Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2)
We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible can...
Saved in:
Published in | American journal of medical genetics. Part B, Neuropsychiatric genetics Vol. 135B; no. 1; pp. 42 - 46 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
05.05.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate‐limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model‐free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T‐G variant in intron 1, and P = 0.02 for a A‐T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. © 2005 Wiley‐Liss, Inc. |
---|---|
AbstractList | We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (
TPH2
). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate‐limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (
TPH1
) and the new isoform (
TPH2
) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model‐free association method and empirical
P
value estimation, two variants showed frequency differences between autism and control subjects (
P
= 0.01 for a T‐G variant in intron 1, and
P
= 0.02 for a A‐T variant in intron 4). A haplotype including these variants showed slightly increased significance (
P
= 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (
P
= 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. © 2005 Wiley‐Liss, Inc. We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate-limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model-free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T-G variant in intron 1, and P = 0.02 for a A-T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result.We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate-limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model-free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T-G variant in intron 1, and P = 0.02 for a A-T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate-limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model-free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T-G variant in intron 1, and P = 0.02 for a A-T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated involvement of the serotonin neurotransmitter system in autism has stimulated interest in many genes in the serotonin pathway as possible candidates for mutations leading to autism susceptibility. Serotonin synthesis is controlled by the rate‐limiting enzyme tryptophan hydroxylase. A mouse study of the original tryptophan hydroxylase gene (TPH1) and the new isoform (TPH2) showed that while TPH1 is primarily expressed peripherally, TPH2 is found exclusively in brain tissue. We searched for human sequence variants in 6,467 nucleotides covering all 11 exons of TPH2, and also 248 nucleotides upstream of the start codon, and 935 nucleotides downstream of the stop codon. Eighteen variants were characterized in 88 subjects with autism studied at our two centers, and 95 unrelated control subjects. Using a model‐free association method and empirical P value estimation, two variants showed frequency differences between autism and control subjects (P = 0.01 for a T‐G variant in intron 1, and P = 0.02 for a A‐T variant in intron 4). A haplotype including these variants showed slightly increased significance (P = 0.005). Further investigation of clinical phenotypes showed a possible association between presence of the variants at these two SNPs and higher scores on the Autism Diagnostic Interview (ADI) domain describing repetitive and stereotyped behaviors (P = 0.007). We conclude that TPH2 may play a modest role in autism susceptibility, perhaps relating specifically to repetitive behaviors, pending replication of this result. © 2005 Wiley‐Liss, Inc. |
Author | Hamil, Cindy Tancredi, Raffaella McMahon, William Miller, Judith Coon, Hilary Lainhart, Janet Weiss, Robert Dunn, Diane Leppert, Mark F. Battaglia, Agatino |
Author_xml | – sequence: 1 givenname: Hilary surname: Coon fullname: Coon, Hilary email: hilary@bach.med.utah.edu organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah – sequence: 2 givenname: Diane surname: Dunn fullname: Dunn, Diane organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah – sequence: 3 givenname: Janet surname: Lainhart fullname: Lainhart, Janet organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah – sequence: 4 givenname: Judith surname: Miller fullname: Miller, Judith organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah – sequence: 5 givenname: Cindy surname: Hamil fullname: Hamil, Cindy organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah – sequence: 6 givenname: Agatino surname: Battaglia fullname: Battaglia, Agatino organization: Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry, Calambrone, Pisa, Italy – sequence: 7 givenname: Raffaella surname: Tancredi fullname: Tancredi, Raffaella organization: Stella Maris Clinical Research Institute for Child and Adolescent Neurology and Psychiatry, Calambrone, Pisa, Italy – sequence: 8 givenname: Mark F. surname: Leppert fullname: Leppert, Mark F. organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah – sequence: 9 givenname: Robert surname: Weiss fullname: Weiss, Robert organization: Department of Human Genetics, University of Utah, Salt Lake City, Utah – sequence: 10 givenname: William surname: McMahon fullname: McMahon, William organization: Neurodevelopmental Genetics Project, Department of Psychiatry, University of Utah, Salt Lake City, Utah |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/15768392$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM9PFDEYQBsDEVi9cSY9GU2ctZ1O29kjoi4QUA6o3Jq28w3bdaYztl3Z-e8dWH4kJHpq07z3Nd_bQ1u-84DQPiVTSkj-QS_b66mZMkJF-QLtUs7zrCj51dbjvaA7aC_GJSGMcClfoh3KpSjZLN9Fy4suRmcawDrGzjqdXOexgXQD4LFeJRdbrH2F_-jgtE8RO4_TArAJ2vkM1n2AGKHCKQx96vqF9ngxVKFbD42OgK_BA357eXGcv3uFtmvdRHh9f07Q9y-fL4-Os7Nv85Ojw7PMFkyWmeBS87zWlhV5LRkByqnh-UxUurDE0GIGtCwls5RSYmQhamvY-ExrIqwQhk3Qm83cPnS_VxCTal200DTaQ7eKSshxeTFOmKCDe3BlWqhUH1yrw6Ae6ozA-w1gw1gpQP2EEHUbX93GV0bdxR_x_BluXboLmsZYzb8ktpFuXAPDfz9Qh6fn8wcr21guJlg_Wjr8GtdjkqufX-eKffxUzn4wqc7ZX-KVqEk |
CitedBy_id | crossref_primary_10_1016_j_biopsych_2005_12_014 crossref_primary_10_1007_s10803_007_0536_4 crossref_primary_10_1016_j_psychres_2011_09_001 crossref_primary_10_1111_j_1471_4159_2006_04290_x crossref_primary_10_1016_j_gene_2008_12_019 crossref_primary_10_1097_01_ypg_0000176528_30362_34 crossref_primary_10_1002_aur_108 crossref_primary_10_1038_s41386_023_01771_5 crossref_primary_10_1111_j_1420_9101_2006_01091_x crossref_primary_10_1007_s00737_009_0088_z crossref_primary_10_1002_aur_2 crossref_primary_10_1007_s10803_010_0961_7 crossref_primary_10_1016_j_brainresbull_2012_05_017 crossref_primary_10_1186_s13229_015_0003_6 crossref_primary_10_1038_sj_mp_4001923 crossref_primary_10_1371_journal_pone_0248454 crossref_primary_10_3390_brainsci13060958 crossref_primary_10_1038_srep01042 crossref_primary_10_1162_jocn_2007_19_3_401 crossref_primary_10_1016_j_biopsych_2007_01_015 crossref_primary_10_1016_j_bbr_2018_06_019 crossref_primary_10_1016_j_jpsychires_2020_05_003 crossref_primary_10_1016_j_ymgme_2010_11_003 crossref_primary_10_5812_gct_86109 crossref_primary_10_1002_ajmg_b_30356 crossref_primary_10_1016_j_pnpbp_2013_04_015 crossref_primary_10_1017_S1092852915000371 crossref_primary_10_1007_s00018_005_5417_4 crossref_primary_10_1186_s13229_020_00347_0 crossref_primary_10_1073_pnas_1301213110 crossref_primary_10_1186_1471_2350_8_11 crossref_primary_10_1016_j_neubiorev_2018_05_018 crossref_primary_10_1016_j_brainres_2008_11_007 crossref_primary_10_1038_sj_mp_4001870 crossref_primary_10_1016_j_neuroscience_2014_02_021 crossref_primary_10_1186_s12868_021_00662_z crossref_primary_10_1371_journal_pone_0003301 crossref_primary_10_1371_journal_pone_0048975 crossref_primary_10_1038_sj_mp_4002041 crossref_primary_10_1016_j_brainres_2006_12_095 crossref_primary_10_1016_j_neuropharm_2014_10_024 crossref_primary_10_1186_1742_4682_2_27 crossref_primary_10_4137_IJTR_S929 crossref_primary_10_1016_j_jpsychires_2010_03_014 crossref_primary_10_1179_096979505799103704 crossref_primary_10_1016_j_neures_2012_05_012 crossref_primary_10_1002_jnr_21928 crossref_primary_10_1007_s10882_018_9590_4 crossref_primary_10_1016_j_phrs_2018_07_010 crossref_primary_10_1111_j_1750_3639_2007_00102_x crossref_primary_10_1002_ajmg_b_31146 crossref_primary_10_1007_s00702_009_0236_7 crossref_primary_10_1016_j_brainres_2010_03_057 crossref_primary_10_1096_fj_13_246546 crossref_primary_10_1007_s00439_007_0443_y crossref_primary_10_1016_j_neulet_2006_09_060 crossref_primary_10_3389_fgene_2020_00308 crossref_primary_10_1002_ajmg_b_30655 crossref_primary_10_1016_j_neuroscience_2008_05_050 crossref_primary_10_2302_kjm_57_15 crossref_primary_10_1111_j_1469_7610_2011_02365_x crossref_primary_10_1016_j_neubiorev_2015_05_013 crossref_primary_10_1523_JNEUROSCI_4762_12_2013 crossref_primary_10_1007_s10519_007_9187_7 |
Cites_doi | 10.1101/gr.142200 10.1159/000022901 10.1017/S0033291799008508 10.1023/A:1005451304303 10.1001/jama.285.24.3093 10.1016/0888-7543(90)90491-C 10.1111/j.1469-7610.1977.tb00443.x 10.1097/00004583-200212000-00025 10.1017/S1092852900004880 10.1016/j.euroneuro.2003.10.002 10.1016/S0893-133X(99)00131-1 10.1055/s-2000-7588 10.1016/0165-1781(94)90117-1 10.1038/313101a0 10.1038/sj.mp.4001525 10.1111/j.1469-7610.1989.tb00254.x 10.1038/sj.mp.4001531 10.1023/A:1026096203946 10.1111/j.1469-7610.1987.tb00677.x 10.1023/A:1005592401947 10.1086/321272 10.1016/S0002-7138(09)60446-5 10.1001/archpsyc.1996.01830110029004 10.1007/BF02212938 10.1002/1096-8628(20010108)105:1<36::AID-AJMG1053>3.0.CO;2-4 10.1126/science.1097540 10.1007/BF02216055 10.1097/00008480-199608000-00008 10.1017/S0033291700028099 10.1016/S0014-2999(00)00814-1 10.1002/0470869380.ch5 10.1176/jnp.2.3.268 10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9 10.1016/S0140-6736(03)14236-5 10.1016/0753-3322(96)82645-X 10.1126/science.1078197 10.1093/bioinformatics/16.11.1046 |
ContentType | Journal Article |
Copyright | Copyright © 2005 Wiley‐Liss, Inc. Copyright 2005 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2005 Wiley‐Liss, Inc. – notice: Copyright 2005 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1002/ajmg.b.30168 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1552-485X |
EndPage | 46 |
ExternalDocumentID | 15768392 10_1002_ajmg_b_30168 AJMG30168 ark_67375_WNG_3BD89V37_M |
Genre | article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S Journal Article |
GrantInformation_xml | – fundername: NCRR NIH HHS grantid: M01-RR00064 – fundername: NICHD NIH HHS grantid: 5 U19 HD035476 |
GroupedDBID | .55 .GA .Y3 05W 0R~ 10A 1L6 1OC 23M 31~ 33P 4.4 51W 51X 52N 52O 52P 52S 52T 52W 52X 53G 5GY 5VS 7PT 8-1 8-4 8-5 8UM AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACPOU ACPRK ACXBN ACXQS ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN BDRZF BFHJK BRXPI BSCLL BY8 CS3 D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF IX1 KQQ LATKE LAW LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG P2P P2W P4D QB0 QRW ROL RWI SUPJJ UB1 V2E W99 WIH WJL WQJ WRC WXSBR X7M XG1 XV2 AAHQN AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c4378-657a52fac342f730e151b5296da4c0b149e18873c1110b746fcb3b141f06c66b3 |
IEDL.DBID | DR2 |
ISSN | 1552-4841 |
IngestDate | Thu Jul 10 18:38:24 EDT 2025 Wed Feb 19 01:39:52 EST 2025 Tue Jul 01 04:31:20 EDT 2025 Thu Apr 24 23:02:45 EDT 2025 Wed Jan 22 16:26:44 EST 2025 Wed Oct 30 09:51:41 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2005 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4378-657a52fac342f730e151b5296da4c0b149e18873c1110b746fcb3b141f06c66b3 |
Notes | ArticleID:AJMG30168 Supporting Information file jwsAJMBv135.1.42.pdf istex:1DE518F5E244A0D3ECB282026530BD098C904195 ark:/67375/WNG-3BD89V37-M This article contains supplementary material, which may be viewed at the AJMG website at: http://www.interscience.wiley.com/jpages/1552-4841/suppmat/index.html http://www.interscience.wiley.com/jpages/1552‐4841/suppmat/index.html This article contains supplementary material, which may be viewed at the AJMG website at ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15768392 |
PQID | 67768687 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_67768687 pubmed_primary_15768392 crossref_primary_10_1002_ajmg_b_30168 crossref_citationtrail_10_1002_ajmg_b_30168 wiley_primary_10_1002_ajmg_b_30168_AJMG30168 istex_primary_ark_67375_WNG_3BD89V37_M |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 5 May 2005 |
PublicationDateYYYYMMDD | 2005-05-05 |
PublicationDate_xml | – month: 05 year: 2005 text: 5 May 2005 day: 05 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | American journal of medical genetics. Part B, Neuropsychiatric genetics |
PublicationTitleAlternate | Am. J. Med. Genet |
PublicationYear | 2005 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Dubchak I, Brudno M, Loots GG, Mayor C, Pachter L, Rubin EM, Frazer KA. 2000. Active conservation of noncoding sequences revealed by 3-way species comparisons. Genome Res 10: 1304. Leventhal BL, Cook EH Jr, Morford M, Ravitz A, Freedman DX. 1990. Relationships of whole blood serotonin and plasma norepinephrine within families. J Autism Dev Disord 20: 499-511. Lord C, Leventhal BL, Cook EH Jr. 2001. Quantifying the phenotype in autism spectrum disorders Am J Med Genet 105: 36-38. De Luca V, Mueller DJ, Tharmalingam S, King N, Kennedy JL. 2004. Analysis of the novel TPH2 gene in bipolar disorder and suicidality. Mol Psychiatry Adv 9: 896-897. Cook EH Jr, Leventhal BL, Heller W, Metz J, Wainwright M, Freedman DX. 1990. Autistic children and their first-degree relatives: Relationships between serotonin and norepinephrine levels and intelligence. J Neuropsychiatry Clin Neurosci 2: 268-274. McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH. 1996. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53: 993-1000. Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107. Arnold LE, Aman MG, Martin A, Collier-Crespin A, Vitiello B, Tierney E, Asarnow R, Bell-Bradshaw F, Freeman BJ, Gates-Ulanet P, Klin A, McCracken JT, McDougle CJ, McGough JJ, Posey DJ, Schahill L, Swiezy NB, Ritz L, Volkmar F. 2000. Assessment in multisite randomized clinical trials of patients with autistic disorder: The Autism RUPP Network. Research Units on Pediatric Psychopharmacology. J Autism Dev Disord 30: 99-111. Szatmari P, Jones MB, Zwaigenbaum L, MacLean JE. 1998. Genetics of autism: Overview and new directions. J Autism Dev Disord 28: 351-368. Zhao JH, Curtis D, Sham PC. 2000. Model-free analysis and permutation test for allelic associations. Hum Hered 50: 133-139. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT. 1999. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287-295. Cook EH Jr, Charak DA, Arida J, Spohn JA, Roizen NJ, Leventhal BL. 1994. Depressive and obsessive-compulsive symptoms in hyperserotonemic parents of children with autistic disorder. Psychiatry Res 52: 25-33. Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I. 2000. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046. Anderson GM. 2002. Genetics of childhood disorders: XLV. Autism, part 4: Serotonin and autism. J Am Acad Child Adolescent Psychiatry 41: 1513-1516. Curtis D, Sham PC. 1995. Model-free linkage analysis using likelihoods. Am J Hum Genet 57: 703-716. Folstein SE, Dowd M, Mankowski R, Tadevosan O. 2003. How might genetic mechanisms operate in autism? Novartis Found Symp 251: 70-80. White R, Leppert M, Bishop DT, Barker D, Berkowitz J, Brown C, Callahan P, Holm T, Jerominski L. 1985. Construction of linkage maps with DNA markers for human chromosomes. Nature 313: 101-105. Zhang X, Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG. 2004. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305: 217. D'Eufemia P, Finocchiaro R, Celli M, Viozzi L, Monteleone D, Giardini O. 1995. Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism. Biomed Pharmacother 49: 288-292. Szatmari P. 1999. Heterogeneity and the genetics of autism. J Psychiatry Neurosci 24: 159-165. Zill P, Baghai TC, Zwanger P, Schule C, Eser D, Rupprecht R, Moller H-J, Bondy B, Ackenheil M. 2004a. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry Adv 9: 1030-1036. Potenza MN, McDougle CJ. 1997. The role of serotonin in autism-spectrum disorders. CNS Spectrums 2: 25-42. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohman M. 1989. A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. J Child Psychol Psychiatry 30: 405-416. Chakrabarti S, Fombonne E. 2001. Pervasive developmental disorders in preschool children. JAMA 285: 3093-3099. Fombonne E. 1999. The epidemiology of autism: A review. Psychol Med 29: 767-786. Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. 2000. The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30: 205-223. Veenstra-VanderWeele J, Anderson GM, Cook EH Jr. 2000. Pharmacogenetics and the serotonin system: Initial studies and future directions. Eur J Pharmacol 410: 165-181. Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH, Rutter M. 1995. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism. Am J Hum Genet 57: 717-726. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M. 1995. Autism as a strongly genetic disorder: Evidence from a British twin study. Psychol Med 25: 63-77. Cook EH, Leventhal BL. 1996. The serotonin system in autism. Curr Opin Pediatr 8: 348-354. Hollander E, Phillips AT, Yeh CC. 2003. Targeted treatments for symptom domains in child and adolescent autism. Lancet 362: 732-734. Abramson RK, Wright HH, Carpenter R, Brennan W, Lumpuy O, Cole E, Young SR. 1989. Elevated blood serotonin in autistic probands and their first-degree relatives. J Autism Dev Disord 19: 397-407. Pritchard JK. 2001. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69: 124-137. Walther DJ, Peter J-U, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299: 76. Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG. 1987. Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28: 885-900. Dausset J, Cann H, Cohen D, Lathrop M, Lalouel J-M, White R. 1990. Program destricption-Centre d'Etude du Polymorphisme Humain (CEPH)-Collaborative mapping of the human genome. Genomics 6: 575-577. Zill P, Buettner A, Eisenmenger W, Bondy B, Ackenheil M. 2004b. Regional mRNA expression of a second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains. Eur Neuropsychoparmacol 14: 282-284. Croonenberghs J, Delmeire L, Verkerk R, Lin AH, Meskal A, Neels H, Van der Planken M, Scharpe S, Deboutte D, Pison G, Maes M. 2000. Peripheral makers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharm 22: 275-283. SAS User's Guide. 1985. Statistics, Cary, NC: SAS Institute, Inc. Folstein SE, Rutter M. 1977. Infantile autism: A genetic study of 21 twin pairs. J Child Psychol Psychiatry 18: 297-321. Kuperman S, Beeghly JH, Burns TL, Tsai LY. 1985. Serotonin relationships of autistic probands and their first-degree relatives. J Am Acad Child Psychiatry 24: 186-190. Marazziti D, Muratori F, Cesari A, Masala I, Baroni S, Giannaccini G, Dell'Osso L, Cosenza A, Pfanner P, Cassano GB. 2000. Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry 33: 165-168. 1998; 28 2001; 285 2000; 410 1999; 29 1995; 57 2000; 22 2004a; 9 2004; 9 1999; 24 2000; 50 1999; 45 1994 1997; 2 2004; 305 2001; 69 2003; 299 1996; 53 1985; 24 2003; 251 2001; 105 1990; 2 1989; 30 1990; 20 2000; 16 2002; 41 1995; 49 1995; 25 2000; 10 1977; 18 2000; 33 2000; 30 1993; 53 1985 1985; 313 2004b; 14 1989; 19 1987; 28 1996; 8 1994; 52 1990; 6 2003; 362 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 Pickles A (e_1_2_6_30_1) 1995; 57 e_1_2_6_19_1 Farkas LG (e_1_2_6_18_1) 1994 e_1_2_6_36_1 Xie X (e_1_2_6_40_1) 1993; 53 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_17_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 Curtis D (e_1_2_6_13_1) 1995; 57 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 Szatmari P (e_1_2_6_35_1) 1999; 24 e_1_2_6_9_1 e_1_2_6_8_1 SAS User's Guide (e_1_2_6_33_1) 1985 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – reference: Folstein SE, Dowd M, Mankowski R, Tadevosan O. 2003. How might genetic mechanisms operate in autism? Novartis Found Symp 251: 70-80. – reference: Cook EH Jr, Leventhal BL, Heller W, Metz J, Wainwright M, Freedman DX. 1990. Autistic children and their first-degree relatives: Relationships between serotonin and norepinephrine levels and intelligence. J Neuropsychiatry Clin Neurosci 2: 268-274. – reference: Dausset J, Cann H, Cohen D, Lathrop M, Lalouel J-M, White R. 1990. Program destricption-Centre d'Etude du Polymorphisme Humain (CEPH)-Collaborative mapping of the human genome. Genomics 6: 575-577. – reference: Szatmari P. 1999. Heterogeneity and the genetics of autism. J Psychiatry Neurosci 24: 159-165. – reference: McDougle CJ, Naylor ST, Cohen DJ, Aghajanian GK, Heninger GR, Price LH. 1996. Effects of tryptophan depletion in drug-free adults with autistic disorder. Arch Gen Psychiatry 53: 993-1000. – reference: White R, Leppert M, Bishop DT, Barker D, Berkowitz J, Brown C, Callahan P, Holm T, Jerominski L. 1985. Construction of linkage maps with DNA markers for human chromosomes. Nature 313: 101-105. – reference: Kuperman S, Beeghly JH, Burns TL, Tsai LY. 1985. Serotonin relationships of autistic probands and their first-degree relatives. J Am Acad Child Psychiatry 24: 186-190. – reference: Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg IC, Jakobsson G, Bohman M. 1989. A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. J Child Psychol Psychiatry 30: 405-416. – reference: Szatmari P, Jones MB, Zwaigenbaum L, MacLean JE. 1998. Genetics of autism: Overview and new directions. J Autism Dev Disord 28: 351-368. – reference: Xie X, Ott J. 1993. Testing linkage disequilibrium between a disease gene and marker loci. Am J Hum Genet 53: 1107. – reference: Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG. 1987. Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28: 885-900. – reference: Cook EH, Leventhal BL. 1996. The serotonin system in autism. Curr Opin Pediatr 8: 348-354. – reference: Fombonne E. 1999. The epidemiology of autism: A review. Psychol Med 29: 767-786. – reference: Pickles A, Bolton P, Macdonald H, Bailey A, Le Couteur A, Sim CH, Rutter M. 1995. Latent-class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism. Am J Hum Genet 57: 717-726. – reference: Folstein SE, Rutter M. 1977. Infantile autism: A genetic study of 21 twin pairs. J Child Psychol Psychiatry 18: 297-321. – reference: Arnold LE, Aman MG, Martin A, Collier-Crespin A, Vitiello B, Tierney E, Asarnow R, Bell-Bradshaw F, Freeman BJ, Gates-Ulanet P, Klin A, McCracken JT, McDougle CJ, McGough JJ, Posey DJ, Schahill L, Swiezy NB, Ritz L, Volkmar F. 2000. Assessment in multisite randomized clinical trials of patients with autistic disorder: The Autism RUPP Network. Research Units on Pediatric Psychopharmacology. J Autism Dev Disord 30: 99-111. – reference: Hollander E, Phillips AT, Yeh CC. 2003. Targeted treatments for symptom domains in child and adolescent autism. Lancet 362: 732-734. – reference: SAS User's Guide. 1985. Statistics, Cary, NC: SAS Institute, Inc. – reference: Zill P, Buettner A, Eisenmenger W, Bondy B, Ackenheil M. 2004b. Regional mRNA expression of a second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains. Eur Neuropsychoparmacol 14: 282-284. – reference: De Luca V, Mueller DJ, Tharmalingam S, King N, Kennedy JL. 2004. Analysis of the novel TPH2 gene in bipolar disorder and suicidality. Mol Psychiatry Adv 9: 896-897. – reference: Leventhal BL, Cook EH Jr, Morford M, Ravitz A, Freedman DX. 1990. Relationships of whole blood serotonin and plasma norepinephrine within families. J Autism Dev Disord 20: 499-511. – reference: Chakrabarti S, Fombonne E. 2001. Pervasive developmental disorders in preschool children. JAMA 285: 3093-3099. – reference: Anderson GM. 2002. Genetics of childhood disorders: XLV. Autism, part 4: Serotonin and autism. J Am Acad Child Adolescent Psychiatry 41: 1513-1516. – reference: Croonenberghs J, Delmeire L, Verkerk R, Lin AH, Meskal A, Neels H, Van der Planken M, Scharpe S, Deboutte D, Pison G, Maes M. 2000. Peripheral makers of serotonergic and noradrenergic function in post-pubertal, caucasian males with autistic disorder. Neuropsychopharm 22: 275-283. – reference: Mayor C, Brudno M, Schwartz JR, Poliakov A, Rubin EM, Frazer KA, Pachter LS, Dubchak I. 2000. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 16: 1046. – reference: Curtis D, Sham PC. 1995. Model-free linkage analysis using likelihoods. Am J Hum Genet 57: 703-716. – reference: Zhao JH, Curtis D, Sham PC. 2000. Model-free analysis and permutation test for allelic associations. Hum Hered 50: 133-139. – reference: Abramson RK, Wright HH, Carpenter R, Brennan W, Lumpuy O, Cole E, Young SR. 1989. Elevated blood serotonin in autistic probands and their first-degree relatives. J Autism Dev Disord 19: 397-407. – reference: Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E, Rutter M. 1995. Autism as a strongly genetic disorder: Evidence from a British twin study. Psychol Med 25: 63-77. – reference: Lord C, Leventhal BL, Cook EH Jr. 2001. Quantifying the phenotype in autism spectrum disorders Am J Med Genet 105: 36-38. – reference: Lord C, Risi S, Lambrecht L, Cook EH Jr, Leventhal BL, DiLavore PC, Pickles A, Rutter M. 2000. The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. J Autism Dev Disord 30: 205-223. – reference: D'Eufemia P, Finocchiaro R, Celli M, Viozzi L, Monteleone D, Giardini O. 1995. Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism. Biomed Pharmacother 49: 288-292. – reference: Walther DJ, Peter J-U, Bashammakh S, Hortnagl H, Voits M, Fink H, Bader M. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299: 76. – reference: Dubchak I, Brudno M, Loots GG, Mayor C, Pachter L, Rubin EM, Frazer KA. 2000. Active conservation of noncoding sequences revealed by 3-way species comparisons. Genome Res 10: 1304. – reference: Zhang X, Beaulieu J-M, Sotnikova TD, Gainetdinov RR, Caron MG. 2004. Tryptophan hydroxylase-2 controls brain serotonin synthesis. Science 305: 217. – reference: Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT. 1999. Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287-295. – reference: Cook EH Jr, Charak DA, Arida J, Spohn JA, Roizen NJ, Leventhal BL. 1994. Depressive and obsessive-compulsive symptoms in hyperserotonemic parents of children with autistic disorder. Psychiatry Res 52: 25-33. – reference: Pritchard JK. 2001. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69: 124-137. – reference: Marazziti D, Muratori F, Cesari A, Masala I, Baroni S, Giannaccini G, Dell'Osso L, Cosenza A, Pfanner P, Cassano GB. 2000. Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry 33: 165-168. – reference: Zill P, Baghai TC, Zwanger P, Schule C, Eser D, Rupprecht R, Moller H-J, Bondy B, Ackenheil M. 2004a. SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression. Mol Psychiatry Adv 9: 1030-1036. – reference: Potenza MN, McDougle CJ. 1997. The role of serotonin in autism-spectrum disorders. CNS Spectrums 2: 25-42. – reference: Veenstra-VanderWeele J, Anderson GM, Cook EH Jr. 2000. Pharmacogenetics and the serotonin system: Initial studies and future directions. Eur J Pharmacol 410: 165-181. – volume: 49 start-page: 288 year: 1995 end-page: 292 article-title: Low serum tryptophan to large neutral amino acids ratio in idiopathic infantile autism publication-title: Biomed Pharmacother – year: 1985 – volume: 9 start-page: 1030 year: 2004a end-page: 1036 article-title: SNP and haplotype analysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evidence for association with major depression publication-title: Mol Psychiatry Adv – volume: 24 start-page: 159 year: 1999 end-page: 165 article-title: Heterogeneity and the genetics of autism publication-title: J Psychiatry Neurosci – volume: 41 start-page: 1513 year: 2002 end-page: 1516 article-title: Genetics of childhood disorders: XLV. Autism, part 4: Serotonin and autism publication-title: J Am Acad Child Adolescent Psychiatry – volume: 9 start-page: 896 year: 2004 end-page: 897 article-title: Analysis of the novel gene in bipolar disorder and suicidality publication-title: Mol Psychiatry Adv – volume: 410 start-page: 165 year: 2000 end-page: 181 article-title: Pharmacogenetics and the serotonin system: Initial studies and future directions publication-title: Eur J Pharmacol – volume: 6 start-page: 575 year: 1990 end-page: 577 article-title: Program destricption—Centre d'Etude du Polymorphisme Humain (CEPH)—Collaborative mapping of the human genome publication-title: Genomics – volume: 50 start-page: 133 year: 2000 end-page: 139 article-title: Model‐free analysis and permutation test for allelic associations publication-title: Hum Hered – volume: 33 start-page: 165 year: 2000 end-page: 168 article-title: Increased density of the platelet serotonin transporter in autism publication-title: Pharmacopsychiatry – volume: 362 start-page: 732 year: 2003 end-page: 734 article-title: Targeted treatments for symptom domains in child and adolescent autism publication-title: Lancet – volume: 57 start-page: 717 year: 1995 end-page: 726 article-title: Latent‐class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism publication-title: Am J Hum Genet – volume: 30 start-page: 405 year: 1989 end-page: 416 article-title: A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden publication-title: J Child Psychol Psychiatry – volume: 30 start-page: 99 year: 2000 end-page: 111 article-title: Assessment in multisite randomized clinical trials of patients with autistic disorder: The Autism RUPP Network. Research Units on Pediatric Psychopharmacology publication-title: J Autism Dev Disord – volume: 105 start-page: 36 year: 2001 end-page: 38 article-title: Quantifying the phenotype in autism spectrum disorders publication-title: Am J Med Genet – volume: 305 start-page: 217 year: 2004 article-title: Tryptophan hydroxylase‐2 controls brain serotonin synthesis publication-title: Science – volume: 29 start-page: 767 year: 1999 end-page: 786 article-title: The epidemiology of autism: A review publication-title: Psychol Med – volume: 53 start-page: 993 year: 1996 end-page: 1000 article-title: Effects of tryptophan depletion in drug‐free adults with autistic disorder publication-title: Arch Gen Psychiatry – volume: 69 start-page: 124 year: 2001 end-page: 137 article-title: Are rare variants responsible for susceptibility to complex diseases? publication-title: Am J Hum Genet – volume: 251 start-page: 70 year: 2003 end-page: 80 article-title: How might genetic mechanisms operate in autism? publication-title: Novartis Found Symp – volume: 45 start-page: 287 year: 1999 end-page: 295 article-title: Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children publication-title: Ann Neurol – volume: 25 start-page: 63 year: 1995 end-page: 77 article-title: Autism as a strongly genetic disorder: Evidence from a British twin study publication-title: Psychol Med – volume: 10 start-page: 1304 year: 2000 article-title: Active conservation of noncoding sequences revealed by 3‐way species comparisons publication-title: Genome Res – volume: 299 start-page: 76 year: 2003 article-title: Synthesis of serotonin by a second tryptophan hydroxylase isoform publication-title: Science – volume: 8 start-page: 348 year: 1996 end-page: 354 article-title: The serotonin system in autism publication-title: Curr Opin Pediatr – volume: 28 start-page: 885 year: 1987 end-page: 900 article-title: Whole blood serotonin in autistic and normal subjects publication-title: J Child Psychol Psychiatry – volume: 24 start-page: 186 year: 1985 end-page: 190 article-title: Serotonin relationships of autistic probands and their first‐degree relatives publication-title: J Am Acad Child Psychiatry – year: 1994 – volume: 19 start-page: 397 year: 1989 end-page: 407 article-title: Elevated blood serotonin in autistic probands and their first‐degree relatives publication-title: J Autism Dev Disord – volume: 16 start-page: 1046 year: 2000 article-title: VISTA: Visualizing global DNA sequence alignments of arbitrary length publication-title: Bioinformatics – volume: 53 start-page: 1107 year: 1993 article-title: Testing linkage disequilibrium between a disease gene and marker loci publication-title: Am J Hum Genet – volume: 18 start-page: 297 year: 1977 end-page: 321 article-title: Infantile autism: A genetic study of 21 twin pairs publication-title: J Child Psychol Psychiatry – volume: 2 start-page: 268 year: 1990 end-page: 274 article-title: Autistic children and their first‐degree relatives: Relationships between serotonin and norepinephrine levels and intelligence publication-title: J Neuropsychiatry Clin Neurosci – volume: 52 start-page: 25 year: 1994 end-page: 33 article-title: Depressive and obsessive‐compulsive symptoms in hyperserotonemic parents of children with autistic disorder publication-title: Psychiatry Res – volume: 20 start-page: 499 year: 1990 end-page: 511 article-title: Relationships of whole blood serotonin and plasma norepinephrine within families publication-title: J Autism Dev Disord – volume: 30 start-page: 205 year: 2000 end-page: 223 article-title: The autism diagnostic observation schedule‐generic: A standard measure of social and communication deficits associated with the spectrum of autism publication-title: J Autism Dev Disord – volume: 285 start-page: 3093 year: 2001 end-page: 3099 article-title: Pervasive developmental disorders in preschool children publication-title: JAMA – volume: 57 start-page: 703 year: 1995 end-page: 716 article-title: Model‐free linkage analysis using likelihoods publication-title: Am J Hum Genet – volume: 22 start-page: 275 year: 2000 end-page: 283 article-title: Peripheral makers of serotonergic and noradrenergic function in post‐pubertal, caucasian males with autistic disorder publication-title: Neuropsychopharm – volume: 313 start-page: 101 year: 1985 end-page: 105 article-title: Construction of linkage maps with DNA markers for human chromosomes publication-title: Nature – volume: 14 start-page: 282 year: 2004b end-page: 284 article-title: Regional mRNA expression of a second tryptophan hydroxylase isoform in postmortem tissue samples of two human brains publication-title: Eur Neuropsychoparmacol – volume: 2 start-page: 25 year: 1997 end-page: 42 article-title: The role of serotonin in autism‐spectrum disorders publication-title: CNS Spectrums – volume: 28 start-page: 351 year: 1998 end-page: 368 article-title: Genetics of autism: Overview and new directions publication-title: J Autism Dev Disord – ident: e_1_2_6_17_1 doi: 10.1101/gr.142200 – volume-title: Statistics year: 1985 ident: e_1_2_6_33_1 – volume-title: Anthropometry of the head and face year: 1994 ident: e_1_2_6_18_1 – ident: e_1_2_6_42_1 doi: 10.1159/000022901 – ident: e_1_2_6_21_1 doi: 10.1017/S0033291799008508 – ident: e_1_2_6_5_1 doi: 10.1023/A:1005451304303 – ident: e_1_2_6_7_1 doi: 10.1001/jama.285.24.3093 – ident: e_1_2_6_15_1 doi: 10.1016/0888-7543(90)90491-C – ident: e_1_2_6_19_1 doi: 10.1111/j.1469-7610.1977.tb00443.x – ident: e_1_2_6_3_1 doi: 10.1097/00004583-200212000-00025 – ident: e_1_2_6_31_1 doi: 10.1017/S1092852900004880 – ident: e_1_2_6_44_1 doi: 10.1016/j.euroneuro.2003.10.002 – ident: e_1_2_6_12_1 doi: 10.1016/S0893-133X(99)00131-1 – ident: e_1_2_6_27_1 doi: 10.1055/s-2000-7588 – ident: e_1_2_6_11_1 doi: 10.1016/0165-1781(94)90117-1 – ident: e_1_2_6_39_1 doi: 10.1038/313101a0 – ident: e_1_2_6_43_1 doi: 10.1038/sj.mp.4001525 – ident: e_1_2_6_34_1 doi: 10.1111/j.1469-7610.1989.tb00254.x – ident: e_1_2_6_16_1 doi: 10.1038/sj.mp.4001531 – ident: e_1_2_6_36_1 doi: 10.1023/A:1026096203946 – ident: e_1_2_6_4_1 doi: 10.1111/j.1469-7610.1987.tb00677.x – ident: e_1_2_6_25_1 doi: 10.1023/A:1005592401947 – ident: e_1_2_6_32_1 doi: 10.1086/321272 – ident: e_1_2_6_23_1 doi: 10.1016/S0002-7138(09)60446-5 – ident: e_1_2_6_29_1 doi: 10.1001/archpsyc.1996.01830110029004 – ident: e_1_2_6_2_1 doi: 10.1007/BF02212938 – ident: e_1_2_6_26_1 doi: 10.1002/1096-8628(20010108)105:1<36::AID-AJMG1053>3.0.CO;2-4 – volume: 57 start-page: 703 year: 1995 ident: e_1_2_6_13_1 article-title: Model‐free linkage analysis using likelihoods publication-title: Am J Hum Genet – volume: 57 start-page: 717 year: 1995 ident: e_1_2_6_30_1 article-title: Latent‐class analysis of recurrence risks for complex phenotypes with selection and measurement error: A twin and family history study of autism publication-title: Am J Hum Genet – ident: e_1_2_6_41_1 doi: 10.1126/science.1097540 – ident: e_1_2_6_24_1 doi: 10.1007/BF02216055 – ident: e_1_2_6_9_1 doi: 10.1097/00008480-199608000-00008 – ident: e_1_2_6_6_1 doi: 10.1017/S0033291700028099 – ident: e_1_2_6_37_1 doi: 10.1016/S0014-2999(00)00814-1 – ident: e_1_2_6_20_1 doi: 10.1002/0470869380.ch5 – volume: 53 start-page: 1107 year: 1993 ident: e_1_2_6_40_1 article-title: Testing linkage disequilibrium between a disease gene and marker loci publication-title: Am J Hum Genet – ident: e_1_2_6_10_1 doi: 10.1176/jnp.2.3.268 – ident: e_1_2_6_8_1 doi: 10.1002/1531-8249(199903)45:3<287::AID-ANA3>3.0.CO;2-9 – ident: e_1_2_6_22_1 doi: 10.1016/S0140-6736(03)14236-5 – ident: e_1_2_6_14_1 doi: 10.1016/0753-3322(96)82645-X – volume: 24 start-page: 159 year: 1999 ident: e_1_2_6_35_1 article-title: Heterogeneity and the genetics of autism publication-title: J Psychiatry Neurosci – ident: e_1_2_6_38_1 doi: 10.1126/science.1078197 – ident: e_1_2_6_28_1 doi: 10.1093/bioinformatics/16.11.1046 |
SSID | ssj0030577 |
Score | 2.074809 |
Snippet | We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene (TPH2). The well‐replicated... We report a possible association between autism in our sample and a recently described brain‐expressed tryptophan hydroxylase gene ( TPH2 ). The... We report a possible association between autism in our sample and a recently described brain-expressed tryptophan hydroxylase gene (TPH2). The well-replicated... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 42 |
SubjectTerms | association autism Autistic Disorder - enzymology Autistic Disorder - genetics Base Sequence Brain - enzymology DNA - chemistry DNA - genetics DNA Mutational Analysis Female Humans Male Nuclear Family Phenotype Polymorphism, Single Nucleotide serotonin tryptophan Tryptophan Hydroxylase - genetics |
Title | Possible association between autism and variants in the brain-expressed tryptophan hydroxylase gene (TPH2) |
URI | https://api.istex.fr/ark:/67375/WNG-3BD89V37-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fajmg.b.30168 https://www.ncbi.nlm.nih.gov/pubmed/15768392 https://www.proquest.com/docview/67768687 |
Volume | 135B |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB2hIhAvXAqUcPUDVKA222zsOOljubSrSltVVUv7ZtmOXaDbbLUX1OWJT-Ab-RJmnOwurSgSSHmIokni2GecM_HkDMBL6y2SgtzF3gsRC-cE-pwvY-1LX2rheWFoRbe7IzsHYvsoO2o-uNG_MLU-xOyDG3lGmK_JwbUZrs1FQ_WX0-OWaSFAJf3rS-laxIn2ZupRiORQeJFExmJRiHaT946nr_1-8oU30nXq3PM_0c2L7DW8fjbvgJo2vM46OWmNR6Zlv13SdPz_J7sLtxtmyjZqKN2Da65ahBt1rcrJItzsNqvw96G32ydP6jmm54PLmowvphHKw1Omq5J9xUCc8mzY54oh0WSG6lH8_P7DnYf0W1ey0WByRtIGumKfJiU9HLJ5xxDVjr3e3-2kbx7AweaH_XeduKnaEFvBMSSVWa6z1GvLRepx_nDIKQyt7uLQ28RgRObaOLNxi7NsYnIhvTUcD7d9Iq2Uhj-EhapfuUfA8lRqZDildDoRwq5rL7k0ibMcL5DJIoKV6cgp20iaU2WNnqrFmFNFXamMCl0ZwauZ9Vkt5XGF3XIAwcxID04o_S3P1OHOluJv3xfrH3muuhG8mKJEoVPSSouuXH88RGuM4mSRR7BUg2d-Q4rvkJNGsBog8NeWqI3t7lbYe_xv5k_gVpCYDdtTWBgNxu4ZkqeReR5c5Bf-DxXK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1BKy4vXMot3OoHQFSQbTZxnPSxUNqlNKsKbaFvxnZsLt1mq-0u6vLEJ_CNfAkzTnaXIkBCSHmIokni2GecM_HkDMAD4wySgsyGznEecms5-pwrQ-VKVyruklzTim7RFZ09vr2f7jd1TulfmFofYvbBjTzDz9fk4PRBenWuGqo-Hb5v6RYiVORnYZGKepN4_sbrmX4UYtmXXiSZsZDnvN1kvuP5qz-ffeqdtEjde_I7wnmav_oX0OZleDdtep13ctAaj3TLfPlF1fE_nu0KXGrIKVuv0XQVzthqCc7V5SonS3C-aBbir0F_d0DO1LdMzceXNUlfTCGajw-Zqkr2GWNxSrVhHyuGXJNpKknx_es3e-IzcG3JRsPJEakbqIp9mJT0dEjoLUNgW_a4t9uJV67D3uaL3vNO2BRuCA1PMCoVaabS2CmT8NjhFGKRVmha4MXRN5HGoMy2cXJLDE60kc64cEYneLjtImGE0MkNWKgGlb0FLIuFQpJTCqsizs2aciIROrImwQukIg_gyXTopGlUzam4Rl_WesyxpK6UWvquDODhzPqoVvP4g90jj4KZkRoeUAZclsq33S2ZPNvI194kmSwCWJ7CRKJf0mKLquxgfIzWGMiJPAvgZo2e-Q0pxENaGsBTj4G_tkSubxdbfu_2v5kvw4VOr9iROy-7r-7ARa8467e7sDAaju095FIjfd_7yw9IRhnm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL2CTUx74WPAyDaYHwCBIF0aO076OChdGbSq0Db2ZtmOzce6tOpatO6Jn8Bv5Jdw7aQtQ4AEUh6i6CZx7HOdc-ObcwEeaquRFKQmtJaxkBnD0OdsHkqb21wySzPlVnQ7Xd4-ZPvHyXH1wc39C1PqQ8w_uDnP8PO1c_BhbncWoqHy8-mHmqohQHl2FZYZjxqudEPz3Vw-CqHsKy86lbGQZaxeJb7j-Ts_n33plbTsevf8d3zzMn3175_WDRCzlpdpJye1yVjV9MUvoo7__2g34XpFTcluiaVbcMUUa3CtLFY5XYOVTrUMfxv6vYFzpb4hcjG6pEr5IhKxfHZKZJGTLxiJu0Qb8qkgyDSJcgUpvn_9Zs59_q3JyXg0HTptA1mQj9PcPRzSeUMQ1oY8Oei146d34LD16uBlO6zKNoSaUYxJeZLKJLZSUxZbnEAMkgrllndx7HWkMCQzdZzaqMZpNlIp41YriofrNuKac0XvwlIxKMw9IGnMJVKcnBsZMaYb0nLKVWQ0xQskPAvg2WzkhK40zV1pjb4o1Zhj4bpSKOG7MoBHc-thqeXxB7vHHgRzIzk6cflvaSLed_cEfdHMGkc0FZ0AtmcoEeiVbqlFFmYwOUNrDON4lgawXoJncUMX4CEpDeC5h8BfWyJ29zt7fm_j38y3YaXXbIm3r7tvNmHVy836bQuWxqOJuY9EaqweeG_5AeuxGJU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Possible+association+between+autism+and+variants+in+the+brain-expressed+tryptophan+hydroxylase+gene+%28TPH2%29&rft.jtitle=American+journal+of+medical+genetics.+Part+B%2C+Neuropsychiatric+genetics&rft.au=Coon%2C+Hilary&rft.au=Dunn%2C+Diane&rft.au=Lainhart%2C+Janet&rft.au=Miller%2C+Judith&rft.date=2005-05-05&rft.issn=1552-4841&rft.volume=135B&rft.issue=1&rft.spage=42&rft_id=info:doi/10.1002%2Fajmg.b.30168&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-4841&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-4841&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-4841&client=summon |