Facile synthesis of graft copolymers containing rigid poly(dialkyl fumarate) branches by macromonomer method

ABSTRACT Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are...

Full description

Saved in:
Bibliographic Details
Published inJournal of polymer science. Part A, Polymer chemistry Vol. 57; no. 24; pp. 2474 - 2480
Main Authors Sato, Eriko, Tamari, Noboru, Horibe, Hideo
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.12.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0887-624X
1099-0518
DOI10.1002/pola.29499

Cover

Abstract ABSTRACT Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2474–2480 Graft copolymers consisting of rigid poly(diisopropyl fumarate) branches and a soft poly(ethyl acrylate) backbone were synthesized by full free‐radical polymerization process. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient addition‐fragmentation chain transfer agent for diisopropyl fumarate polymerization to generate a poly(diisopropyl fumarate) macromonomer. Copolymerization of the poly(diisopropyl fumarate) macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having a flexible backbone and rigid branches, and which is transparent and shows a microphase separated structure.
AbstractList Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2474–2480
ABSTRACT Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2474–2480 Graft copolymers consisting of rigid poly(diisopropyl fumarate) branches and a soft poly(ethyl acrylate) backbone were synthesized by full free‐radical polymerization process. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient addition‐fragmentation chain transfer agent for diisopropyl fumarate polymerization to generate a poly(diisopropyl fumarate) macromonomer. Copolymerization of the poly(diisopropyl fumarate) macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having a flexible backbone and rigid branches, and which is transparent and shows a microphase separated structure.
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57 , 2474–2480
Author Tamari, Noboru
Horibe, Hideo
Sato, Eriko
Author_xml – sequence: 1
  givenname: Eriko
  orcidid: 0000-0002-9500-2126
  surname: Sato
  fullname: Sato, Eriko
  email: sato@a-chem.eng.osaka-cu.ac.jp
  organization: Graduate School of Engineering, Osaka City University, 3‐3‐138 Sugimoto, Sumiyoshi‐ku
– sequence: 2
  givenname: Noboru
  surname: Tamari
  fullname: Tamari, Noboru
  organization: Graduate School of Engineering, Osaka City University, 3‐3‐138 Sugimoto, Sumiyoshi‐ku
– sequence: 3
  givenname: Hideo
  surname: Horibe
  fullname: Horibe, Hideo
  organization: Graduate School of Engineering, Osaka City University, 3‐3‐138 Sugimoto, Sumiyoshi‐ku
BookMark eNp9kUFLAzEQhYMoWKsXf0HAiwqrySbZZo8iVoWCHhS8hdlt0qZmk5pskf33ptaTiKcZmO-9ybwcoX0fvEbolJIrSkh5vQ4Orsqa1_UeGlFS1wURVO6jEZFyUlQlfztERymtCMkzIUfITaG1TuM0-H6pk004GLyIYHrchuw2dDqm3PoerLd-gaNd2DneTs7nFtz74LDZdBCh1xe4ieDbbIObAXfQxtAFH7ID7nS_DPNjdGDAJX3yU8fodXr3cvtQzJ7uH29vZkXL2aQumqYiUEtmgAPICrQWXFPJWNXQTJhSVA03rBKkKgWr2YRxKeaNaIhhrZaUjdH5zncdw8dGp151NrXaOfA6bJIqOaOSi5KTjJ79QldhE31-nSpZXkSFyDvG6HJH5ZNSitqodbT56EFRorbBq23w6jv4DJNfcGt76G3OMIJ1f0voTvKZ_2L4x1w9P81udpovWBmZRA
CitedBy_id crossref_primary_10_1002_mabi_202100156
crossref_primary_10_1002_marc_202000530
crossref_primary_10_1007_s10965_025_04297_0
crossref_primary_10_1016_j_eurpolymj_2023_112389
crossref_primary_10_3390_ijms222212265
crossref_primary_10_1016_j_polymer_2024_127744
crossref_primary_10_1080_25740881_2024_2374405
Cites_doi 10.1016/0032-3861(86)90071-6
10.1295/polymj.21.215
10.1021/ma991922t
10.1021/ma0352734
10.1016/j.progpolymsci.2006.08.005
10.1007/BF00395571
10.1002/pola.10587
10.1016/0032-3861(91)90381-R
10.1002/pola.28081
10.1016/S0032-3861(99)00650-3
10.1002/pola.28381
10.1021/ma402300z
10.1002/macp.200500269
10.1002/pola.20332
10.1016/0079-6700(94)90026-4
10.1055/s-1982-29998
10.1021/ma960852c
10.1016/0079-6700(95)00024-0
10.1002/(SICI)1099-0518(19990715)37:14<2511::AID-POLA25>3.0.CO;2-1
10.1021/ma00012a033
10.1002/pola.1993.080311330
10.1021/ma00028a011
10.1021/ma00036a006
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
7SR
8FD
JG9
7S9
L.6
DOI 10.1002/pola.29499
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-0518
EndPage 2480
ExternalDocumentID 10_1002_pola_29499
POLA29499
Genre article
GroupedDBID -~X
.GA
05W
10A
1L6
1OB
1OC
1ZS
4.4
4ZD
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
66C
7PT
8-0
8-1
8-3
8UM
930
A03
AAHBH
AAHHS
AAHQN
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
BDRZF
BRXPI
BY8
CS3
D-E
DCZOG
DPXWK
DRFUL
DRSTM
EBS
F00
F5P
G-S
GNP
GODZA
GYXMG
HBH
HGLYW
HHY
HHZ
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
NNB
O66
OIG
P2P
P2W
P2X
P4D
QB0
QRW
RNS
ROL
RWB
RWI
RYL
SUPJJ
TN5
UB1
UPT
V2E
WH7
WIH
WIK
WJL
WQJ
WXSBR
XG1
XPP
XV2
YQT
ZZTAW
AAYXX
ABJNI
ADMLS
AGYGG
CITATION
7SR
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7S9
L.6
ID FETCH-LOGICAL-c4379-bb60a983fa4aa86aee54e18336b1c43f256b4f365062539373485db5b0f3ce813
ISSN 0887-624X
IngestDate Fri Jul 11 18:39:05 EDT 2025
Fri Jul 25 12:05:35 EDT 2025
Tue Jul 01 02:05:54 EDT 2025
Thu Apr 24 23:12:27 EDT 2025
Wed Jan 22 16:39:12 EST 2025
IsPeerReviewed false
IsScholarly false
Issue 24
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4379-bb60a983fa4aa86aee54e18336b1c43f256b4f365062539373485db5b0f3ce813
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9500-2126
PQID 2325615525
PQPubID 1016372
PageCount 7
ParticipantIDs proquest_miscellaneous_2431845240
proquest_journals_2325615525
crossref_primary_10_1002_pola_29499
crossref_citationtrail_10_1002_pola_29499
wiley_primary_10_1002_pola_29499_POLA29499
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 15, 2019
PublicationDateYYYYMMDD 2019-12-15
PublicationDate_xml – month: 12
  year: 2019
  text: December 15, 2019
  day: 15
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Journal of polymer science. Part A, Polymer chemistry
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2004; 42
1996; 29
2006; 31
1990; 24
1989; 21
1991; 24
1994; 19
1991; 32
2017; 55
2000; 33
2004; 37
1999; 37
1993; 31
2000; 41
1982; 11
2005; 206
1986; 27
2016; 54
2014; 47
1992; 25
1999; 40
2003; 41
1996; 21
e_1_2_6_21_1
e_1_2_6_10_1
e_1_2_6_20_1
Nair C. P. R. (e_1_2_6_9_1) 1999; 40
e_1_2_6_8_1
e_1_2_6_19_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_13_1
e_1_2_6_25_1
e_1_2_6_14_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_11_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_12_1
e_1_2_6_22_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
References_xml – volume: 37
  start-page: 2511
  year: 1999
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 29
  start-page: 7717
  year: 1996
  publication-title: Macromolecules
– volume: 31
  start-page: 3417
  year: 1993
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 55
  start-page: 288
  year: 2017
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 33
  start-page: 5819
  year: 2000
  publication-title: Macromolecules
– volume: 24
  start-page: 3689
  year: 1991
  publication-title: Macromolecules
– volume: 21
  start-page: 215
  year: 1989
  publication-title: Polym. J.
– volume: 206
  start-page: 2054
  year: 2005
  publication-title: Macromol. Chem. Phys.
– volume: 19
  start-page: 1089
  year: 1994
  publication-title: Prog. Polym. Sci.
– volume: 24
  start-page: 501
  year: 1990
  publication-title: Polym. Bull.
– volume: 11
  start-page: 924
  year: 1982
  publication-title: Synthesis
– volume: 37
  start-page: 2363
  year: 2004
  publication-title: Macromolecules
– volume: 40
  start-page: 211
  year: 1999
  publication-title: Polymer
– volume: 27
  start-page: 1054
  year: 1986
  publication-title: Polymer
– volume: 42
  start-page: 6021
  year: 2004
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 21
  start-page: 439
  year: 1996
  publication-title: Prog. Polym. Sci.
– volume: 41
  start-page: 645
  year: 2003
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 54
  start-page: 2136
  year: 2016
  publication-title: J. Polym. Sci. Part A: Polym. Chem.
– volume: 25
  start-page: 2599
  year: 1992
  publication-title: Macromolecules
– volume: 31
  start-page: 835
  year: 2006
  publication-title: Prog. Polym. Sci.
– volume: 32
  start-page: 1892
  year: 1991
  publication-title: Polymer
– volume: 41
  start-page: 3895
  year: 2000
  publication-title: Polymer
– volume: 47
  start-page: 937
  year: 2014
  publication-title: Macromolecules
– volume: 25
  start-page: 559
  year: 1992
  publication-title: Macromolecules
– ident: e_1_2_6_15_1
  doi: 10.1016/0032-3861(86)90071-6
– ident: e_1_2_6_14_1
  doi: 10.1295/polymj.21.215
– ident: e_1_2_6_10_1
  doi: 10.1021/ma991922t
– ident: e_1_2_6_23_1
  doi: 10.1021/ma0352734
– ident: e_1_2_6_3_1
  doi: 10.1016/j.progpolymsci.2006.08.005
– ident: e_1_2_6_6_1
  doi: 10.1007/BF00395571
– ident: e_1_2_6_11_1
  doi: 10.1002/pola.10587
– ident: e_1_2_6_17_1
  doi: 10.1016/0032-3861(91)90381-R
– ident: e_1_2_6_16_1
  doi: 10.1002/pola.28081
– ident: e_1_2_6_25_1
  doi: 10.1016/S0032-3861(99)00650-3
– ident: e_1_2_6_13_1
  doi: 10.1002/pola.28381
– ident: e_1_2_6_20_1
  doi: 10.1021/ma402300z
– ident: e_1_2_6_12_1
  doi: 10.1002/macp.200500269
– ident: e_1_2_6_5_1
  doi: 10.1002/pola.20332
– ident: e_1_2_6_8_1
  doi: 10.1016/0079-6700(94)90026-4
– ident: e_1_2_6_18_1
  doi: 10.1055/s-1982-29998
– ident: e_1_2_6_24_1
  doi: 10.1021/ma960852c
– ident: e_1_2_6_7_1
  doi: 10.1016/0079-6700(95)00024-0
– ident: e_1_2_6_4_1
  doi: 10.1002/(SICI)1099-0518(19990715)37:14<2511::AID-POLA25>3.0.CO;2-1
– ident: e_1_2_6_2_1
  doi: 10.1021/ma00012a033
– ident: e_1_2_6_19_1
  doi: 10.1002/pola.1993.080311330
– volume: 40
  start-page: 211
  year: 1999
  ident: e_1_2_6_9_1
  publication-title: Polymer
– ident: e_1_2_6_21_1
  doi: 10.1021/ma00028a011
– ident: e_1_2_6_22_1
  doi: 10.1021/ma00036a006
SSID ssj0009958
Score 1.9521877
Snippet ABSTRACT Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a...
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2474
SubjectTerms Acrylics
addition‐fragmentation chain transfer (AFCT)
Block copolymers
Chain transfer
Chemical industry
Chemical synthesis
composite polymers
Copolymerization
Copolymers
dialkyl fumarate
free radicals
free‐radical polymerization
fumarates
graft copolymer
Graft copolymers
macromonomer method
Molding (process)
poly(substituted methylene)
Polymerization
Termination (polymerization)
thermal properties
thermal property
Thermodynamic properties
transparency
viscosity
Title Facile synthesis of graft copolymers containing rigid poly(dialkyl fumarate) branches by macromonomer method
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpola.29499
https://www.proquest.com/docview/2325615525
https://www.proquest.com/docview/2431845240
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXK7gEuiE9RWJARHFiilDSxU_dYLVtVqLuLRCv1FtmJg6otCSrpofwifiYztvMBLKuFSxQllh15nsdjZ_weIa9HeSyk5NzX-Yj7LMqEL4QMfC4BXDKIeBbhQeGz83i2ZB9WfNXr_ehkLe0qNUi_X3mu5H-sCs_ArnhK9h8s21QKD-Ae7AtXsDBcb2TjqUxhUCPrAIRxjlnk81bmlZei9sEe96RNMrqVgfBQBCtDXQboWYEnRi73Gy_HJGvkrwjHnkKZDagKg9Iv0qTqFSXU4oSm_xLJuqY8N5sOICzdVt7EBKjuVVrryjU7OtLoN6Efvizb7QP4lLX9nQTY3DWYK7drZXZeZ-tMl92diqGRWbBnNW_oD3_zfXFokzcH2vpmJBMFHyK6ztuyWzuQhqzripmV_3HTesisYtQfU4aloIWekoMQmXraibFOBji_SKbL-TxZnK4Wt8hhOBphQsDh5P3Z_FNL8Dw2WrDNhzdUuOG7tu5fg592RdNdF5nAZnGP3HV2pBMLr_ukp4sH5PZJbbCHZGNhRhuY0TKnBma0hRltYUYNzCi-eeNARmuQHdMaYlTtaRdi1ELsEVlOTxcnM9-JdPgpUln6SsWBHIsol0xKEUutOdMwT0SxGkKJHEJqxfIIFgKw0kb2xYgJnimugjxKtRhGj8lBURb6CaGBhNV8oJD-SbE0yMaapSM5hAg31gzC9j45rnsvSR2DPQqpbBLLvR0m2NOJ6ek-edWU_Wp5W64sdVQbIXHj-lsCawyOf-tD3icvm9fQ5_grTRa63EEZiLsF4xAO98lbY7xrWkk-Xswn5u7p9e09I3facXNEDqrtTj-HmLdSLxzcfgLhprLz
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+synthesis+of+graft+copolymers+containing+rigid+poly%28dialkyl+fumarate%29+branches+by+macromonomer+method&rft.jtitle=Journal+of+polymer+science.+Part+A%2C+Polymer+chemistry&rft.au=Sato%2C+Eriko&rft.au=Tamari%2C+Noboru&rft.au=Horibe%2C+Hideo&rft.date=2019-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0887-624X&rft.eissn=1099-0518&rft.volume=57&rft.issue=24&rft.spage=2474&rft.epage=2480&rft_id=info:doi/10.1002%2Fpola.29499&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-624X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-624X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-624X&client=summon