Tailoring the automated construction of large-scale taxonomies using the web
It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various la...
Saved in:
Published in | Language Resources and Evaluation Vol. 47; no. 3; pp. 859 - 890 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer
01.09.2013
Springer Netherlands Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains. |
---|---|
AbstractList | It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains. It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains. Adapted from the source document Issue Title: Special Issues: "Computational Semantic Analysis of Language: SemEval-2010" and "Wordnets and Relations" It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much human and computational effort has gone into constructing such resources, including the original WordNet and subsequent wordnets in various languages. To produce such resources one has to overcome well-known problems in achieving both wide coverage and internal consistency within a single wordnet and across many wordnets. In particular, one has to ensure that alternative valid taxonomizations covering the same basic terms are recognized and treated appropriately. In this paper we describe a pipeline of new, powerful, minimally supervised, automated algorithms that can be used to construct terminology taxonomies and wordnets, in various languages, by harvesting large amounts of online domain-specific or general text. We illustrate the effectiveness of the algorithms both to build localized, domain-specific wordnets and to highlight and investigate certain deeper ontological problems such as parallel generalization hierarchies. We show shortcomings and gaps in the manually-constructed English WordNet in various domains.[PUBLICATION ABSTRACT] |
Author | Hovy, Eduard Kozareva, Zornitsa |
Author_xml | – sequence: 1 givenname: Zornitsa surname: Kozareva fullname: Kozareva, Zornitsa – sequence: 2 givenname: Eduard surname: Hovy fullname: Hovy, Eduard |
BookMark | eNqNkU1LxDAQhoOsoKv-AA9CwYuX6iSZpu1RxC9Y8KLgLWSTVLt0mzVJUf-9WasiHtRLZg7PO0nmmZJJ73pLyD6FYwpQngQKRVnnQHleM5aaDbJNi5LlFVI2ee8xBwb3W2QawgIAGZbVNpndqrZzvu0fsvhoMzVEt1TRmky7PkQ_6Ni6PnNN1in_YPOgVWezqF5c75atDdkQPqPPdr5LNhvVBbv3UXfI3cX57dlVPru5vD47neUaeRlzykpE3RjkjWHGVrTQquZGKxCi4BaF4RTmBnUFtNGIKIQw1ZxTXmpmjeE75Gicu_LuabAhymUbtO061Vs3BEkLQKQFA_Y3irWoK8FR_APFKj08HQk9_IEu3OD79OdEiUoAEyVPFB0p7V0I3jZy5dul8q-Sglxbk6M1mazJtTUJKcPGTFitpVj_bfIvoYMxtAjR-a9bkmGaFsH4G20EpBQ |
CODEN | COHUAD |
CitedBy_id | crossref_primary_10_1111_ehr_12083 crossref_primary_10_1007_s10579_014_9274_3 |
Cites_doi | 10.3115/980432.980696 10.3115/980691.980749 10.3115/981923.981959 10.3115/1072228.1072372 10.3115/1220175.1220190 10.3115/1073445.1073481 10.1145/1242572.1242667 10.1515/9783598441851 10.3115/1220175.1220276 10.1145/219717.219748 10.3115/1075527.1075588 10.1145/1031171.1031194 10.3115/1073445.1073456 10.2307/2025394 10.1037/h0031619 10.3115/992133.992154 10.1007/978-94-017-0073-3_6 10.3115/991719.991789 10.3115/1220175.1220275 10.1016/j.artint.2005.03.001 10.3115/1699571.1699635 10.3115/1599081.1599102 10.1007/978-3-642-04930-9_66 10.1016/j.artint.2012.07.001 10.3115/980691.980750 10.1007/978-94-017-1491-4 10.3115/1220175.1220213 10.3115/1699571.1699636 10.3115/1687878.1687918 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media 2013 Springer Science+Business Media Dordrecht 2013 |
Copyright_xml | – notice: Springer Science+Business Media 2013 – notice: Springer Science+Business Media Dordrecht 2013 |
DBID | AAYXX CITATION 3V. 7SC 7T9 7XB 8AL 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA AIMQZ ALSLI ARAPS AVQMV AZQEC BENPR BGLVJ CCPQU CPGLG CRLPW DWQXO GB0 GNUQQ GUQSH HCIFZ JQ2 K50 K7- L7M LIQON L~C L~D M0N M1D M2O MBDVC P5Z P62 PQEST PQQKQ PQUKI Q9U 8BP E3H F2A |
DOI | 10.1007/s10579-013-9229-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Linguistics and Language Behavior Abstracts (LLBA) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest One Literature Social Science Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies & Aerospace Database (1962 - current) Arts Premium Collection ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College Linguistics Collection ProQuest Linguistics Database ProQuest Central DELNET Social Sciences & Humanities Collection ProQuest Central Student Research Library Prep SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Art, Design and Architecture Collection Computer Science Database Advanced Technologies Database with Aerospace ProQuest One Literature - U.S. Customers Only Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest Arts & Humanities Database Proquest Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Library & Information Sciences Abstracts (LISA) - CILIP Edition Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) |
DatabaseTitle | CrossRef ProQuest DELNET Social Sciences and Humanities Collection Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Linguistics Collection Arts Premium Collection ProQuest Central Korea ProQuest Research Library ProQuest Art, Design and Architecture Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Social Science Premium Collection ProQuest Computing ProQuest One Literature - U.S. Customers Only ProQuest Central Basic ProQuest One Literature ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Linguistics and Language Behavior Abstracts (LLBA) ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Linguistics Database Arts & Humanities Full Text ProQuest One Academic ProQuest Central (Alumni) Library & Information Sciences Abstracts (LISA) - CILIP Edition Library and Information Science Abstracts (LISA) |
DatabaseTitleList | Linguistics and Language Behavior Abstracts (LLBA) Computer and Information Systems Abstracts ProQuest DELNET Social Sciences and Humanities Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Library & Information Science Computer Science |
EISSN | 1572-8412 1574-0218 |
EndPage | 890 |
ExternalDocumentID | 3158226201 10_1007_s10579_013_9229_0 24710442 |
GeographicLocations | United States--US |
GeographicLocations_xml | – name: United States--US |
GroupedDBID | -51 -5C -5G -BR -DZ -EM -~C .4H .4S .86 .DC 06D 0R~ 0VY 199 203 29L 2J2 2JN 2JY 2KG 2LR 2~H 30V 3V. 4.4 406 408 409 40E 5GY 5VS 67Z 6NX 78A 8FE 8FG 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAGAY AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBHK ABBXA ABDZT ABECU ABECW ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ABXSQ ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACNXV ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ACZOJ ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADPTO ADRFC ADTPH ADULT ADURQ ADYFF ADYOE ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEUPB AEVLU AEVTX AEXYK AFFNX AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGHSJ AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHBYD AHEXP AHSBF AHYZX AIAKS AIIXL AILAN AIMQZ AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALSLI ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ AVQMV AXYYD AYQZM AZFZN AZQEC AZRUE B-. BA0 BDATZ BENPR BGLVJ BGNMA BHNFS BPHCQ CCPQU CPGLG CRLPW CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EDO EHI EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GB0 GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS HCIFZ HF~ HG5 HG6 HLICF HMHOC HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JAAYA JAB JBMMH JBSCW JCJTX JENOY JHFFW JKQEH JLEZI JLXEF JPL JSODD JST JZLTJ K50 K6V K7- KDC KOV LIQON LLZTM M0N M1D M2O M4Y MA- MQGED N2Q NB0 NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P62 P9Q PF- PQQKQ PROAC PT4 Q2X QF4 QN3 QN7 QOS R89 R9I RHV RIG ROL RPX RSV S16 S27 S3B SA0 SAP SDA SDH SDM SHS SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TN5 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VQA W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ~EX -Y2 07C 2.D 2P1 2VQ 3EH AABYN AAGJQ AANTL AAPBV AAXYU AAYOK ABPTK ACVYN ADSWE AEEQQ AFEXP AHAVH AHKAY CAG COF GPZZG IHE NDZJH P-O S1Z S26 S28 SCLPG T16 ZWUKE AACDK AAEOY AAJBT AASML AAYXX ABAKF ACDTI ADACV AEFQL AEMSY AFBBN AGQEE AGRTI AGZLP AIGIU CITATION H13 IPSME 7SC 7T9 7XB 8AL 8FD 8FK AAHCP JQ2 L7M L~C L~D MBDVC PQEST PQUKI Q9U AAYZH 8BP E3H F2A |
ID | FETCH-LOGICAL-c437t-12744cfd43fd2de815ca93dca06653e46d310bd4c801fc444666d8b3137c2edd3 |
IEDL.DBID | BENPR |
ISSN | 1574-020X |
IngestDate | Fri Oct 25 22:23:32 EDT 2024 Fri Oct 25 09:17:36 EDT 2024 Fri Oct 25 23:19:05 EDT 2024 Thu Oct 10 19:53:25 EDT 2024 Thu Sep 26 19:12:03 EDT 2024 Sat Dec 16 12:00:08 EST 2023 Fri Feb 02 07:02:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Text mining Ontology induction Hyponym and hypernym learning Wordnet evaluation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c437t-12744cfd43fd2de815ca93dca06653e46d310bd4c801fc444666d8b3137c2edd3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1468602673 |
PQPubID | 28740 |
PageCount | 32 |
ParticipantIDs | proquest_miscellaneous_1504415202 proquest_miscellaneous_1496986346 proquest_miscellaneous_1448744487 proquest_journals_1468602673 crossref_primary_10_1007_s10579_013_9229_0 springer_journals_10_1007_s10579_013_9229_0 jstor_primary_24710442 |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Dordrect |
PublicationTitle | Language Resources and Evaluation |
PublicationTitleAbbrev | Lang Resources & Evaluation |
PublicationYear | 2013 |
Publisher | Springer Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer – name: Springer Netherlands – name: Springer Nature B.V |
References | FleissJ.Measuring nominal scale agreement among many ratersPsychological Bulletin197176537838210.1037/h0031619 Ide, N., & Veronis, J. (1994). Machine readable dictionaries: What have we learned, where do we go. In Proceedings of the post-COLING 94 intl. workshop on directions of lexical research, Beijing, pp. 137–146. Katz, B., & Lin, J. (2003). Selectively using relations to improve precision in question answering. In Proceedings of the EACL-2003 workshop on natural language processing for question answering, pp. 43–50. NavigliR.PonzettoP.BabelNet: The automatic construction, evaluation and application of a wide-coverage multilingual semantic networkJournal of Artificial Intelligence2012193217250 Wilks, Y., Fass, D., ming Guo, C., Mcdonald, J. E., Plate, T., & Slator, B. M. (1988). Machine tractable dictionaries as tools and resources for natural language processing. In Proceedings of the 12th conference on computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp. 750–755. MillerG. A.WordNet: a lexical database for englishCommunications of the ACM1995383941 Bateman, J. A., Kasper, R. T., Moore, J. D., & Whitney, R. A. (1989). A general organization of knowledge for natural language processing: The penman upper model. Unpublished research report, USC/Information Sciences Institute, Marina del Rey. Robkop, K., Thoongsup, S., Charoenporn, T., Sornlertlamvanich, V., & Isahara, H. (2010). WNMS: Connecting the distributed WordNet in the case of Asian WordNet the 5th international conference of the global WordNet association (GWC-2010), Mumbai, India. VelardiP.RobertoN.PierluigiD.Mining the web to create specialized glossariesJournal of IEEE Intelligent Systems20082351825 Snow, R., Jurafsky, D., & Ng, A. Y. (2006). Semantic taxonomy induction from heterogenous evidence. In Proceedings of the international conference on computational linguistics (COLING) and the annual meeting of the association for computational linguistics (ACL). Cuadros, M., & Rigau, G. (2008). KnowNet: Building a large net of knowledge from the web. The 22nd international conference on computational linguistics (Coling’08), UK, Manchester. Pasca, M. (2004). Acquisition of categorized named entities for web search. In Proceedings of the thirteenth ACM international conference on information and knowledge management (CIKM), pp 137–145. Richardson, S. D., Dolan, W. B., & Vanderwende, L. (1998). Mindnet: Acquiring and structuring semantic information from text. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 2 (ACL ’98), (Vol. 2). Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1098–1102. Navigli, R., Velardi, P., & Faralli, S. (2011). A graph-based algorithm for inducing lexical taxonomies from scratch. In Proceedings of the Twenty-Second international joint conference on artificial intelligence—volume volume three. IJCAI’11, pp. 1872–1877. Snow, R., Jurafsky, D., & Ng, A.Y. (2005). Learning syntactic patterns for automatic hypernym discovery. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (Vol. 17, pp. 1297–1304). EtzioniO.CafarellaM.DowneyD.PopescuA. M.ShakedT.SoderlandS.WeldD.S.YatesA.Unsupervised named-entity extraction from the web: An experimental studyArtificial Intelligence200516519113410.1016/j.artint.2005.03.001 Rigau, G., Rodriguez, H., & Agirre, E. (1998). Building accurate semantic taxonomies from monolingual MRDs. In Proceedings of the 36th annual meeting of the association for computational linguistics and 17th international conference on computational linguistics—Volume 2 (ACL ’98), (Vol. 2). Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 1103–1109. Roberto, N., Velardi, P., & Faralli, S. (2011). A graph-based algorithm for inducing lexical taxonomies from scratch. In Proceedings of IJCAI 2011, pp. 1872–1877. Vossen, P., Hofmann, K., Rijke, M., Tjong, E., Sang, K., & Deschacht, K. (2008). The Cornetto database: Architecture and user-scenarios. In Proceedings of the fourth international GlobalWordNet conference—GWC. Amsler, R. A. (1981). A taxonomy for english nouns and verbs. In: Proceedings of the 19th annual meeting on association for computational linguistics, Association for Computational Linguistics, Morristown, NJ, USA, pp. 133–138. Moldovan, D. I., Harabagiu, S. M., Pasca, M., Mihalcea, R., Goodrum, R., Girju, R. et al. (1999). Lasso: A tool for surfing the answer net. In Proceedings of the TREC conference. GeorgeA. M.WordNet: A lexical database for englishProceedings of Communications of the ACM1995383941 Atserias, J., Villarejo, L., Rigau, G., Agirre, E., Carroll, J., Magnini, B., et al. (2004). The MEANING multilingual central repository. In Proceedings of the second international WordNet conference. pp. 80–210. Szpektor, I., Dagan, I., Bar-Haim, R., & Goldberger, J. (2008). Contextual preferences. In Proceedings of the annual meeting of the association for computational linguistics (ACL), pp. 683–691. Moravcsik, J. M. E. (1981). How do words get their meanings? The Journal of Philosophy, 78 1. Kozareva, Z., Riloff, E., & Hovy, E. H. (2008). Semantic class learning from the web with hyponym pattern linkage graphs. In Proceedings of the NAACL-HLT conference, pp. 1048–1056. Navigli, R., Velardi, P., Cucchiarelli, A., Neri, F., & Cucchiarelli, R. (2004). Extending and enriching WordNet with OntoLearn. In Proceedings of the second global wordnet conference 2004 (GWC 2004). pp. 279–284. PustejovskyJ.The generative lexicon1995Cambridge, MAMIT Press Peters, I. (2009). Folksonomies. Indexing and retrieval in web 2.0. Berlin: De Gruyter Saur. Pennacchiotti, M., & Pantel P. (2006). Ontologizing semantic relations. In Proceedings of the international conference on computational linguistics (COLING) and the annual meeting of the association for computational linguistics (ACL), pp. 793–800. Glickman, O., Dagan, I., & Koppel, M. (2005). A probabilistic classification approach for lexical textual entailment. In Proceedings of the twentieth national conference on artificial intelligence and the seventeenth innovative applications of artificial intelligence conference, pp. 1050–1055. Banko, M. (2009). Open information extraction from the web. Ph.D. Dissertation from University of Washington. Hovy, E. H. (2002). Comparing sets of semantic relations in ontologies. In R. Green, C. A. Bean, & S. H. Myaeng (Eds.), The semantics of relationships: An interdisciplinary perspective, pp. 91–110. Lin, D. (1998). Automatic retrieval and clustering of similar words. In Proceedings of the 17th international conference on computational linguistics (COLING), pp. 768–774. FellbaumC.WordNet: An on-line lexical database and some of its applications1998Cambridge, MA.MIT Press Widdows, D. (2003). Unsupervised methods for developing taxonomies by combining syntactic and statistical information. In Proceedings of the HLT-NAACL conference. Agirre, E., & Lopez de Lacalle, O. (2004). Publicly available topic signatures for all WordNet nominal senses. In Proceedings of the 4rd international conference on languages resources and evaluations (LREC). Lisbon, Portugal. Ponzetto, S., & Navigli, R. (2010). Knowledge-rich word sense disambiguation rivaling supervised systems. In Proceedings of the 48th annual meeting of the association for computational linguistics (ACL 2010), Uppsala, Sweden. Riloff, E., & Jones, R. (1999). Learning dictionaries for information extraction by multi-level bootstrapping. In Proceedings of the sixteenth national conference on artificial intelligence (AAAI), pp. 474–479. Schmid, H. (1994). Probabilistic part-of-speech tagging using decision trees. In Proceedings of the international conference on new methods in language processing, pp. 4449. Ritter, A., Soderland, S., & Etzioni, O., (2009). What is this, anyway: Automatic hypernym discovery. In Proceedings of the AAAI spring symposium on learning by reading and learning to read. Hovy, E. H., Kozareva, Z., & Riloff, E. (2009). Toward completeness in concept extraction and classification. In Proceedings of the 2009 conference on empirical methods in natural language processing (EMNLP), pp. 948–957. Suchanek, F. M., Kasneci, G., & Weikum, G. (2007). Yago: A core of semantic knowledge. In Proceedings of the 16th international conference on World Wide Web (WWW), pp. 697–706. Pantel, P., Crestan, E., Borkovsky, A., Popescu, A. M., & Vyas, V. (2009). Web-scale distributional similarity and entity set expansion. In Proceedings of the conference on empirical methods in natural language processing (EMNLP), pp. 938–947. Vossen, P. (Ed.). (1998). EuroWordNet: A multilingual database with lexical semantic networks. Dordrecht, The Netherlands: Kluwer. Rosch, E. (1978). Principles of categorization. In Cognition and Categorization, pp. 27–48 Lenat, D. B., & Guha, R. V. (1990). Building large knowledge-based systems. reading. Boston: Addison-Wesley. Hearst, M. (1992). Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th conference on computational linguistics, pp. 539–545. Lin, D., & Pantel, P. (2002). Concept discovery from text. In Proceedings of the 19th international conference on computational linguistics (COLING), pp. 1–7. Pantel, P., & Pennacchiotti, M. (2006). Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In Proceedings of 21st international conference on computational linguistics (COLING) and 44th annual meeting of the association for computational linguistics (ACL). Yang, H., & Callan, J. (2009). A metric-based framework for automatic taxonomy induction. In Proceedings of the joint conference of the 47th annual meeting of the ACL and the 4th international joint conference on natural language processing of the AFNLP (ACL-IJCNLP) (Vol. 1, pp. 271–279. Ritter, A., & Mausam, O.E. (2010). A latent dirichlet allocation method for selectional pref 9229_CR32 9229_CR31 9229_CR34 9229_CR33 (9229_CR12) 1998 9229_CR30 A. M. George (9229_CR28) 1995; 38 9229_CR39 9229_CR36 9229_CR35 9229_CR38 9229_CR37 9229_CR43 9229_CR42 9229_CR45 9229_CR44 9229_CR41 9229_CR40 9229_CR6 O. Etzioni (9229_CR11) 2005; 165 9229_CR7 9229_CR8 9229_CR9 9229_CR2 9229_CR3 9229_CR4 9229_CR5 9229_CR47 9229_CR49 9229_CR1 9229_CR48 9229_CR10 9229_CR54 9229_CR53 9229_CR56 9229_CR55 9229_CR50 9229_CR52 9229_CR51 9229_CR19 9229_CR14 9229_CR58 9229_CR57 9229_CR16 9229_CR15 9229_CR59 9229_CR21 9229_CR20 9229_CR23 9229_CR22 9229_CR61 9229_CR60 9229_CR29 J. Pustejovsky (9229_CR46) 1995 9229_CR25 9229_CR24 9229_CR27 J. Fleiss (9229_CR13) 1971; 76 9229_CR26 |
References_xml | – ident: 9229_CR26 doi: 10.3115/980432.980696 – ident: 9229_CR3 doi: 10.3115/980691.980749 – ident: 9229_CR1 doi: 10.3115/981923.981959 – ident: 9229_CR27 doi: 10.3115/1072228.1072372 – ident: 9229_CR42 – ident: 9229_CR23 – ident: 9229_CR8 – ident: 9229_CR56 – volume: 38 start-page: 39 year: 1995 ident: 9229_CR28 publication-title: Proceedings of Communications of the ACM contributor: fullname: A. M. George – ident: 9229_CR39 doi: 10.3115/1220175.1220190 – ident: 9229_CR52 – ident: 9229_CR37 – ident: 9229_CR45 – ident: 9229_CR59 doi: 10.3115/1073445.1073481 – ident: 9229_CR55 doi: 10.1145/1242572.1242667 – ident: 9229_CR44 doi: 10.1515/9783598441851 – ident: 9229_CR49 – ident: 9229_CR54 doi: 10.3115/1220175.1220276 – ident: 9229_CR24 – ident: 9229_CR61 doi: 10.1145/219717.219748 – ident: 9229_CR22 doi: 10.3115/1075527.1075588 – ident: 9229_CR51 – ident: 9229_CR38 – ident: 9229_CR30 – ident: 9229_CR41 doi: 10.1145/1031171.1031194 – ident: 9229_CR34 – ident: 9229_CR14 doi: 10.3115/1073445.1073456 – ident: 9229_CR19 – volume-title: WordNet: An on-line lexical database and some of its applications year: 1998 ident: 9229_CR12 – ident: 9229_CR48 – ident: 9229_CR31 doi: 10.2307/2025394 – ident: 9229_CR2 – ident: 9229_CR25 – volume: 76 start-page: 378 issue: 5 year: 1971 ident: 9229_CR13 publication-title: Psychological Bulletin doi: 10.1037/h0031619 contributor: fullname: J. Fleiss – ident: 9229_CR16 doi: 10.3115/992133.992154 – volume-title: The generative lexicon year: 1995 ident: 9229_CR46 contributor: fullname: J. Pustejovsky – ident: 9229_CR58 – ident: 9229_CR20 doi: 10.1007/978-94-017-0073-3_6 – ident: 9229_CR6 – ident: 9229_CR5 doi: 10.3115/991719.991789 – ident: 9229_CR43 doi: 10.3115/1220175.1220275 – ident: 9229_CR35 – ident: 9229_CR50 – volume: 165 start-page: 91 issue: 1 year: 2005 ident: 9229_CR11 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2005.03.001 contributor: fullname: O. Etzioni – ident: 9229_CR40 doi: 10.3115/1699571.1699635 – ident: 9229_CR47 – ident: 9229_CR9 doi: 10.3115/1599081.1599102 – ident: 9229_CR29 doi: 10.1007/978-3-642-04930-9_66 – ident: 9229_CR33 doi: 10.1016/j.artint.2012.07.001 – ident: 9229_CR4 doi: 10.3115/980691.980750 – ident: 9229_CR57 doi: 10.1007/978-94-017-1491-4 – ident: 9229_CR10 doi: 10.3115/1220175.1220213 – ident: 9229_CR21 doi: 10.3115/1699571.1699636 – ident: 9229_CR7 – ident: 9229_CR53 – ident: 9229_CR36 – ident: 9229_CR60 doi: 10.3115/1687878.1687918 – ident: 9229_CR15 – ident: 9229_CR32 |
SSID | ssj0042478 ssj0002228 |
Score | 2.0286555 |
Snippet | It has long been a dream to have available a single, centralized, semantic thesaurus or terminology taxonomy to support research in a variety of fields. Much... Issue Title: Special Issues: "Computational Semantic Analysis of Language: SemEval-2010" and "Wordnets and Relations" It has long been a dream to have... |
SourceID | proquest crossref springer jstor |
SourceType | Aggregation Database Publisher |
StartPage | 859 |
SubjectTerms | Algorithms Animal genetics Automated Automatic text analysis Automation Biological taxonomies Computational Linguistics Computer Science Construction Dictionaries Domain ontologies English language Hierarchical relationships Hierarchies Humans International conferences Jargon Language Language and Literature Languages Linguistics Mammals Natural language processing Ontologies Ontology Original Paper Recognition Semantic analysis Semantics Social Sciences Taxonomy Terminology Texts Thesauri |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9wwDBdt99KXtbv22LW94cHYQ4vL2Vac5LGMlTK2Pd3BvQXHdqC0JIW7wv78Sfm4ftAW-hICVoIj2bIU6ScBfKssquiUlaTrnMRsZmRpQym57gvmKoQKGe_856-9WuCvZbLcAr35dVHfnA8RyVZRP8K6JSmn9hiZa0032_CBbAfkNK6Fvhi0L2psta9KUpRkCi2HSOZLr3hyFnXpiE8MzWex0fbIudyHj72tKC464X6CrViPYG_owyD6bTmCaQ8-EN9Fjy5ibg_jB_B77q67RDtB5p5w9-uGSGIQvnmoHyuaStxyWrhckdiiWLt_LWQ5rgTnxnePks49hMXlz_mPK9l3UZAeTbqWimsA-iqgqYIOMVOJd7kJ3nHQxUS0gSy8MqCns6ryyPFdG7LSKJN6HUMwY9ipmzp-BpGkXnldpiFNA1YhceRdMnq1ZHxrptwETgd-FnddsYzioSwyM78g5hfM_GI2gXHL8Q0lSY58Q9QTOBlEUPQbasUeStcty0zg62aYtgLHN1wdm3umQS7mT5e3aHKbZ9agfYMmmbGXqWc0lbNhCTyaymtfdPQu6mPY1W1rDV6RJ7BD4o5TMnDW5Zd2Rf8HyiXw1g priority: 102 providerName: Springer Nature |
Title | Tailoring the automated construction of large-scale taxonomies using the web |
URI | https://www.jstor.org/stable/24710442 https://link.springer.com/article/10.1007/s10579-013-9229-0 https://www.proquest.com/docview/1468602673 https://search.proquest.com/docview/1448744487 https://search.proquest.com/docview/1496986346 https://search.proquest.com/docview/1504415202 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1da9sw8GiTl71sa7uybG1QofRhRSz6sGw_jWxNWrq1jNJA9mRkSYbCiDuSwn7-7my5WQvNizDWGeS70-lO9wVwXBktghWGo6yzXGcjxUvjS051X3QuvK805TtfXZuLmb6cJ_N44baMYZWdTGwEta8d3ZF_phShpl2S-nL_h1PXKPKuxhYa29CXaCnIHvS_Tq5_3nSyWEvdyGKRpJqjYjTv_Jpt8lySUqyQ4rmU-PDkZGqDE5-onc88pc0BNH0Lr6PmyMYtqXdgKyx24U3XlYHFTboLhzEVgZ2wmGtEuO_m9-DHrb1rw-4YKn_MPqxqBAmeuXpdTZbVFftNQeJ8iUQMbGX_NgnMYckoUr79FCXwO5hNJ7ffLnjsqcCdVumKC6oI6CqvVeWlD5lInM2Vd5ZcMCpo41HfK712eHJVTpO31_isVEKlTgbv1T70FvUivAeWpE44WaY-Tb2ufGLR1qRc1pKyXTNhB_Cpw2dx35bOKNZFkgn5BSK_IOQXowHsNxh_hETKoaWo5QAOOhIUcXstizUzDODocRo3Bnk77CLUDwSjqbQ_DptgcpNnRmmzASYZkc0pR7iU044F_lvKS3_0YfPCP8Ir2XTWIBY8gB7SNxyifrMqh7CdTc-H0B-f__o-GUaWxrdX4gzHmRz_A9Jl-lk |
link.rule.ids | 315,783,787,11713,12779,21402,27938,27939,33387,33388,33758,33759,36164,36165,41095,41537,42164,42606,43614,43819,44394,52125,52248,74371,74638,75248 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Ra9wwDBZb97C9bGu7suva1YPShw2zs604ydMYY7drd-3TFe4tOLYDg3HpuCvs51dKnF472L2EgBVwJFmWLX0SwGljUUWnrCRb5yQWYyNrG2rJdV-wVCE0yHjnyys7vcaLRbZIF26rlFY52MTOUIfW8x35Z4YIde2SzJebP5K7RnF0NbXQeArP0NBGw0jxyY_BEqPGzhKrLEdJbtFiiGr20Lks50whI0ut6eXRvtSnJj5yOv-Jk3bbz-Q1vEx-o_jaC3oXnsTlHrwaejKItET34DgBEcSZSEgj5vwwvg-zufvVJ90Jcv2Eu123RBKD8O2mlqxoG_GbU8TlikQYxdr97eDLcSU4T77_lOzvG7iefJ9_m8rUUUF6NPlaKq4H6JuApgk6xEJl3pUmeMcBGBPRBvL26oCe9q3GI8d6bShqo0zudQzBHMDOsl3GtyCy3Cuv6zzkecAmZI5OmoxkrRnrWig3go8DP6ubvnBGtSmRzMyviPkVM78aj-Cg4_g9JUmOzomoR3A0iKBKi2tVbVRhBB_uh2lZcKzDLWN7yzTIhf3psY2mtGVhDdotNNmYT5x6TFP5NKjAg6n8748Ot0_8BJ5P55ezanZ-9fMdvNBdjw1WxyPYIVnHY_J01vX7Tp3vACus954 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB60gvhitbZ4tdUI4oMlvcuPTXafRKxH1bb40MK9LdkkC6VyW7k9KP71zuxme7bgPfmyLGQWEr7JZLLzzQzAu9poEZ0wHG2d4zqfKF6ZUHGq-6ILEUKtKd_59MwcX-hvs2yW-E-LRKscbGJnqEPj6R_5mFKEunZJalwnWsSPo-nH61-cOkhRpDW103gIj2wmNdG7TsXRYJW11J1VFpnVHF2k2RDh7NPoMkusIcULKfHlzhnV0xTvOKD3YqbdUTTdhKthET0D5epw2VaH_ve9-o7_Z5XP4GnyWNmnXsWew4M434LNoRsES8ZhC_ZTCgR7z1KOE2E-jL-Ak3N32dP9GDqdzC3bBkViYL5ZVbFlTc1-EjmdL1B5ImvdTZc4HReMGPr9p2j5t-Fi-uX88zFPvRy418q2XFAlQl8HreogQ8xF5l2hgncU-lFRm4B-ZhW0xxOz9pqizCbklRLKehlDUDuwMW_m8SWwzHrhZWWDtUHXIXN4x6Uc2oqybHPhRvBhQK-87kt2lKvizAR1iVCXBHU5GcFOh--tJOoJ3lC1HMHegFCZtvWiXMEzgre3w7ghKcri5rFZkoymlgL4WCdTmCI3Sps1MtmE7rpyglM5GBTur6n8a0W76yf-Bh6jRpUnX8--v4InsmvuQbq_BxsIddxHF6utXnd75w-frCNU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+the+automated+construction+of+large-scale+taxonomies+using+the+web&rft.jtitle=Language+resources+and+evaluation&rft.au=Kozareva%2C+Zornitsa&rft.au=Hovy%2C+Eduard&rft.date=2013-09-01&rft.issn=1574-020X&rft.eissn=1574-0218&rft.volume=47&rft.issue=3&rft.spage=859&rft.epage=890&rft_id=info:doi/10.1007%2Fs10579-013-9229-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-020X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-020X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-020X&client=summon |