Comparison of sparse domain approaches for 4D SPECT dynamic image reconstruction
Purpose Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult becau...
Saved in:
Published in | Medical physics (Lancaster) Vol. 45; no. 10; pp. 4493 - 4509 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association of Physicists in Medicine
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction.
Methods
SIFADS is different from “pure” factor analysis in dynamic structures (FADS) in that it employs a dedicated spline‐based pre‐initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects.
Results
For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS.
Conclusion
The analysis supports the utility of the pre‐initialization of a factorization algorithm for better dynamic SPECT image reconstruction. |
---|---|
AbstractList | Purpose: Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction. Methods: SIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects. Results: For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS. Conclusion: The analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction. Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction.PURPOSEDynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction.SIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects.METHODSSIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects.For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS.RESULTSFor SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS.The analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction.CONCLUSIONThe analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction. Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction. SIFADS is different from "pure" factor analysis in dynamic structures (FADS) in that it employs a dedicated spline-based pre-initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects. For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS. The analysis supports the utility of the pre-initialization of a factorization algorithm for better dynamic SPECT image reconstruction. Purpose Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being computationally more challenging. Dynamic single photon emission computed tomography (SPECT) reconstruction is particularly difficult because of the limitations in the sampling geometry present in most existing scanners. We have developed an algorithm Spline Initialized Factor Analysis of Dynamic Structures (SIFADS) that is a matrix factorization method for reconstructing the dynamics of tracers in tissues and blood directly from the projections in dynamic cardiac SPECT, without first resorting to any 3D reconstruction. Methods SIFADS is different from “pure” factor analysis in dynamic structures (FADS) in that it employs a dedicated spline‐based pre‐initialization. In this paper, we analyze the convergence properties of SIFADS and FADS using multiple metrics. The performances of the two approaches are evaluated for numerically simulated data and for real dynamic SPECT data from canine and human subjects. Results For SIFADS, metrics analyzed for reconstruction algorithm convergence show better features of the metric curves vs iterations. In addition, SIAFDS provides better tissue segmentations than that from pure FADS. Measured computational times are also typically better for SIFADS implementations than those with pure FADS. Conclusion The analysis supports the utility of the pre‐initialization of a factorization algorithm for better dynamic SPECT image reconstruction. |
Author | Boutchko, Rostyslav Seo, Youngho Gullberg, Grant T. Abdalah, Mahmoud Botvinick, Elias Mitra, Debasis Chang, Haoran Shrestha, Uttam |
AuthorAffiliation | 4 University of California San Francisco 2 Moffitt Cancer Center 3 Lawrence Berkeley National Lab 1 Florida Institute of Technology |
AuthorAffiliation_xml | – name: 2 Moffitt Cancer Center – name: 4 University of California San Francisco – name: 1 Florida Institute of Technology – name: 3 Lawrence Berkeley National Lab |
Author_xml | – sequence: 1 givenname: Debasis surname: Mitra fullname: Mitra, Debasis email: dmitra@cs.fit.edu organization: Florida Institute of Technology – sequence: 2 givenname: Mahmoud surname: Abdalah fullname: Abdalah, Mahmoud organization: Radiology and Cancer Imaging – sequence: 3 givenname: Rostyslav surname: Boutchko fullname: Boutchko, Rostyslav organization: Molecular Biophys. & Integ. Bio – sequence: 4 givenname: Haoran surname: Chang fullname: Chang, Haoran organization: Florida Institute of Technology – sequence: 5 givenname: Uttam surname: Shrestha fullname: Shrestha, Uttam organization: University of California – sequence: 6 givenname: Elias surname: Botvinick fullname: Botvinick, Elias organization: University of California – sequence: 7 givenname: Youngho surname: Seo fullname: Seo, Youngho organization: University of California – sequence: 8 givenname: Grant T. surname: Gullberg fullname: Gullberg, Grant T. organization: University of California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30027577$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1559152$$D View this record in Osti.gov |
BookMark | eNp1kV1rFDEUhoNU7LYK_gIJXnkz68nXpLkRZK1WqLjg3oc0c6YbmUnGZLay_97UbesHepMcyPO-ec85J-QopoiEPGewZAD89TgtmQBjHpEFl1o0koM5IgsAIxsuQR2Tk1K-AkArFDwhx6KKtNJ6QdarNE4uh5IiTT0ttS5IuzS6EKmbppyc32KhfcpUvqNf1uerDe320Y3B0zC6a6QZfYplzjs_hxSfkse9Gwo-u7tPyeb9-WZ10Vx-_vBx9fay8VJo03CmuUANrWbG8d5Lo1U9pGs9gw59rwRj2uszoYTEWmhwzCiurpjBDsUpeXOwnXZXI3Ye45zdYKdcM-W9TS7YP19i2NrrdGNbzhg_a6vBy4NBKnOwxYcZ_bY2EtHPlillmOIVenX3S07fdlhmO4bicRhcxLQrloMWQtTRs4q--D3QQ5L7Uf_y8jmVkrF_QBjY2y3acbI_t1jR5V9ojedup1tbCcO_BM1B8D0MuP-vsf20PvA_AJ_rq0E |
CitedBy_id | crossref_primary_10_3389_fcvm_2021_713971 crossref_primary_10_1002_mp_16379 |
Cites_doi | 10.1109/42.996340 10.1109/TSMC.1979.4310076 10.1007/s12350-016-0580-6 10.1088/0031-9155/46/5/315 10.1088/0031-9155/47/15/309 10.1038/44565 10.1067/mnc.2002.120362 10.1007/0-387-25444-7_12 10.1118/1.4816944 10.1109/CVPR.2011.5995478 10.1109/TMI.2014.2352033 10.1086/113176 10.1109/NSSMIC.2012.6551677 10.1088/0031-9155/60/21/8275 10.1118/1.3480985 10.2967/jnumed.114.143164 10.1137/100790756 10.3934/ipi.2011.5.591 10.1118/1.2358201 10.1109/42.870254 10.1038/jcbfm.2015.69 10.1007/s00259-014-2881-9 10.1109/TMI.1987.4307826 10.1088/0031-9155/45/9/314 10.1088/0031-9155/57/2/375 10.1186/s13550-014-0042-6 10.1137/07070156X 10.1007/s12350-015-0320-3 10.1007/s12350-014-9971-8 10.1007/s12350-017-1016-7 10.1088/0031-9155/45/12/302 10.1016/j.nuclcard.2006.03.004 10.1056/NEJM197905103001904 10.1109/42.712123 10.1109/23.790826 10.1007/s12350-016-0513-4 10.1088/0031-9155/55/20/R01 10.2967/jnumed.114.139782 10.2967/jnumed.112.109652 10.1118/1.3660328 10.1097/00004424-200103000-00007 10.1056/NEJM197905033001804 |
ContentType | Journal Article |
Copyright | 2018 American Association of Physicists in Medicine 2018 American Association of Physicists in Medicine. |
Copyright_xml | – notice: 2018 American Association of Physicists in Medicine – notice: 2018 American Association of Physicists in Medicine. |
CorporateAuthor | Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States) |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 OIOZB OTOTI 5PM |
DOI | 10.1002/mp.13099 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 2473-4209 |
EndPage | 4509 |
ExternalDocumentID | PMC6211286 1559152 30027577 10_1002_mp_13099 MP13099 |
Genre | article Journal Article Comparative Study |
GrantInformation_xml | – fundername: National Institute of Health funderid: R01EB07219; R01HL50663; R01HL135490; R01CA154561; R01EB026331 – fundername: NIBIB NIH HHS grantid: R01 EB026331 – fundername: NHLBI NIH HHS grantid: R01 HL135490 – fundername: National Institute of Health grantid: R01CA154561 – fundername: NCI NIH HHS grantid: R01 CA154561 – fundername: National Institute of Health grantid: R01EB07219 – fundername: National Institute of Health grantid: R01HL50663 – fundername: NIBIB NIH HHS grantid: R01 EB007219 – fundername: NHLBI NIH HHS grantid: R01 HL050663 – fundername: National Institute of Health grantid: R01EB026331 – fundername: National Institute of Health grantid: R01HL135490 |
GroupedDBID | --- --Z -DZ .GJ 0R~ 1OB 1OC 29M 2WC 33P 36B 3O- 4.4 53G 5GY 5RE 5VS AAHHS AAHQN AAIPD AAMNL AANLZ AAQQT AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABEFU ABFTF ABJNI ABLJU ABQWH ABTAH ABXGK ACAHQ ACBEA ACCFJ ACCZN ACGFO ACGFS ACGOF ACPOU ACXBN ACXQS ADBBV ADBTR ADKYN ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG BFHJK C45 CS3 DCZOG DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMB EMOBN F5P HDBZQ HGLYW I-F KBYEO LATKE LEEKS LOXES LUTES LYRES MEWTI O9- OVD P2P P2W PALCI PHY RJQFR RNS ROL SAMSI SUPJJ SV3 TEORI TN5 TWZ USG WOHZO WXSBR XJT ZGI ZVN ZXP ZY4 ZZTAW AAYXX ADMLS AEYWJ AGHNM AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 476 AAJUZ AAPBV ABCVL ABPTK ACSMX ADDAD AEUQT OIOZB OTOTI 5PM |
ID | FETCH-LOGICAL-c4379-21723e706719a2fc4975c494a6c10decf53117c783534e7c770a19525b19ede3 |
ISSN | 0094-2405 2473-4209 |
IngestDate | Thu Aug 21 13:20:35 EDT 2025 Fri May 19 00:39:24 EDT 2023 Fri Jul 11 00:31:09 EDT 2025 Wed Feb 19 02:44:34 EST 2025 Thu Apr 24 22:54:49 EDT 2025 Tue Jul 01 03:54:34 EDT 2025 Wed Jan 22 16:27:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | matrix factorization convergence measures in optimization cardiac imaging dynamic SPECT reconstruction |
Language | English |
License | 2018 American Association of Physicists in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4379-21723e706719a2fc4975c494a6c10decf53117c783534e7c770a19525b19ede3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 AC02-05CH11231 USDOE Office of Science (SC) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1559152 |
PMID | 30027577 |
PQID | 2073331301 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6211286 osti_scitechconnect_1559152 proquest_miscellaneous_2073331301 pubmed_primary_30027577 crossref_primary_10_1002_mp_13099 crossref_citationtrail_10_1002_mp_13099 wiley_primary_10_1002_mp_13099_MP13099 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Medical physics (Lancaster) |
PublicationTitleAlternate | Med Phys |
PublicationYear | 2018 |
Publisher | American Association of Physicists in Medicine |
Publisher_xml | – name: American Association of Physicists in Medicine |
References | 2015; 35 2015; 34 2015; 56 2010; 55 1979; 300 2010; 37 2002; 9 2012 2006; 13 2011 2000; 45 2006; 33 2013; 40 1989; 6 1999; 46 2011; 33 2014; 24 2006 2014; 41 2008; 1 2012; 57 2011; 38 1999; 401 2011; 5 2014; 21 2002; 47 1998; 17 2014; 4 2000; 19 2015; 60 2013; 54 2002; 21 1982; 87 1994; 35 2017 2011; 46 2015 2001; 36 2014; 55 2016; 24 1979; 9 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 Chiao P (e_1_2_9_17_1) 1994; 35 e_1_2_9_36_1 e_1_2_9_37_1 Smith AM (e_1_2_9_16_1) 1994; 35 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_46_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Alhassen F (e_1_2_9_21_1) 2014; 4 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 9735897 - IEEE Trans Med Imaging. 1998 Jun;17(3):334-43 11989846 - IEEE Trans Med Imaging. 2002 Mar;21(3):216-25 20858925 - Phys Med Biol. 2010 Oct 21;55(20):R111-91 17153417 - Med Phys. 2006 Nov;33(11):4384-94 11384070 - Phys Med Biol. 2001 May;46(5):1553-74 8046477 - J Nucl Med. 1994 Aug;35(8):1265-73 372804 - N Engl J Med. 1979 May 3;300(18):1016-27 28776314 - J Nucl Cardiol. 2017 Aug 3 25899294 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1104-11 12200931 - Phys Med Biol. 2002 Aug 7;47(15):2673-83 24380045 - Am J Nucl Med Mol Imaging. 2013 Dec 15;4(1):53-9 26715603 - J Nucl Cardiol. 2017 Feb;24(1):268-277 25280761 - J Nucl Cardiol. 2014 Dec;21(6):1075-88 11131182 - Phys Med Biol. 2000 Dec;45(12):3525-43 24007179 - Med Phys. 2013 Sep;40(9):092503 27349428 - J Nucl Cardiol. 2017 Aug;24(4):1347-1349 25411652 - EJNMMI Res. 2014 Aug 01;4:42 25143072 - Eur J Nucl Med Mol Imaging. 2014 Dec;41(12):2294-306 11986565 - J Nucl Cardiol. 2002 Mar-Apr;9(2):197-205 11008961 - Phys Med Biol. 2000 Sep;45(9):2619-38 26338893 - J Nucl Med. 2015 Nov;56(11):1712-7 22170801 - Phys Med Biol. 2012 Jan 21;57(2):375-93 16750780 - J Nucl Cardiol. 2006 May-Jun;13(3):354-61 25167546 - IEEE Trans Med Imaging. 2015 Jan;34(1):216-28 11021687 - IEEE Trans Med Imaging. 2000 May;19(5):434-50 10548103 - Nature. 1999 Oct 21;401(6755):788-91 18244020 - IEEE Trans Med Imaging. 1987;6(3):185-92 26450115 - Phys Med Biol. 2015 Nov 7;60(21):8275-301 20964209 - Med Phys. 2010 Sep;37(9):4902-15 23578996 - J Nucl Med. 2013 Jun;54(6):873-9 11228582 - Invest Radiol. 2001 Mar;36(3):178-85 372806 - N Engl J Med. 1979 May 10;300(19):1078-86 8113904 - J Nucl Med. 1994 Mar;35(3):484-95 22149839 - Med Phys. 2011 Dec;38(12):6571-84 27338944 - J Nucl Cardiol. 2017 Aug;24(4):1332-1346 25189340 - J Nucl Med. 2014 Oct;55(10):1685-91 |
References_xml | – volume: 60 start-page: 8275 year: 2015 end-page: 8301 article-title: Image reconstruction in higher dimension: myocardial perfusion imaging of tracer dynamics with cardiac motion due to deformation and respiration publication-title: Phys Med Biol – start-page: 391 year: 2006 end-page: 343 – volume: 54 start-page: 873 year: 2013 end-page: 879 article-title: Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study publication-title: J Nucl Med – volume: 35 start-page: 1104 year: 2015 end-page: 1111 article-title: Clustering‐initiated factor analysis application for tissue classification in dynamic brain positron emission tomography publication-title: J Cereb Blood Flow Metab – volume: 40 start-page: 092503 year: 2013 article-title: Fast direct estimation of the blood input function and myocardial time activity curve from dynamic SPECT projections via reduction in spatial and temporal dimensions publication-title: Med Phys – volume: 9 start-page: 62 year: 1979 end-page: 66 article-title: A threshold selection method from gray‐level histograms publication-title: IEEE Trans Syst Man Cybern – volume: 55 start-page: 1685 year: 2014 end-page: 1691 article-title: Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model publication-title: J Nucl Med – volume: 13 start-page: 354 year: 2006 end-page: 361 article-title: Simultaneous assessment of cardiac perfusion and function using 5‐dimensional imaging with Tc‐99m teboroxime publication-title: J Nucl Cardiol – volume: 21 start-page: 216 year: 2002 end-page: 225 article-title: Correction for ambiguous solutions in factor analysis using a penalized least squares objective publication-title: IEEE Trans Med Imaging – volume: 35 start-page: 1265 year: 1994 end-page: 1273 article-title: Compartmental analysis of technetium‐99m‐teboroxime kinetics employing fast dynamic SPECT at rest and stress publication-title: J Nucl Med – volume: 36 start-page: 178 year: 2001 end-page: 185 article-title: Compartmental modeling of technetium‐99m‐labeled teboroxime with dynamic single‐photon emission computed tomography: comparison to static thallium‐201 in a canine model publication-title: Invest Radiol – volume: 17 start-page: 334 year: 1998 end-page: 343 article-title: Optimized acquisition time and image sampling for dynamic SPECT of Tl‐201 publication-title: IEEE Trans Med Imaging – volume: 6 start-page: 185 year: 1989 end-page: 192 article-title: A maximum probability expectation maximization algorithm for image reconstruction in emission tomography publication-title: IEEE Trans Med Imaging – volume: 4 start-page: 1 year: 2014 end-page: 9 article-title: Myocardial clearance of technetium‐99m‐teboroxime in reperfused injured canine myocardium publication-title: EJNMMI Res – volume: 1 start-page: 228 year: 2008 end-page: 247 article-title: Sparse and redundant modeling of image content using an image‐signature‐dictionary publication-title: SIAM J Imaging Sci – volume: 87 start-page: 928 year: 1982 end-page: 937 article-title: Alternatives to least squares publication-title: Astron J – volume: 47 start-page: 2673 year: 2002 end-page: 2683 article-title: Effects of temporal modelling on the statistical uncertainty of spatiotemporal distributions estimated directly from dynamic cone‐beam SPECT projections publication-title: Phys Med Biol – volume: 24 start-page: 268 year: 2014 end-page: 277 article-title: Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and Tc‐tetrofosmin: method and validation publication-title: J Nucl Cardiol – volume: 46 start-page: 1553 year: 2011 end-page: 1574 article-title: 4D maximum reconstruction in dynamic SPECT using a compartmental model‐based prior publication-title: Phys Med Biol – volume: 45 start-page: 3525 year: 2000 end-page: 3543 article-title: Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes publication-title: Phys Med Biol – volume: 33 start-page: 4384 year: 2006 end-page: 4394 article-title: Reconstruction of dynamic gated cardiac SPECT publication-title: Med Phys – volume: 4 start-page: 53 year: 2014 end-page: 59 article-title: Myocardial blood flow measurement with a conventional dual‐head SPECT/CT with spatiotemporal iterative reconstructions – a clinical feasibility study publication-title: Am J Nucl Med Mol Imaging – volume: 5 start-page: 591 year: 2011 end-page: 617 article-title: Anisotropic Total Variation regularized L1‐approximation and denoising/deblurring of 2D bar codes publication-title: Inverse Probl Imaging – volume: 300 start-page: 1078 year: 1979 end-page: 1086 article-title: Use of kinetic analysis and mathematical modeling in the study of metabolic pathways : applications to hepatic organic anion metabolism (second of two parts) publication-title: N Engl J Med – volume: 38 start-page: 6571 year: 2011 end-page: 6584 article-title: Effects of motion, attenuation, and scatter corrections on gated cardiac SPECT reconstruction publication-title: Med Phys – volume: 300 start-page: 1016 year: 1979 end-page: 1027 article-title: Use of kinetic analysis and mathematical modeling in the study of metabolic pathways . Applications to hepatic organic anion metabolism. (First of two parts) publication-title: N Engl J Med – year: 2012 – volume: 45 start-page: 2619 year: 2000 end-page: 2638 article-title: Factor analysis with knowledge application in dynamic cardiac SPECT publication-title: Phys Med Biol – volume: 35 start-page: 484 year: 1994 end-page: 495 article-title: Kinetic modelling of teboroxime using dynamic SPECT imaging publication-title: J Nucl Med – volume: 24 start-page: 1347 year: 2016 end-page: 1349 article-title: What are the necessary corrections for dynamic cardiac SPECT? publication-title: J Nucl Cardiol – volume: 56 start-page: 1712 year: 2015 end-page: 1717 article-title: SPECT myocardial perfusion reserve in patients with multivessel coronary disease: correlation with angiographic findings and invasive fractional flow reserve measurements publication-title: J Nucl Med – volume: 19 start-page: 434 year: 2000 end-page: 450 article-title: Direct least squares estimation of spatiotemporal distributions from dynamic SPECT projections using a spatial segmentation and temporal B‐splines publication-title: IEEE Trans Med Imaging – volume: 401 start-page: 788 year: 1999 end-page: 791 article-title: Learning the parts of objects by non‐negative factorization publication-title: Nature – volume: 41 start-page: 2294 year: 2014 end-page: 2306 article-title: Quantitation of myocardial blood flow and myocardial flow reserve with Tc‐sestamibi dynamic SPECT/CT to enhance detection of coronary artery disease publication-title: Eur J Nucl Med Mol Imaging – volume: 9 start-page: 197 year: 2002 end-page: 205 article-title: Removal of liver activity contamination in teboroxime dynamic cardiac SPECT imaging using factor analysis publication-title: J Nucl Cardiol – volume: 34 start-page: 216 year: 2015 end-page: 228 article-title: Reconstruction of 4‐D dynamic SPECT images from inconsistent projections using a spline initialized FADS algorithm (SIFADS) publication-title: IEEE Trans Med Imaging – volume: 55 start-page: 111 year: 2010 end-page: 191 article-title: Dynamic single photon emission computed tomography – basic principles and cardiac applications publication-title: Phys Med Biol – start-page: 457 year: 2011 end-page: 464 – volume: 37 start-page: 4902 year: 2010 end-page: 4915 article-title: 4D XCAT phantom for multimodality imaging research publication-title: Med Phys – volume: 57 start-page: 375 year: 2012 end-page: 393 article-title: Investigation of dynamic SPECT measurements of the arterial input function in human subjects using simulation, phantom and human studies publication-title: Phys Med Biol – volume: 33 start-page: 1415 year: 2011 end-page: 1438 article-title: A regularization parameter for nonsmooth Tikhonov regularization publication-title: SIAM J Sci Comput – volume: 21 start-page: 1075 year: 2014 end-page: 1088 article-title: Feasibility and operator variability of myocardial blood flow and reserve measurements with Tc‐sestamibi quantitative dynamic SPECT/CT imaging publication-title: J Nucl Cardiol – volume: 46 start-page: 1055 year: 1999 end-page: 1061 article-title: Dynamic SPECT imaging using a single camera rotation (dSPECT) publication-title: IEEE Trans Nucl Sci – volume: 24 start-page: 1332 year: 2016 end-page: 1346 article-title: Avoiding full corrections in dynamic SPECT images impacts the performance of SPECT myocardial blood flow quantitation publication-title: J Nucl Cardiol – year: 2017 article-title: A combined static‐dynamic single‐dose imaging protocol to compare the quantitative dynamic SPECT with static conventional SPECT publication-title: J Nucl Cardiol – year: 2015 – ident: e_1_2_9_41_1 doi: 10.1109/42.996340 – ident: e_1_2_9_48_1 – ident: e_1_2_9_39_1 doi: 10.1109/TSMC.1979.4310076 – volume: 35 start-page: 484 year: 1994 ident: e_1_2_9_16_1 article-title: Kinetic modelling of teboroxime using dynamic SPECT imaging publication-title: J Nucl Med – ident: e_1_2_9_25_1 doi: 10.1007/s12350-016-0580-6 – ident: e_1_2_9_31_1 doi: 10.1088/0031-9155/46/5/315 – ident: e_1_2_9_40_1 doi: 10.1088/0031-9155/47/15/309 – ident: e_1_2_9_4_1 doi: 10.1038/44565 – ident: e_1_2_9_6_1 doi: 10.1067/mnc.2002.120362 – ident: e_1_2_9_36_1 doi: 10.1007/0-387-25444-7_12 – ident: e_1_2_9_33_1 doi: 10.1118/1.4816944 – volume: 4 start-page: 53 year: 2014 ident: e_1_2_9_21_1 article-title: Myocardial blood flow measurement with a conventional dual‐head SPECT/CT with spatiotemporal iterative reconstructions – a clinical feasibility study publication-title: Am J Nucl Med Mol Imaging – ident: e_1_2_9_42_1 doi: 10.1109/CVPR.2011.5995478 – volume: 35 start-page: 1265 year: 1994 ident: e_1_2_9_17_1 article-title: Compartmental analysis of technetium‐99m‐teboroxime kinetics employing fast dynamic SPECT at rest and stress publication-title: J Nucl Med – ident: e_1_2_9_2_1 doi: 10.1109/TMI.2014.2352033 – ident: e_1_2_9_46_1 doi: 10.1086/113176 – ident: e_1_2_9_38_1 doi: 10.1109/NSSMIC.2012.6551677 – ident: e_1_2_9_30_1 doi: 10.1088/0031-9155/60/21/8275 – ident: e_1_2_9_47_1 doi: 10.1118/1.3480985 – ident: e_1_2_9_14_1 doi: 10.2967/jnumed.114.143164 – ident: e_1_2_9_37_1 doi: 10.1137/100790756 – ident: e_1_2_9_45_1 doi: 10.3934/ipi.2011.5.591 – ident: e_1_2_9_32_1 – ident: e_1_2_9_29_1 doi: 10.1118/1.2358201 – ident: e_1_2_9_23_1 doi: 10.1109/42.870254 – ident: e_1_2_9_3_1 doi: 10.1038/jcbfm.2015.69 – ident: e_1_2_9_9_1 doi: 10.1007/s00259-014-2881-9 – ident: e_1_2_9_44_1 doi: 10.1109/TMI.1987.4307826 – ident: e_1_2_9_5_1 doi: 10.1088/0031-9155/45/9/314 – ident: e_1_2_9_11_1 doi: 10.1088/0031-9155/57/2/375 – ident: e_1_2_9_19_1 doi: 10.1186/s13550-014-0042-6 – ident: e_1_2_9_43_1 doi: 10.1137/07070156X – ident: e_1_2_9_10_1 doi: 10.1007/s12350-015-0320-3 – ident: e_1_2_9_20_1 doi: 10.1007/s12350-014-9971-8 – ident: e_1_2_9_22_1 doi: 10.1007/s12350-017-1016-7 – ident: e_1_2_9_8_1 doi: 10.1088/0031-9155/45/12/302 – ident: e_1_2_9_28_1 doi: 10.1016/j.nuclcard.2006.03.004 – ident: e_1_2_9_35_1 doi: 10.1056/NEJM197905103001904 – ident: e_1_2_9_15_1 doi: 10.1109/42.712123 – ident: e_1_2_9_7_1 doi: 10.1109/23.790826 – ident: e_1_2_9_26_1 doi: 10.1007/s12350-016-0513-4 – ident: e_1_2_9_27_1 doi: 10.1088/0031-9155/55/20/R01 – ident: e_1_2_9_13_1 doi: 10.2967/jnumed.114.139782 – ident: e_1_2_9_12_1 doi: 10.2967/jnumed.112.109652 – ident: e_1_2_9_24_1 doi: 10.1118/1.3660328 – ident: e_1_2_9_18_1 doi: 10.1097/00004424-200103000-00007 – ident: e_1_2_9_34_1 doi: 10.1056/NEJM197905033001804 – reference: 25411652 - EJNMMI Res. 2014 Aug 01;4:42 – reference: 11131182 - Phys Med Biol. 2000 Dec;45(12):3525-43 – reference: 372804 - N Engl J Med. 1979 May 3;300(18):1016-27 – reference: 11008961 - Phys Med Biol. 2000 Sep;45(9):2619-38 – reference: 372806 - N Engl J Med. 1979 May 10;300(19):1078-86 – reference: 11989846 - IEEE Trans Med Imaging. 2002 Mar;21(3):216-25 – reference: 9735897 - IEEE Trans Med Imaging. 1998 Jun;17(3):334-43 – reference: 25143072 - Eur J Nucl Med Mol Imaging. 2014 Dec;41(12):2294-306 – reference: 11986565 - J Nucl Cardiol. 2002 Mar-Apr;9(2):197-205 – reference: 25899294 - J Cereb Blood Flow Metab. 2015 Jul;35(7):1104-11 – reference: 16750780 - J Nucl Cardiol. 2006 May-Jun;13(3):354-61 – reference: 20858925 - Phys Med Biol. 2010 Oct 21;55(20):R111-91 – reference: 22149839 - Med Phys. 2011 Dec;38(12):6571-84 – reference: 11021687 - IEEE Trans Med Imaging. 2000 May;19(5):434-50 – reference: 11384070 - Phys Med Biol. 2001 May;46(5):1553-74 – reference: 25189340 - J Nucl Med. 2014 Oct;55(10):1685-91 – reference: 22170801 - Phys Med Biol. 2012 Jan 21;57(2):375-93 – reference: 24007179 - Med Phys. 2013 Sep;40(9):092503 – reference: 17153417 - Med Phys. 2006 Nov;33(11):4384-94 – reference: 11228582 - Invest Radiol. 2001 Mar;36(3):178-85 – reference: 23578996 - J Nucl Med. 2013 Jun;54(6):873-9 – reference: 12200931 - Phys Med Biol. 2002 Aug 7;47(15):2673-83 – reference: 24380045 - Am J Nucl Med Mol Imaging. 2013 Dec 15;4(1):53-9 – reference: 27349428 - J Nucl Cardiol. 2017 Aug;24(4):1347-1349 – reference: 26715603 - J Nucl Cardiol. 2017 Feb;24(1):268-277 – reference: 20964209 - Med Phys. 2010 Sep;37(9):4902-15 – reference: 28776314 - J Nucl Cardiol. 2017 Aug 3;: – reference: 25280761 - J Nucl Cardiol. 2014 Dec;21(6):1075-88 – reference: 27338944 - J Nucl Cardiol. 2017 Aug;24(4):1332-1346 – reference: 10548103 - Nature. 1999 Oct 21;401(6755):788-91 – reference: 8113904 - J Nucl Med. 1994 Mar;35(3):484-95 – reference: 26338893 - J Nucl Med. 2015 Nov;56(11):1712-7 – reference: 18244020 - IEEE Trans Med Imaging. 1987;6(3):185-92 – reference: 8046477 - J Nucl Med. 1994 Aug;35(8):1265-73 – reference: 25167546 - IEEE Trans Med Imaging. 2015 Jan;34(1):216-28 – reference: 26450115 - Phys Med Biol. 2015 Nov 7;60(21):8275-301 |
SSID | ssj0006350 |
Score | 2.267523 |
Snippet | Purpose
Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of... Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of being... Purpose: Dynamic imaging (DI) provides additional diagnostic information in emission tomography in comparison to conventional static imaging at the cost of... |
SourceID | pubmedcentral osti proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4493 |
SubjectTerms | Animals BASIC BIOLOGICAL SCIENCES cardiac imaging convergence measures in optimization Dogs dynamic SPECT reconstruction Humans Imaging, Three-Dimensional - methods INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY matrix factorization Tomography, Emission-Computed, Single-Photon |
Title | Comparison of sparse domain approaches for 4D SPECT dynamic image reconstruction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmp.13099 https://www.ncbi.nlm.nih.gov/pubmed/30027577 https://www.proquest.com/docview/2073331301 https://www.osti.gov/servlets/purl/1559152 https://pubmed.ncbi.nlm.nih.gov/PMC6211286 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZykpfxtb9yroNDcb2YLzZsmTHjyHpCGMZgWbQpxlZlolZbYcmKXR__U6SrTg0hW0vjrEd2-j7fLqTTt8h9J6FUvqS5m5ImXApF6E7lJnnUsbyNJWEpVKtd559D6c_6NdLdtnr_exkLW036Sfx--C6kv9BFY4BrmqV7D8ga28KB2Af8IUtIAzbv8J43C0i6IBtuF5LJ6tLiPatWLjUggsOnTgX8_PxwslMCXqnKFW2jo6HrYZs11NtZ3DM0Icem1Xrpbmp5GGHD2bF5po3houvC-uhj9KMX_GlWQ60LOttZgP_egtM-VWbvO715hZIedPJMjDGZ8qBm1V3TMIf2uw26FK07SI0ClxKvLhraI1uZEsor2M2KTVlEu_Yc6MPW65U0WpTSKkD66rUuAYqtGZNMZh97ez21AN0RCCMADt4NJrMvl3YvhrcLa-VJPbI5_ZBJ-i4_euev9KHVikOxSJ3U2q7oY72VRaP0aMmyMAjw5gnqCerU3Q8a9IoTtHDuQH1KZrvKITrHBsKYUMhvKMQBgphOsGaQrihENYUwvsUeoYWX84X46nbFNlwhZKidFWBskBG4LT4MSe5oHHEYEN5KHwvkyIHI-1HQg0QBlTCTuRxP2bwEfuxzGTwHPWrupIvEQ6HJM58Cd1WJqnkQy5IAP5omqYiI2nIBuhj25KJaAToVR2Uq8RIZ5OkXCW6-Qfonb1yZURXDlxzpsBIwFFUasdCpYWJTaJm2cElhTu0GCVgL9UkGK9kvV0nRFUpDeAW_gC9MJjZZ7SYD1C0h6a9QGmx75-piqXWZA8JBC7DcIA-aNzvfe1kNte_r-59-Bk62X1Sr1Ef8JNvwPHdpG8b9v4Bq5aujA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+sparse+domain+approaches+for+4D+SPECT+dynamic+image+reconstruction&rft.jtitle=Medical+physics+%28Lancaster%29&rft.au=Mitra%2C+Debasis&rft.au=Abdalah%2C+Mahmoud&rft.au=Boutchko%2C+Rostyslav&rft.au=Chang%2C+Haoran&rft.date=2018-10-01&rft.eissn=2473-4209&rft.volume=45&rft.issue=10&rft.spage=4493&rft_id=info:doi/10.1002%2Fmp.13099&rft_id=info%3Apmid%2F30027577&rft.externalDocID=30027577 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-2405&client=summon |