Contribution Of Advective Fluxes To Net Ecosystem Exchange In A High-Elevation, Subalpine Forest

The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, U...

Full description

Saved in:
Bibliographic Details
Published inEcological applications Vol. 18; no. 6; pp. 1379 - 1390
Main Authors Yi, Chuixiang, Anderson, Dean E, Turnipseed, Andrew A, Burns, Sean P, Sparks, Jed P, Stannard, David I, Monson, Russell K
Format Journal Article
LanguageEnglish
Published United States 01.09.2008
Subjects
Online AccessGet more information
ISSN1051-0761
1939-5582
DOI10.1890/06-0908.1

Cover

Loading…
Abstract The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple towers. We observed relatively high rates of both horizontal (F(hadv)) and vertical (F(vadv)) advective fluxes at low surface friction velocities (u(*)) which were associated with downslope katabatic flows. We observed that F(hadv) was confined to a relatively thin layer (0-6 m thick) of subcanopy air that flowed beneath the eddy covariance sensors principally at night, carrying with it respired CO2 from the soil and lower parts of the canopy. The observed F(vadv) came from above the canopy and was presumably due to the convergence of drainage flows at the tower site. The magnitudes of both F(hadv) and F(vadv) were similar, of opposite sign, and increased with decreasing u(*), meaning that they most affected estimates of the total CO2 flux on calm nights with low wind speeds. The mathematical sign, temporal variation and dependence on u(*) of both F(hadv) and F(vadv) were determined by the unique terrain of the Niwot Ridge site. Therefore, the patterns we observed may not be broadly applicable to other sites. We evaluated the influence of advection on the cumulative annual and monthly estimates of the total CO2 flux (F(c)), which is often used as an estimate of NEE, over six years using the dependence of F(hadv) and F(vadv) on u(*). When the sum of F(hadv) and F(vadv) was used to correct monthly F(c), we observed values that were different from the monthly F(c) calculated using the traditional u(*)-filter correction by--16 to 20 g C x m(-2) x mo(-1); the mean percentage difference in monthly Fc for these two methods over the six-year period was 10%. When the sum of F(hadv) and F(vadv) was used to correct annual Fc, we observed a 65% difference compared to the traditional u(*)-filter approach. Thus, the errors to the local CO2 budget, when F(hadv) and F(vadv) are ignored, can become large when compounded in cumulative fashion over long time intervals. We conclude that the "micrometeorological" (using observations of F(hadv) and F(vadv)) and "biological" (using the u(*) filter and temperature vs. F(c) relationship) corrections differ on the basis of fundamental mechanistic grounds. The micrometeorological correction is based on aerodynamic mechanisms and shows no correlation to drivers of biological activity. Conversely, the biological correction is based on climatic responses of organisms and has no physical connection to aerodynamic processes. In those cases where they impose corrections of similar magnitude on the cumulative F(c) sum, the result is due to a serendipitous similarity in scale but has no clear mechanistic explanation.
AbstractList The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that carries CO2 in the mean flow is ignored. We measured horizontal and vertical advective CO2 fluxes at the Niwot Ridge AmeriFlux site (Colorado, USA) using a measurement approach consisting of multiple towers. We observed relatively high rates of both horizontal (F(hadv)) and vertical (F(vadv)) advective fluxes at low surface friction velocities (u(*)) which were associated with downslope katabatic flows. We observed that F(hadv) was confined to a relatively thin layer (0-6 m thick) of subcanopy air that flowed beneath the eddy covariance sensors principally at night, carrying with it respired CO2 from the soil and lower parts of the canopy. The observed F(vadv) came from above the canopy and was presumably due to the convergence of drainage flows at the tower site. The magnitudes of both F(hadv) and F(vadv) were similar, of opposite sign, and increased with decreasing u(*), meaning that they most affected estimates of the total CO2 flux on calm nights with low wind speeds. The mathematical sign, temporal variation and dependence on u(*) of both F(hadv) and F(vadv) were determined by the unique terrain of the Niwot Ridge site. Therefore, the patterns we observed may not be broadly applicable to other sites. We evaluated the influence of advection on the cumulative annual and monthly estimates of the total CO2 flux (F(c)), which is often used as an estimate of NEE, over six years using the dependence of F(hadv) and F(vadv) on u(*). When the sum of F(hadv) and F(vadv) was used to correct monthly F(c), we observed values that were different from the monthly F(c) calculated using the traditional u(*)-filter correction by--16 to 20 g C x m(-2) x mo(-1); the mean percentage difference in monthly Fc for these two methods over the six-year period was 10%. When the sum of F(hadv) and F(vadv) was used to correct annual Fc, we observed a 65% difference compared to the traditional u(*)-filter approach. Thus, the errors to the local CO2 budget, when F(hadv) and F(vadv) are ignored, can become large when compounded in cumulative fashion over long time intervals. We conclude that the "micrometeorological" (using observations of F(hadv) and F(vadv)) and "biological" (using the u(*) filter and temperature vs. F(c) relationship) corrections differ on the basis of fundamental mechanistic grounds. The micrometeorological correction is based on aerodynamic mechanisms and shows no correlation to drivers of biological activity. Conversely, the biological correction is based on climatic responses of organisms and has no physical connection to aerodynamic processes. In those cases where they impose corrections of similar magnitude on the cumulative F(c) sum, the result is due to a serendipitous similarity in scale but has no clear mechanistic explanation.
Author Yi, Chuixiang
Stannard, David I
Burns, Sean P
Monson, Russell K
Turnipseed, Andrew A
Anderson, Dean E
Sparks, Jed P
Author_xml – sequence: 1
  fullname: Yi, Chuixiang
– sequence: 2
  fullname: Anderson, Dean E
– sequence: 3
  fullname: Turnipseed, Andrew A
– sequence: 4
  fullname: Burns, Sean P
– sequence: 5
  fullname: Sparks, Jed P
– sequence: 6
  fullname: Stannard, David I
– sequence: 7
  fullname: Monson, Russell K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18767617$$D View this record in MEDLINE/PubMed
BookMark eNo1j81uwjAQhK2Kqvy0h75A6weoqe0kjn1EKBQkVA7AObWTDbgKDoqTCN6-qWjnsqvZb0eaMRq4ygFCz4xOmVT0nQpCFZVTdodGTAWKRJHkg36nESM0FmyIxt5_016c8wc0ZDIWvR2P0Ne8ck1tTdvYyuFNgWd5B1ljO8CLsr2Ax7sKf0KDk6zyV9_ACSeX7KjdAfDK4Rle2sORJCV0-jfhDW9bo8uzdf1_VYNvHtF9oUsPT39zgvaLZDdfkvXmYzWfrUkWBrEiEKpQhkIaxiXLIZaS6YBDxmUYmLhn8iCjuhBCm4IyowujeH9TYZSDBJ7zCXq55Z5bc4I8Pdf2pOtr-l-1B15vQKGrVB9q69P9llMWUCaoipngP1lwXq0
CitedBy_id crossref_primary_10_1007_s00703_012_0224_6
crossref_primary_10_1016_j_jhydrol_2022_128887
crossref_primary_10_5194_amt_5_2095_2012
crossref_primary_10_1016_j_gloplacha_2012_10_019
crossref_primary_10_1016_j_agrformet_2017_03_004
crossref_primary_10_1016_j_agrformet_2011_12_002
crossref_primary_10_1002_jgrd_50677
crossref_primary_10_1111_j_1365_2486_2011_02543_x
crossref_primary_10_1007_s00704_012_0599_9
crossref_primary_10_1016_j_agrformet_2013_09_012
crossref_primary_10_1007_s00704_011_0552_3
crossref_primary_10_1016_j_agrformet_2010_11_007
crossref_primary_10_5194_amt_7_2787_2014
crossref_primary_10_1016_j_agrformet_2017_01_020
crossref_primary_10_1175_2008JTECHA1080_1
crossref_primary_10_1890_07_2105_1
crossref_primary_10_1016_j_agrformet_2010_12_012
crossref_primary_10_1016_j_agrformet_2009_06_020
crossref_primary_10_1175_2007JAMC1667_1
crossref_primary_10_1016_j_agrformet_2014_08_002
crossref_primary_10_1007_s00442_009_1465_z
crossref_primary_10_5194_acp_12_2099_2012
crossref_primary_10_5194_bg_12_7349_2015
crossref_primary_10_1175_JHM_D_13_026_1
crossref_primary_10_1002_qj_1904
crossref_primary_10_1029_2011JG001655
crossref_primary_10_1007_s00442_017_3853_0
crossref_primary_10_1016_j_atmosenv_2008_02_029
crossref_primary_10_1016_j_agrformet_2013_10_010
crossref_primary_10_1016_j_scitotenv_2024_172039
crossref_primary_10_1111_nph_19105
crossref_primary_10_1002_2017MS001248
crossref_primary_10_1016_j_agrformet_2013_01_011
crossref_primary_10_1016_j_agrformet_2016_08_003
crossref_primary_10_5194_acp_15_7457_2015
crossref_primary_10_1007_s00704_009_0130_0
crossref_primary_10_5194_acp_15_2081_2015
crossref_primary_10_1016_j_agrformet_2012_01_017
crossref_primary_10_3390_atmos6010060
crossref_primary_10_1016_j_agrformet_2011_01_014
crossref_primary_10_1007_s10546_012_9756_z
crossref_primary_10_1016_j_agrformet_2012_11_023
crossref_primary_10_3724_SP_J_1258_2011_00512
crossref_primary_10_1002_jgrg_20039
crossref_primary_10_1002_ecs2_1724
crossref_primary_10_15406_ijh_2023_07_00351
crossref_primary_10_5194_bg_7_1745_2010
crossref_primary_10_1080_17550874_2014_904950
crossref_primary_10_1007_s00376_012_1052_9
crossref_primary_10_1007_s10546_015_0060_6
crossref_primary_10_1111_ele_12097
crossref_primary_10_5194_acp_12_2969_2012
crossref_primary_10_1007_s10546_010_9560_6
crossref_primary_10_5194_bg_7_2461_2010
crossref_primary_10_1016_j_agrformet_2011_01_003
crossref_primary_10_1111_j_1469_8137_2009_03154_x
crossref_primary_10_1029_2020MS002421
crossref_primary_10_1029_2022JG007122
crossref_primary_10_1111_gcb_13320
crossref_primary_10_1175_2009JAS3005_1
crossref_primary_10_1007_s10533_009_9325_9
crossref_primary_10_5194_acp_17_5561_2017
ContentType Journal Article
DBID FBQ
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1890/06-0908.1
DatabaseName AGRIS
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1939-5582
EndPage 1390
ExternalDocumentID 18767617
US201301609716
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations Colorado
GeographicLocations_xml – name: Colorado
GroupedDBID ---
-ET
-~X
.-4
..I
0R~
1OB
1OC
29G
2AX
33P
4.4
42X
53G
5GY
85S
8WZ
A6W
AAESR
AAHHS
AAHKG
AAIHA
AAIKC
AAISJ
AAKGQ
AAMNW
AANLZ
AASGY
AAXRX
AAYJJ
AAZKR
ABBHK
ABCUV
ABEFU
ABHUG
ABJNI
ABLJU
ABPFR
ABPLY
ABPPZ
ABTLG
ABYAD
ACAHQ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACSTJ
ACTWD
ACUBG
ACXBN
ACXQS
ADBBV
ADDAD
ADKYN
ADMGS
ADNWM
ADOZA
ADULT
ADXAS
ADZLD
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFFPM
AFGKR
AFMIJ
AFXHP
AFZJQ
AGHSJ
AGJLS
AGUYK
AI.
AIDAL
AIHXQ
AIRJO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ANHSF
AS~
AZFZN
AZVAB
BFHJK
BMXJE
BRXPI
CBGCD
CS3
CUYZI
CWIXF
DCZOG
DDYGU
DEVKO
DOOOF
DRFUL
DRSTM
DU5
DWIUU
EBS
ECGQY
EJD
EQZMY
F5P
FBQ
FVMVE
GTFYD
HGD
HQ2
HTVGU
HVGLF
H~9
IAG
IAO
IEA
IEP
IGH
IOF
ITC
JAAYA
JAS
JBMMH
JBS
JBZCM
JEB
JENOY
JHFFW
JKQEH
JLEZI
JLS
JLXEF
JPL
JPM
JSODD
JST
L7B
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MV1
MVM
MXFUL
MXSTM
NHB
NXSMM
O9-
P0-
P2P
P2W
PALCI
RJQFR
ROL
RSZ
SA0
SAMSI
SUPJJ
TN5
UKR
V62
VH1
VOH
VQA
WBKPD
WH7
WOHZO
WXSBR
XIH
XSW
Y6R
YV5
YXE
YYM
YYP
Z0I
ZCA
ZCG
ZO4
ZZTAW
~02
~KM
AAHBH
AAHQN
AAMNL
AAYCA
ABAWQ
ABPQH
ABSQW
ABXSQ
ACHIC
ACHJO
AFWVQ
AGHNM
AHBTC
AHXOZ
AILXY
AITYG
ALVPJ
AQVQM
CGR
CUY
CVF
ECM
EIF
HGLYW
IPSME
NPM
ID FETCH-LOGICAL-c4379-e4948468b1281de7881a32ec2843b7c43d3c0af66abf01bafb92284945de8e2d2
ISSN 1051-0761
IngestDate Thu Apr 03 07:02:06 EDT 2025
Wed Dec 27 19:20:13 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4379-e4948468b1281de7881a32ec2843b7c43d3c0af66abf01bafb92284945de8e2d2
PMID 18767617
PageCount 12
ParticipantIDs pubmed_primary_18767617
fao_agris_US201301609716
PublicationCentury 2000
PublicationDate September 2008
PublicationDateYYYYMMDD 2008-09-01
PublicationDate_xml – month: 09
  year: 2008
  text: September 2008
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Ecological applications
PublicationTitleAlternate Ecol Appl
PublicationYear 2008
SSID ssj0000222
Score 2.2075186
Snippet The eddy covariance technique, which is used in the determination of net ecosystem CO2 exchange (NEE), is subject to significant errors when advection that...
SourceID pubmed
fao
SourceType Index Database
Publisher
StartPage 1379
SubjectTerms accuracy
advection
Air Movements
air temperature
Altitude
atmospheric circulation
carbon dioxide
Carbon Dioxide - analysis
Carbon Dioxide - metabolism
cell respiration
Colorado
diurnal variation
Ecosystem
eddy covariance method
Environmental Monitoring
gas exchange
mathematical models
meteorology and climatology
Models, Theoretical
montane forests
net ecosystem exchange
overstory
simulation models
soil respiration
spatial variation
temporal variation
topography
Trees - metabolism
wind
wind speed
Title Contribution Of Advective Fluxes To Net Ecosystem Exchange In A High-Elevation, Subalpine Forest
URI https://www.ncbi.nlm.nih.gov/pubmed/18767617
Volume 18
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBbrxmAvY93Wtd1W9LC3TJ1l2a792I2UdtAfow70LZMsqQRCEkgLWf_6fZIcOSktdHsxwo6N4_v03elOd0fIFwsjNecaE0lqyzKTlUxCTzCuMlPyjGuVuXzn07PieJD9vMqvunCBzy65UfvN3YN5Jf8jVZyDXF2W7D9INj4UJzCGfHGEhHF8koxdaallw6reufXdlT1_9Y7Gtwsz79VTl9Hrso9DxeZefxEyfcELoAS3yYP1xya4ZcMmHSXHM2d5up6d83XHfROJcjXsHXljFML3t6MFIHfd-Re0N-oDuYFNYupDjX84ms2NWdlZueJaxVWPsUt308Wad6KM26-WhIpJz5yvJOibcK4SFcvz8hEWvkepXIRuM616hsWaPEj9ZeX3ShbO81Tu806_xV2Hg8vUxWl54etmbZANrCxcYdDvvzrdHeJO8a3bWlR49rf4ZFghVk7vLUO8OVK_Ia_bdQQ9DKDYJM_M5C15GTqL_sEoCAujrX6XyogbWi6fvyO_V9FDzy2N6KEBPbSeUqCHRvTQJXroyYQe0nX0fKUROzRg5z0ZHPXrH8es7bfBGleVkhlXKigrSuWiq9q4RgNSpKaBBSPUAX6jRZNIWxRS2YQraVWV4lqV5dqUJtXpFnk-mU7MNqFSpgKz3AWFYXDbXCUyASPoBiMhRL5DtvENh_Iammy4Lpcd8iF82OEs1FsZcmhsyOJg9_GbPpJXHfo-kRcWM9x8hrl4o_a8hHE8uzj9C492ZtE
linkProvider FAO Food and Agriculture Organization of the United Nations
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contribution+Of+Advective+Fluxes+To+Net+Ecosystem+Exchange+In+A+High-Elevation%2C+Subalpine+Forest&rft.jtitle=Ecological+applications&rft.au=Yi%2C+Chuixiang&rft.au=Anderson%2C+Dean+E&rft.au=Turnipseed%2C+Andrew+A&rft.au=Burns%2C+Sean+P&rft.date=2008-09-01&rft.issn=1051-0761&rft.eissn=1939-5582&rft.volume=18&rft.issue=6&rft.spage=1379&rft.epage=1390&rft_id=info:doi/10.1890%2F06-0908.1&rft.externalDocID=US201301609716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-0761&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-0761&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-0761&client=summon