Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2)

We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible can...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of medical genetics. Part B, Neuropsychiatric genetics Vol. 135B; no. 1; pp. 42 - 46
Main Authors Coon, Hilary, Dunn, Diane, Lainhart, Janet, Miller, Judith, Hamil, Cindy, Battaglia, Agatino, Tancredi, Raffaella, Leppert, Mark F., Weiss, Robert, McMahon, William
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 05.05.2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate‐limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model‐free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T‐G variant in intron 1, and P = 0.02 for a A‐T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. © 2005 Wiley‐Liss, Inc.
AbstractList We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene ( TPH2 ). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate‐limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene ( TPH1 ) and the new isoform ( TPH2 ) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model‐free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects ( P  = 0.01 for a T‐G variant in intron 1, and P  = 0.02 for a A‐T variant in intron 4). A haplotype including these variants showed slightly increased significance ( P  = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors ( P  = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. © 2005 Wiley‐Liss, Inc.
We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate-limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model-free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T-G variant in intron 1, and P = 0.02 for a A-T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result.We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate-limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model-free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T-G variant in intron 1, and P = 0.02 for a A-T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result.
We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate-limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model-free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T-G variant in intron 1, and P = 0.02 for a A-T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result.
We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate‐limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model‐free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T‐G variant in intron 1, and P = 0.02 for a A‐T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. © 2005 Wiley‐Liss, Inc.
Author Hamil, Cindy
Tancredi, Raffaella
McMahon, William
Miller, Judith
Coon, Hilary
Lainhart, Janet
Weiss, Robert
Dunn, Diane
Leppert, Mark F.
Battaglia, Agatino
Author_xml – sequence: 1
  givenname: Hilary
  surname: Coon
  fullname: Coon, Hilary
  email: hilary@bach.med.utah.edu
  organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah
– sequence: 2
  givenname: Diane
  surname: Dunn
  fullname: Dunn, Diane
  organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah
– sequence: 3
  givenname: Janet
  surname: Lainhart
  fullname: Lainhart, Janet
  organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah
– sequence: 4
  givenname: Judith
  surname: Miller
  fullname: Miller, Judith
  organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah
– sequence: 5
  givenname: Cindy
  surname: Hamil
  fullname: Hamil, Cindy
  organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah
– sequence: 6
  givenname: Agatino
  surname: Battaglia
  fullname: Battaglia, Agatino
  organization: Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry, Calambrone, Pisa, Italy
– sequence: 7
  givenname: Raffaella
  surname: Tancredi
  fullname: Tancredi, Raffaella
  organization: Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry, Calambrone, Pisa, Italy
– sequence: 8
  givenname: Mark F.
  surname: Leppert
  fullname: Leppert, Mark F.
  organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah
– sequence: 9
  givenname: Robert
  surname: Weiss
  fullname: Weiss, Robert
  organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah
– sequence: 10
  givenname: William
  surname: McMahon
  fullname: McMahon, William
  organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15768392$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9PFDEYQBsDEVi9cSY9GU2ctZ1O29kjoi4QUA6o3Jq28w3bdaYztl3Z-e8dWH4kJHpq07z3Nd_bQ1u-84DQPiVTSkj-QS_b66mZMkJF-QLtUs7zrCj51dbjvaA7aC_GJSGMcClfoh3KpSjZLN9Fy4suRmcawDrGzjqdXOexgXQD4LFeJRdbrH2F_-jgtE8RO4_TArAJ2vkM1n2AGKHCKQx96vqF9ngxVKFbD42OgK_BA357eXGcv3uFtmvdRHh9f07Q9y-fL4-Os7Nv85Ojw7PMFkyWmeBS87zWlhV5LRkByqnh-UxUurDE0GIGtCwls5RSYmQhamvY-ExrIqwQhk3Qm83cPnS_VxCTal200DTaQ7eKSshxeTFOmKCDe3BlWqhUH1yrw6Ae6ozA-w1gw1gpQP2EEHUbX93GV0bdxR_x_BluXboLmsZYzb8ktpFuXAPDfz9Qh6fn8wcr21guJlg_Wjr8GtdjkqufX-eKffxUzn4wqc7ZX-KVqEk
CitedBy_id crossref_primary_10_1016_j_biopsych_2005_12_014
crossref_primary_10_1007_s10803_007_0536_4
crossref_primary_10_1016_j_psychres_2011_09_001
crossref_primary_10_1111_j_1471_4159_2006_04290_x
crossref_primary_10_1016_j_gene_2008_12_019
crossref_primary_10_1097_01_ypg_0000176528_30362_34
crossref_primary_10_1002_aur_108
crossref_primary_10_1038_s41386_023_01771_5
crossref_primary_10_1111_j_1420_9101_2006_01091_x
crossref_primary_10_1007_s00737_009_0088_z
crossref_primary_10_1002_aur_2
crossref_primary_10_1007_s10803_010_0961_7
crossref_primary_10_1016_j_brainresbull_2012_05_017
crossref_primary_10_1186_s13229_015_0003_6
crossref_primary_10_1038_sj_mp_4001923
crossref_primary_10_1371_journal_pone_0248454
crossref_primary_10_3390_brainsci13060958
crossref_primary_10_1038_srep01042
crossref_primary_10_1162_jocn_2007_19_3_401
crossref_primary_10_1016_j_biopsych_2007_01_015
crossref_primary_10_1016_j_bbr_2018_06_019
crossref_primary_10_1016_j_jpsychires_2020_05_003
crossref_primary_10_1016_j_ymgme_2010_11_003
crossref_primary_10_5812_gct_86109
crossref_primary_10_1002_ajmg_b_30356
crossref_primary_10_1016_j_pnpbp_2013_04_015
crossref_primary_10_1017_S1092852915000371
crossref_primary_10_1007_s00018_005_5417_4
crossref_primary_10_1186_s13229_020_00347_0
crossref_primary_10_1073_pnas_1301213110
crossref_primary_10_1186_1471_2350_8_11
crossref_primary_10_1016_j_neubiorev_2018_05_018
crossref_primary_10_1016_j_brainres_2008_11_007
crossref_primary_10_1038_sj_mp_4001870
crossref_primary_10_1016_j_neuroscience_2014_02_021
crossref_primary_10_1186_s12868_021_00662_z
crossref_primary_10_1371_journal_pone_0003301
crossref_primary_10_1371_journal_pone_0048975
crossref_primary_10_1038_sj_mp_4002041
crossref_primary_10_1016_j_brainres_2006_12_095
crossref_primary_10_1016_j_neuropharm_2014_10_024
crossref_primary_10_1186_1742_4682_2_27
crossref_primary_10_4137_IJTR_S929
crossref_primary_10_1016_j_jpsychires_2010_03_014
crossref_primary_10_1179_096979505799103704
crossref_primary_10_1016_j_neures_2012_05_012
crossref_primary_10_1002_jnr_21928
crossref_primary_10_1007_s10882_018_9590_4
crossref_primary_10_1016_j_phrs_2018_07_010
crossref_primary_10_1111_j_1750_3639_2007_00102_x
crossref_primary_10_1002_ajmg_b_31146
crossref_primary_10_1007_s00702_009_0236_7
crossref_primary_10_1016_j_brainres_2010_03_057
crossref_primary_10_1096_fj_13_246546
crossref_primary_10_1007_s00439_007_0443_y
crossref_primary_10_1016_j_neulet_2006_09_060
crossref_primary_10_3389_fgene_2020_00308
crossref_primary_10_1002_ajmg_b_30655
crossref_primary_10_1016_j_neuroscience_2008_05_050
crossref_primary_10_2302_kjm_57_15
crossref_primary_10_1111_j_1469_7610_2011_02365_x
crossref_primary_10_1016_j_neubiorev_2015_05_013
crossref_primary_10_1523_JNEUROSCI_4762_12_2013
crossref_primary_10_1007_s10519_007_9187_7
Cites_doi 10.1101/gr.142200
10.1159/000022901
10.1017/S0033291799008508
10.1023/A:1005451304303
10.1001/jama.285.24.3093
10.1016/0888-7543(90)90491-C
10.1111/j.1469-7610.1977.tb00443.x
10.1097/00004583-200212000-00025
10.1017/S1092852900004880
10.1016/j.euroneuro.2003.10.002
10.1016/S0893-133X(99)00131-1
10.1055/s-2000-7588
10.1016/0165-1781(94)90117-1
10.1038/313101a0
10.1038/sj.mp.4001525
10.1111/j.1469-7610.1989.tb00254.x
10.1038/sj.mp.4001531
10.1023/A:1026096203946
10.1111/j.1469-7610.1987.tb00677.x
10.1023/A:1005592401947
10.1086/321272
10.1016/S0002-7138(09)60446-5
10.1001/archpsyc.1996.01830110029004
10.1007/BF02212938
10.1002/1096-8628(20010108)105:1<36::AID-AJMG1053>3.0.CO;2-4
10.1126/science.1097540
10.1007/BF02216055
10.1097/00008480-199608000-00008
10.1017/S0033291700028099
10.1016/S0014-2999(00)00814-1
10.1002/0470869380.ch5
10.1176/jnp.2.3.268
10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9
10.1016/S0140-6736(03)14236-5
10.1016/0753-3322(96)82645-X
10.1126/science.1078197
10.1093/bioinformatics/16.11.1046
ContentType Journal Article
Copyright Copyright © 2005 Wiley‐Liss, Inc.
Copyright 2005 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2005 Wiley‐Liss, Inc.
– notice: Copyright 2005 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/ajmg.b.30168
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1552-485X
EndPage 46
ExternalDocumentID 15768392
10_1002_ajmg_b_30168
AJMG30168
ark_67375_WNG_3BD89V37_M
Genre article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S
Journal Article
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: M01-RR00064
– fundername: NICHD NIH HHS
  grantid: 5 U19 HD035476
GroupedDBID .55
.GA
.Y3
05W
0R~
10A
1L6
1OC
23M
31~
33P
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
53G
5GY
5VS
7PT
8-1
8-4
8-5
8UM
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACPOU
ACPRK
ACXBN
ACXQS
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
BDRZF
BFHJK
BRXPI
BSCLL
BY8
CS3
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
IX1
KQQ
LATKE
LAW
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2W
P4D
QB0
QRW
ROL
RWI
SUPJJ
UB1
V2E
W99
WIH
WJL
WQJ
WRC
WXSBR
X7M
XG1
XV2
AAHQN
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c4378-657a52fac342f730e151b5296da4c0b149e18873c1110b746fcb3b141f06c66b3
IEDL.DBID DR2
ISSN 1552-4841
IngestDate Thu Jul 10 18:38:24 EDT 2025
Wed Feb 19 01:39:52 EST 2025
Tue Jul 01 04:31:20 EDT 2025
Thu Apr 24 23:02:45 EDT 2025
Wed Jan 22 16:26:44 EST 2025
Wed Oct 30 09:51:41 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2005 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4378-657a52fac342f730e151b5296da4c0b149e18873c1110b746fcb3b141f06c66b3
Notes ArticleID:AJMG30168
Supporting Information file jwsAJMBv135.1.42.pdf
istex:1DE518F5E244A0D3ECB282026530BD098C904195
ark:/67375/WNG-3BD89V37-M
This article contains supplementary material, which may be viewed at the AJMG website at: http://www.interscience.wiley.com/jpages/1552-4841/suppmat/index.html
http://www.interscience.wiley.com/jpages/1552‐4841/suppmat/index.html
This article contains supplementary material, which may be viewed at the AJMG website at
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 15768392
PQID 67768687
PQPubID 23479
PageCount 5
ParticipantIDs proquest_miscellaneous_67768687
pubmed_primary_15768392
crossref_primary_10_1002_ajmg_b_30168
crossref_citationtrail_10_1002_ajmg_b_30168
wiley_primary_10_1002_ajmg_b_30168_AJMG30168
istex_primary_ark_67375_WNG_3BD89V37_M
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 5 May 2005
PublicationDateYYYYMMDD 2005-05-05
PublicationDate_xml – month: 05
  year: 2005
  text: 5 May 2005
  day: 05
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle American journal of medical genetics. Part B, Neuropsychiatric genetics
PublicationTitleAlternate Am. J. Med. Genet
PublicationYear 2005
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Dubchak I, Brudno M, Loots GG, Mayor C, Pachter L, Rubin EM, Frazer KA. 2000. Active conservation of noncoding sequences revealed by 3-way species comparisons. Genome Res 10: 1304.
Leventhal BL, Cook EH Jr, Morford M, Ravitz A, Freedman DX. 1990. Relationships of whole blood serotonin and plasma norepinephrine within families. J Autism Dev Disord 20: 499-511.
Lord C, Leventhal BL, Cook EH Jr. 2001. Quantifying the phenotype in autism spectrum disorders Am J Med Genet 105: 36-38.
De Luca V, Mueller DJ, Tharmalingam S, King N, Kennedy JL. 2004. Analysis of the novel TPH2 gene in bipolar disorder and suicidality. Mol Psychiatry Adv 9: 896-897.
Cook EH Jr, Leventhal BL, Heller W, Metz J, Wainwright M, Freedman DX. 1990. Autistic children and their first-degree relatives: Relationships between serotonin and norepinephrine levels and intelligence. J Neuropsychiatry Clin Neurosci 2: 268-274.
McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH. 1996. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53: 993-1000.
Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107.
Arnold LE, Aman MG, Martin A, Collier-Crespin A, Vitiello B, Tierney E, Asarnow R, Bell-Bradshaw F, Freeman BJ, Gates-Ulanet P, Klin A, McCracken JT, McDougle CJ, McGough JJ, Posey DJ, Schahill L, Swiezy NB, Ritz L, Volkmar F. 2000. Assessment in multisite randomized clinical trials of patients with autistic disorder: The Autism RUPP Network. Research Units on Pediatric Psychopharmacology. J Autism Dev Disord 30: 99-111.
Szatmari P, Jones MB, Zwaigenbaum L, MacLean JE. 1998. Genetics of autism: Overview and new directions. J Autism Dev Disord 28: 351-368.
Zhao JH, Curtis D, Sham PC. 2000. Model-free analysis and permutation test for allelic associations. Hum Hered 50: 133-139.
Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT. 1999. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287-295.
Cook EH Jr, Charak DA, Arida J, Spohn JA, Roizen NJ, Leventhal BL. 1994. Depressive and obsessive-compulsive symptoms in hyperserotonemic parents of children with autistic disorder. Psychiatry Res 52: 25-33.
Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I. 2000. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046.
Anderson GM. 2002. Genetics of childhood disorders: XLV. Autism, part 4: Serotonin and autism. J Am Acad Child Adolescent Psychiatry 41: 1513-1516.
Curtis D, Sham PC. 1995. Model-free linkage analysis using likelihoods. Am J Hum Genet 57: 703-716.
Folstein SE, Dowd M, Mankowski R, Tadevosan O. 2003. How might genetic mechanisms operate in autism? Novartis Found Symp 251: 70-80.
White R, Leppert M, Bishop DT, Barker D, Berkowitz J, Brown C, Callahan P, Holm T, Jerominski L. 1985. Construction of linkage maps with DNA markers for human chromosomes. Nature 313: 101-105.
Zhang X, Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG. 2004. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305: 217.
D'Eufemia P, Finocchiaro R, Celli M, Viozzi L, Monteleone D, Giardini O. 1995. Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism. Biomed Pharmacother 49: 288-292.
Szatmari P. 1999. Heterogeneity and the genetics of autism. J Psychiatry Neurosci 24: 159-165.
Zill P, Baghai TC, Zwanger P, Schule C, Eser D, Rupprecht R, Moller H-J, Bondy B, Ackenheil M. 2004a. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry Adv 9: 1030-1036.
Potenza MN, McDougle CJ. 1997. The role of serotonin in autism-spectrum disorders. CNS Spectrums 2: 25-42.
Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohman M. 1989. A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. J Child Psychol Psychiatry 30: 405-416.
Chakrabarti S, Fombonne E. 2001. Pervasive developmental disorders in preschool children. JAMA 285: 3093-3099.
Fombonne E. 1999. The epidemiology of autism: A review. Psychol Med 29: 767-786.
Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. 2000. The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30: 205-223.
Veenstra-VanderWeele J, Anderson GM, Cook EH Jr. 2000. Pharmacogenetics and the serotonin system: Initial studies and future directions. Eur J Pharmacol 410: 165-181.
Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH, Rutter M. 1995. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism. Am J Hum Genet 57: 717-726.
Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M. 1995. Autism as a strongly genetic disorder: Evidence from a British twin study. Psychol Med 25: 63-77.
Cook EH, Leventhal BL. 1996. The serotonin system in autism. Curr Opin Pediatr 8: 348-354.
Hollander E, Phillips AT, Yeh CC. 2003. Targeted treatments for symptom domains in child and adolescent autism. Lancet 362: 732-734.
Abramson RK, Wright HH, Carpenter R, Brennan W, Lumpuy O, Cole E, Young SR. 1989. Elevated blood serotonin in autistic probands and their first-degree relatives. J Autism Dev Disord 19: 397-407.
Pritchard JK. 2001. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69: 124-137.
Walther DJ, Peter J-U, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299: 76.
Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG. 1987. Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28: 885-900.
Dausset J, Cann H, Cohen D, Lathrop M, Lalouel J-M, White R. 1990. Program destricption-Centre d'Etude du Polymorphisme Humain (CEPH)-Collaborative mapping of the human genome. Genomics 6: 575-577.
Zill P, Buettner A, Eisenmenger W, Bondy B, Ackenheil M. 2004b. Regional mRNA expression of a second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains. Eur Neuropsychoparmacol 14: 282-284.
Croonenberghs J, Delmeire L, Verkerk R, Lin AH, Meskal A, Neels H, Van der Planken M, Scharpe S, Deboutte D, Pison G, Maes M. 2000. Peripheral makers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharm 22: 275-283.
SAS User's Guide. 1985. Statistics, Cary, NC: SAS Institute, Inc.
Folstein SE, Rutter M. 1977. Infantile autism: A genetic study of 21 twin pairs. J Child Psychol Psychiatry 18: 297-321.
Kuperman S, Beeghly JH, Burns TL, Tsai LY. 1985. Serotonin relationships of autistic probands and their first-degree relatives. J Am Acad Child Psychiatry 24: 186-190.
Marazziti D, Muratori F, Cesari A, Masala I, Baroni S, Giannaccini G, Dell'Osso L, Cosenza A, Pfanner P, Cassano GB. 2000. Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry 33: 165-168.
1998; 28
2001; 285
2000; 410
1999; 29
1995; 57
2000; 22
2004a; 9
2004; 9
1999; 24
2000; 50
1999; 45
1994
1997; 2
2004; 305
2001; 69
2003; 299
1996; 53
1985; 24
2003; 251
2001; 105
1990; 2
1989; 30
1990; 20
2000; 16
2002; 41
1995; 49
1995; 25
2000; 10
1977; 18
2000; 33
2000; 30
1993; 53
1985
1985; 313
2004b; 14
1989; 19
1987; 28
1996; 8
1994; 52
1990; 6
2003; 362
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
Pickles A (e_1_2_6_30_1) 1995; 57
e_1_2_6_19_1
Farkas LG (e_1_2_6_18_1) 1994
e_1_2_6_36_1
Xie X (e_1_2_6_40_1) 1993; 53
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_17_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
Curtis D (e_1_2_6_13_1) 1995; 57
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
Szatmari P (e_1_2_6_35_1) 1999; 24
e_1_2_6_9_1
e_1_2_6_8_1
SAS User's Guide (e_1_2_6_33_1) 1985
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Folstein SE, Dowd M, Mankowski R, Tadevosan O. 2003. How might genetic mechanisms operate in autism? Novartis Found Symp 251: 70-80.
– reference: Cook EH Jr, Leventhal BL, Heller W, Metz J, Wainwright M, Freedman DX. 1990. Autistic children and their first-degree relatives: Relationships between serotonin and norepinephrine levels and intelligence. J Neuropsychiatry Clin Neurosci 2: 268-274.
– reference: Dausset J, Cann H, Cohen D, Lathrop M, Lalouel J-M, White R. 1990. Program destricption-Centre d'Etude du Polymorphisme Humain (CEPH)-Collaborative mapping of the human genome. Genomics 6: 575-577.
– reference: Szatmari P. 1999. Heterogeneity and the genetics of autism. J Psychiatry Neurosci 24: 159-165.
– reference: McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH. 1996. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53: 993-1000.
– reference: White R, Leppert M, Bishop DT, Barker D, Berkowitz J, Brown C, Callahan P, Holm T, Jerominski L. 1985. Construction of linkage maps with DNA markers for human chromosomes. Nature 313: 101-105.
– reference: Kuperman S, Beeghly JH, Burns TL, Tsai LY. 1985. Serotonin relationships of autistic probands and their first-degree relatives. J Am Acad Child Psychiatry 24: 186-190.
– reference: Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohman M. 1989. A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. J Child Psychol Psychiatry 30: 405-416.
– reference: Szatmari P, Jones MB, Zwaigenbaum L, MacLean JE. 1998. Genetics of autism: Overview and new directions. J Autism Dev Disord 28: 351-368.
– reference: Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107.
– reference: Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG. 1987. Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28: 885-900.
– reference: Cook EH, Leventhal BL. 1996. The serotonin system in autism. Curr Opin Pediatr 8: 348-354.
– reference: Fombonne E. 1999. The epidemiology of autism: A review. Psychol Med 29: 767-786.
– reference: Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH, Rutter M. 1995. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism. Am J Hum Genet 57: 717-726.
– reference: Folstein SE, Rutter M. 1977. Infantile autism: A genetic study of 21 twin pairs. J Child Psychol Psychiatry 18: 297-321.
– reference: Arnold LE, Aman MG, Martin A, Collier-Crespin A, Vitiello B, Tierney E, Asarnow R, Bell-Bradshaw F, Freeman BJ, Gates-Ulanet P, Klin A, McCracken JT, McDougle CJ, McGough JJ, Posey DJ, Schahill L, Swiezy NB, Ritz L, Volkmar F. 2000. Assessment in multisite randomized clinical trials of patients with autistic disorder: The Autism RUPP Network. Research Units on Pediatric Psychopharmacology. J Autism Dev Disord 30: 99-111.
– reference: Hollander E, Phillips AT, Yeh CC. 2003. Targeted treatments for symptom domains in child and adolescent autism. Lancet 362: 732-734.
– reference: SAS User's Guide. 1985. Statistics, Cary, NC: SAS Institute, Inc.
– reference: Zill P, Buettner A, Eisenmenger W, Bondy B, Ackenheil M. 2004b. Regional mRNA expression of a second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains. Eur Neuropsychoparmacol 14: 282-284.
– reference: De Luca V, Mueller DJ, Tharmalingam S, King N, Kennedy JL. 2004. Analysis of the novel TPH2 gene in bipolar disorder and suicidality. Mol Psychiatry Adv 9: 896-897.
– reference: Leventhal BL, Cook EH Jr, Morford M, Ravitz A, Freedman DX. 1990. Relationships of whole blood serotonin and plasma norepinephrine within families. J Autism Dev Disord 20: 499-511.
– reference: Chakrabarti S, Fombonne E. 2001. Pervasive developmental disorders in preschool children. JAMA 285: 3093-3099.
– reference: Anderson GM. 2002. Genetics of childhood disorders: XLV. Autism, part 4: Serotonin and autism. J Am Acad Child Adolescent Psychiatry 41: 1513-1516.
– reference: Croonenberghs J, Delmeire L, Verkerk R, Lin AH, Meskal A, Neels H, Van der Planken M, Scharpe S, Deboutte D, Pison G, Maes M. 2000. Peripheral makers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharm 22: 275-283.
– reference: Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I. 2000. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046.
– reference: Curtis D, Sham PC. 1995. Model-free linkage analysis using likelihoods. Am J Hum Genet 57: 703-716.
– reference: Zhao JH, Curtis D, Sham PC. 2000. Model-free analysis and permutation test for allelic associations. Hum Hered 50: 133-139.
– reference: Abramson RK, Wright HH, Carpenter R, Brennan W, Lumpuy O, Cole E, Young SR. 1989. Elevated blood serotonin in autistic probands and their first-degree relatives. J Autism Dev Disord 19: 397-407.
– reference: Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M. 1995. Autism as a strongly genetic disorder: Evidence from a British twin study. Psychol Med 25: 63-77.
– reference: Lord C, Leventhal BL, Cook EH Jr. 2001. Quantifying the phenotype in autism spectrum disorders Am J Med Genet 105: 36-38.
– reference: Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. 2000. The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30: 205-223.
– reference: D'Eufemia P, Finocchiaro R, Celli M, Viozzi L, Monteleone D, Giardini O. 1995. Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism. Biomed Pharmacother 49: 288-292.
– reference: Walther DJ, Peter J-U, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299: 76.
– reference: Dubchak I, Brudno M, Loots GG, Mayor C, Pachter L, Rubin EM, Frazer KA. 2000. Active conservation of noncoding sequences revealed by 3-way species comparisons. Genome Res 10: 1304.
– reference: Zhang X, Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG. 2004. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305: 217.
– reference: Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT. 1999. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287-295.
– reference: Cook EH Jr, Charak DA, Arida J, Spohn JA, Roizen NJ, Leventhal BL. 1994. Depressive and obsessive-compulsive symptoms in hyperserotonemic parents of children with autistic disorder. Psychiatry Res 52: 25-33.
– reference: Pritchard JK. 2001. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69: 124-137.
– reference: Marazziti D, Muratori F, Cesari A, Masala I, Baroni S, Giannaccini G, Dell'Osso L, Cosenza A, Pfanner P, Cassano GB. 2000. Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry 33: 165-168.
– reference: Zill P, Baghai TC, Zwanger P, Schule C, Eser D, Rupprecht R, Moller H-J, Bondy B, Ackenheil M. 2004a. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry Adv 9: 1030-1036.
– reference: Potenza MN, McDougle CJ. 1997. The role of serotonin in autism-spectrum disorders. CNS Spectrums 2: 25-42.
– reference: Veenstra-VanderWeele J, Anderson GM, Cook EH Jr. 2000. Pharmacogenetics and the serotonin system: Initial studies and future directions. Eur J Pharmacol 410: 165-181.
– volume: 49
  start-page: 288
  year: 1995
  end-page: 292
  article-title: Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism
  publication-title: Biomed Pharmacother
– year: 1985
– volume: 9
  start-page: 1030
  year: 2004a
  end-page: 1036
  article-title: SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression
  publication-title: Mol Psychiatry Adv
– volume: 24
  start-page: 159
  year: 1999
  end-page: 165
  article-title: Heterogeneity and the genetics of autism
  publication-title: J Psychiatry Neurosci
– volume: 41
  start-page: 1513
  year: 2002
  end-page: 1516
  article-title: Genetics of childhood disorders: XLV. Autism, part 4: Serotonin and autism
  publication-title: J Am Acad Child Adolescent Psychiatry
– volume: 9
  start-page: 896
  year: 2004
  end-page: 897
  article-title: Analysis of the novel gene in bipolar disorder and suicidality
  publication-title: Mol Psychiatry Adv
– volume: 410
  start-page: 165
  year: 2000
  end-page: 181
  article-title: Pharmacogenetics and the serotonin system: Initial studies and future directions
  publication-title: Eur J Pharmacol
– volume: 6
  start-page: 575
  year: 1990
  end-page: 577
  article-title: Program destricption—Centre d'Etude du Polymorphisme Humain (CEPH)—Collaborative mapping of the human genome
  publication-title: Genomics
– volume: 50
  start-page: 133
  year: 2000
  end-page: 139
  article-title: Model‐free analysis and permutation test for allelic associations
  publication-title: Hum Hered
– volume: 33
  start-page: 165
  year: 2000
  end-page: 168
  article-title: Increased density of the platelet serotonin transporter in autism
  publication-title: Pharmacopsychiatry
– volume: 362
  start-page: 732
  year: 2003
  end-page: 734
  article-title: Targeted treatments for symptom domains in child and adolescent autism
  publication-title: Lancet
– volume: 57
  start-page: 717
  year: 1995
  end-page: 726
  article-title: Latent‐class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism
  publication-title: Am J Hum Genet
– volume: 30
  start-page: 405
  year: 1989
  end-page: 416
  article-title: A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden
  publication-title: J Child Psychol Psychiatry
– volume: 30
  start-page: 99
  year: 2000
  end-page: 111
  article-title: Assessment in multisite randomized clinical trials of patients with autistic disorder: The Autism RUPP Network. Research Units on Pediatric Psychopharmacology
  publication-title: J Autism Dev Disord
– volume: 105
  start-page: 36
  year: 2001
  end-page: 38
  article-title: Quantifying the phenotype in autism spectrum disorders
  publication-title: Am J Med Genet
– volume: 305
  start-page: 217
  year: 2004
  article-title: Tryptophan hydroxylase‐2 controls brain serotonin synthesis
  publication-title: Science
– volume: 29
  start-page: 767
  year: 1999
  end-page: 786
  article-title: The epidemiology of autism: A review
  publication-title: Psychol Med
– volume: 53
  start-page: 993
  year: 1996
  end-page: 1000
  article-title: Effects of tryptophan depletion in drug‐free adults with autistic disorder
  publication-title: Arch Gen Psychiatry
– volume: 69
  start-page: 124
  year: 2001
  end-page: 137
  article-title: Are rare variants responsible for susceptibility to complex diseases?
  publication-title: Am J Hum Genet
– volume: 251
  start-page: 70
  year: 2003
  end-page: 80
  article-title: How might genetic mechanisms operate in autism?
  publication-title: Novartis Found Symp
– volume: 45
  start-page: 287
  year: 1999
  end-page: 295
  article-title: Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children
  publication-title: Ann Neurol
– volume: 25
  start-page: 63
  year: 1995
  end-page: 77
  article-title: Autism as a strongly genetic disorder: Evidence from a British twin study
  publication-title: Psychol Med
– volume: 10
  start-page: 1304
  year: 2000
  article-title: Active conservation of noncoding sequences revealed by 3‐way species comparisons
  publication-title: Genome Res
– volume: 299
  start-page: 76
  year: 2003
  article-title: Synthesis of serotonin by a second tryptophan hydroxylase isoform
  publication-title: Science
– volume: 8
  start-page: 348
  year: 1996
  end-page: 354
  article-title: The serotonin system in autism
  publication-title: Curr Opin Pediatr
– volume: 28
  start-page: 885
  year: 1987
  end-page: 900
  article-title: Whole blood serotonin in autistic and normal subjects
  publication-title: J Child Psychol Psychiatry
– volume: 24
  start-page: 186
  year: 1985
  end-page: 190
  article-title: Serotonin relationships of autistic probands and their first‐degree relatives
  publication-title: J Am Acad Child Psychiatry
– year: 1994
– volume: 19
  start-page: 397
  year: 1989
  end-page: 407
  article-title: Elevated blood serotonin in autistic probands and their first‐degree relatives
  publication-title: J Autism Dev Disord
– volume: 16
  start-page: 1046
  year: 2000
  article-title: VISTA: Visualizing global DNA sequence alignments of arbitrary length
  publication-title: Bioinformatics
– volume: 53
  start-page: 1107
  year: 1993
  article-title: Testing linkage disequilibrium between a disease gene and marker loci
  publication-title: Am J Hum Genet
– volume: 18
  start-page: 297
  year: 1977
  end-page: 321
  article-title: Infantile autism: A genetic study of 21 twin pairs
  publication-title: J Child Psychol Psychiatry
– volume: 2
  start-page: 268
  year: 1990
  end-page: 274
  article-title: Autistic children and their first‐degree relatives: Relationships between serotonin and norepinephrine levels and intelligence
  publication-title: J Neuropsychiatry Clin Neurosci
– volume: 52
  start-page: 25
  year: 1994
  end-page: 33
  article-title: Depressive and obsessive‐compulsive symptoms in hyperserotonemic parents of children with autistic disorder
  publication-title: Psychiatry Res
– volume: 20
  start-page: 499
  year: 1990
  end-page: 511
  article-title: Relationships of whole blood serotonin and plasma norepinephrine within families
  publication-title: J Autism Dev Disord
– volume: 30
  start-page: 205
  year: 2000
  end-page: 223
  article-title: The autism diagnostic observation schedule‐generic: A standard measure of social and communication deficits associated with the spectrum of autism
  publication-title: J Autism Dev Disord
– volume: 285
  start-page: 3093
  year: 2001
  end-page: 3099
  article-title: Pervasive developmental disorders in preschool children
  publication-title: JAMA
– volume: 57
  start-page: 703
  year: 1995
  end-page: 716
  article-title: Model‐free linkage analysis using likelihoods
  publication-title: Am J Hum Genet
– volume: 22
  start-page: 275
  year: 2000
  end-page: 283
  article-title: Peripheral makers of serotonergic and noradrenergic function in post‐pubertal, caucasian males with autistic disorder
  publication-title: Neuropsychopharm
– volume: 313
  start-page: 101
  year: 1985
  end-page: 105
  article-title: Construction of linkage maps with DNA markers for human chromosomes
  publication-title: Nature
– volume: 14
  start-page: 282
  year: 2004b
  end-page: 284
  article-title: Regional mRNA expression of a second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains
  publication-title: Eur Neuropsychoparmacol
– volume: 2
  start-page: 25
  year: 1997
  end-page: 42
  article-title: The role of serotonin in autism‐spectrum disorders
  publication-title: CNS Spectrums
– volume: 28
  start-page: 351
  year: 1998
  end-page: 368
  article-title: Genetics of autism: Overview and new directions
  publication-title: J Autism Dev Disord
– ident: e_1_2_6_17_1
  doi: 10.1101/gr.142200
– volume-title: Statistics
  year: 1985
  ident: e_1_2_6_33_1
– volume-title: Anthropometry of the head and face
  year: 1994
  ident: e_1_2_6_18_1
– ident: e_1_2_6_42_1
  doi: 10.1159/000022901
– ident: e_1_2_6_21_1
  doi: 10.1017/S0033291799008508
– ident: e_1_2_6_5_1
  doi: 10.1023/A:1005451304303
– ident: e_1_2_6_7_1
  doi: 10.1001/jama.285.24.3093
– ident: e_1_2_6_15_1
  doi: 10.1016/0888-7543(90)90491-C
– ident: e_1_2_6_19_1
  doi: 10.1111/j.1469-7610.1977.tb00443.x
– ident: e_1_2_6_3_1
  doi: 10.1097/00004583-200212000-00025
– ident: e_1_2_6_31_1
  doi: 10.1017/S1092852900004880
– ident: e_1_2_6_44_1
  doi: 10.1016/j.euroneuro.2003.10.002
– ident: e_1_2_6_12_1
  doi: 10.1016/S0893-133X(99)00131-1
– ident: e_1_2_6_27_1
  doi: 10.1055/s-2000-7588
– ident: e_1_2_6_11_1
  doi: 10.1016/0165-1781(94)90117-1
– ident: e_1_2_6_39_1
  doi: 10.1038/313101a0
– ident: e_1_2_6_43_1
  doi: 10.1038/sj.mp.4001525
– ident: e_1_2_6_34_1
  doi: 10.1111/j.1469-7610.1989.tb00254.x
– ident: e_1_2_6_16_1
  doi: 10.1038/sj.mp.4001531
– ident: e_1_2_6_36_1
  doi: 10.1023/A:1026096203946
– ident: e_1_2_6_4_1
  doi: 10.1111/j.1469-7610.1987.tb00677.x
– ident: e_1_2_6_25_1
  doi: 10.1023/A:1005592401947
– ident: e_1_2_6_32_1
  doi: 10.1086/321272
– ident: e_1_2_6_23_1
  doi: 10.1016/S0002-7138(09)60446-5
– ident: e_1_2_6_29_1
  doi: 10.1001/archpsyc.1996.01830110029004
– ident: e_1_2_6_2_1
  doi: 10.1007/BF02212938
– ident: e_1_2_6_26_1
  doi: 10.1002/1096-8628(20010108)105:1<36::AID-AJMG1053>3.0.CO;2-4
– volume: 57
  start-page: 703
  year: 1995
  ident: e_1_2_6_13_1
  article-title: Model‐free linkage analysis using likelihoods
  publication-title: Am J Hum Genet
– volume: 57
  start-page: 717
  year: 1995
  ident: e_1_2_6_30_1
  article-title: Latent‐class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism
  publication-title: Am J Hum Genet
– ident: e_1_2_6_41_1
  doi: 10.1126/science.1097540
– ident: e_1_2_6_24_1
  doi: 10.1007/BF02216055
– ident: e_1_2_6_9_1
  doi: 10.1097/00008480-199608000-00008
– ident: e_1_2_6_6_1
  doi: 10.1017/S0033291700028099
– ident: e_1_2_6_37_1
  doi: 10.1016/S0014-2999(00)00814-1
– ident: e_1_2_6_20_1
  doi: 10.1002/0470869380.ch5
– volume: 53
  start-page: 1107
  year: 1993
  ident: e_1_2_6_40_1
  article-title: Testing linkage disequilibrium between a disease gene and marker loci
  publication-title: Am J Hum Genet
– ident: e_1_2_6_10_1
  doi: 10.1176/jnp.2.3.268
– ident: e_1_2_6_8_1
  doi: 10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9
– ident: e_1_2_6_22_1
  doi: 10.1016/S0140-6736(03)14236-5
– ident: e_1_2_6_14_1
  doi: 10.1016/0753-3322(96)82645-X
– volume: 24
  start-page: 159
  year: 1999
  ident: e_1_2_6_35_1
  article-title: Heterogeneity and the genetics of autism
  publication-title: J Psychiatry Neurosci
– ident: e_1_2_6_38_1
  doi: 10.1126/science.1078197
– ident: e_1_2_6_28_1
  doi: 10.1093/bioinformatics/16.11.1046
SSID ssj0030577
Score 2.074809
Snippet We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated...
We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene ( TPH2 ). The...
We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 42
SubjectTerms association
autism
Autistic Disorder - enzymology
Autistic Disorder - genetics
Base Sequence
Brain - enzymology
DNA - chemistry
DNA - genetics
DNA Mutational Analysis
Female
Humans
Male
Nuclear Family
Phenotype
Polymorphism, Single Nucleotide
serotonin
tryptophan
Tryptophan Hydroxylase - genetics
Title Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2)
URI https://api.istex.fr/ark:/67375/WNG-3BD89V37-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajmg.b.30168
https://www.ncbi.nlm.nih.gov/pubmed/15768392
https://www.proquest.com/docview/67768687
Volume 135B
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2hIhAvXAqUcPUDVKA222zsOOljubSrSltVVUv7ZtmOXaDbbLUX1OWJT-Ab-RJmnOwurSgSSHmIokni2GecM_HkDMBL6y2SgtzF3gsRC-cE-pwvY-1LX2rheWFoRbe7IzsHYvsoO2o-uNG_MLU-xOyDG3lGmK_JwbUZrs1FQ_WX0-OWaSFAJf3rS-laxIn2ZupRiORQeJFExmJRiHaT946nr_1-8oU30nXq3PM_0c2L7DW8fjbvgJo2vM46OWmNR6Zlv13SdPz_J7sLtxtmyjZqKN2Da65ahBt1rcrJItzsNqvw96G32ydP6jmm54PLmowvphHKw1Omq5J9xUCc8mzY54oh0WSG6lH8_P7DnYf0W1ey0WByRtIGumKfJiU9HLJ5xxDVjr3e3-2kbx7AweaH_XeduKnaEFvBMSSVWa6z1GvLRepx_nDIKQyt7uLQ28RgRObaOLNxi7NsYnIhvTUcD7d9Iq2Uhj-EhapfuUfA8lRqZDildDoRwq5rL7k0ibMcL5DJIoKV6cgp20iaU2WNnqrFmFNFXamMCl0ZwauZ9Vkt5XGF3XIAwcxID04o_S3P1OHOluJv3xfrH3muuhG8mKJEoVPSSouuXH88RGuM4mSRR7BUg2d-Q4rvkJNGsBog8NeWqI3t7lbYe_xv5k_gVpCYDdtTWBgNxu4ZkqeReR5c5Bf-DxXK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BKy4vXMot3OoHQFSQbTZxnPSxUNqlNKsKbaFvxnZsLt1mq-0u6vLEJ_CNfAkzTnaXIkBCSHmIokni2GecM_HkDMAD4wySgsyGznEecms5-pwrQ-VKVyruklzTim7RFZ09vr2f7jd1TulfmFofYvbBjTzDz9fk4PRBenWuGqo-Hb5v6RYiVORnYZGKepN4_sbrmX4UYtmXXiSZsZDnvN1kvuP5qz-ffeqdtEjde_I7wnmav_oX0OZleDdtep13ctAaj3TLfPlF1fE_nu0KXGrIKVuv0XQVzthqCc7V5SonS3C-aBbir0F_d0DO1LdMzceXNUlfTCGajw-Zqkr2GWNxSrVhHyuGXJNpKknx_es3e-IzcG3JRsPJEakbqIp9mJT0dEjoLUNgW_a4t9uJV67D3uaL3vNO2BRuCA1PMCoVaabS2CmT8NjhFGKRVmha4MXRN5HGoMy2cXJLDE60kc64cEYneLjtImGE0MkNWKgGlb0FLIuFQpJTCqsizs2aciIROrImwQukIg_gyXTopGlUzam4Rl_WesyxpK6UWvquDODhzPqoVvP4g90jj4KZkRoeUAZclsq33S2ZPNvI194kmSwCWJ7CRKJf0mKLquxgfIzWGMiJPAvgZo2e-Q0pxENaGsBTj4G_tkSubxdbfu_2v5kvw4VOr9iROy-7r-7ARa8467e7sDAaju095FIjfd_7yw9IRhnm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2CTUx74WPAyDaYHwCBIF0aO076OChdGbSq0Db2ZtmOzce6tOpatO6Jn8Bv5Jdw7aQtQ4AEUh6i6CZx7HOdc-ObcwEeaquRFKQmtJaxkBnD0OdsHkqb21wySzPlVnQ7Xd4-ZPvHyXH1wc39C1PqQ8w_uDnP8PO1c_BhbncWoqHy8-mHmqohQHl2FZYZjxqudEPz3Vw-CqHsKy86lbGQZaxeJb7j-Ts_n33plbTsevf8d3zzMn3175_WDRCzlpdpJye1yVjV9MUvoo7__2g34XpFTcluiaVbcMUUa3CtLFY5XYOVTrUMfxv6vYFzpb4hcjG6pEr5IhKxfHZKZJGTLxiJu0Qb8qkgyDSJcgUpvn_9Zs59_q3JyXg0HTptA1mQj9PcPRzSeUMQ1oY8Oei146d34LD16uBlO6zKNoSaUYxJeZLKJLZSUxZbnEAMkgrllndx7HWkMCQzdZzaqMZpNlIp41YriofrNuKac0XvwlIxKMw9IGnMJVKcnBsZMaYb0nLKVWQ0xQskPAvg2WzkhK40zV1pjb4o1Zhj4bpSKOG7MoBHc-thqeXxB7vHHgRzIzk6cflvaSLed_cEfdHMGkc0FZ0AtmcoEeiVbqlFFmYwOUNrDON4lgawXoJncUMX4CEpDeC5h8BfWyJ29zt7fm_j38y3YaXXbIm3r7tvNmHVy836bQuWxqOJuY9EaqweeG_5AeuxGJU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possible+association+between+autism+and+variants+in+the+brain-expressed+tryptophan+hydroxylase+gene+%28TPH2%29&rft.jtitle=American+journal+of+medical+genetics.+Part+B%2C+Neuropsychiatric+genetics&rft.au=Coon%2C+Hilary&rft.au=Dunn%2C+Diane&rft.au=Lainhart%2C+Janet&rft.au=Miller%2C+Judith&rft.date=2005-05-05&rft.issn=1552-4841&rft.volume=135B&rft.issue=1&rft.spage=42&rft_id=info:doi/10.1002%2Fajmg.b.30168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4841&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4841&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4841&client=summon