Evaluating sample size to estimate genetic management metrics in the genomics era

Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample...

Full description

Saved in:
Bibliographic Details
Published inMolecular ecology resources Vol. 18; no. 5; pp. 1077 - 1091
Main Authors Flesch, Elizabeth P., Rotella, Jay J., Thomson, Jennifer M., Graves, Tabitha A., Garrott, Robert A.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free‐ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross‐species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra‐ and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.
AbstractList Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free‐ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross‐species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra‐ and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.
Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free‐ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross‐species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra‐ and interpopulation relationships using kinship and identity by state metrics, as well as FST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.
Abstract Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free‐ranging Rocky Mountain bighorn sheep ( Ovis canadensis canadensis ) populations in Montana and Wyoming, USA, through cross‐species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra‐ and interpopulation relationships using kinship and identity by state metrics, as well as F ST between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.
Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of estimates can be influenced by the number of individual genotypes analysed. Biologists are confronted with varied advice regarding the sample size necessary for reliable estimates when using genomic tools. We developed a simulation framework to identify the optimal sample size for three widely used metrics to enable quantification of expected variance and relative bias of estimates and a comparison of results among populations. We applied this approach to analyse empirical genomic data for 30 individuals from each of four different free-ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis) populations in Montana and Wyoming, USA, through cross-species application of an Ovine array and analysis of approximately 14,000 single nucleotide polymorphisms (SNPs) after filtering. We examined intra- and interpopulation relationships using kinship and identity by state metrics, as well as F between populations. By evaluating our simulation results, we concluded that a sample size of 25 was adequate for assessing these metrics using the Ovine array to genotype Rocky Mountain bighorn sheep herds. However, we conclude that a universal sample size rule may not be able to sufficiently address the complexities that impact genomic kinship and inbreeding estimates. Thus, we recommend that a pilot study and sample size simulation using R code we developed that includes empirical genotypes from a subset of populations of interest would be an effective approach to ensure rigour in estimating genomic kinship and population differentiation.
Author Graves, Tabitha A.
Rotella, Jay J.
Garrott, Robert A.
Thomson, Jennifer M.
Flesch, Elizabeth P.
Author_xml – sequence: 1
  givenname: Elizabeth P.
  orcidid: 0000-0002-7592-8124
  surname: Flesch
  fullname: Flesch, Elizabeth P.
  email: elizabeth.flesch@gmail.com
  organization: Montana State University
– sequence: 2
  givenname: Jay J.
  surname: Rotella
  fullname: Rotella, Jay J.
  organization: Montana State University
– sequence: 3
  givenname: Jennifer M.
  surname: Thomson
  fullname: Thomson, Jennifer M.
  organization: Montana State University
– sequence: 4
  givenname: Tabitha A.
  orcidid: 0000-0001-5145-2400
  surname: Graves
  fullname: Graves, Tabitha A.
  organization: Northern Rocky Mountain Science Center
– sequence: 5
  givenname: Robert A.
  surname: Garrott
  fullname: Garrott, Robert A.
  organization: Montana State University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29856123$$D View this record in MEDLINE/PubMed
BookMark eNqFkDtPwzAURi1URB8wsyFLLCxp_Upij6gqD6mAkEBisxz3tqRKnBInoPLrcR90YOEuvraOP306fdRxlQOEzikZ0jAjmsZxRJSSQ8qkkkeod3jpHHb51kV975eEJESl4gR1mZJxQhnvoefJpyla0-Rugb0pVwVgn38DbioMvslL0wBegIMmt7g0ziygBNfgEpo6tx7nDjfvW6IqN3eozSk6npvCw9n-HKDXm8nL-C6aPt3ej6-nkRU8lZEiBgifUc65mKmMWh4nhhubWSNYwmMqQFJhE8VZallGMmIlZJSlqU1kAPkAXe1yV3X10Yayusy9haIwDqrWa0aEimMhBA_o5R90WbW1C-0CJWXCZJAXqNGOsnXlfQ1zvaqDgHqtKdEb23rjU2_c6q3t8ONin9tmJcwO_K_eAMQ74CsvYP1fnn6YPO6CfwAHdYo8
CitedBy_id crossref_primary_10_3390_biology9090277
crossref_primary_10_1016_j_gecco_2021_e01928
crossref_primary_10_1016_j_cbd_2024_101262
crossref_primary_10_1038_s41598_021_84652_5
crossref_primary_10_1086_722284
crossref_primary_10_1111_eva_12853
crossref_primary_10_3389_fmala_2023_1075755
crossref_primary_10_1186_s40575_020_00085_9
crossref_primary_10_1371_journal_pone_0230404
crossref_primary_10_3390_insects11050290
crossref_primary_10_1590_1982_0224_2022_0113
crossref_primary_10_1002_ece3_5677
crossref_primary_10_1002_ece3_6942
crossref_primary_10_1016_j_egg_2022_100135
crossref_primary_10_1093_icesjms_fsz201
crossref_primary_10_1186_s12863_020_00921_8
crossref_primary_10_3389_fgene_2020_00870
crossref_primary_10_1371_journal_pone_0259113
crossref_primary_10_3389_fgene_2023_1071896
crossref_primary_10_1016_j_rsma_2021_101688
crossref_primary_10_1038_s41467_023_39651_7
crossref_primary_10_1002_ecs2_3972
Cites_doi 10.1016/j.ajhg.2007.10.009
10.1007/s10592-015-0709-1
10.1186/s12864-015-1618-x
10.1111/mec.13613
10.1111/mec.13243
10.1111/1365-2656.12031
10.1111/mec.12560
10.1111/j.0014-3820.2001.tb01326.x
10.1126/science.1094442
10.1111/mec.12741
10.1017/S0016672307009214
10.1038/ng.3034
10.1038/nature10231
10.1111/j.1365-294X.2010.04717.x
10.1002/9780470344880.ch20
10.1111/j.1365-294X.2012.05565.x
10.1534/genetics.106.057331
10.1016/j.biocon.2014.06.014
10.1098/rsbl.2010.1119
10.1016/j.tree.2012.05.012
10.1093/jhered/esi127
10.1111/1755-0998.12323
10.1101/gr.079509.108
10.1016/j.livsci.2012.07.019
10.1046/j.1365-294X.2004.02008.x
10.1098/rstb.2003.1437
10.1371/journal.pone.0036536
10.1534/genetics.112.149096
10.1002/ece3.1541
10.1093/oso/9780198783398.001.0001
10.1093/bioinformatics/btq559
10.1139/z01-103
10.1186/1471-2164-11-524
10.1046/j.1365-294X.2001.01288.x
10.1111/j.1755-0998.2010.02918.x
10.1016/j.livsci.2014.04.020
10.1371/journal.pone.0042649
10.2307/1377561
10.1371/journal.pone.0045170
10.1111/1755-0998.12017
10.2193/2006-002
10.1371/journal.pone.0004668
10.1038/nrg2611
10.1016/S0169-5347(03)00225-8
10.1111/mec.12529
10.1098/rspb.2006.3477
10.1093/molbev/msq148
10.1128/JCM.01931-07
10.1111/j.1365-294X.2008.03675.x
10.1371/journal.pone.0078314
10.1111/j.1523-1739.2010.01549.x
10.1086/519795
10.1038/sj.hdy.6800548
10.1111/j.1755-0998.2010.02885.x
10.1111/j.1365-294X.2005.02656.x
10.1016/j.tree.2006.08.001
10.1046/j.1365-294X.1999.00637.x
10.1371/journal.pone.0079667
10.1111/j.1365-294X.2010.04554.x
10.1073/pnas.0704580104
10.1073/pnas.1518046113
10.1038/sj.hdy.6800485
10.1186/1471-2148-13-125
10.1111/age.12197
10.1111/1755-0998.12654
10.1023/A:1019921131171
10.3201/eid1803.111554
10.1186/1297-9686-45-38
10.1016/j.tree.2009.06.014
ContentType Journal Article
Copyright Published 2018. This article is a U.S. Government work and is in the public domain in the USA
Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
Copyright © 2018 John Wiley & Sons Ltd
Copyright_xml – notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA
– notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
– notice: Copyright © 2018 John Wiley & Sons Ltd
DBID NPM
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
DOI 10.1111/1755-0998.12898
DatabaseName PubMed
CrossRef
Ecology Abstracts
Entomology Abstracts (Full archive)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Entomology Abstracts
Genetics Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
EISSN 1755-0998
EndPage 1091
ExternalDocumentID 10_1111_1755_0998_12898
29856123
MEN12898
Genre article
Journal Article
GrantInformation_xml – fundername: Yellowstone National Park
– fundername: Canon USA Inc.
– fundername: National Park Service
– fundername: Montana Fish, Wildlife and Parks
– fundername: Montana and Midwest Chapters of the Wild Sheep Foundation
– fundername: Wyoming Governor's Big Game License Coalition
– fundername: National Geographic Society
– fundername: National Science Foundation Graduate Research Fellowship
– fundername: Montana Agricultural Experiment Station
– fundername: Glacier National Park
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1OC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
ECGQY
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
ROL
RX1
SUPJJ
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
~IA
~WT
NPM
AAYXX
CITATION
7SN
7SS
8FD
C1K
FR3
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c4378-90ae03d13334d9b1c356a3acbca4263514e814c69327c2b0b0c8eb1277c68a3a3
IEDL.DBID DR2
ISSN 1755-098X
IngestDate Fri Aug 16 06:02:50 EDT 2024
Thu Oct 10 19:27:38 EDT 2024
Fri Aug 23 03:36:40 EDT 2024
Wed Oct 23 09:46:34 EDT 2024
Sat Aug 24 00:59:13 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Ovis canadensis canadensis
single nucleotide polymorphism
kinship
sampling
Language English
License Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4378-90ae03d13334d9b1c356a3acbca4263514e814c69327c2b0b0c8eb1277c68a3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7592-8124
0000-0001-5145-2400
PMID 29856123
PQID 2088628289
PQPubID 1096410
PageCount 15
ParticipantIDs proquest_miscellaneous_2049554443
proquest_journals_2088628289
crossref_primary_10_1111_1755_0998_12898
pubmed_primary_29856123
wiley_primary_10_1111_1755_0998_12898_MEN12898
PublicationCentury 2000
PublicationDate September 2018
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: September 2018
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Molecular ecology resources
PublicationTitleAlternate Mol Ecol Resour
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2007; 104
2013; 22
2010; 19
2006; 173
2011; 11
2007; 71
2003; 18
2013; 8
2014; 177
2012; 12
2014; 23
2011; 475
1994; 265
2010; 20
2010; 27
2010; 26
2009; 10
2010; 25
1960; 41
2010; 24
2013; 13
2006; 21
2016; 113
2012; 27
2001; 55
2014; 166
2013; 194
2012; 21
2001; 10
2015; 15
2004; 303
2006; 97
2015; 16
2015; 5
2012
2013; 45
2006; 273
2008
2002; 3
2014; 46
1999; 8
2012; 149
2014; 45
2008; 90
2011; 7
2015; 24
2004; 94
2004; 93
2017; 17
2004; 13
2013; 82
2018
2008; 46
2017
2007; 81
2009; 4
2012; 7
2001; 79
2004; 359
2008; 82
2016; 25
2005; 14
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Gaughran S. J. (e_1_2_8_19_1) 2017
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
Romanov M. N. (e_1_2_8_57_1) 2009; 10
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_70_1
e_1_2_8_32_1
R Core Team (e_1_2_8_55_1) 2017
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
Thrasher D. J. (e_1_2_8_69_1) 2018
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 13
  start-page: 125
  year: 2013
  article-title: Dispersing away from bad genotypes: The evolution of Fitness‐Associated Dispersal (FAD) in homogeneous environments
  publication-title: BMC Evolutionary Biology
– volume: 20
  start-page: 291
  issue: 3
  year: 2010
  end-page: 300
  article-title: Population genetic inference from genomic sequence variation
  publication-title: Genome Research
– volume: 7
  start-page: 433
  issue: 3
  year: 2011
  end-page: 435
  article-title: Does reduced heterozygosity influence dispersal? A test using spatially structured populations in an alpine ungulate
  publication-title: Biology Letters
– volume: 27
  start-page: 489
  issue: 9
  year: 2012
  end-page: 496
  article-title: Harnessing genomics for delineating conservation units
  publication-title: Trends in Ecology & Evolution
– volume: 19
  start-page: 3760
  issue: 17
  year: 2010
  end-page: 3772
  article-title: Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field
  publication-title: Molecular Ecology
– start-page: 1
  year: 2018
  end-page: 13
  article-title: Double‐digest RAD sequencing outperforms microsatellite loci at assigning paternity and estimating relatedness: A proof of concept in a highly promiscuous bird
  publication-title: Molecular Ecology Resources
– volume: 265
  start-page: 1193
  year: 1994
  end-page: 1201
  article-title: Kin selection, social structure, gene flow, and the evolution of chimpanzees
  publication-title: Science
– year: 2018
– volume: 13
  start-page: 55
  issue: 1
  year: 2004
  end-page: 65
  article-title: Genetic assignment methods for the direct, real‐time estimation of migration rate: A simulation‐based exploration of accuracy and power
  publication-title: Molecular Ecology
– volume: 10
  start-page: 1539
  issue: 6
  year: 2001
  end-page: 1549
  article-title: A comparison of microsatellite‐based pairwise relatedness estimators
  publication-title: Molecular Ecology
– volume: 41
  start-page: 523
  issue: 4
  year: 1960
  end-page: 525
  article-title: Records of bighorn hybrids
  publication-title: Journal of Mammalogy
– volume: 25
  start-page: 44
  issue: 1
  year: 2010
  end-page: 52
  article-title: Research on inbreeding in the ‘omic’ era
  publication-title: Trends in Ecology & Evolution
– volume: 18
  start-page: 503
  issue: 10
  year: 2003
  end-page: 511
  article-title: DNA‐based methods for pedigree reconstruction and kinship analysis in natural populations
  publication-title: Trends in Ecology & Evolution
– volume: 359
  start-page: 873
  issue: 1446
  year: 2004
  end-page: 890
  article-title: Estimating genetic parameters in natural populations using the ‘animal model’
  publication-title: Philosophical Transactions of the Royal Society of London B: Biological Sciences
– volume: 10
  start-page: 639
  issue: 9
  year: 2009
  end-page: 650
  article-title: Genetics in geographically structured populations: Defining, estimating and interpreting FST
  publication-title: Nature Reviews Genetics
– volume: 25
  start-page: 2997
  issue: 13
  year: 2016
  end-page: 3018
  article-title: Comparing RADseq and microsatellites to infer complex phylogeographic patterns, an empirical perspective in the Crucian carp, Carassius carassius
  publication-title: L. Molecular Ecology
– volume: 22
  start-page: 6091
  issue: 24
  year: 2013
  end-page: 6099
  article-title: Using genomic tools to maintain diversity and fitness in conservation programmes
  publication-title: Molecular Ecology
– volume: 90
  start-page: 199
  issue: 2
  year: 2008
  end-page: 208
  article-title: Restricting coancestry and inbreeding at a specific position on the genome by using optimized selection
  publication-title: Genetics Research
– volume: 27
  start-page: 2534
  issue: 11
  year: 2010
  end-page: 2547
  article-title: Ascertainment biases in SNP chips affect measures of population divergence
  publication-title: Molecular Biology and Evolution
– volume: 11
  start-page: 314
  issue: 2
  year: 2011
  end-page: 322
  article-title: A genome‐wide set of SNPs detects population substructure and long range linkage disequilibrium in wild sheep
  publication-title: Molecular Ecology Resources
– volume: 22
  start-page: 5779
  issue: 23
  year: 2013
  end-page: 5792
  article-title: Estimating relatedness and inbreeding using molecular markers and pedigrees: The effect of demographic history
  publication-title: Molecular Ecology
– volume: 45
  start-page: 754
  issue: 5
  year: 2014
  end-page: 757
  article-title: Linkage disequilibrium over short physical distances measured in sheep using a high‐density SNP chip
  publication-title: Animal Genetics
– volume: 194
  start-page: 647
  issue: 3
  year: 2013
  end-page: 662
  article-title: Estimating variable effective population sizes from multiple genomes: A sequentially Markov conditional sampling distribution approach
  publication-title: Genetics
– volume: 71
  start-page: 1080
  issue: 4
  year: 2007
  end-page: 1088
  article-title: Dynamics of pneumonia in a bighorn sheep metapopulation
  publication-title: The Journal of Wildlife Management
– volume: 11
  start-page: 524
  year: 2010
  article-title: Genetic linkage map of a wild genome: Genomic structure, recombination and sexual dimorphism in bighorn sheep
  publication-title: BMC Genomics
– volume: 7
  start-page: e42649
  issue: 8
  year: 2012
  article-title: Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers
  publication-title: PLoS ONE
– volume: 14
  start-page: 3209
  issue: 10
  year: 2005
  end-page: 3217
  article-title: Genetic resistance to bovine tuberculosis in the Iberian wild boar
  publication-title: Molecular Ecology
– volume: 7
  start-page: e45170
  issue: 9
  year: 2012
  article-title: Sampling for microsatellite‐based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies
  publication-title: PLoS ONE
– start-page: 1
  year: 2017
  end-page: 10
  article-title: Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study
  publication-title: Evolutionary Applications
– volume: 15
  start-page: 557
  issue: 3
  year: 2015
  end-page: 561
  article-title: Related: An R package for analysing pairwise relatedness from codominant molecular markers
  publication-title: Molecular Ecology Resources
– volume: 21
  start-page: 629
  issue: 11
  year: 2006
  end-page: 637
  article-title: Genomics and conservation genetics
  publication-title: Trends in Ecology & Evolution
– volume: 12
  start-page: 1145
  issue: 6
  year: 2012
  end-page: 1150
  article-title: Consistent divergence times and allele sharing measured from cross‐species application of SNP chips developed for three domestic species
  publication-title: Molecular Ecology Resources
– volume: 21
  start-page: 2788
  issue: 11
  year: 2012
  end-page: 2804
  article-title: Inbreeding and inbreeding depression of early life traits in a cooperative mammal
  publication-title: Molecular Ecology
– volume: 94
  start-page: 33
  issue: 1
  year: 2004
  end-page: 36
  article-title: Do polymorphic loci require large sample sizes to estimate genetic distances?
  publication-title: Heredity
– volume: 4
  start-page: e4668
  issue: 3
  year: 2009
  article-title: A genome wide survey of SNP variation reveals the genetic structure of sheep breeds
  publication-title: PLoS ONE
– volume: 113
  start-page: 3585
  issue: 13
  year: 2016
  end-page: 3590
  article-title: Inbreeding depression across the lifespan in a wild mammal population
  publication-title: Proceedings of the National Academy of Sciences
– volume: 17
  start-page: 1136
  year: 2017
  end-page: 1147
  article-title: Minimum sample sizes for population genomics: An empirical study from an Amazonian plant species
  publication-title: Molecular Ecology Resources
– volume: 24
  start-page: 3223
  issue: 13
  year: 2015
  end-page: 3231
  article-title: Seven common mistakes in population genetics and how to avoid them
  publication-title: Molecular Ecology
– volume: 8
  start-page: e78314
  issue: 10
  year: 2013
  article-title: Genome‐wide estimates of coancestry and inbreeding in a closed herd of ancient iberian pigs
  publication-title: PLoS ONE
– start-page: 330
  year: 2008
  end-page: 339
– volume: 45
  start-page: 38
  year: 2013
  article-title: Maintaining genetic diversity using molecular coancestry: The effect of marker density and effective population size
  publication-title: Genetics Selection Evolution
– volume: 19
  start-page: 1439
  issue: 7
  year: 2010
  end-page: 1451
  article-title: On the use of large marker panels to estimate inbreeding and relatedness: Empirical and simulation studies of a pedigreed zebra finch population typed at 771 SNPs
  publication-title: Molecular Ecology
– volume: 82
  start-page: 352
  issue: 2
  year: 2008
  end-page: 365
  article-title: A unified association analysis approach for family and unrelated samples correcting for stratification
  publication-title: The American Journal of Human Genetics
– volume: 23
  start-page: 2383
  issue: 10
  year: 2014
  end-page: 2401
  article-title: An overview of the utility of population simulation software in molecular ecology
  publication-title: Molecular Ecology
– volume: 7
  start-page: e36536
  issue: 5
  year: 2012
  article-title: Identification of novel single nucleotide polymorphisms (SNPs) in deer (Odocoileus spp.) using the BovineSNP50 BeadChip
  publication-title: PLoS ONE
– volume: 3
  start-page: 309
  issue: 3
  year: 2002
  end-page: 320
  article-title: Estimation of coancestry in Iberian pigs using molecular markers
  publication-title: Conservation Genetics
– volume: 24
  start-page: 1617
  issue: 6
  year: 2010
  end-page: 1625
  article-title: Inbreeding depression accumulation across life‐history stages of the endangered takahe
  publication-title: Conservation Biology
– volume: 303
  start-page: 790
  issue: 5659
  year: 2004
  end-page: 793
  article-title: Uses and abuses of mathematics in biology
  publication-title: Science
– volume: 5
  start-page: 3140
  issue: 15
  year: 2015
  end-page: 3150
  article-title: The use and abuse of genetic marker‐based estimates of relatedness and inbreeding
  publication-title: Ecology and Evolution
– volume: 149
  start-page: 282
  issue: 3
  year: 2012
  end-page: 288
  article-title: Use of different sources of information for the recovery and genetic management of endangered populations: Example with the extreme case of Iberian pig Dorado strain
  publication-title: Livestock Science
– volume: 475
  start-page: 493
  issue: 7357
  year: 2011
  end-page: 496
  article-title: Inference of human population history from individual whole‐genome sequences
  publication-title: Nature
– volume: 8
  start-page: 831
  issue: 5
  year: 1999
  end-page: 841
  article-title: Pollen dispersal inferred from paternity analysis in a mixed oak stand of Quercus robur L. and Q. petraea(Matt.) Liebl
  publication-title: Molecular Ecology
– year: 2012
– volume: 177
  start-page: 90
  year: 2014
  end-page: 99
  article-title: Optimal sampling of seeds from plant populations for ex‐situ conservation of genetic biodiversity, considering realistic population structure
  publication-title: Biological Conservation
– volume: 26
  start-page: 2867
  issue: 22
  year: 2010
  end-page: 2873
  article-title: Robust relationship inference in genome‐wide association studies
  publication-title: Bioinformatics
– volume: 55
  start-page: 2116
  issue: 10
  year: 2001
  end-page: 2125
  article-title: Positive genetic correlation between parasite resistance and body size in a free‐living ungulate population
  publication-title: Evolution
– volume: 16
  start-page: 397
  issue: 1
  year: 2015
  article-title: Harnessing cross‐species alignment to discover SNPs and generate a draft genome sequence of a bighorn sheep (Ovis canadensis)
  publication-title: BMC Genomics
– volume: 97
  start-page: 21
  issue: 1
  year: 2006
  end-page: 30
  article-title: Phylogenetic analysis of snow sheep (Ovis nivicola) and closely related taxa
  publication-title: Journal of Heredity
– volume: 82
  start-page: 518
  issue: 3
  year: 2013
  end-page: 528
  article-title: Spatio‐temporal dynamics of pneumonia in bighorn sheep
  publication-title: Journal of Animal Ecology
– volume: 46
  start-page: 858
  issue: 8
  year: 2014
  end-page: 865
  article-title: Whole‐genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle
  publication-title: Nature Genetics
– volume: 273
  start-page: 1491
  issue: 1593
  year: 2006
  end-page: 1499
  article-title: Genetic rescue of an insular population of large mammals
  publication-title: Proceedings of the Royal Society B: Biological Sciences
– volume: 81
  start-page: 559
  issue: 3
  year: 2007
  end-page: 575
  article-title: PLINK: A tool set for whole‐genome association and population‐based linkage analyses
  publication-title: The American Journal of Human Genetics
– volume: 93
  start-page: 255
  issue: 3
  year: 2004
  end-page: 265
  article-title: Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: Theoretical expectations and empirical data
  publication-title: Heredity
– volume: 11
  start-page: 141
  issue: 1
  year: 2011
  end-page: 145
  article-title: Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients
  publication-title: Molecular Ecology Resources
– volume: 46
  start-page: 423
  issue: 2
  year: 2008
  end-page: 430
  article-title: Association of Mycoplasma ovipneumoniae infection with population‐limiting respiratory disease in free‐ranging Rocky Mountain bighorn sheep (Ovis canadensis canadensis)
  publication-title: Journal of Clinical Microbiology
– volume: 104
  start-page: 16221
  issue: 41
  year: 2007
  end-page: 16226
  article-title: Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial
  publication-title: Proceedings of the National Academy of Sciences
– volume: 16
  start-page: 901
  issue: 4
  year: 2015
  end-page: 913
  article-title: Valid estimates of individual inbreeding coefficients from marker‐based pedigrees are not feasible in wild populations with low allelic diversity
  publication-title: Conservation Genetics
– volume: 10
  start-page: 1
  issue: 2
  year: 2009
  end-page: 19
  article-title: The value of avian genomics to the conservation of wildlife
  publication-title: BMC Genomics
– year: 2017
– volume: 79
  start-page: 1423
  issue: 8
  year: 2001
  end-page: 1432
  article-title: Ecological correlates of pneumonia epizootics in bighorn sheep herds
  publication-title: Canadian Journal of Zoology
– volume: 173
  start-page: 2091
  issue: 4
  year: 2006
  end-page: 2101
  article-title: Performance of marker‐based relatedness estimators in natural populations of outbred vertebrates
  publication-title: Genetics
– volume: 8
  start-page: e79667
  issue: 11
  year: 2013
  article-title: Assessing the effect of sequencing depth and sample size in population genetics inferences
  publication-title: PLoS ONE
– volume: 166
  start-page: 48
  year: 2014
  end-page: 53
  article-title: Genomics applied to management strategies in conservation programmes
  publication-title: Livestock Science
– ident: e_1_2_8_76_1
  doi: 10.1016/j.ajhg.2007.10.009
– ident: e_1_2_8_68_1
  doi: 10.1007/s10592-015-0709-1
– ident: e_1_2_8_44_1
  doi: 10.1186/s12864-015-1618-x
– ident: e_1_2_8_30_1
  doi: 10.1111/mec.13613
– ident: e_1_2_8_41_1
  doi: 10.1111/mec.13243
– ident: e_1_2_8_8_1
  doi: 10.1111/1365-2656.12031
– ident: e_1_2_8_13_1
  doi: 10.1111/mec.12560
– ident: e_1_2_8_10_1
  doi: 10.1111/j.0014-3820.2001.tb01326.x
– ident: e_1_2_8_40_1
  doi: 10.1126/science.1094442
– start-page: 1
  year: 2017
  ident: e_1_2_8_19_1
  article-title: Theory, practice, and conservation in the age of genomics: The Galápagos giant tortoise as a case study
  publication-title: Evolutionary Applications
  contributor:
    fullname: Gaughran S. J.
– ident: e_1_2_8_25_1
  doi: 10.1111/mec.12741
– ident: e_1_2_8_58_1
  doi: 10.1017/S0016672307009214
– ident: e_1_2_8_12_1
  doi: 10.1038/ng.3034
– ident: e_1_2_8_37_1
  doi: 10.1038/nature10231
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1365-294X.2010.04717.x
– ident: e_1_2_8_42_1
  doi: 10.1002/9780470344880.ch20
– volume: 10
  start-page: 1
  issue: 2
  year: 2009
  ident: e_1_2_8_57_1
  article-title: The value of avian genomics to the conservation of wildlife
  publication-title: BMC Genomics
  contributor:
    fullname: Romanov M. N.
– ident: e_1_2_8_49_1
  doi: 10.1111/j.1365-294X.2012.05565.x
– ident: e_1_2_8_11_1
  doi: 10.1534/genetics.106.057331
– ident: e_1_2_8_26_1
  doi: 10.1016/j.biocon.2014.06.014
– ident: e_1_2_8_61_1
  doi: 10.1098/rsbl.2010.1119
– ident: e_1_2_8_18_1
  doi: 10.1016/j.tree.2012.05.012
– ident: e_1_2_8_7_1
  doi: 10.1093/jhered/esi127
– ident: e_1_2_8_51_1
  doi: 10.1111/1755-0998.12323
– ident: e_1_2_8_53_1
  doi: 10.1101/gr.079509.108
– ident: e_1_2_8_14_1
  doi: 10.1016/j.livsci.2012.07.019
– ident: e_1_2_8_50_1
  doi: 10.1046/j.1365-294X.2004.02008.x
– ident: e_1_2_8_36_1
  doi: 10.1098/rstb.2003.1437
– ident: e_1_2_8_24_1
  doi: 10.1371/journal.pone.0036536
– ident: e_1_2_8_15_1
– ident: e_1_2_8_62_1
  doi: 10.1534/genetics.112.149096
– ident: e_1_2_8_67_1
  doi: 10.1002/ece3.1541
– ident: e_1_2_8_16_1
  doi: 10.1093/oso/9780198783398.001.0001
– ident: e_1_2_8_39_1
  doi: 10.1093/bioinformatics/btq559
– ident: e_1_2_8_46_1
  doi: 10.1139/z01-103
– ident: e_1_2_8_52_1
  doi: 10.1186/1471-2164-11-524
– ident: e_1_2_8_72_1
  doi: 10.1046/j.1365-294X.2001.01288.x
– ident: e_1_2_8_45_1
  doi: 10.1111/j.1755-0998.2010.02918.x
– ident: e_1_2_8_71_1
  doi: 10.1016/j.livsci.2014.04.020
– ident: e_1_2_8_74_1
  doi: 10.1371/journal.pone.0042649
– ident: e_1_2_8_75_1
  doi: 10.2307/1377561
– ident: e_1_2_8_23_1
  doi: 10.1371/journal.pone.0045170
– ident: e_1_2_8_43_1
  doi: 10.1111/1755-0998.12017
– ident: e_1_2_8_65_1
– ident: e_1_2_8_9_1
  doi: 10.2193/2006-002
– ident: e_1_2_8_33_1
  doi: 10.1371/journal.pone.0004668
– ident: e_1_2_8_28_1
  doi: 10.1038/nrg2611
– ident: e_1_2_8_6_1
  doi: 10.1016/S0169-5347(03)00225-8
– ident: e_1_2_8_56_1
  doi: 10.1111/mec.12529
– ident: e_1_2_8_27_1
  doi: 10.1098/rspb.2006.3477
– ident: e_1_2_8_3_1
  doi: 10.1093/molbev/msq148
– ident: e_1_2_8_4_1
  doi: 10.1128/JCM.01931-07
– ident: e_1_2_8_47_1
  doi: 10.1111/j.1365-294X.2008.03675.x
– ident: e_1_2_8_60_1
  doi: 10.1371/journal.pone.0078314
– ident: e_1_2_8_21_1
  doi: 10.1111/j.1523-1739.2010.01549.x
– ident: e_1_2_8_54_1
  doi: 10.1086/519795
– ident: e_1_2_8_31_1
  doi: 10.1038/sj.hdy.6800548
– ident: e_1_2_8_73_1
  doi: 10.1111/j.1755-0998.2010.02885.x
– ident: e_1_2_8_2_1
  doi: 10.1111/j.1365-294X.2005.02656.x
– ident: e_1_2_8_34_1
  doi: 10.1016/j.tree.2006.08.001
– volume-title: R: A language and environment for statistical computing
  year: 2017
  ident: e_1_2_8_55_1
  contributor:
    fullname: R Core Team
– ident: e_1_2_8_66_1
  doi: 10.1046/j.1365-294X.1999.00637.x
– ident: e_1_2_8_17_1
  doi: 10.1371/journal.pone.0079667
– ident: e_1_2_8_59_1
  doi: 10.1111/j.1365-294X.2010.04554.x
– ident: e_1_2_8_63_1
  doi: 10.1073/pnas.0704580104
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1518046113
– ident: e_1_2_8_64_1
  doi: 10.1038/sj.hdy.6800485
– ident: e_1_2_8_22_1
  doi: 10.1186/1471-2148-13-125
– ident: e_1_2_8_32_1
  doi: 10.1111/age.12197
– ident: e_1_2_8_48_1
  doi: 10.1111/1755-0998.12654
– ident: e_1_2_8_70_1
  doi: 10.1023/A:1019921131171
– start-page: 1
  year: 2018
  ident: e_1_2_8_69_1
  article-title: Double‐digest RAD sequencing outperforms microsatellite loci at assigning paternity and estimating relatedness: A proof of concept in a highly promiscuous bird
  publication-title: Molecular Ecology Resources
  contributor:
    fullname: Thrasher D. J.
– ident: e_1_2_8_5_1
  doi: 10.3201/eid1803.111554
– ident: e_1_2_8_20_1
  doi: 10.1186/1297-9686-45-38
– ident: e_1_2_8_35_1
  doi: 10.1016/j.tree.2009.06.014
SSID ssj0060974
Score 2.3967116
Snippet Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and precision of...
Abstract Inbreeding and relationship metrics among and within populations are useful measures for genetic management of wild populations, but accuracy and...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 1077
SubjectTerms Data processing
Empirical analysis
Estimates
Filtration
Genomics
Genotypes
Inbreeding
kinship
Ovis canadensis
Ovis canadensis canadensis
Population differentiation
Population genetics
Populations
sampling
Sheep
Simulation
Single-nucleotide polymorphism
Title Evaluating sample size to estimate genetic management metrics in the genomics era
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2F1755-0998.12898
https://www.ncbi.nlm.nih.gov/pubmed/29856123
https://www.proquest.com/docview/2088628289
https://search.proquest.com/docview/2049554443
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA8yEHzx-2M6JYIPvnR0TZqmjyIbQ9hAcbC3kqSpDFkna_fg_nrv-oWbDyK-FXKhaS6X-1169wshdyyWwgZSOZ4SicMDnTgaYLMDsYSwvuwJE2Nx8mgshhP-NPXrbEKshSn5IZoDN7SMYr9GA1c6-2bk4Pd8B_CN7MIWG2K5L9LpISx6aQikhBsWPMyVrJxW5D6Yy7PVf9Mv_QCbm9i1cD6DA6LrYZc5J-_dVa67Zr3F6Piv7zok-xU0pQ_lWjoiOzY9Jrv9gtb684Q89yti8PSNZgpJhWk2W1uaLygydQDytRRWIxZF0nmTVEPneGWXyegspYA1UQLroDNql-qUTAb918ehU13I4BjOINoMXWVdFkNYy3gc6p5hvlBMGW0U8r4D9rKyx40ATBgYT7vaNRJ8gRcERkgQZGeklS5Se0FonHBfJwFXIQAMliRS9yxgMesFfmwBE7bJfa2O6KPk3YjqeAVnKMIZiooZapNOra6oMsAs8mD3FEU42Sa3TTOYDv4PUaldrFAGokOfc87a5LxUc_MuL5R4byi0lMr6bRDRqD8uHi7_2uGK7AEIk2XeWoe08uXKXgPQyfVNsZa_ALdb8HE
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RT9swED5tnabxwmAbrKwMT9rDXlKlseM4jwiKCqOVQK3Ut8h2HIQQ6dS0D-uv312SRqU8oIm3SL4kjs_n-865-wzwk6dKukhpL9Ay80RkMs8gbPYwlpAuVD1pUypOHo7kYCKupuF0oxam4odoNtzIMsr1mgycNqQ3rBwdX-ghwFFdXGNj9RbeodGHZJzntw2FlPTjkom5FlbTmt6Hsnm2HvDUMz2Dm0_Ra-l-Lj6CXXe8yjp56C4XpmtXW5yOr_uyPdit0Sk7rabTPrxx-Sd43y-Zrf9-hpt-zQ2e37FCE68wK-5Xji1mjMg6EPw6hhOS6iLZY5NXwx7p1C5bsPucIdwkCSqFLpib6y8wueiPzwZefSaDZwXHgDP2tfN5ipEtF2lsepaHUnNtjdVE_Y7wy6mesBJhYWQD4xvfKnQHQRRZqVCQH0Arn-XuK7A0E6HJIqFjxBg8y5TpOYRjLojC1CEsbMOvtT6SPxX1RrIOWWiEEhqhpByhNnTW-kpqGyySABdQWUaUbfjRNKP10C8RnbvZkmQwQAyFELwNh5Wem3cFsaKjQ7Gl0tZLnUiG_VF5cfS_N5zAh8F4eJ1cX45-f4MdxGSqSmPrQGsxX7pjxD0L872c2P8A4tL0kQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED5B0RAvDNiAQgEj8bCXVGnsOM4joq0GWyuYqNS3yHacaUJNq6Z9oH89d_mltXuYJt4i-ZI4Pp_vO-fuM8AXnirpIqW9QMvME5HJPIOw2cNYQrpQDaRNqTh5MpXnM_FjHjbZhFQLU_FDtBtuZBnlek0GvkqzW0aOfi_0EN-oPi6xsXoMT4TkAcVfw6uWQUr6cUnEXAurec3uQ8k8Bw_Yd0x30OY-eC29z_gYTNPvKunkT3-7MX27O6B0_K8PewHPa2zKvlaT6SU8cvkrOBqVvNZ_T-DXqGYGz69ZoYlVmBU3O8c2S0ZUHQh9HcPpSFWRbNFm1bAFndllC3aTMwSbJEGF0AVza30Ks_Ho97dzrz6RwbOCY7gZ-9r5PMW4los0NgPLQ6m5tsZqIn5H8OXUQFiJoDCygfGNbxU6gyCKrFQoyF9DJ1_m7i2wNBOhySKhY0QYPMuUGTgEYy6IwtQhKOzCWaOOZFURbyRNwEIjlNAIJeUIdaHXqCupLbBIAlw-ZRlPduFz24y2Qz9EdO6WW5LB8DAUQvAuvKnU3L4riBUdHIotlbLu60QyGU3Li3cPveETPP05HCeX36cX7-EZAjJV5bD1oLNZb90HBD0b87Gc1v8A_-vzQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+sample+size+to+estimate+genetic+management+metrics+in+the+genomics+era&rft.jtitle=Molecular+ecology+resources&rft.au=Flesch%2C+Elizabeth+P.&rft.au=Rotella%2C+Jay+J.&rft.au=Thomson%2C+Jennifer+M.&rft.au=Graves%2C+Tabitha+A.&rft.date=2018-09-01&rft.issn=1755-098X&rft.eissn=1755-0998&rft.volume=18&rft.issue=5&rft.spage=1077&rft.epage=1091&rft_id=info:doi/10.1111%2F1755-0998.12898&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_1755_0998_12898
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-098X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-098X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-098X&client=summon