Tailoring the automated construction of large-scale taxonomies using the web

It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various la...

Full description

Saved in:
Bibliographic Details
Published inLanguage Resources and Evaluation Vol. 47; no. 3; pp. 859 - 890
Main Authors Kozareva, Zornitsa, Hovy, Eduard
Format Journal Article
LanguageEnglish
Published Dordrecht Springer 01.09.2013
Springer Netherlands
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains.
AbstractList It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains.
It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains. Adapted from the source document
Issue Title: Special Issues: "Computational Semantic Analysis of Language: SemEval-2010" and "Wordnets and Relations" It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains.[PUBLICATION ABSTRACT]
Author Hovy, Eduard
Kozareva, Zornitsa
Author_xml – sequence: 1
  givenname: Zornitsa
  surname: Kozareva
  fullname: Kozareva, Zornitsa
– sequence: 2
  givenname: Eduard
  surname: Hovy
  fullname: Hovy, Eduard
BookMark eNqNkU1LxDAQhoOsoKv-AA9CwYuX6iSZpu1RxC9Y8KLgLWSTVLt0mzVJUf-9WasiHtRLZg7PO0nmmZJJ73pLyD6FYwpQngQKRVnnQHleM5aaDbJNi5LlFVI2ee8xBwb3W2QawgIAGZbVNpndqrZzvu0fsvhoMzVEt1TRmky7PkQ_6Ni6PnNN1in_YPOgVWezqF5c75atDdkQPqPPdr5LNhvVBbv3UXfI3cX57dlVPru5vD47neUaeRlzykpE3RjkjWHGVrTQquZGKxCi4BaF4RTmBnUFtNGIKIQw1ZxTXmpmjeE75Gicu_LuabAhymUbtO061Vs3BEkLQKQFA_Y3irWoK8FR_APFKj08HQk9_IEu3OD79OdEiUoAEyVPFB0p7V0I3jZy5dul8q-Sglxbk6M1mazJtTUJKcPGTFitpVj_bfIvoYMxtAjR-a9bkmGaFsH4G20EpBQ
CODEN COHUAD
CitedBy_id crossref_primary_10_1111_ehr_12083
crossref_primary_10_1007_s10579_014_9274_3
Cites_doi 10.3115/980432.980696
10.3115/980691.980749
10.3115/981923.981959
10.3115/1072228.1072372
10.3115/1220175.1220190
10.3115/1073445.1073481
10.1145/1242572.1242667
10.1515/9783598441851
10.3115/1220175.1220276
10.1145/219717.219748
10.3115/1075527.1075588
10.1145/1031171.1031194
10.3115/1073445.1073456
10.2307/2025394
10.1037/h0031619
10.3115/992133.992154
10.1007/978-94-017-0073-3_6
10.3115/991719.991789
10.3115/1220175.1220275
10.1016/j.artint.2005.03.001
10.3115/1699571.1699635
10.3115/1599081.1599102
10.1007/978-3-642-04930-9_66
10.1016/j.artint.2012.07.001
10.3115/980691.980750
10.1007/978-94-017-1491-4
10.3115/1220175.1220213
10.3115/1699571.1699636
10.3115/1687878.1687918
ContentType Journal Article
Copyright Springer Science+Business Media 2013
Springer Science+Business Media Dordrecht 2013
Copyright_xml – notice: Springer Science+Business Media 2013
– notice: Springer Science+Business Media Dordrecht 2013
DBID AAYXX
CITATION
3V.
7SC
7T9
7XB
8AL
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
AIMQZ
ALSLI
ARAPS
AVQMV
AZQEC
BENPR
BGLVJ
CCPQU
CPGLG
CRLPW
DWQXO
GB0
GNUQQ
GUQSH
HCIFZ
JQ2
K50
K7-
L7M
LIQON
L~C
L~D
M0N
M1D
M2O
MBDVC
P5Z
P62
PQEST
PQQKQ
PQUKI
Q9U
8BP
E3H
F2A
DOI 10.1007/s10579-013-9229-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest One Literature
Social Science Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database‎ (1962 - current)
Arts Premium Collection
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
Linguistics Collection
ProQuest Linguistics Database
ProQuest Central
DELNET Social Sciences & Humanities Collection
ProQuest Central Student
Research Library Prep
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Art, Design and Architecture Collection
Computer Science Database
Advanced Technologies Database with Aerospace
ProQuest One Literature - U.S. Customers Only
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest Arts & Humanities Database
Proquest Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
ProQuest DELNET Social Sciences and Humanities Collection
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Linguistics Collection
Arts Premium Collection
ProQuest Central Korea
ProQuest Research Library
ProQuest Art, Design and Architecture Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Social Science Premium Collection
ProQuest Computing
ProQuest One Literature - U.S. Customers Only
ProQuest Central Basic
ProQuest One Literature
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Linguistics and Language Behavior Abstracts (LLBA)
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Linguistics Database
Arts & Humanities Full Text
ProQuest One Academic
ProQuest Central (Alumni)
Library & Information Sciences Abstracts (LISA) - CILIP Edition
Library and Information Science Abstracts (LISA)
DatabaseTitleList
Linguistics and Language Behavior Abstracts (LLBA)
Computer and Information Systems Abstracts
ProQuest DELNET Social Sciences and Humanities Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
Computer Science
EISSN 1572-8412
1574-0218
EndPage 890
ExternalDocumentID 3158226201
10_1007_s10579_013_9229_0
24710442
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -51
-5C
-5G
-BR
-DZ
-EM
-~C
.4H
.4S
.86
.DC
06D
0R~
0VY
199
203
29L
2J2
2JN
2JY
2KG
2LR
2~H
30V
3V.
4.4
406
408
409
40E
5GY
5VS
67Z
6NX
78A
8FE
8FG
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAGAY
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBHK
ABBXA
ABDZT
ABECU
ABECW
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ABXSQ
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACNXV
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADPTO
ADRFC
ADTPH
ADULT
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEUPB
AEVLU
AEVTX
AEXYK
AFFNX
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGHSJ
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHBYD
AHEXP
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMQZ
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALSLI
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AVQMV
AXYYD
AYQZM
AZFZN
AZQEC
AZRUE
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHNFS
BPHCQ
CCPQU
CPGLG
CRLPW
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EDO
EHI
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GB0
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMHOC
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JAAYA
JAB
JBMMH
JBSCW
JCJTX
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JPL
JSODD
JST
JZLTJ
K50
K6V
K7-
KDC
KOV
LIQON
LLZTM
M0N
M1D
M2O
M4Y
MA-
MQGED
N2Q
NB0
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P62
P9Q
PF-
PQQKQ
PROAC
PT4
Q2X
QF4
QN3
QN7
QOS
R89
R9I
RHV
RIG
ROL
RPX
RSV
S16
S27
S3B
SA0
SAP
SDA
SDH
SDM
SHS
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VQA
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
-Y2
07C
2.D
2P1
2VQ
3EH
AABYN
AAGJQ
AANTL
AAPBV
AAXYU
AAYOK
ABPTK
ACVYN
ADSWE
AEEQQ
AFEXP
AHAVH
AHKAY
CAG
COF
GPZZG
IHE
NDZJH
P-O
S1Z
S26
S28
SCLPG
T16
ZWUKE
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACDTI
ADACV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AGZLP
AIGIU
CITATION
H13
IPSME
7SC
7T9
7XB
8AL
8FD
8FK
AAHCP
JQ2
L7M
L~C
L~D
MBDVC
PQEST
PQUKI
Q9U
AAYZH
8BP
E3H
F2A
ID FETCH-LOGICAL-c437t-12744cfd43fd2de815ca93dca06653e46d310bd4c801fc444666d8b3137c2edd3
IEDL.DBID BENPR
ISSN 1574-020X
IngestDate Fri Oct 25 22:23:32 EDT 2024
Fri Oct 25 09:17:36 EDT 2024
Fri Oct 25 23:19:05 EDT 2024
Thu Oct 10 19:53:25 EDT 2024
Thu Sep 26 19:12:03 EDT 2024
Sat Dec 16 12:00:08 EST 2023
Fri Feb 02 07:02:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Text mining
Ontology induction
Hyponym and hypernym learning
Wordnet evaluation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c437t-12744cfd43fd2de815ca93dca06653e46d310bd4c801fc444666d8b3137c2edd3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1468602673
PQPubID 28740
PageCount 32
ParticipantIDs proquest_miscellaneous_1504415202
proquest_miscellaneous_1496986346
proquest_miscellaneous_1448744487
proquest_journals_1468602673
crossref_primary_10_1007_s10579_013_9229_0
springer_journals_10_1007_s10579_013_9229_0
jstor_primary_24710442
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Dordrect
PublicationTitle Language Resources and Evaluation
PublicationTitleAbbrev Lang Resources & Evaluation
PublicationYear 2013
Publisher Springer
Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer
– name: Springer Netherlands
– name: Springer Nature B.V
References FleissJ.Measuring nominal scale agreement among many ratersPsychological Bulletin197176537838210.1037/h0031619
Ide, N., & Veronis, J. (1994). Machine readable dictionaries: What have we learned, where do we go. In Proceedings of the post-COLING 94 intl. workshop on directions of lexical research, Beijing, pp. 137–146.
Katz, B., & Lin, J. (2003). Selectively using relations to improve precision in question answering. In Proceedings of the EACL-2003 workshop on natural language processing for question answering, pp. 43–50.
NavigliR.PonzettoP.BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic networkJournal of Artificial Intelligence2012193217250
Wilks, Y., Fass, D., ming Guo, C., Mcdonald, J. E., Plate, T., & Slator, B. M. (1988). Machine tractable dictionaries as tools and resources for natural language processing. In Proceedings of the 12th conference on computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp. 750–755.
MillerG. A.WordNet: a lexical database for englishCommunications of the ACM1995383941
Bateman, J. A., Kasper, R. T., Moore, J. D., & Whitney, R. A. (1989). A general organization of knowledge for natural language processing: The penman upper model. Unpublished research report, USC/Information Sciences Institute, Marina del Rey.
Robkop, K., Thoongsup, S., Charoenporn, T., Sornlertlamvanich, V., & Isahara, H. (2010). WNMS: Connecting the distributed WordNet in the case of Asian WordNet the 5th international conference of the global WordNet association (GWC-2010), Mumbai, India.
VelardiP.RobertoN.PierluigiD.Mining the web to create specialized glossariesJournal of IEEE Intelligent Systems20082351825
Snow, R., Jurafsky, D., & Ng, A. Y. (2006). Semantic taxonomy induction from heterogenous evidence. In Proceedings of the international conference on computational linguistics (COLING) and the annual meeting of the association for computational linguistics (ACL).
Cuadros, M., & Rigau, G. (2008). KnowNet: Building a large net of knowledge from the web. The 22nd international conference on computational linguistics (Coling’08), UK, Manchester.
Pasca, M. (2004). Acquisition of categorized named entities for web search. In Proceedings of the thirteenth ACM international conference on information and knowledge management (CIKM), pp 137–145.
Richardson, S. D., Dolan, W. B., & Vanderwende, L. (1998). Mindnet: Acquiring and structuring semantic information from text. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 2 (ACL ’98), (Vol. 2). Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1098–1102.
Navigli, R., Velardi, P., & Faralli, S. (2011). A graph-based algorithm for inducing lexical taxonomies from scratch. In Proceedings of the Twenty-Second international joint conference on artificial intelligence—volume volume three. IJCAI’11, pp. 1872–1877.
Snow, R., Jurafsky, D., & Ng, A.Y. (2005). Learning syntactic patterns for automatic hypernym discovery. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (Vol. 17, pp. 1297–1304).
EtzioniO.CafarellaM.DowneyD.PopescuA. M.ShakedT.SoderlandS.WeldD.S.YatesA.Unsupervised named-entity extraction from the web: An experimental studyArtificial Intelligence200516519113410.1016/j.artint.2005.03.001
Rigau, G., Rodriguez, H., & Agirre, E. (1998). Building accurate semantic taxonomies from monolingual MRDs. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 2 (ACL ’98), (Vol. 2). Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1103–1109.
Roberto, N., Velardi, P., & Faralli, S. (2011). A graph-based algorithm for inducing lexical taxonomies from scratch. In Proceedings of IJCAI 2011, pp. 1872–1877.
Vossen, P., Hofmann, K., Rijke, M., Tjong, E., Sang, K., & Deschacht, K. (2008). The Cornetto database: Architecture and user-scenarios. In Proceedings of the fourth international GlobalWordNet conference—GWC.
Amsler, R. A. (1981). A taxonomy for english nouns and verbs. In: Proceedings of the 19th annual meeting on association for computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp. 133–138.
Moldovan, D. I., Harabagiu, S. M., Pasca, M., Mihalcea, R., Goodrum, R., Girju, R. et al. (1999). Lasso: A tool for surfing the answer net. In Proceedings of the TREC conference.
GeorgeA. M.WordNet: A lexical database for englishProceedings of Communications of the ACM1995383941
Atserias, J., Villarejo, L., Rigau, G., Agirre, E., Carroll, J., Magnini, B., et al. (2004). The MEANING multilingual central repository. In Proceedings of the second international WordNet conference. pp. 80–210.
Szpektor, I., Dagan, I., Bar-Haim, R., & Goldberger, J. (2008). Contextual preferences. In Proceedings of the annual meeting of the association for computational linguistics (ACL), pp. 683–691.
Moravcsik, J. M. E. (1981). How do words get their meanings? The Journal of Philosophy, 78 1.
Kozareva, Z., Riloff, E., & Hovy, E. H. (2008). Semantic class learning from the web with hyponym pattern linkage graphs. In Proceedings of the NAACL-HLT conference, pp. 1048–1056.
Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F., & Cucchiarelli, R. (2004). Extending and enriching WordNet with OntoLearn. In Proceedings of the second global wordnet conference 2004 (GWC 2004). pp. 279–284.
PustejovskyJ.The generative lexicon1995Cambridge, MAMIT Press
Peters, I. (2009). Folksonomies. Indexing and retrieval in web 2.0. Berlin: De Gruyter Saur.
Pennacchiotti, M., & Pantel P. (2006). Ontologizing semantic relations. In Proceedings of the international conference on computational linguistics (COLING) and the annual meeting of the association for computational linguistics (ACL), pp. 793–800.
Glickman, O., Dagan, I., & Koppel, M. (2005). A probabilistic classification approach for lexical textual entailment. In Proceedings of the twentieth national conference on artificial intelligence and the seventeenth innovative applications of artificial intelligence conference, pp. 1050–1055.
Banko, M. (2009). Open information extraction from the web. Ph.D. Dissertation from University of Washington.
Hovy, E. H. (2002). Comparing sets of semantic relations in ontologies. In R. Green, C. A. Bean, & S. H. Myaeng (Eds.), The semantics of relationships: An interdisciplinary perspective, pp. 91–110.
Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th international conference on computational linguistics (COLING), pp. 768–774.
FellbaumC.WordNet: An on-line lexical database and some of its applications1998Cambridge, MA.MIT Press
Widdows, D. (2003). Unsupervised methods for developing taxonomies by combining syntactic and statistical information. In Proceedings of the HLT-NAACL conference.
Agirre, E., & Lopez de Lacalle, O. (2004). Publicly available topic signatures for all WordNet nominal senses. In Proceedings of the 4rd international conference on languages resources and evaluations (LREC). Lisbon, Portugal.
Ponzetto, S., & Navigli, R. (2010). Knowledge-rich word sense disambiguation rivaling supervised systems. In Proceedings of the 48th annual meeting of the association for computational linguistics (ACL 2010), Uppsala, Sweden.
Riloff, E., & Jones, R. (1999). Learning dictionaries for information extraction by multi-level bootstrapping. In Proceedings of the sixteenth national conference on artificial intelligence (AAAI), pp. 474–479.
Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the international conference on new methods in language processing, pp. 4449.
Ritter, A., Soderland, S., & Etzioni, O., (2009). What is this, anyway: Automatic hypernym discovery. In Proceedings of the AAAI spring symposium on learning by reading and learning to read.
Hovy, E. H., Kozareva, Z., & Riloff, E. (2009). Toward completeness in concept extraction and classification. In Proceedings of the 2009 conference on empirical methods in natural language processing (EMNLP), pp. 948–957.
Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago: A core of semantic knowledge. In Proceedings of the 16th international conference on World Wide Web (WWW), pp. 697–706.
Pantel, P., Crestan, E., Borkovsky, A., Popescu, A. M., & Vyas, V. (2009). Web-scale distributional similarity and entity set expansion. In Proceedings of the conference on empirical methods in natural language processing (EMNLP), pp. 938–947.
Vossen, P. (Ed.). (1998). EuroWordNet: A multilingual database with lexical semantic networks. Dordrecht, The Netherlands: Kluwer.
Rosch, E. (1978). Principles of categorization. In Cognition and Categorization, pp. 27–48
Lenat, D. B., & Guha, R. V. (1990). Building large knowledge-based systems. reading. Boston: Addison-Wesley.
Hearst, M. (1992). Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th conference on computational linguistics, pp. 539–545.
Lin, D., & Pantel, P. (2002). Concept discovery from text. In Proceedings of the 19th international conference on computational linguistics (COLING), pp. 1–7.
Pantel, P., & Pennacchiotti, M. (2006). Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In Proceedings of 21st international conference on computational linguistics (COLING) and 44th annual meeting of the association for computational linguistics (ACL).
Yang, H., & Callan, J. (2009). A metric-based framework for automatic taxonomy induction. In Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP (ACL-IJCNLP) (Vol. 1, pp. 271–279.
Ritter, A., & Mausam, O.E. (2010). A latent dirichlet allocation method for selectional pref
9229_CR32
9229_CR31
9229_CR34
9229_CR33
(9229_CR12) 1998
9229_CR30
A. M. George (9229_CR28) 1995; 38
9229_CR39
9229_CR36
9229_CR35
9229_CR38
9229_CR37
9229_CR43
9229_CR42
9229_CR45
9229_CR44
9229_CR41
9229_CR40
9229_CR6
O. Etzioni (9229_CR11) 2005; 165
9229_CR7
9229_CR8
9229_CR9
9229_CR2
9229_CR3
9229_CR4
9229_CR5
9229_CR47
9229_CR49
9229_CR1
9229_CR48
9229_CR10
9229_CR54
9229_CR53
9229_CR56
9229_CR55
9229_CR50
9229_CR52
9229_CR51
9229_CR19
9229_CR14
9229_CR58
9229_CR57
9229_CR16
9229_CR15
9229_CR59
9229_CR21
9229_CR20
9229_CR23
9229_CR22
9229_CR61
9229_CR60
9229_CR29
J. Pustejovsky (9229_CR46) 1995
9229_CR25
9229_CR24
9229_CR27
J. Fleiss (9229_CR13) 1971; 76
9229_CR26
References_xml – ident: 9229_CR26
  doi: 10.3115/980432.980696
– ident: 9229_CR3
  doi: 10.3115/980691.980749
– ident: 9229_CR1
  doi: 10.3115/981923.981959
– ident: 9229_CR27
  doi: 10.3115/1072228.1072372
– ident: 9229_CR42
– ident: 9229_CR23
– ident: 9229_CR8
– ident: 9229_CR56
– volume: 38
  start-page: 39
  year: 1995
  ident: 9229_CR28
  publication-title: Proceedings of Communications of the ACM
  contributor:
    fullname: A. M. George
– ident: 9229_CR39
  doi: 10.3115/1220175.1220190
– ident: 9229_CR52
– ident: 9229_CR37
– ident: 9229_CR45
– ident: 9229_CR59
  doi: 10.3115/1073445.1073481
– ident: 9229_CR55
  doi: 10.1145/1242572.1242667
– ident: 9229_CR44
  doi: 10.1515/9783598441851
– ident: 9229_CR49
– ident: 9229_CR54
  doi: 10.3115/1220175.1220276
– ident: 9229_CR24
– ident: 9229_CR61
  doi: 10.1145/219717.219748
– ident: 9229_CR22
  doi: 10.3115/1075527.1075588
– ident: 9229_CR51
– ident: 9229_CR38
– ident: 9229_CR30
– ident: 9229_CR41
  doi: 10.1145/1031171.1031194
– ident: 9229_CR34
– ident: 9229_CR14
  doi: 10.3115/1073445.1073456
– ident: 9229_CR19
– volume-title: WordNet: An on-line lexical database and some of its applications
  year: 1998
  ident: 9229_CR12
– ident: 9229_CR48
– ident: 9229_CR31
  doi: 10.2307/2025394
– ident: 9229_CR2
– ident: 9229_CR25
– volume: 76
  start-page: 378
  issue: 5
  year: 1971
  ident: 9229_CR13
  publication-title: Psychological Bulletin
  doi: 10.1037/h0031619
  contributor:
    fullname: J. Fleiss
– ident: 9229_CR16
  doi: 10.3115/992133.992154
– volume-title: The generative lexicon
  year: 1995
  ident: 9229_CR46
  contributor:
    fullname: J. Pustejovsky
– ident: 9229_CR58
– ident: 9229_CR20
  doi: 10.1007/978-94-017-0073-3_6
– ident: 9229_CR6
– ident: 9229_CR5
  doi: 10.3115/991719.991789
– ident: 9229_CR43
  doi: 10.3115/1220175.1220275
– ident: 9229_CR35
– ident: 9229_CR50
– volume: 165
  start-page: 91
  issue: 1
  year: 2005
  ident: 9229_CR11
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2005.03.001
  contributor:
    fullname: O. Etzioni
– ident: 9229_CR40
  doi: 10.3115/1699571.1699635
– ident: 9229_CR47
– ident: 9229_CR9
  doi: 10.3115/1599081.1599102
– ident: 9229_CR29
  doi: 10.1007/978-3-642-04930-9_66
– ident: 9229_CR33
  doi: 10.1016/j.artint.2012.07.001
– ident: 9229_CR4
  doi: 10.3115/980691.980750
– ident: 9229_CR57
  doi: 10.1007/978-94-017-1491-4
– ident: 9229_CR10
  doi: 10.3115/1220175.1220213
– ident: 9229_CR21
  doi: 10.3115/1699571.1699636
– ident: 9229_CR7
– ident: 9229_CR53
– ident: 9229_CR36
– ident: 9229_CR60
  doi: 10.3115/1687878.1687918
– ident: 9229_CR15
– ident: 9229_CR32
SSID ssj0042478
ssj0002228
Score 2.0286555
Snippet It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much...
Issue Title: Special Issues: "Computational Semantic Analysis of Language: SemEval-2010" and "Wordnets and Relations" It has long been a dream to have...
SourceID proquest
crossref
springer
jstor
SourceType Aggregation Database
Publisher
StartPage 859
SubjectTerms Algorithms
Animal genetics
Automated
Automatic text analysis
Automation
Biological taxonomies
Computational Linguistics
Computer Science
Construction
Dictionaries
Domain ontologies
English language
Hierarchical relationships
Hierarchies
Humans
International conferences
Jargon
Language
Language and Literature
Languages
Linguistics
Mammals
Natural language processing
Ontologies
Ontology
Original Paper
Recognition
Semantic analysis
Semantics
Social Sciences
Taxonomy
Terminology
Texts
Thesauri
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdt99KXtbv22LW94cHYQ4vL2Vac5LGMlTK2Pd3BvQXHdqC0JIW7wv78Sfm4ftAW-hICVoIj2bIU6ScBfKssquiUlaTrnMRsZmRpQym57gvmKoQKGe_856-9WuCvZbLcAr35dVHfnA8RyVZRP8K6JSmn9hiZa0032_CBbAfkNK6Fvhi0L2psta9KUpRkCi2HSOZLr3hyFnXpiE8MzWex0fbIudyHj72tKC464X6CrViPYG_owyD6bTmCaQ8-EN9Fjy5ibg_jB_B77q67RDtB5p5w9-uGSGIQvnmoHyuaStxyWrhckdiiWLt_LWQ5rgTnxnePks49hMXlz_mPK9l3UZAeTbqWimsA-iqgqYIOMVOJd7kJ3nHQxUS0gSy8MqCns6ryyPFdG7LSKJN6HUMwY9ipmzp-BpGkXnldpiFNA1YhceRdMnq1ZHxrptwETgd-FnddsYzioSwyM78g5hfM_GI2gXHL8Q0lSY58Q9QTOBlEUPQbasUeStcty0zg62aYtgLHN1wdm3umQS7mT5e3aHKbZ9agfYMmmbGXqWc0lbNhCTyaymtfdPQu6mPY1W1rDV6RJ7BD4o5TMnDW5Zd2Rf8HyiXw1g
  priority: 102
  providerName: Springer Nature
Title Tailoring the automated construction of large-scale taxonomies using the web
URI https://www.jstor.org/stable/24710442
https://link.springer.com/article/10.1007/s10579-013-9229-0
https://www.proquest.com/docview/1468602673
https://search.proquest.com/docview/1448744487
https://search.proquest.com/docview/1496986346
https://search.proquest.com/docview/1504415202
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9sw8GiTl71sa7uybG1QofRhRSz6sGw_jWxNWrq1jNJA9mRkSYbCiDuSwn7-7my5WQvNizDWGeS70-lO9wVwXBktghWGo6yzXGcjxUvjS051X3QuvK805TtfXZuLmb6cJ_N44baMYZWdTGwEta8d3ZF_phShpl2S-nL_h1PXKPKuxhYa29CXaCnIHvS_Tq5_3nSyWEvdyGKRpJqjYjTv_Jpt8lySUqyQ4rmU-PDkZGqDE5-onc88pc0BNH0Lr6PmyMYtqXdgKyx24U3XlYHFTboLhzEVgZ2wmGtEuO_m9-DHrb1rw-4YKn_MPqxqBAmeuXpdTZbVFftNQeJ8iUQMbGX_NgnMYckoUr79FCXwO5hNJ7ffLnjsqcCdVumKC6oI6CqvVeWlD5lInM2Vd5ZcMCpo41HfK712eHJVTpO31_isVEKlTgbv1T70FvUivAeWpE44WaY-Tb2ufGLR1qRc1pKyXTNhB_Cpw2dx35bOKNZFkgn5BSK_IOQXowHsNxh_hETKoaWo5QAOOhIUcXstizUzDODocRo3Bnk77CLUDwSjqbQ_DptgcpNnRmmzASYZkc0pR7iU044F_lvKS3_0YfPCP8Ir2XTWIBY8gB7SNxyifrMqh7CdTc-H0B-f__o-GUaWxrdX4gzHmRz_A9Jl-lk
link.rule.ids 315,783,787,11713,12779,21402,27938,27939,33387,33388,33758,33759,36164,36165,41095,41537,42164,42606,43614,43819,44394,52125,52248,74371,74638,75248
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9wwDBZb97C9bGu7suva1YPShw2zs604ydMYY7drd-3TFe4tOLYDg3HpuCvs51dKnF472L2EgBVwJFmWLX0SwGljUUWnrCRb5yQWYyNrG2rJdV-wVCE0yHjnyys7vcaLRbZIF26rlFY52MTOUIfW8x35Z4YIde2SzJebP5K7RnF0NbXQeArP0NBGw0jxyY_BEqPGzhKrLEdJbtFiiGr20Lks50whI0ut6eXRvtSnJj5yOv-Jk3bbz-Q1vEx-o_jaC3oXnsTlHrwaejKItET34DgBEcSZSEgj5vwwvg-zufvVJ90Jcv2Eu123RBKD8O2mlqxoG_GbU8TlikQYxdr97eDLcSU4T77_lOzvG7iefJ9_m8rUUUF6NPlaKq4H6JuApgk6xEJl3pUmeMcBGBPRBvL26oCe9q3GI8d6bShqo0zudQzBHMDOsl3GtyCy3Cuv6zzkecAmZI5OmoxkrRnrWig3go8DP6ubvnBGtSmRzMyviPkVM78aj-Cg4_g9JUmOzomoR3A0iKBKi2tVbVRhBB_uh2lZcKzDLWN7yzTIhf3psY2mtGVhDdotNNmYT5x6TFP5NKjAg6n8748Ot0_8BJ5P55ezanZ-9fMdvNBdjw1WxyPYIVnHY_J01vX7Tp3vACus954
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB60gvhitbZ4tdUI4oMlvcuPTXafRKxH1bb40MK9LdkkC6VyW7k9KP71zuxme7bgPfmyLGQWEr7JZLLzzQzAu9poEZ0wHG2d4zqfKF6ZUHGq-6ILEUKtKd_59MwcX-hvs2yW-E-LRKscbGJnqEPj6R_5mFKEunZJalwnWsSPo-nH61-cOkhRpDW103gIj2wmNdG7TsXRYJW11J1VFpnVHF2k2RDh7NPoMkusIcULKfHlzhnV0xTvOKD3YqbdUTTdhKthET0D5epw2VaH_ve9-o7_Z5XP4GnyWNmnXsWew4M434LNoRsES8ZhC_ZTCgR7z1KOE2E-jL-Ak3N32dP9GDqdzC3bBkViYL5ZVbFlTc1-EjmdL1B5ImvdTZc4HReMGPr9p2j5t-Fi-uX88zFPvRy418q2XFAlQl8HreogQ8xF5l2hgncU-lFRm4B-ZhW0xxOz9pqizCbklRLKehlDUDuwMW_m8SWwzHrhZWWDtUHXIXN4x6Uc2oqybHPhRvBhQK-87kt2lKvizAR1iVCXBHU5GcFOh--tJOoJ3lC1HMHegFCZtvWiXMEzgre3w7ghKcri5rFZkoymlgL4WCdTmCI3Sps1MtmE7rpyglM5GBTur6n8a0W76yf-Bh6jRpUnX8--v4InsmvuQbq_BxsIddxHF6utXnd75w-frCNU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+the+automated+construction+of+large-scale+taxonomies+using+the+web&rft.jtitle=Language+resources+and+evaluation&rft.au=Kozareva%2C+Zornitsa&rft.au=Hovy%2C+Eduard&rft.date=2013-09-01&rft.issn=1574-020X&rft.eissn=1574-0218&rft.volume=47&rft.issue=3&rft.spage=859&rft.epage=890&rft_id=info:doi/10.1007%2Fs10579-013-9229-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-020X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-020X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-020X&client=summon