Facile synthesis of graft copolymers containing rigid poly(dialkyl fumarate) branches by macromonomer method
ABSTRACT Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are...
Saved in:
Published in | Journal of polymer science. Part A, Polymer chemistry Vol. 57; no. 24; pp. 2474 - 2480 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.12.2019
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 0887-624X 1099-0518 |
DOI | 10.1002/pola.29499 |
Cover
Abstract | ABSTRACT
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2474–2480
Graft copolymers consisting of rigid poly(diisopropyl fumarate) branches and a soft poly(ethyl acrylate) backbone were synthesized by full free‐radical polymerization process. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient addition‐fragmentation chain transfer agent for diisopropyl fumarate polymerization to generate a poly(diisopropyl fumarate) macromonomer. Copolymerization of the poly(diisopropyl fumarate) macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having a flexible backbone and rigid branches, and which is transparent and shows a microphase separated structure. |
---|---|
AbstractList | Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2474–2480 ABSTRACT Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2474–2480 Graft copolymers consisting of rigid poly(diisopropyl fumarate) branches and a soft poly(ethyl acrylate) backbone were synthesized by full free‐radical polymerization process. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient addition‐fragmentation chain transfer agent for diisopropyl fumarate polymerization to generate a poly(diisopropyl fumarate) macromonomer. Copolymerization of the poly(diisopropyl fumarate) macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having a flexible backbone and rigid branches, and which is transparent and shows a microphase separated structure. Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57 , 2474–2480 |
Author | Tamari, Noboru Horibe, Hideo Sato, Eriko |
Author_xml | – sequence: 1 givenname: Eriko orcidid: 0000-0002-9500-2126 surname: Sato fullname: Sato, Eriko email: sato@a-chem.eng.osaka-cu.ac.jp organization: Graduate School of Engineering, Osaka City University, 3‐3‐138 Sugimoto, Sumiyoshi‐ku – sequence: 2 givenname: Noboru surname: Tamari fullname: Tamari, Noboru organization: Graduate School of Engineering, Osaka City University, 3‐3‐138 Sugimoto, Sumiyoshi‐ku – sequence: 3 givenname: Hideo surname: Horibe fullname: Horibe, Hideo organization: Graduate School of Engineering, Osaka City University, 3‐3‐138 Sugimoto, Sumiyoshi‐ku |
BookMark | eNp9kUFLAzEQhYMoWKsXf0HAiwqrySbZZo8iVoWCHhS8hdlt0qZmk5pskf33ptaTiKcZmO-9ybwcoX0fvEbolJIrSkh5vQ4Orsqa1_UeGlFS1wURVO6jEZFyUlQlfztERymtCMkzIUfITaG1TuM0-H6pk004GLyIYHrchuw2dDqm3PoerLd-gaNd2DneTs7nFtz74LDZdBCh1xe4ieDbbIObAXfQxtAFH7ID7nS_DPNjdGDAJX3yU8fodXr3cvtQzJ7uH29vZkXL2aQumqYiUEtmgAPICrQWXFPJWNXQTJhSVA03rBKkKgWr2YRxKeaNaIhhrZaUjdH5zncdw8dGp151NrXaOfA6bJIqOaOSi5KTjJ79QldhE31-nSpZXkSFyDvG6HJH5ZNSitqodbT56EFRorbBq23w6jv4DJNfcGt76G3OMIJ1f0voTvKZ_2L4x1w9P81udpovWBmZRA |
CitedBy_id | crossref_primary_10_1002_mabi_202100156 crossref_primary_10_1002_marc_202000530 crossref_primary_10_1007_s10965_025_04297_0 crossref_primary_10_1016_j_eurpolymj_2023_112389 crossref_primary_10_3390_ijms222212265 crossref_primary_10_1016_j_polymer_2024_127744 crossref_primary_10_1080_25740881_2024_2374405 |
Cites_doi | 10.1016/0032-3861(86)90071-6 10.1295/polymj.21.215 10.1021/ma991922t 10.1021/ma0352734 10.1016/j.progpolymsci.2006.08.005 10.1007/BF00395571 10.1002/pola.10587 10.1016/0032-3861(91)90381-R 10.1002/pola.28081 10.1016/S0032-3861(99)00650-3 10.1002/pola.28381 10.1021/ma402300z 10.1002/macp.200500269 10.1002/pola.20332 10.1016/0079-6700(94)90026-4 10.1055/s-1982-29998 10.1021/ma960852c 10.1016/0079-6700(95)00024-0 10.1002/(SICI)1099-0518(19990715)37:14<2511::AID-POLA25>3.0.CO;2-1 10.1021/ma00012a033 10.1002/pola.1993.080311330 10.1021/ma00028a011 10.1021/ma00036a006 |
ContentType | Journal Article |
Copyright | 2019 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION 7SR 8FD JG9 7S9 L.6 |
DOI | 10.1002/pola.29499 |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1099-0518 |
EndPage | 2480 |
ExternalDocumentID | 10_1002_pola_29499 POLA29499 |
Genre | article |
GroupedDBID | -~X .GA 05W 10A 1L6 1OB 1OC 1ZS 4.4 4ZD 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 66C 7PT 8-0 8-1 8-3 8UM 930 A03 AAHBH AAHHS AAHQN AAMNL AANLZ AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ACAHQ ACCFJ ACCZN ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ATUGU BDRZF BRXPI BY8 CS3 D-E DCZOG DPXWK DRFUL DRSTM EBS F00 F5P G-S GNP GODZA GYXMG HBH HGLYW HHY HHZ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM NNB O66 OIG P2P P2W P2X P4D QB0 QRW RNS ROL RWB RWI RYL SUPJJ TN5 UB1 UPT V2E WH7 WIH WIK WJL WQJ WXSBR XG1 XPP XV2 YQT ZZTAW AAYXX ABJNI ADMLS AGYGG CITATION 7SR 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7S9 L.6 |
ID | FETCH-LOGICAL-c4379-bb60a983fa4aa86aee54e18336b1c43f256b4f365062539373485db5b0f3ce813 |
ISSN | 0887-624X |
IngestDate | Fri Jul 11 18:39:05 EDT 2025 Fri Jul 25 12:05:35 EDT 2025 Tue Jul 01 02:05:54 EDT 2025 Thu Apr 24 23:12:27 EDT 2025 Wed Jan 22 16:39:12 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 24 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4379-bb60a983fa4aa86aee54e18336b1c43f256b4f365062539373485db5b0f3ce813 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9500-2126 |
PQID | 2325615525 |
PQPubID | 1016372 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2431845240 proquest_journals_2325615525 crossref_primary_10_1002_pola_29499 crossref_citationtrail_10_1002_pola_29499 wiley_primary_10_1002_pola_29499_POLA29499 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 15, 2019 |
PublicationDateYYYYMMDD | 2019-12-15 |
PublicationDate_xml | – month: 12 year: 2019 text: December 15, 2019 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
PublicationTitle | Journal of polymer science. Part A, Polymer chemistry |
PublicationYear | 2019 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2004; 42 1996; 29 2006; 31 1990; 24 1989; 21 1991; 24 1994; 19 1991; 32 2017; 55 2000; 33 2004; 37 1999; 37 1993; 31 2000; 41 1982; 11 2005; 206 1986; 27 2016; 54 2014; 47 1992; 25 1999; 40 2003; 41 1996; 21 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Nair C. P. R. (e_1_2_6_9_1) 1999; 40 e_1_2_6_8_1 e_1_2_6_19_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_13_1 e_1_2_6_25_1 e_1_2_6_14_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 37 start-page: 2511 year: 1999 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 29 start-page: 7717 year: 1996 publication-title: Macromolecules – volume: 31 start-page: 3417 year: 1993 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 55 start-page: 288 year: 2017 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 33 start-page: 5819 year: 2000 publication-title: Macromolecules – volume: 24 start-page: 3689 year: 1991 publication-title: Macromolecules – volume: 21 start-page: 215 year: 1989 publication-title: Polym. J. – volume: 206 start-page: 2054 year: 2005 publication-title: Macromol. Chem. Phys. – volume: 19 start-page: 1089 year: 1994 publication-title: Prog. Polym. Sci. – volume: 24 start-page: 501 year: 1990 publication-title: Polym. Bull. – volume: 11 start-page: 924 year: 1982 publication-title: Synthesis – volume: 37 start-page: 2363 year: 2004 publication-title: Macromolecules – volume: 40 start-page: 211 year: 1999 publication-title: Polymer – volume: 27 start-page: 1054 year: 1986 publication-title: Polymer – volume: 42 start-page: 6021 year: 2004 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 21 start-page: 439 year: 1996 publication-title: Prog. Polym. Sci. – volume: 41 start-page: 645 year: 2003 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 54 start-page: 2136 year: 2016 publication-title: J. Polym. Sci. Part A: Polym. Chem. – volume: 25 start-page: 2599 year: 1992 publication-title: Macromolecules – volume: 31 start-page: 835 year: 2006 publication-title: Prog. Polym. Sci. – volume: 32 start-page: 1892 year: 1991 publication-title: Polymer – volume: 41 start-page: 3895 year: 2000 publication-title: Polymer – volume: 47 start-page: 937 year: 2014 publication-title: Macromolecules – volume: 25 start-page: 559 year: 1992 publication-title: Macromolecules – ident: e_1_2_6_15_1 doi: 10.1016/0032-3861(86)90071-6 – ident: e_1_2_6_14_1 doi: 10.1295/polymj.21.215 – ident: e_1_2_6_10_1 doi: 10.1021/ma991922t – ident: e_1_2_6_23_1 doi: 10.1021/ma0352734 – ident: e_1_2_6_3_1 doi: 10.1016/j.progpolymsci.2006.08.005 – ident: e_1_2_6_6_1 doi: 10.1007/BF00395571 – ident: e_1_2_6_11_1 doi: 10.1002/pola.10587 – ident: e_1_2_6_17_1 doi: 10.1016/0032-3861(91)90381-R – ident: e_1_2_6_16_1 doi: 10.1002/pola.28081 – ident: e_1_2_6_25_1 doi: 10.1016/S0032-3861(99)00650-3 – ident: e_1_2_6_13_1 doi: 10.1002/pola.28381 – ident: e_1_2_6_20_1 doi: 10.1021/ma402300z – ident: e_1_2_6_12_1 doi: 10.1002/macp.200500269 – ident: e_1_2_6_5_1 doi: 10.1002/pola.20332 – ident: e_1_2_6_8_1 doi: 10.1016/0079-6700(94)90026-4 – ident: e_1_2_6_18_1 doi: 10.1055/s-1982-29998 – ident: e_1_2_6_24_1 doi: 10.1021/ma960852c – ident: e_1_2_6_7_1 doi: 10.1016/0079-6700(95)00024-0 – ident: e_1_2_6_4_1 doi: 10.1002/(SICI)1099-0518(19990715)37:14<2511::AID-POLA25>3.0.CO;2-1 – ident: e_1_2_6_2_1 doi: 10.1021/ma00012a033 – ident: e_1_2_6_19_1 doi: 10.1002/pola.1993.080311330 – volume: 40 start-page: 211 year: 1999 ident: e_1_2_6_9_1 publication-title: Polymer – ident: e_1_2_6_21_1 doi: 10.1021/ma00028a011 – ident: e_1_2_6_22_1 doi: 10.1021/ma00036a006 |
SSID | ssj0009958 |
Score | 1.9521877 |
Snippet | ABSTRACT
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a... Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2474 |
SubjectTerms | Acrylics addition‐fragmentation chain transfer (AFCT) Block copolymers Chain transfer Chemical industry Chemical synthesis composite polymers Copolymerization Copolymers dialkyl fumarate free radicals free‐radical polymerization fumarates graft copolymer Graft copolymers macromonomer method Molding (process) poly(substituted methylene) Polymerization Termination (polymerization) thermal properties thermal property Thermodynamic properties transparency viscosity |
Title | Facile synthesis of graft copolymers containing rigid poly(dialkyl fumarate) branches by macromonomer method |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpola.29499 https://www.proquest.com/docview/2325615525 https://www.proquest.com/docview/2431845240 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXK7gEuiE9RWJARHFiilDSxU_dYLVtVqLuLRCv1FtmJg6otCSrpofwifiYztvMBLKuFSxQllh15nsdjZ_weIa9HeSyk5NzX-Yj7LMqEL4QMfC4BXDKIeBbhQeGz83i2ZB9WfNXr_ehkLe0qNUi_X3mu5H-sCs_ArnhK9h8s21QKD-Ae7AtXsDBcb2TjqUxhUCPrAIRxjlnk81bmlZei9sEe96RNMrqVgfBQBCtDXQboWYEnRi73Gy_HJGvkrwjHnkKZDagKg9Iv0qTqFSXU4oSm_xLJuqY8N5sOICzdVt7EBKjuVVrryjU7OtLoN6Efvizb7QP4lLX9nQTY3DWYK7drZXZeZ-tMl92diqGRWbBnNW_oD3_zfXFokzcH2vpmJBMFHyK6ztuyWzuQhqzripmV_3HTesisYtQfU4aloIWekoMQmXraibFOBji_SKbL-TxZnK4Wt8hhOBphQsDh5P3Z_FNL8Dw2WrDNhzdUuOG7tu5fg592RdNdF5nAZnGP3HV2pBMLr_ukp4sH5PZJbbCHZGNhRhuY0TKnBma0hRltYUYNzCi-eeNARmuQHdMaYlTtaRdi1ELsEVlOTxcnM9-JdPgpUln6SsWBHIsol0xKEUutOdMwT0SxGkKJHEJqxfIIFgKw0kb2xYgJnimugjxKtRhGj8lBURb6CaGBhNV8oJD-SbE0yMaapSM5hAg31gzC9j45rnsvSR2DPQqpbBLLvR0m2NOJ6ek-edWU_Wp5W64sdVQbIXHj-lsCawyOf-tD3icvm9fQ5_grTRa63EEZiLsF4xAO98lbY7xrWkk-Xswn5u7p9e09I3facXNEDqrtTj-HmLdSLxzcfgLhprLz |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Facile+synthesis+of+graft+copolymers+containing+rigid+poly%28dialkyl+fumarate%29+branches+by+macromonomer+method&rft.jtitle=Journal+of+polymer+science.+Part+A%2C+Polymer+chemistry&rft.au=Sato%2C+Eriko&rft.au=Tamari%2C+Noboru&rft.au=Horibe%2C+Hideo&rft.date=2019-12-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0887-624X&rft.eissn=1099-0518&rft.volume=57&rft.issue=24&rft.spage=2474&rft.epage=2480&rft_id=info:doi/10.1002%2Fpola.29499&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-624X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-624X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-624X&client=summon |