Plasma-grown graphene petals templating Ni–Co–Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes
Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elem...
Saved in:
Published in | Journal of materials chemistry. A, Materials for energy and sustainability Vol. 3; no. 45; pp. 22940 - 22948 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni–Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm
−2
relative to its low-current (1 mA cm
−2
) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g
−1
(based on the mass of NCMTH), high specific energy density (≈30 W h kg
−1
) and power density (≈39 kW kg
−1
) at a high current density of 100 mA cm
−2
, and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s
−1
(approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles). |
---|---|
AbstractList | Ni-Co-Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni-Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm-2 relative to its low-current (1 mA cm-2) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g-1 (based on the mass of NCMTH), high specific energy density ( approximately 30 W h kg-1) and power density ( approximately 39 kW kg-1) at a high current density of 100 mA cm-2, and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s-1 (approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles). Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni–Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm −2 relative to its low-current (1 mA cm −2 ) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g −1 (based on the mass of NCMTH), high specific energy density (≈30 W h kg −1 ) and power density (≈39 kW kg −1 ) at a high current density of 100 mA cm −2 , and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s −1 (approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles). Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and long-cycle-life pseudocapacitive electrodes. Structural and compositional characteristics of NCMTHs indicate that the multi-component metal elements distribute homogeneously within the NCMTHs. Comparison of the electrochemical performance of the three-dimensional NCMTH electrodes to Ni–Co double hydroxides reveals that a synergistic effect of the hierarchical structure of GPs and NCMTHs enables their high rate capability and long cycle life. The NCMTH electrode maintains over 95% of its capacitance at a high charge/discharge rate of 100 mA cm⁻² relative to its low-current (1 mA cm⁻²) capacitance; and it exhibits very high specific capacitance of approximately 1400 F g⁻¹ (based on the mass of NCMTH), high specific energy density (≈30 W h kg⁻¹) and power density (≈39 kW kg⁻¹) at a high current density of 100 mA cm⁻², and excellent long-term cyclic stability (full capacitance retention over 3000 cycles). To assess functional behavior, two-terminal asymmetric supercapacitor devices with NCMTHs on graphitic petals as positive electrodes were assembled and tested to reveal ultrafast charge/discharge rates up to 5000 mV s⁻¹ (approx. two orders of magnitude faster than conventional asymmetric devices based on metal hydroxides) with high rate capabilities, and excellent long-term cyclic stability (full capacitance retention over 10 000 cycles). |
Author | He, Pingge Xiong, Guoping Chen, Tengfei Fisher, Timothy S. Liu, Lei |
Author_xml | – sequence: 1 givenname: Guoping surname: Xiong fullname: Xiong, Guoping organization: Birck Nanotechnology Center, Purdue University, West Lafayette, USA, School of Mechanical Engineering – sequence: 2 givenname: Pingge surname: He fullname: He, Pingge organization: Birck Nanotechnology Center, Purdue University, West Lafayette, USA, School of Mechanical Engineering – sequence: 3 givenname: Lei surname: Liu fullname: Liu, Lei organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China – sequence: 4 givenname: Tengfei surname: Chen fullname: Chen, Tengfei organization: State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China – sequence: 5 givenname: Timothy S. surname: Fisher fullname: Fisher, Timothy S. organization: Birck Nanotechnology Center, Purdue University, West Lafayette, USA, School of Mechanical Engineering |
BookMark | eNqNkc1O3DAQx60KpFLg0ifwEVUKtePEcY6rFS2VKHCAczTrTLKuvHZqe6F748i9b8iT4BWolRASzGFmpPnNh_7ziew475CQz5wdcybar_P6asbqquKzD2SvZDUrmqqVO_9ypT6Swxh_sWyKMdm2e-T-0kJcQTEGf-voGGBaokM6YQIbacLVZCEZN9Jz83D3d-6z--noctMH_8f0SB1sj8DeYqSDD3RpxmURICEF11Pr3VjojbZYWDPksRHXvdcwgTbJ3CBFizoF32M8ILtDXomHz3GfXH87uZqfFmcX33_MZ2eFrkSTCl6ViwaY4lLzEhCUqGrOcKFAiIapUuuyHwa-6LVQclG2qJWUsm7kILTMJbFPjp7mTsH_XmNM3cpEjdaCQ7-OXSlEzUVd8fJNlCtRS5G1bd-Bcq5UW_Etyp5QHXyMAYcua5E19i4FMLbjrNt-s_v_zdzy5UXLFMwKwuY1-BEqg6SL |
CitedBy_id | crossref_primary_10_1007_s10854_019_01703_4 crossref_primary_10_1039_D0RA10377B crossref_primary_10_1039_C6TA05082D crossref_primary_10_1016_j_jallcom_2020_157116 crossref_primary_10_1038_s41467_018_03112_3 crossref_primary_10_1039_C7TA04001F crossref_primary_10_1016_j_materresbull_2018_06_005 crossref_primary_10_1007_s11431_023_2503_8 crossref_primary_10_1016_j_est_2023_109424 crossref_primary_10_1039_C8NR10473E crossref_primary_10_1039_D2NJ05566J crossref_primary_10_1016_j_jechem_2024_05_052 crossref_primary_10_1007_s10853_018_2474_2 crossref_primary_10_1039_D3SE00233K crossref_primary_10_1016_j_jechem_2021_02_005 crossref_primary_10_1016_j_matchemphys_2017_04_027 crossref_primary_10_1039_C6NJ01470D crossref_primary_10_1016_j_carbon_2019_09_003 crossref_primary_10_1021_acs_energyfuels_1c03299 crossref_primary_10_1002_adfm_201600879 crossref_primary_10_1007_s11356_023_29697_x crossref_primary_10_1016_j_hydromet_2019_02_015 crossref_primary_10_1039_C7TA04802E crossref_primary_10_1016_j_est_2023_106941 crossref_primary_10_1016_j_ensm_2018_06_026 crossref_primary_10_1002_celc_202001364 crossref_primary_10_1021_acsanm_4c03962 crossref_primary_10_1039_C7RA03018E crossref_primary_10_1016_j_jallcom_2019_151932 crossref_primary_10_1016_j_cej_2021_129910 crossref_primary_10_1039_C9TA02583A crossref_primary_10_1016_j_jmrt_2021_01_027 crossref_primary_10_3390_mi8010020 crossref_primary_10_1016_j_apmt_2021_101297 crossref_primary_10_1016_j_cej_2017_02_004 crossref_primary_10_1016_j_ceramint_2016_11_006 crossref_primary_10_1016_j_ceramint_2019_07_226 crossref_primary_10_1016_j_carbon_2017_11_037 crossref_primary_10_1016_j_est_2021_103496 crossref_primary_10_1039_C6TA05406D crossref_primary_10_1016_j_micromeso_2017_02_043 crossref_primary_10_1016_j_cej_2018_08_102 crossref_primary_10_1016_j_mattod_2018_11_002 crossref_primary_10_1016_j_jpowsour_2019_226897 crossref_primary_10_3390_nano8100747 crossref_primary_10_1002_cssc_201902753 crossref_primary_10_1016_j_jallcom_2020_155921 crossref_primary_10_1007_s10800_020_01473_6 crossref_primary_10_1142_S1793292020500629 crossref_primary_10_1002_bkcs_11724 crossref_primary_10_1039_C6CE02223E crossref_primary_10_3390_catal10090969 crossref_primary_10_1016_j_nanoen_2016_08_049 crossref_primary_10_1039_D0TA09655E crossref_primary_10_1039_D0TA02939D crossref_primary_10_1021_acsami_7b03709 crossref_primary_10_1021_acsaem_1c00553 crossref_primary_10_1016_j_carbon_2024_119176 crossref_primary_10_1039_C8TA07609J crossref_primary_10_1016_j_jallcom_2018_10_344 crossref_primary_10_1002_chem_201903244 crossref_primary_10_1016_j_jpowsour_2020_227912 crossref_primary_10_1080_10667857_2019_1603615 crossref_primary_10_1016_j_est_2019_01_010 crossref_primary_10_1007_s40843_020_1562_1 crossref_primary_10_1039_C7TA03932H crossref_primary_10_1016_j_jallcom_2018_07_168 crossref_primary_10_1016_j_colsurfa_2020_125417 crossref_primary_10_1016_j_electacta_2021_139324 crossref_primary_10_1007_s11581_020_03496_7 crossref_primary_10_1039_C7TA00234C crossref_primary_10_1016_j_jcis_2021_05_099 crossref_primary_10_1038_s41598_018_22448_w crossref_primary_10_1016_j_jcis_2020_04_017 crossref_primary_10_1007_s13738_020_01917_y crossref_primary_10_1016_j_jallcom_2022_167614 crossref_primary_10_1063_1_5044560 crossref_primary_10_1016_j_ensm_2018_07_018 crossref_primary_10_1016_j_nanoen_2017_05_050 crossref_primary_10_1016_j_est_2024_110596 crossref_primary_10_1016_j_mtcomm_2024_109127 crossref_primary_10_2139_ssrn_4181389 crossref_primary_10_1007_s12598_023_02405_x crossref_primary_10_1016_j_jallcom_2023_172099 crossref_primary_10_1080_1536383X_2022_2154756 crossref_primary_10_1002_slct_201601768 crossref_primary_10_1016_j_vacuum_2019_109055 crossref_primary_10_1039_C8RA01537F crossref_primary_10_1016_j_est_2024_112704 crossref_primary_10_1007_s11431_021_1941_0 crossref_primary_10_1007_s10854_018_8788_7 crossref_primary_10_1007_s11051_020_04819_5 crossref_primary_10_1039_C6DT00449K crossref_primary_10_1016_j_est_2020_101652 crossref_primary_10_1016_j_est_2021_102249 crossref_primary_10_1039_C6TA02164F crossref_primary_10_1016_j_est_2023_108544 crossref_primary_10_1016_j_jpowsour_2018_11_080 crossref_primary_10_1007_s11581_019_03286_w crossref_primary_10_1016_j_nanoen_2018_12_011 crossref_primary_10_1016_j_carbon_2020_10_034 |
Cites_doi | 10.1002/1616-3028(20020805)12:8<489::AID-ADFM489>3.0.CO;2-X 10.1021/nl401086t 10.1021/cm020818e 10.1126/science.1249625 10.1039/C4CS00352G 10.1002/adfm.201102796 10.1002/aenm.201300580 10.1039/c0jm03830j 10.1007/s10008-009-0984-1 10.1002/elan.201300238 10.1016/j.materresbull.2007.06.006 10.1007/s11051-014-2856-6 10.1021/nl300779a 10.1039/C1CS15078B 10.1021/am4012484 10.1016/j.diamond.2012.05.002 10.1021/cm203831p 10.1021/nl101723g 10.1016/j.carbon.2014.10.042 10.1039/c3ee44164d 10.1021/am301010u 10.1021/jp900028t 10.1016/j.jpowsour.2013.03.069 10.1039/c2nr31590d 10.1002/ente.201402055 10.1016/j.electacta.2004.07.038 10.1039/c2cc31418e 10.1006/jssc.2000.8749 10.1002/aenm.201300431 10.1038/nmat1672 10.1021/nl102203s 10.1039/c2cc18079k 10.1126/science.1194372 10.1039/c3ta10790f 10.1021/am9009154 10.1016/j.jpowsour.2009.06.004 10.1002/adfm.201401216 10.1007/978-1-4757-3058-6 10.1016/j.jpowsour.2013.10.108 10.1007/s12274-010-0024-6 10.1021/nl100865a 10.1016/j.jpowsour.2012.11.040 10.1021/jp804413a 10.1002/aenm.201300515 10.1021/nn4021955 10.1021/jp3028353 10.1016/j.jpowsour.2012.12.069 10.1016/j.jpowsour.2012.07.111 10.1038/nmat2297 10.1021/sc500806s 10.1039/C2NR32040A 10.1039/c2ra01220k 10.1016/j.carbon.2012.05.014 10.1039/C2CC37117K 10.1021/am405213z 10.1039/b902221j 10.1002/adfm.201102839 10.1016/j.jpowsour.2010.06.042 10.1039/c2nr30936j 10.1016/S0378-7753(01)00707-8 10.1016/j.jpowsour.2007.09.004 10.1021/jp201200e 10.1039/c2ee22572g 10.1039/b815647f |
ContentType | Journal Article |
DBID | AAYXX CITATION 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
DOI | 10.1039/C5TA05441A |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Environment Abstracts CrossRef AGRICOLA Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7496 |
EndPage | 22948 |
ExternalDocumentID | 10_1039_C5TA05441A |
GroupedDBID | 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANBJS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3G J3H J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH 7ST C1K SOI 7SP 7SR 7U5 8BQ 8FD JG9 L7M 7S9 L.6 |
ID | FETCH-LOGICAL-c437t-142b7a0816c12aea834510eb8a337082cc2dff1bdc386b29ec8666576f3c62df3 |
ISSN | 2050-7488 2050-7496 |
IngestDate | Fri Jul 11 10:51:06 EDT 2025 Fri Jul 11 16:12:31 EDT 2025 Fri Jul 11 11:51:23 EDT 2025 Tue Jul 01 04:18:00 EDT 2025 Thu Apr 24 23:08:39 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c437t-142b7a0816c12aea834510eb8a337082cc2dff1bdc386b29ec8666576f3c62df3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1811889419 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2335135412 proquest_miscellaneous_1835630509 proquest_miscellaneous_1811889419 crossref_citationtrail_10_1039_C5TA05441A crossref_primary_10_1039_C5TA05441A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-01-01 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of materials chemistry. A, Materials for energy and sustainability |
PublicationYear | 2015 |
References | Lee (C5TA05441A-(cit42)/*[position()=1]) 2004; 50 Yu (C5TA05441A-(cit15)/*[position()=1]) 2013; 49 Seo (C5TA05441A-(cit31)/*[position()=1]) 2015; 3 Pu (C5TA05441A-(cit19)/*[position()=1]) 2014; 250 Uthaisar (C5TA05441A-(cit39)/*[position()=1]) 2010; 10 Huang (C5TA05441A-(cit7)/*[position()=1]) 2012; 41 Salunkhe (C5TA05441A-(cit20)/*[position()=1]) 2012; 2 Huang (C5TA05441A-(cit16)/*[position()=1]) 2013; 13 Bo (C5TA05441A-(cit29)/*[position()=1]) 2012; 50 Augustyn (C5TA05441A-(cit61)/*[position()=1]) 2014; 7 Taberna (C5TA05441A-(cit4)/*[position()=1]) 2006; 5 Simon (C5TA05441A-(cit3)/*[position()=1]) 2014; 343 Zhao (C5TA05441A-(cit13)/*[position()=1]) 2011; 196 Xiong (C5TA05441A-(cit8)/*[position()=1]) 2014; 4 Wang (C5TA05441A-(cit49)/*[position()=1]) 2012; 116 Meher (C5TA05441A-(cit58)/*[position()=1]) 2011; 115 Conway (C5TA05441A-(cit54)/*[position()=1]) 1999 Lang (C5TA05441A-(cit65)/*[position()=1]) 2010; 14 Yen (C5TA05441A-(cit30)/*[position()=1]) 2015; 82 Zhang (C5TA05441A-(cit59)/*[position()=1]) 2010; 3 Ji (C5TA05441A-(cit9)/*[position()=1]) 2013; 7 Seo (C5TA05441A-(cit33)/*[position()=1]) 2013; 3 Rakhi (C5TA05441A-(cit21)/*[position()=1]) 2012; 12 Xiong (C5TA05441A-(cit25)/*[position()=1]) 2014; 2 Zhu (C5TA05441A-(cit52)/*[position()=1]) 2013; 1 Gomez (C5TA05441A-(cit51)/*[position()=1]) 2013; 230 Wang (C5TA05441A-(cit18)/*[position()=1]) 2015; 17 Liu (C5TA05441A-(cit35)/*[position()=1]) 2012; 4 Bag (C5TA05441A-(cit47)/*[position()=1]) 2014; 6 Yuan (C5TA05441A-(cit60)/*[position()=1]) 2009; 19 Yan (C5TA05441A-(cit63)/*[position()=1]) 2012; 22 Gupta (C5TA05441A-(cit41)/*[position()=1]) 2008; 175 Zhao (C5TA05441A-(cit28)/*[position()=1]) 2009; 194 Jouanneau (C5TA05441A-(cit43)/*[position()=1]) 2003; 15 Gogotsi (C5TA05441A-(cit62)/*[position()=1]) 2011; 334 Wang (C5TA05441A-(cit50)/*[position()=1]) 2012; 4 Bo (C5TA05441A-(cit27)/*[position()=1]) 2015; 44 Zhang (C5TA05441A-(cit14)/*[position()=1]) 2012; 5 Hou (C5TA05441A-(cit53)/*[position()=1]) 2010; 10 Simon (C5TA05441A-(cit2)/*[position()=1]) 2008; 7 Jiang (C5TA05441A-(cit36)/*[position()=1]) 2012; 48 Li (C5TA05441A-(cit34)/*[position()=1]) 2012; 4 Marco (C5TA05441A-(cit45)/*[position()=1]) 2000; 153 Cui (C5TA05441A-(cit46)/*[position()=1]) 2009; 113 Sun (C5TA05441A-(cit17)/*[position()=1]) 2013; 238 Tang (C5TA05441A-(cit64)/*[position()=1]) 2012; 22 Zhi (C5TA05441A-(cit10)/*[position()=1]) 2013; 5 Miller (C5TA05441A-(cit26)/*[position()=1]) 2010; 329 Wang (C5TA05441A-(cit32)/*[position()=1]) 2014; 24 Wu (C5TA05441A-(cit24)/*[position()=1]) 2002; 12 Jiang (C5TA05441A-(cit5)/*[position()=1]) 2012; 48 Xiong (C5TA05441A-(cit6)/*[position()=1]) 2013; 227 Kundu (C5TA05441A-(cit44)/*[position()=1]) 2008; 112 Kim (C5TA05441A-(cit22)/*[position()=1]) 2010; 10 Yang (C5TA05441A-(cit12)/*[position()=1]) 2008 Luo (C5TA05441A-(cit38)/*[position()=1]) 2008; 43 Xiong (C5TA05441A-(cit23)/*[position()=1]) 2012; 27–28 Chen (C5TA05441A-(cit37)/*[position()=1]) 2013; 3 Hu (C5TA05441A-(cit57)/*[position()=1]) 2013; 221 Jiang (C5TA05441A-(cit11)/*[position()=1]) 2011; 21 Gamby (C5TA05441A-(cit55)/*[position()=1]) 2001; 101 Xiong (C5TA05441A-(cit1)/*[position()=1]) 2014; 26 Bhuvana (C5TA05441A-(cit40)/*[position()=1]) 2010; 2 Shao (C5TA05441A-(cit56)/*[position()=1]) 2012; 24 Wang (C5TA05441A-(cit48)/*[position()=1]) 2013; 5 |
References_xml | – volume: 12 start-page: 489 year: 2002 ident: C5TA05441A-(cit24)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/1616-3028(20020805)12:8<489::AID-ADFM489>3.0.CO;2-X – volume: 13 start-page: 3135 year: 2013 ident: C5TA05441A-(cit16)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl401086t – volume: 15 start-page: 495 year: 2003 ident: C5TA05441A-(cit43)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm020818e – volume: 343 start-page: 1210 year: 2014 ident: C5TA05441A-(cit3)/*[position()=1] publication-title: Science doi: 10.1126/science.1249625 – volume: 44 start-page: 2108 year: 2015 ident: C5TA05441A-(cit27)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00352G – volume: 22 start-page: 1272 year: 2012 ident: C5TA05441A-(cit64)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102796 – volume: 3 start-page: 1636 year: 2013 ident: C5TA05441A-(cit37)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300580 – volume: 21 start-page: 3818 year: 2011 ident: C5TA05441A-(cit11)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c0jm03830j – volume: 14 start-page: 1533 year: 2010 ident: C5TA05441A-(cit65)/*[position()=1] publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-009-0984-1 – volume: 26 start-page: 30 year: 2014 ident: C5TA05441A-(cit1)/*[position()=1] publication-title: Electroanalysis doi: 10.1002/elan.201300238 – volume: 43 start-page: 1119 year: 2008 ident: C5TA05441A-(cit38)/*[position()=1] publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2007.06.006 – volume: 17 start-page: 1 year: 2015 ident: C5TA05441A-(cit18)/*[position()=1] publication-title: J. Nanopart. Res. doi: 10.1007/s11051-014-2856-6 – volume: 12 start-page: 2559 year: 2012 ident: C5TA05441A-(cit21)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl300779a – volume: 334 start-page: 917 year: 2011 ident: C5TA05441A-(cit62)/*[position()=1] publication-title: Science Magazine – volume: 41 start-page: 666 year: 2012 ident: C5TA05441A-(cit7)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C1CS15078B – volume: 5 start-page: 6255 year: 2013 ident: C5TA05441A-(cit48)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am4012484 – volume: 27–28 start-page: 1 year: 2012 ident: C5TA05441A-(cit23)/*[position()=1] publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2012.05.002 – volume: 24 start-page: 1192 year: 2012 ident: C5TA05441A-(cit56)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm203831p – volume: 10 start-page: 2727 year: 2010 ident: C5TA05441A-(cit53)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl101723g – volume: 82 start-page: 124 year: 2015 ident: C5TA05441A-(cit30)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2014.10.042 – volume: 7 start-page: 1597 year: 2014 ident: C5TA05441A-(cit61)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee44164d – volume: 4 start-page: 4631 year: 2012 ident: C5TA05441A-(cit35)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am301010u – volume: 113 start-page: 14083 year: 2009 ident: C5TA05441A-(cit46)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp900028t – volume: 238 start-page: 150 year: 2013 ident: C5TA05441A-(cit17)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.03.069 – volume: 4 start-page: 7266 year: 2012 ident: C5TA05441A-(cit50)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr31590d – volume: 2 start-page: 897 year: 2014 ident: C5TA05441A-(cit25)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente.201402055 – volume: 50 start-page: 939 year: 2004 ident: C5TA05441A-(cit42)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2004.07.038 – volume: 48 start-page: 4465 year: 2012 ident: C5TA05441A-(cit5)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc31418e – volume: 153 start-page: 74 year: 2000 ident: C5TA05441A-(cit45)/*[position()=1] publication-title: J. Solid State Chem. doi: 10.1006/jssc.2000.8749 – volume: 3 start-page: 1316 year: 2013 ident: C5TA05441A-(cit33)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300431 – volume: 5 start-page: 567 year: 2006 ident: C5TA05441A-(cit4)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1672 – volume: 10 start-page: 4099 year: 2010 ident: C5TA05441A-(cit22)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl102203s – volume: 48 start-page: 2606 year: 2012 ident: C5TA05441A-(cit36)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc18079k – volume: 329 start-page: 1637 year: 2010 ident: C5TA05441A-(cit26)/*[position()=1] publication-title: Science doi: 10.1126/science.1194372 – volume: 1 start-page: 8327 year: 2013 ident: C5TA05441A-(cit52)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/c3ta10790f – volume: 2 start-page: 644 year: 2010 ident: C5TA05441A-(cit40)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am9009154 – volume: 194 start-page: 1208 year: 2009 ident: C5TA05441A-(cit28)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.06.004 – volume: 24 start-page: 6372 year: 2014 ident: C5TA05441A-(cit32)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401216 – volume-title: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications year: 1999 ident: C5TA05441A-(cit54)/*[position()=1] doi: 10.1007/978-1-4757-3058-6 – volume: 250 start-page: 250 year: 2014 ident: C5TA05441A-(cit19)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2013.10.108 – volume: 3 start-page: 643 year: 2010 ident: C5TA05441A-(cit59)/*[position()=1] publication-title: Nano Res. doi: 10.1007/s12274-010-0024-6 – volume: 10 start-page: 2838 year: 2010 ident: C5TA05441A-(cit39)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl100865a – volume: 227 start-page: 254 year: 2013 ident: C5TA05441A-(cit6)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.11.040 – volume: 112 start-page: 16869 year: 2008 ident: C5TA05441A-(cit44)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp804413a – volume: 4 start-page: 1300515 year: 2014 ident: C5TA05441A-(cit8)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300515 – volume: 7 start-page: 6237 year: 2013 ident: C5TA05441A-(cit9)/*[position()=1] publication-title: ACS Nano doi: 10.1021/nn4021955 – volume: 116 start-page: 12448 year: 2012 ident: C5TA05441A-(cit49)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp3028353 – volume: 230 start-page: 218 year: 2013 ident: C5TA05441A-(cit51)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.069 – volume: 221 start-page: 128 year: 2013 ident: C5TA05441A-(cit57)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.07.111 – volume: 7 start-page: 845 year: 2008 ident: C5TA05441A-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 3 start-page: 544 year: 2015 ident: C5TA05441A-(cit31)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/sc500806s – volume: 5 start-page: 72 year: 2013 ident: C5TA05441A-(cit10)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C2NR32040A – volume: 2 start-page: 3190 year: 2012 ident: C5TA05441A-(cit20)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/c2ra01220k – volume: 50 start-page: 4379 year: 2012 ident: C5TA05441A-(cit29)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2012.05.014 – volume: 49 start-page: 137 year: 2013 ident: C5TA05441A-(cit15)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C2CC37117K – volume: 6 start-page: 2692 year: 2014 ident: C5TA05441A-(cit47)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am405213z – volume: 19 start-page: 5772 year: 2009 ident: C5TA05441A-(cit60)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/b902221j – volume: 22 start-page: 2632 year: 2012 ident: C5TA05441A-(cit63)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102839 – volume: 196 start-page: 860 year: 2011 ident: C5TA05441A-(cit13)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.042 – volume: 4 start-page: 4498 year: 2012 ident: C5TA05441A-(cit34)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr30936j – volume: 101 start-page: 109 year: 2001 ident: C5TA05441A-(cit55)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(01)00707-8 – volume: 175 start-page: 680 year: 2008 ident: C5TA05441A-(cit41)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.09.004 – volume: 115 start-page: 15646 year: 2011 ident: C5TA05441A-(cit58)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp201200e – volume: 5 start-page: 9453 year: 2012 ident: C5TA05441A-(cit14)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c2ee22572g – start-page: 6537 year: 2008 ident: C5TA05441A-(cit12)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b815647f |
SSID | ssj0000800699 |
Score | 2.4478333 |
Snippet | Ni–Co–Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and... Ni-Co-Mn triple hydroxide (NCMTH) nanoneedles were coated on plasma-grown graphitic petals (GPs) by a facile one-step hydrothermal method for high-rate and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 22940 |
SubjectTerms | Capacitance Charge cobalt corolla Devices electrochemistry Electrodes graphene hot water treatment Hydroxides manganese Nanostructure Nickel Petals specific energy synergism |
Title | Plasma-grown graphene petals templating Ni–Co–Mn hydroxide nanoneedles for high-rate and long-cycle-life pseudocapacitive electrodes |
URI | https://www.proquest.com/docview/1811889419 https://www.proquest.com/docview/1835630509 https://www.proquest.com/docview/2335135412 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9gIPiKsYNxnBC4o8El_S5LGqOgbqBg-p1LcoceysUknR1kiMZ34UP49jO7eNggYvUetYTpTz5fizc853EHqjeBjoXFCilC4ID3QGr1QYE-nnEefjmAptEoVPTsPjBf-4FMvR6Ocgaqne5ofy-868kv-xKrSBXU2W7D9YthsUGuA32BeOYGE43sjGn4H6fslIaZbSnpWeBs_lAQ82mshGdMoEulUlmJtMN-Sk8s4ui_PNt1WhvCqDdT_MXGtlBRk8I1tMjGyE_Zqw3lQlkZdwObJeaRjyQtUFzHqwwHaxRk31nKKJQPyd3QIRdk_Ak21JuUNv4rKD2jNWbdzlHtrt-zaXy4Trdjv9y1UTNPy-trld_eatJcDQUnbYnK9qu8-gVn3UgnOriapK3TQ3exyBGOxxWFdIfeEb1VPnqdWwzdXDbX05G0CWi6FjprGThWpmefM_2jmF-MwosEqxzXxTn20wUbbBAaef0qPFfJ4ms2VyC-1TWKCAh92fzJIP825_zzDx0JYv7W6-Vcdl8bt--Kt86CodsBwnuYfuNubDE4e0-2ikqgfozkCy8iH6McQcbjGHHeZwjzncYg53mMMDzGGwPe4wh8H8-Brm8HXM4R5zj9DiaJZMj0lTyYNIzsZbEnCajzNT40UGNFNZxDjMBSqPMsbGQEKlpIXWQV5IFoU5jZWMQvNJMNRMhnCKPUZ75g6fIKxCYJi-FFoXYHwqoxycTRgXEawSfVaIA_S2fZ6pbGTuTbWVdWrDLVicTkUysc9-coBed32_OnGXnb1etWZJ4X0xH9SySm3qixTYcRBFMQ_iv_VhRoIPePmf-1DGRMAED-jTG4zzDN3u35HnaG97XqsXwIy3-csGhL8AjsbB6w |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-grown+graphene+petals+templating+Ni-Co-Mn+hydroxide+nanoneedles+for+high-rate+and+long-cycle-life+pseudocapacitive+electrodes&rft.jtitle=Journal+of+materials+chemistry.+A%2C+Materials+for+energy+and+sustainability&rft.au=Xiong%2C+Guoping&rft.au=He%2C+Pingge&rft.au=Liu%2C+Lei&rft.au=Chen%2C+Tengfei&rft.date=2015-01-01&rft.issn=2050-7488&rft.eissn=2050-7496&rft.volume=3&rft.issue=45&rft.spage=22940&rft.epage=22948&rft_id=info:doi/10.1039%2Fc5ta05441a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7488&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7488&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7488&client=summon |