44
  start-page: 2108
  year: 2015
  ident: C5TA05441A-(cit27)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00352G
– volume: 22
  start-page: 1272
  year: 2012
  ident: C5TA05441A-(cit64)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102796
– volume: 3
  start-page: 1636
  year: 2013
  ident: C5TA05441A-(cit37)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300580
– volume: 21
  start-page: 3818
  year: 2011
  ident: C5TA05441A-(cit11)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c0jm03830j
– volume: 14
  start-page: 1533
  year: 2010
  ident: C5TA05441A-(cit65)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-009-0984-1
– volume: 26
  start-page: 30
  year: 2014
  ident: C5TA05441A-(cit1)/*[position()=1]
  publication-title: Electroanalysis
  doi: 10.1002/elan.201300238
– volume: 43
  start-page: 1119
  year: 2008
  ident: C5TA05441A-(cit38)/*[position()=1]
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2007.06.006
– volume: 17
  start-page: 1
  year: 2015
  ident: C5TA05441A-(cit18)/*[position()=1]
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-014-2856-6
– volume: 12
  start-page: 2559
  year: 2012
  ident: C5TA05441A-(cit21)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl300779a
– volume: 334
  start-page: 917
  year: 2011
  ident: C5TA05441A-(cit62)/*[position()=1]
  publication-title: Science Magazine
– volume: 41
  start-page: 666
  year: 2012
  ident: C5TA05441A-(cit7)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C1CS15078B
– volume: 5
  start-page: 6255
  year: 2013
  ident: C5TA05441A-(cit48)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am4012484
– volume: 27–28
  start-page: 1
  year: 2012
  ident: C5TA05441A-(cit23)/*[position()=1]
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2012.05.002
– volume: 24
  start-page: 1192
  year: 2012
  ident: C5TA05441A-(cit56)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm203831p
– volume: 10
  start-page: 2727
  year: 2010
  ident: C5TA05441A-(cit53)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl101723g
– volume: 82
  start-page: 124
  year: 2015
  ident: C5TA05441A-(cit30)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2014.10.042
– volume: 7
  start-page: 1597
  year: 2014
  ident: C5TA05441A-(cit61)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee44164d
– volume: 4
  start-page: 4631
  year: 2012
  ident: C5TA05441A-(cit35)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am301010u
– volume: 113
  start-page: 14083
  year: 2009
  ident: C5TA05441A-(cit46)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp900028t
– volume: 238
  start-page: 150
  year: 2013
  ident: C5TA05441A-(cit17)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.03.069
– volume: 4
  start-page: 7266
  year: 2012
  ident: C5TA05441A-(cit50)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr31590d
– volume: 2
  start-page: 897
  year: 2014
  ident: C5TA05441A-(cit25)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.201402055
– volume: 50
  start-page: 939
  year: 2004
  ident: C5TA05441A-(cit42)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2004.07.038
– volume: 48
  start-page: 4465
  year: 2012
  ident: C5TA05441A-(cit5)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc31418e
– volume: 153
  start-page: 74
  year: 2000
  ident: C5TA05441A-(cit45)/*[position()=1]
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.2000.8749
– volume: 3
  start-page: 1316
  year: 2013
  ident: C5TA05441A-(cit33)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300431
– volume: 5
  start-page: 567
  year: 2006
  ident: C5TA05441A-(cit4)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1672
– volume: 10
  start-page: 4099
  year: 2010
  ident: C5TA05441A-(cit22)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl102203s
– volume: 48
  start-page: 2606
  year: 2012
  ident: C5TA05441A-(cit36)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc18079k
– volume: 329
  start-page: 1637
  year: 2010
  ident: C5TA05441A-(cit26)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1194372
– volume: 1
  start-page: 8327
  year: 2013
  ident: C5TA05441A-(cit52)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/c3ta10790f
– volume: 2
  start-page: 644
  year: 2010
  ident: C5TA05441A-(cit40)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am9009154
– volume: 194
  start-page: 1208
  year: 2009
  ident: C5TA05441A-(cit28)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.06.004
– volume: 24
  start-page: 6372
  year: 2014
  ident: C5TA05441A-(cit32)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401216
– volume-title: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications
  year: 1999
  ident: C5TA05441A-(cit54)/*[position()=1]
  doi: 10.1007/978-1-4757-3058-6
– volume: 250
  start-page: 250
  year: 2014
  ident: C5TA05441A-(cit19)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2013.10.108
– volume: 3
  start-page: 643
  year: 2010
  ident: C5TA05441A-(cit59)/*[position()=1]
  publication-title: Nano Res.
  doi: 10.1007/s12274-010-0024-6
– volume: 10
  start-page: 2838
  year: 2010
  ident: C5TA05441A-(cit39)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl100865a
– volume: 227
  start-page: 254
  year: 2013
  ident: C5TA05441A-(cit6)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.11.040
– volume: 112
  start-page: 16869
  year: 2008
  ident: C5TA05441A-(cit44)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp804413a
– volume: 4
  start-page: 1300515
  year: 2014
  ident: C5TA05441A-(cit8)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300515
– volume: 7
  start-page: 6237
  year: 2013
  ident: C5TA05441A-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/nn4021955
– volume: 116
  start-page: 12448
  year: 2012
  ident: C5TA05441A-(cit49)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp3028353
– volume: 230
  start-page: 218
  year: 2013
  ident: C5TA05441A-(cit51)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.12.069
– volume: 221
  start-page: 128
  year: 2013
  ident: C5TA05441A-(cit57)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2012.07.111
– volume: 7
  start-page: 845
  year: 2008
  ident: C5TA05441A-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 3
  start-page: 544
  year: 2015
  ident: C5TA05441A-(cit31)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/sc500806s
– volume: 5
  start-page: 72
  year: 2013
  ident: C5TA05441A-(cit10)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C2NR32040A
– volume: 2
  start-page: 3190
  year: 2012
  ident: C5TA05441A-(cit20)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/c2ra01220k
– volume: 50
  start-page: 4379
  year: 2012
  ident: C5TA05441A-(cit29)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2012.05.014
– volume: 49
  start-page: 137
  year: 2013
  ident: C5TA05441A-(cit15)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC37117K
– volume: 6
  start-page: 2692
  year: 2014
  ident: C5TA05441A-(cit47)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am405213z
– volume: 19
  start-page: 5772
  year: 2009
  ident: C5TA05441A-(cit60)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/b902221j
– volume: 22
  start-page: 2632
  year: 2012
  ident: C5TA05441A-(cit63)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102839
– volume: 196
  start-page: 860
  year: 2011
  ident: C5TA05441A-(cit13)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.042
– volume: 4
  start-page: 4498
  year: 2012
  ident: C5TA05441A-(cit34)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr30936j
– volume: 101
  start-page: 109
  year: 2001
  ident: C5TA05441A-(cit55)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(01)00707-8
– volume: 175
  start-page: 680
  year: 2008
  ident: C5TA05441A-(cit41)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.004
– volume: 115
  start-page: 15646
  year: 2011
  ident: C5TA05441A-(cit58)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp201200e
– volume: 5
  start-page: 9453
  year: 2012
  ident: C5TA05441A-(cit14)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee22572g
– start-page: 6537
  year: 2008
  ident: C5TA05441A-(cit12)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b815647f
SSID ssj0000800699
Score 2.4478333
Snippet Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and...
Ni-Co-Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 22940
SubjectTerms Capacitance
Charge
cobalt
corolla
Devices
electrochemistry
Electrodes
graphene
hot water treatment
Hydroxides
manganese
Nanostructure
Nickel
Petals
specific energy
synergism
Title Plasma-grown graphene petals templating Ni–Co–Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes
URI https://www.proquest.com/docview/1811889419
https://www.proquest.com/docview/1835630509
https://www.proquest.com/docview/2335135412
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiKsYNxnBC4o8El_S5LGqOgbqBg-p1LcoceysUknR1kiMZ34UP49jO7eNggYvUetYTpTz5fizc853EHqjeBjoXFCilC4ID3QGr1QYE-nnEefjmAptEoVPTsPjBf-4FMvR6Ocgaqne5ofy-868kv-xKrSBXU2W7D9YthsUGuA32BeOYGE43sjGn4H6fslIaZbSnpWeBs_lAQ82mshGdMoEulUlmJtMN-Sk8s4ui_PNt1WhvCqDdT_MXGtlBRk8I1tMjGyE_Zqw3lQlkZdwObJeaRjyQtUFzHqwwHaxRk31nKKJQPyd3QIRdk_Ak21JuUNv4rKD2jNWbdzlHtrt-zaXy4Trdjv9y1UTNPy-trld_eatJcDQUnbYnK9qu8-gVn3UgnOriapK3TQ3exyBGOxxWFdIfeEb1VPnqdWwzdXDbX05G0CWi6FjprGThWpmefM_2jmF-MwosEqxzXxTn20wUbbBAaef0qPFfJ4ms2VyC-1TWKCAh92fzJIP825_zzDx0JYv7W6-Vcdl8bt--Kt86CodsBwnuYfuNubDE4e0-2ikqgfozkCy8iH6McQcbjGHHeZwjzncYg53mMMDzGGwPe4wh8H8-Brm8HXM4R5zj9DiaJZMj0lTyYNIzsZbEnCajzNT40UGNFNZxDjMBSqPMsbGQEKlpIXWQV5IFoU5jZWMQvNJMNRMhnCKPUZ75g6fIKxCYJi-FFoXYHwqoxycTRgXEawSfVaIA_S2fZ6pbGTuTbWVdWrDLVicTkUysc9-coBed32_OnGXnb1etWZJ4X0xH9SySm3qixTYcRBFMQ_iv_VhRoIPePmf-1DGRMAED-jTG4zzDN3u35HnaG97XqsXwIy3-csGhL8AjsbB6w
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-grown+graphene+petals+templating+Ni-Co-Mn+hydroxide+nanoneedles+for+high-rate+and+long-cycle-life+pseudocapacitive+electrodes&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xiong%2C+Guoping&rft.au=He%2C+Pingge&rft.au=Liu%2C+Lei&rft.au=Chen%2C+Tengfei&rft.date=2015-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=3&rft.issue=45&rft.spage=22940&rft.epage=22948&rft_id=info:doi/10.1039%2Fc5ta05441a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon