Comparison of sparse domain approaches for 4D SPECT dynamic image reconstruction

Purpose Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult becau...

Full description

Saved in:
Bibliographic Details
Published inMedical physics (Lancaster) Vol. 45; no. 10; pp. 4493 - 4509
Main Authors Mitra, Debasis, Abdalah, Mahmoud, Boutchko, Rostyslav, Chang, Haoran, Shrestha, Uttam, Botvinick, Elias, Seo, Youngho, Gullberg, Grant T.
Format Journal Article
LanguageEnglish
Published United States American Association of Physicists in Medicine 01.10.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction. Methods SIFADS is different from “pure” factor analysis in dynamic structures (FADS) in that it employs a dedicated spline‐based pre‐initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects. Results For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS. Conclusion The analysis supports the utility of the pre‐initialization of a factorization algorithm for better dynamic SPECT image reconstruction.
AbstractList Purpose: Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction. Methods: SIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects. Results: For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS. Conclusion: The analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction.
Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction.PURPOSEDynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction.SIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects.METHODSSIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects.For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS.RESULTSFor SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS.The analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction.CONCLUSIONThe analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction.
Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction. SIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects. For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS. The analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction.
Purpose Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction. Methods SIFADS is different from “pure” factor analysis in dynamic structures (FADS) in that it employs a dedicated spline‐based pre‐initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects. Results For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS. Conclusion The analysis supports the utility of the pre‐initialization of a factorization algorithm for better dynamic SPECT image reconstruction.
Author Boutchko, Rostyslav
Seo, Youngho
Gullberg, Grant T.
Abdalah, Mahmoud
Botvinick, Elias
Mitra, Debasis
Chang, Haoran
Shrestha, Uttam
AuthorAffiliation 4 University of California San Francisco
2 Moffitt Cancer Center
3 Lawrence Berkeley National Lab
1 Florida Institute of Technology
AuthorAffiliation_xml – name: 2 Moffitt Cancer Center
– name: 4 University of California San Francisco
– name: 1 Florida Institute of Technology
– name: 3 Lawrence Berkeley National Lab
Author_xml – sequence: 1
  givenname: Debasis
  surname: Mitra
  fullname: Mitra, Debasis
  email: dmitra@cs.fit.edu
  organization: Florida Institute of Technology
– sequence: 2
  givenname: Mahmoud
  surname: Abdalah
  fullname: Abdalah, Mahmoud
  organization: Radiology and Cancer Imaging
– sequence: 3
  givenname: Rostyslav
  surname: Boutchko
  fullname: Boutchko, Rostyslav
  organization: Molecular Biophys. & Integ. Bio
– sequence: 4
  givenname: Haoran
  surname: Chang
  fullname: Chang, Haoran
  organization: Florida Institute of Technology
– sequence: 5
  givenname: Uttam
  surname: Shrestha
  fullname: Shrestha, Uttam
  organization: University of California
– sequence: 6
  givenname: Elias
  surname: Botvinick
  fullname: Botvinick, Elias
  organization: University of California
– sequence: 7
  givenname: Youngho
  surname: Seo
  fullname: Seo, Youngho
  organization: University of California
– sequence: 8
  givenname: Grant T.
  surname: Gullberg
  fullname: Gullberg, Grant T.
  organization: University of California
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30027577$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1559152$$D View this record in Osti.gov
BookMark eNp1kV1rFDEUhoNU7LYK_gIJXnkz68nXpLkRZK1WqLjg3oc0c6YbmUnGZLay_97UbesHepMcyPO-ec85J-QopoiEPGewZAD89TgtmQBjHpEFl1o0koM5IgsAIxsuQR2Tk1K-AkArFDwhx6KKtNJ6QdarNE4uh5IiTT0ttS5IuzS6EKmbppyc32KhfcpUvqNf1uerDe320Y3B0zC6a6QZfYplzjs_hxSfkse9Gwo-u7tPyeb9-WZ10Vx-_vBx9fay8VJo03CmuUANrWbG8d5Lo1U9pGs9gw59rwRj2uszoYTEWmhwzCiurpjBDsUpeXOwnXZXI3Ye45zdYKdcM-W9TS7YP19i2NrrdGNbzhg_a6vBy4NBKnOwxYcZ_bY2EtHPlillmOIVenX3S07fdlhmO4bicRhcxLQrloMWQtTRs4q--D3QQ5L7Uf_y8jmVkrF_QBjY2y3acbI_t1jR5V9ojedup1tbCcO_BM1B8D0MuP-vsf20PvA_AJ_rq0E
CitedBy_id crossref_primary_10_3389_fcvm_2021_713971
crossref_primary_10_1002_mp_16379
Cites_doi 10.1109/42.996340
10.1109/TSMC.1979.4310076
10.1007/s12350-016-0580-6
10.1088/0031-9155/46/5/315
10.1088/0031-9155/47/15/309
10.1038/44565
10.1067/mnc.2002.120362
10.1007/0-387-25444-7_12
10.1118/1.4816944
10.1109/CVPR.2011.5995478
10.1109/TMI.2014.2352033
10.1086/113176
10.1109/NSSMIC.2012.6551677
10.1088/0031-9155/60/21/8275
10.1118/1.3480985
10.2967/jnumed.114.143164
10.1137/100790756
10.3934/ipi.2011.5.591
10.1118/1.2358201
10.1109/42.870254
10.1038/jcbfm.2015.69
10.1007/s00259-014-2881-9
10.1109/TMI.1987.4307826
10.1088/0031-9155/45/9/314
10.1088/0031-9155/57/2/375
10.1186/s13550-014-0042-6
10.1137/07070156X
10.1007/s12350-015-0320-3
10.1007/s12350-014-9971-8
10.1007/s12350-017-1016-7
10.1088/0031-9155/45/12/302
10.1016/j.nuclcard.2006.03.004
10.1056/NEJM197905103001904
10.1109/42.712123
10.1109/23.790826
10.1007/s12350-016-0513-4
10.1088/0031-9155/55/20/R01
10.2967/jnumed.114.139782
10.2967/jnumed.112.109652
10.1118/1.3660328
10.1097/00004424-200103000-00007
10.1056/NEJM197905033001804
ContentType Journal Article
Copyright 2018 American Association of Physicists in Medicine
2018 American Association of Physicists in Medicine.
Copyright_xml – notice: 2018 American Association of Physicists in Medicine
– notice: 2018 American Association of Physicists in Medicine.
CorporateAuthor Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OIOZB
OTOTI
5PM
DOI 10.1002/mp.13099
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 2473-4209
EndPage 4509
ExternalDocumentID PMC6211286
1559152
30027577
10_1002_mp_13099
MP13099
Genre article
Journal Article
Comparative Study
GrantInformation_xml – fundername: National Institute of Health
  funderid: R01EB07219; R01HL50663; R01HL135490; R01CA154561; R01EB026331
– fundername: NIBIB NIH HHS
  grantid: R01 EB026331
– fundername: NHLBI NIH HHS
  grantid: R01 HL135490
– fundername: National Institute of Health
  grantid: R01CA154561
– fundername: NCI NIH HHS
  grantid: R01 CA154561
– fundername: National Institute of Health
  grantid: R01EB07219
– fundername: National Institute of Health
  grantid: R01HL50663
– fundername: NIBIB NIH HHS
  grantid: R01 EB007219
– fundername: NHLBI NIH HHS
  grantid: R01 HL050663
– fundername: National Institute of Health
  grantid: R01EB026331
– fundername: National Institute of Health
  grantid: R01HL135490
GroupedDBID ---
--Z
-DZ
.GJ
0R~
1OB
1OC
29M
2WC
33P
36B
3O-
4.4
53G
5GY
5RE
5VS
AAHHS
AAHQN
AAIPD
AAMNL
AANLZ
AAQQT
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABEFU
ABFTF
ABJNI
ABLJU
ABQWH
ABTAH
ABXGK
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADKYN
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
BFHJK
C45
CS3
DCZOG
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F5P
HDBZQ
HGLYW
I-F
KBYEO
LATKE
LEEKS
LOXES
LUTES
LYRES
MEWTI
O9-
OVD
P2P
P2W
PALCI
PHY
RJQFR
RNS
ROL
SAMSI
SUPJJ
SV3
TEORI
TN5
TWZ
USG
WOHZO
WXSBR
XJT
ZGI
ZVN
ZXP
ZY4
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
476
AAJUZ
AAPBV
ABCVL
ABPTK
ACSMX
ADDAD
AEUQT
OIOZB
OTOTI
5PM
ID FETCH-LOGICAL-c4379-21723e706719a2fc4975c494a6c10decf53117c783534e7c770a19525b19ede3
ISSN 0094-2405
2473-4209
IngestDate Thu Aug 21 13:20:35 EDT 2025
Fri May 19 00:39:24 EDT 2023
Fri Jul 11 00:31:09 EDT 2025
Wed Feb 19 02:44:34 EST 2025
Thu Apr 24 22:54:49 EDT 2025
Tue Jul 01 03:54:34 EDT 2025
Wed Jan 22 16:27:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords matrix factorization
convergence measures in optimization
cardiac imaging
dynamic SPECT reconstruction
Language English
License 2018 American Association of Physicists in Medicine.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4379-21723e706719a2fc4975c494a6c10decf53117c783534e7c770a19525b19ede3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
AC02-05CH11231
USDOE Office of Science (SC)
OpenAccessLink https://www.osti.gov/servlets/purl/1559152
PMID 30027577
PQID 2073331301
PQPubID 23479
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211286
osti_scitechconnect_1559152
proquest_miscellaneous_2073331301
pubmed_primary_30027577
crossref_primary_10_1002_mp_13099
crossref_citationtrail_10_1002_mp_13099
wiley_primary_10_1002_mp_13099_MP13099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Medical physics (Lancaster)
PublicationTitleAlternate Med Phys
PublicationYear 2018
Publisher American Association of Physicists in Medicine
Publisher_xml – name: American Association of Physicists in Medicine
References 2015; 35
2015; 34
2015; 56
2010; 55
1979; 300
2010; 37
2002; 9
2012
2006; 13
2011
2000; 45
2006; 33
2013; 40
1989; 6
1999; 46
2011; 33
2014; 24
2006
2014; 41
2008; 1
2012; 57
2011; 38
1999; 401
2011; 5
2014; 21
2002; 47
1998; 17
2014; 4
2000; 19
2015; 60
2013; 54
2002; 21
1982; 87
1994; 35
2017
2011; 46
2015
2001; 36
2014; 55
2016; 24
1979; 9
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_39_1
Chiao P (e_1_2_9_17_1) 1994; 35
e_1_2_9_36_1
e_1_2_9_37_1
Smith AM (e_1_2_9_16_1) 1994; 35
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_42_1
e_1_2_9_20_1
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_46_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Alhassen F (e_1_2_9_21_1) 2014; 4
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
9735897 - IEEE Trans Med Imaging. 1998 Jun;17(3):334-43
11989846 - IEEE Trans Med Imaging. 2002 Mar;21(3):216-25
20858925 - Phys Med Biol. 2010 Oct 21;55(20):R111-91
17153417 - Med Phys. 2006 Nov;33(11):4384-94
11384070 - Phys Med Biol. 2001 May;46(5):1553-74
8046477 - J Nucl Med. 1994 Aug;35(8):1265-73
372804 - N Engl J Med. 1979 May 3;300(18):1016-27
28776314 - J Nucl Cardiol. 2017 Aug 3
25899294 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1104-11
12200931 - Phys Med Biol. 2002 Aug 7;47(15):2673-83
24380045 - Am J Nucl Med Mol Imaging. 2013 Dec 15;4(1):53-9
26715603 - J Nucl Cardiol. 2017 Feb;24(1):268-277
25280761 - J Nucl Cardiol. 2014 Dec;21(6):1075-88
11131182 - Phys Med Biol. 2000 Dec;45(12):3525-43
24007179 - Med Phys. 2013 Sep;40(9):092503
27349428 - J Nucl Cardiol. 2017 Aug;24(4):1347-1349
25411652 - EJNMMI Res. 2014 Aug 01;4:42
25143072 - Eur J Nucl Med Mol Imaging. 2014 Dec;41(12):2294-306
11986565 - J Nucl Cardiol. 2002 Mar-Apr;9(2):197-205
11008961 - Phys Med Biol. 2000 Sep;45(9):2619-38
26338893 - J Nucl Med. 2015 Nov;56(11):1712-7
22170801 - Phys Med Biol. 2012 Jan 21;57(2):375-93
16750780 - J Nucl Cardiol. 2006 May-Jun;13(3):354-61
25167546 - IEEE Trans Med Imaging. 2015 Jan;34(1):216-28
11021687 - IEEE Trans Med Imaging. 2000 May;19(5):434-50
10548103 - Nature. 1999 Oct 21;401(6755):788-91
18244020 - IEEE Trans Med Imaging. 1987;6(3):185-92
26450115 - Phys Med Biol. 2015 Nov 7;60(21):8275-301
20964209 - Med Phys. 2010 Sep;37(9):4902-15
23578996 - J Nucl Med. 2013 Jun;54(6):873-9
11228582 - Invest Radiol. 2001 Mar;36(3):178-85
372806 - N Engl J Med. 1979 May 10;300(19):1078-86
8113904 - J Nucl Med. 1994 Mar;35(3):484-95
22149839 - Med Phys. 2011 Dec;38(12):6571-84
27338944 - J Nucl Cardiol. 2017 Aug;24(4):1332-1346
25189340 - J Nucl Med. 2014 Oct;55(10):1685-91
References_xml – volume: 60
  start-page: 8275
  year: 2015
  end-page: 8301
  article-title: Image reconstruction in higher dimension: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration
  publication-title: Phys Med Biol
– start-page: 391
  year: 2006
  end-page: 343
– volume: 54
  start-page: 873
  year: 2013
  end-page: 879
  article-title: Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study
  publication-title: J Nucl Med
– volume: 35
  start-page: 1104
  year: 2015
  end-page: 1111
  article-title: Clustering‐initiated factor analysis application for tissue classification in dynamic brain positron emission tomography
  publication-title: J Cereb Blood Flow Metab
– volume: 40
  start-page: 092503
  year: 2013
  article-title: Fast direct estimation of the blood input function and myocardial time activity curve from dynamic SPECT projections via reduction in spatial and temporal dimensions
  publication-title: Med Phys
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray‐level histograms
  publication-title: IEEE Trans Syst Man Cybern
– volume: 55
  start-page: 1685
  year: 2014
  end-page: 1691
  article-title: Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model
  publication-title: J Nucl Med
– volume: 13
  start-page: 354
  year: 2006
  end-page: 361
  article-title: Simultaneous assessment of cardiac perfusion and function using 5‐dimensional imaging with Tc‐99m teboroxime
  publication-title: J Nucl Cardiol
– volume: 21
  start-page: 216
  year: 2002
  end-page: 225
  article-title: Correction for ambiguous solutions in factor analysis using a penalized least squares objective
  publication-title: IEEE Trans Med Imaging
– volume: 35
  start-page: 1265
  year: 1994
  end-page: 1273
  article-title: Compartmental analysis of technetium‐99m‐teboroxime kinetics employing fast dynamic SPECT at rest and stress
  publication-title: J Nucl Med
– volume: 36
  start-page: 178
  year: 2001
  end-page: 185
  article-title: Compartmental modeling of technetium‐99m‐labeled teboroxime with dynamic single‐photon emission computed tomography: comparison to static thallium‐201 in a canine model
  publication-title: Invest Radiol
– volume: 17
  start-page: 334
  year: 1998
  end-page: 343
  article-title: Optimized acquisition time and image sampling for dynamic SPECT of Tl‐201
  publication-title: IEEE Trans Med Imaging
– volume: 6
  start-page: 185
  year: 1989
  end-page: 192
  article-title: A maximum probability expectation maximization algorithm for image reconstruction in emission tomography
  publication-title: IEEE Trans Med Imaging
– volume: 4
  start-page: 1
  year: 2014
  end-page: 9
  article-title: Myocardial clearance of technetium‐99m‐teboroxime in reperfused injured canine myocardium
  publication-title: EJNMMI Res
– volume: 1
  start-page: 228
  year: 2008
  end-page: 247
  article-title: Sparse and redundant modeling of image content using an image‐signature‐dictionary
  publication-title: SIAM J Imaging Sci
– volume: 87
  start-page: 928
  year: 1982
  end-page: 937
  article-title: Alternatives to least squares
  publication-title: Astron J
– volume: 47
  start-page: 2673
  year: 2002
  end-page: 2683
  article-title: Effects of temporal modelling on the statistical uncertainty of spatiotemporal distributions estimated directly from dynamic cone‐beam SPECT projections
  publication-title: Phys Med Biol
– volume: 24
  start-page: 268
  year: 2014
  end-page: 277
  article-title: Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and Tc‐tetrofosmin: method and validation
  publication-title: J Nucl Cardiol
– volume: 46
  start-page: 1553
  year: 2011
  end-page: 1574
  article-title: 4D maximum reconstruction in dynamic SPECT using a compartmental model‐based prior
  publication-title: Phys Med Biol
– volume: 45
  start-page: 3525
  year: 2000
  end-page: 3543
  article-title: Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes
  publication-title: Phys Med Biol
– volume: 33
  start-page: 4384
  year: 2006
  end-page: 4394
  article-title: Reconstruction of dynamic gated cardiac SPECT
  publication-title: Med Phys
– volume: 4
  start-page: 53
  year: 2014
  end-page: 59
  article-title: Myocardial blood flow measurement with a conventional dual‐head SPECT/CT with spatiotemporal iterative reconstructions – a clinical feasibility study
  publication-title: Am J Nucl Med Mol Imaging
– volume: 5
  start-page: 591
  year: 2011
  end-page: 617
  article-title: Anisotropic Total Variation regularized L1‐approximation and denoising/deblurring of 2D bar codes
  publication-title: Inverse Probl Imaging
– volume: 300
  start-page: 1078
  year: 1979
  end-page: 1086
  article-title: Use of kinetic analysis and mathematical modeling in the study of metabolic pathways : applications to hepatic organic anion metabolism (second of two parts)
  publication-title: N Engl J Med
– volume: 38
  start-page: 6571
  year: 2011
  end-page: 6584
  article-title: Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction
  publication-title: Med Phys
– volume: 300
  start-page: 1016
  year: 1979
  end-page: 1027
  article-title: Use of kinetic analysis and mathematical modeling in the study of metabolic pathways . Applications to hepatic organic anion metabolism. (First of two parts)
  publication-title: N Engl J Med
– year: 2012
– volume: 45
  start-page: 2619
  year: 2000
  end-page: 2638
  article-title: Factor analysis with knowledge application in dynamic cardiac SPECT
  publication-title: Phys Med Biol
– volume: 35
  start-page: 484
  year: 1994
  end-page: 495
  article-title: Kinetic modelling of teboroxime using dynamic SPECT imaging
  publication-title: J Nucl Med
– volume: 24
  start-page: 1347
  year: 2016
  end-page: 1349
  article-title: What are the necessary corrections for dynamic cardiac SPECT?
  publication-title: J Nucl Cardiol
– volume: 56
  start-page: 1712
  year: 2015
  end-page: 1717
  article-title: SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements
  publication-title: J Nucl Med
– volume: 19
  start-page: 434
  year: 2000
  end-page: 450
  article-title: Direct least squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B‐splines
  publication-title: IEEE Trans Med Imaging
– volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  article-title: Learning the parts of objects by non‐negative factorization
  publication-title: Nature
– volume: 41
  start-page: 2294
  year: 2014
  end-page: 2306
  article-title: Quantitation of myocardial blood flow and myocardial flow reserve with Tc‐sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease
  publication-title: Eur J Nucl Med Mol Imaging
– volume: 9
  start-page: 197
  year: 2002
  end-page: 205
  article-title: Removal of liver activity contamination in teboroxime dynamic cardiac SPECT imaging using factor analysis
  publication-title: J Nucl Cardiol
– volume: 34
  start-page: 216
  year: 2015
  end-page: 228
  article-title: Reconstruction of 4‐D dynamic SPECT images from inconsistent projections using a spline initialized FADS algorithm (SIFADS)
  publication-title: IEEE Trans Med Imaging
– volume: 55
  start-page: 111
  year: 2010
  end-page: 191
  article-title: Dynamic single photon emission computed tomography – basic principles and cardiac applications
  publication-title: Phys Med Biol
– start-page: 457
  year: 2011
  end-page: 464
– volume: 37
  start-page: 4902
  year: 2010
  end-page: 4915
  article-title: 4D XCAT phantom for multimodality imaging research
  publication-title: Med Phys
– volume: 57
  start-page: 375
  year: 2012
  end-page: 393
  article-title: Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies
  publication-title: Phys Med Biol
– volume: 33
  start-page: 1415
  year: 2011
  end-page: 1438
  article-title: A regularization parameter for nonsmooth Tikhonov regularization
  publication-title: SIAM J Sci Comput
– volume: 21
  start-page: 1075
  year: 2014
  end-page: 1088
  article-title: Feasibility and operator variability of myocardial blood flow and reserve measurements with Tc‐sestamibi quantitative dynamic SPECT/CT imaging
  publication-title: J Nucl Cardiol
– volume: 46
  start-page: 1055
  year: 1999
  end-page: 1061
  article-title: Dynamic SPECT imaging using a single camera rotation (dSPECT)
  publication-title: IEEE Trans Nucl Sci
– volume: 24
  start-page: 1332
  year: 2016
  end-page: 1346
  article-title: Avoiding full corrections in dynamic SPECT images impacts the performance of SPECT myocardial blood flow quantitation
  publication-title: J Nucl Cardiol
– year: 2017
  article-title: A combined static‐dynamic single‐dose imaging protocol to compare the quantitative dynamic SPECT with static conventional SPECT
  publication-title: J Nucl Cardiol
– year: 2015
– ident: e_1_2_9_41_1
  doi: 10.1109/42.996340
– ident: e_1_2_9_48_1
– ident: e_1_2_9_39_1
  doi: 10.1109/TSMC.1979.4310076
– volume: 35
  start-page: 484
  year: 1994
  ident: e_1_2_9_16_1
  article-title: Kinetic modelling of teboroxime using dynamic SPECT imaging
  publication-title: J Nucl Med
– ident: e_1_2_9_25_1
  doi: 10.1007/s12350-016-0580-6
– ident: e_1_2_9_31_1
  doi: 10.1088/0031-9155/46/5/315
– ident: e_1_2_9_40_1
  doi: 10.1088/0031-9155/47/15/309
– ident: e_1_2_9_4_1
  doi: 10.1038/44565
– ident: e_1_2_9_6_1
  doi: 10.1067/mnc.2002.120362
– ident: e_1_2_9_36_1
  doi: 10.1007/0-387-25444-7_12
– ident: e_1_2_9_33_1
  doi: 10.1118/1.4816944
– volume: 4
  start-page: 53
  year: 2014
  ident: e_1_2_9_21_1
  article-title: Myocardial blood flow measurement with a conventional dual‐head SPECT/CT with spatiotemporal iterative reconstructions – a clinical feasibility study
  publication-title: Am J Nucl Med Mol Imaging
– ident: e_1_2_9_42_1
  doi: 10.1109/CVPR.2011.5995478
– volume: 35
  start-page: 1265
  year: 1994
  ident: e_1_2_9_17_1
  article-title: Compartmental analysis of technetium‐99m‐teboroxime kinetics employing fast dynamic SPECT at rest and stress
  publication-title: J Nucl Med
– ident: e_1_2_9_2_1
  doi: 10.1109/TMI.2014.2352033
– ident: e_1_2_9_46_1
  doi: 10.1086/113176
– ident: e_1_2_9_38_1
  doi: 10.1109/NSSMIC.2012.6551677
– ident: e_1_2_9_30_1
  doi: 10.1088/0031-9155/60/21/8275
– ident: e_1_2_9_47_1
  doi: 10.1118/1.3480985
– ident: e_1_2_9_14_1
  doi: 10.2967/jnumed.114.143164
– ident: e_1_2_9_37_1
  doi: 10.1137/100790756
– ident: e_1_2_9_45_1
  doi: 10.3934/ipi.2011.5.591
– ident: e_1_2_9_32_1
– ident: e_1_2_9_29_1
  doi: 10.1118/1.2358201
– ident: e_1_2_9_23_1
  doi: 10.1109/42.870254
– ident: e_1_2_9_3_1
  doi: 10.1038/jcbfm.2015.69
– ident: e_1_2_9_9_1
  doi: 10.1007/s00259-014-2881-9
– ident: e_1_2_9_44_1
  doi: 10.1109/TMI.1987.4307826
– ident: e_1_2_9_5_1
  doi: 10.1088/0031-9155/45/9/314
– ident: e_1_2_9_11_1
  doi: 10.1088/0031-9155/57/2/375
– ident: e_1_2_9_19_1
  doi: 10.1186/s13550-014-0042-6
– ident: e_1_2_9_43_1
  doi: 10.1137/07070156X
– ident: e_1_2_9_10_1
  doi: 10.1007/s12350-015-0320-3
– ident: e_1_2_9_20_1
  doi: 10.1007/s12350-014-9971-8
– ident: e_1_2_9_22_1
  doi: 10.1007/s12350-017-1016-7
– ident: e_1_2_9_8_1
  doi: 10.1088/0031-9155/45/12/302
– ident: e_1_2_9_28_1
  doi: 10.1016/j.nuclcard.2006.03.004
– ident: e_1_2_9_35_1
  doi: 10.1056/NEJM197905103001904
– ident: e_1_2_9_15_1
  doi: 10.1109/42.712123
– ident: e_1_2_9_7_1
  doi: 10.1109/23.790826
– ident: e_1_2_9_26_1
  doi: 10.1007/s12350-016-0513-4
– ident: e_1_2_9_27_1
  doi: 10.1088/0031-9155/55/20/R01
– ident: e_1_2_9_13_1
  doi: 10.2967/jnumed.114.139782
– ident: e_1_2_9_12_1
  doi: 10.2967/jnumed.112.109652
– ident: e_1_2_9_24_1
  doi: 10.1118/1.3660328
– ident: e_1_2_9_18_1
  doi: 10.1097/00004424-200103000-00007
– ident: e_1_2_9_34_1
  doi: 10.1056/NEJM197905033001804
– reference: 25411652 - EJNMMI Res. 2014 Aug 01;4:42
– reference: 11131182 - Phys Med Biol. 2000 Dec;45(12):3525-43
– reference: 372804 - N Engl J Med. 1979 May 3;300(18):1016-27
– reference: 11008961 - Phys Med Biol. 2000 Sep;45(9):2619-38
– reference: 372806 - N Engl J Med. 1979 May 10;300(19):1078-86
– reference: 11989846 - IEEE Trans Med Imaging. 2002 Mar;21(3):216-25
– reference: 9735897 - IEEE Trans Med Imaging. 1998 Jun;17(3):334-43
– reference: 25143072 - Eur J Nucl Med Mol Imaging. 2014 Dec;41(12):2294-306
– reference: 11986565 - J Nucl Cardiol. 2002 Mar-Apr;9(2):197-205
– reference: 25899294 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1104-11
– reference: 16750780 - J Nucl Cardiol. 2006 May-Jun;13(3):354-61
– reference: 20858925 - Phys Med Biol. 2010 Oct 21;55(20):R111-91
– reference: 22149839 - Med Phys. 2011 Dec;38(12):6571-84
– reference: 11021687 - IEEE Trans Med Imaging. 2000 May;19(5):434-50
– reference: 11384070 - Phys Med Biol. 2001 May;46(5):1553-74
– reference: 25189340 - J Nucl Med. 2014 Oct;55(10):1685-91
– reference: 22170801 - Phys Med Biol. 2012 Jan 21;57(2):375-93
– reference: 24007179 - Med Phys. 2013 Sep;40(9):092503
– reference: 17153417 - Med Phys. 2006 Nov;33(11):4384-94
– reference: 11228582 - Invest Radiol. 2001 Mar;36(3):178-85
– reference: 23578996 - J Nucl Med. 2013 Jun;54(6):873-9
– reference: 12200931 - Phys Med Biol. 2002 Aug 7;47(15):2673-83
– reference: 24380045 - Am J Nucl Med Mol Imaging. 2013 Dec 15;4(1):53-9
– reference: 27349428 - J Nucl Cardiol. 2017 Aug;24(4):1347-1349
– reference: 26715603 - J Nucl Cardiol. 2017 Feb;24(1):268-277
– reference: 20964209 - Med Phys. 2010 Sep;37(9):4902-15
– reference: 28776314 - J Nucl Cardiol. 2017 Aug 3;:
– reference: 25280761 - J Nucl Cardiol. 2014 Dec;21(6):1075-88
– reference: 27338944 - J Nucl Cardiol. 2017 Aug;24(4):1332-1346
– reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91
– reference: 8113904 - J Nucl Med. 1994 Mar;35(3):484-95
– reference: 26338893 - J Nucl Med. 2015 Nov;56(11):1712-7
– reference: 18244020 - IEEE Trans Med Imaging. 1987;6(3):185-92
– reference: 8046477 - J Nucl Med. 1994 Aug;35(8):1265-73
– reference: 25167546 - IEEE Trans Med Imaging. 2015 Jan;34(1):216-28
– reference: 26450115 - Phys Med Biol. 2015 Nov 7;60(21):8275-301
SSID ssj0006350
Score 2.267523
Snippet Purpose Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of...
Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being...
Purpose: Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4493
SubjectTerms Animals
BASIC BIOLOGICAL SCIENCES
cardiac imaging
convergence measures in optimization
Dogs
dynamic SPECT reconstruction
Humans
Imaging, Three-Dimensional - methods
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
matrix factorization
Tomography, Emission-Computed, Single-Photon
Title Comparison of sparse domain approaches for 4D SPECT dynamic image reconstruction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13099
https://www.ncbi.nlm.nih.gov/pubmed/30027577
https://www.proquest.com/docview/2073331301
https://www.osti.gov/servlets/purl/1559152
https://pubmed.ncbi.nlm.nih.gov/PMC6211286
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZykpfxtb9yroNDcb2YLzZsmTHjyHpCGMZgWbQpxlZlolZbYcmKXR__U6SrTg0hW0vjrEd2-j7fLqTTt8h9J6FUvqS5m5ImXApF6E7lJnnUsbyNJWEpVKtd559D6c_6NdLdtnr_exkLW036Sfx--C6kv9BFY4BrmqV7D8ga28KB2Af8IUtIAzbv8J43C0i6IBtuF5LJ6tLiPatWLjUggsOnTgX8_PxwslMCXqnKFW2jo6HrYZs11NtZ3DM0Icem1Xrpbmp5GGHD2bF5po3houvC-uhj9KMX_GlWQ60LOttZgP_egtM-VWbvO715hZIedPJMjDGZ8qBm1V3TMIf2uw26FK07SI0ClxKvLhraI1uZEsor2M2KTVlEu_Yc6MPW65U0WpTSKkD66rUuAYqtGZNMZh97ez21AN0RCCMADt4NJrMvl3YvhrcLa-VJPbI5_ZBJ-i4_euev9KHVikOxSJ3U2q7oY72VRaP0aMmyMAjw5gnqCerU3Q8a9IoTtHDuQH1KZrvKITrHBsKYUMhvKMQBgphOsGaQrihENYUwvsUeoYWX84X46nbFNlwhZKidFWBskBG4LT4MSe5oHHEYEN5KHwvkyIHI-1HQg0QBlTCTuRxP2bwEfuxzGTwHPWrupIvEQ6HJM58Cd1WJqnkQy5IAP5omqYiI2nIBuhj25KJaAToVR2Uq8RIZ5OkXCW6-Qfonb1yZURXDlxzpsBIwFFUasdCpYWJTaJm2cElhTu0GCVgL9UkGK9kvV0nRFUpDeAW_gC9MJjZZ7SYD1C0h6a9QGmx75-piqXWZA8JBC7DcIA-aNzvfe1kNte_r-59-Bk62X1Sr1Ef8JNvwPHdpG8b9v4Bq5aujA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+sparse+domain+approaches+for+4D+SPECT+dynamic+image+reconstruction&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Mitra%2C+Debasis&rft.au=Abdalah%2C+Mahmoud&rft.au=Boutchko%2C+Rostyslav&rft.au=Chang%2C+Haoran&rft.date=2018-10-01&rft.eissn=2473-4209&rft.volume=45&rft.issue=10&rft.spage=4493&rft_id=info:doi/10.1002%2Fmp.13099&rft_id=info%3Apmid%2F30027577&rft.externalDocID=30027577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon