Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic

The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of food science & technology Vol. 43; no. 10; pp. 1824 - 1831
Main Authors Moraes, Mariana A, Rosa, Gabriela S, Pinto, Luiz A.A
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.10.2008
Blackwell Publishing Ltd
Wiley-Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius-Clapeyron and Gibbs-Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R² > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48-100 kJ mol⁻¹ and 14-150 J mol⁻¹ K⁻¹) than for garlic (in range 43-68 kJ mol⁻¹ and 0-66 J mol⁻¹ K⁻¹). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution.
AbstractList The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 deg C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius-Clapeyron and Gibbs-Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R2 > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48-100kJmol-1 and 14-150Jmol-1K-1) than for garlic (in range 43-68kJmol-1 and 0-66Jmol-1K-1). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution. (Received 9 July 2007; Accepted in revised form 6 December 2007).
Summary The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson–Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius–Clapeyron and Gibbs–Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R2 > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48–100 kJ mol−1 and 14–150 J mol−1 K−1) than for garlic (in range 43–68 kJ mol−1 and 0–66 J mol−1 K−1). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution.
The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius-Clapeyron and Gibbs-Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R² > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48-100 kJ mol⁻¹ and 14-150 J mol⁻¹ K⁻¹) than for garlic (in range 43-68 kJ mol⁻¹ and 0-66 J mol⁻¹ K⁻¹). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution.
Summary The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson–Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius–Clapeyron and Gibbs–Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data ( R 2  > 99% and E % < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48–100 kJ mol −1 and 14–150 J mol −1  K −1 ) than for garlic (in range 43–68 kJ mol −1 and 0–66 J mol −1  K −1 ). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution.
Author Pinto, Luiz A. A.
Rosa, Gabriela S.
Moraes, Mariana A.
Author_xml – sequence: 1
  fullname: Moraes, Mariana A
– sequence: 2
  fullname: Rosa, Gabriela S
– sequence: 3
  fullname: Pinto, Luiz A.A
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20644432$$DView record in Pascal Francis
BookMark eNqNkU1v1DAQhi1UJLaF34AvcEvwR_yRCxJasd2iUlQtFceRcZziJRsHO6vu_nucTbXn-jAeaZ55Z_TOJbroQ-8QwpSUNL9P25JyKQomGS0ZIbokVFFZHl6hxblwgRakFqQQFeNv0GVKW0II46paoPvvwadxHx1OIQ6jDz32KYx_XNwlbPoGn9LQHHuz8xYPMQwujt4lHFpshqFzeLXf-hP6aGLn7Vv0ujVdcu-e_yv0sPr6c7kubn9c3yy_3Ba24koWUjZKOWVrSVvTSG2VMprUVFKlK9toW1MjuJSkMUKzWjDLa6W0Usr-ZqKl_Ap9nHXzTv_2Lo2w88m6rjO9C_sEvKqJJoJlUM-gjSGl6FoYot-ZeARKYPIQtjBZBZNVMHkIJw_hkFs_PM8wyZqujaa3Pp37GZFVVfFpxOeZe_KdO75YH26-rTZTmgWKWSAfwx3OAib-Bam4EvDr7ho2q_u1pMsNrDP_fuZbE8A8xrzUw4YRygkVXPEc_gOnQp6I
CODEN IJFTEZ
CitedBy_id crossref_primary_10_1016_j_lwt_2024_115749
crossref_primary_10_1016_j_ibiod_2014_05_023
crossref_primary_10_1007_s00231_018_2527_8
crossref_primary_10_1016_j_lwt_2022_113866
crossref_primary_10_1016_j_sajb_2020_11_026
crossref_primary_10_1080_02726351_2014_970310
crossref_primary_10_1111_j_1365_2621_2009_02109_x
crossref_primary_10_1007_s11694_018_9879_0
crossref_primary_10_1002_cjce_23839
crossref_primary_10_3389_fnut_2022_940111
crossref_primary_10_1111_jfpp_14731
crossref_primary_10_1590_1981_6723_6114
crossref_primary_10_1093_ijlct_ctab029
crossref_primary_10_1016_j_gaost_2021_09_001
crossref_primary_10_1016_j_ifset_2017_07_023
crossref_primary_10_1016_j_indcrop_2015_01_078
crossref_primary_10_1007_s00231_017_2223_0
crossref_primary_10_1016_j_fpsl_2017_04_003
crossref_primary_10_3390_foods13071056
crossref_primary_10_1111_j_1365_2621_2010_02208_x
crossref_primary_10_1016_j_powtec_2021_11_006
crossref_primary_10_1080_07373930903383604
crossref_primary_10_1016_j_lwt_2010_07_005
crossref_primary_10_1016_j_lwt_2020_109832
crossref_primary_10_1016_j_jfoodeng_2012_01_012
crossref_primary_10_3390_foods11162407
crossref_primary_10_3390_pr9111900
Cites_doi 10.1590/S0101-20612004000300007
10.1016/S0260-8774(01)00053-X
10.1016/S0260-8774(98)00025-9
10.1016/S0260-8774(98)00094-6
10.1016/S0963-9969(00)00145-9
10.1016/S0260-8774(03)00143-2
10.1016/j.jfoodeng.2005.10.009
10.1111/j.1365-2621.1982.tb04966.x
10.1016/S0260-8774(97)00072-1
10.1016/j.lwt.2003.10.012
10.1016/S0260-8774(96)00019-2
10.1016/j.jfoodeng.2005.05.059
10.1016/j.jfoodeng.2005.03.024
10.1016/S0260-8774(03)00036-0
10.1111/j.1365-2621.2007.01261.x
10.1021/j100120a035
10.1177/108201320000600503
10.13031/2013.17319
10.1016/j.jfoodeng.2005.03.062
10.1016/j.jfoodeng.2006.10.001
10.1016/j.jfoodeng.2004.08.004
10.1016/j.jspr.2006.06.006
10.1046/j.1365-2621.2002.00560.x
10.1016/S0260-8774(00)00130-8
10.1016/j.lwt.2003.10.009
10.1016/S0260-8774(96)00021-0
ContentType Journal Article
Copyright 2008 The Authors. Journal compilation © 2008 Institute of Food Science and Technology
2009 INIST-CNRS
Copyright_xml – notice: 2008 The Authors. Journal compilation © 2008 Institute of Food Science and Technology
– notice: 2009 INIST-CNRS
DBID FBQ
BSCLL
IQODW
AAYXX
CITATION
8FD
F28
FR3
DOI 10.1111/j.1365-2621.2008.01716.x
DatabaseName AGRIS
Istex
Pascal-Francis
CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitleList Technology Research Database


CrossRef
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Diet & Clinical Nutrition
EISSN 1365-2621
EndPage 1831
ExternalDocumentID 10_1111_j_1365_2621_2008_01716_x
20644432
IJFS1716
ark_67375_WNG_SFQH61CS_H
US201301537315
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29J
3-9
31~
33P
3EH
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAIKC
AAJUZ
AAMNW
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABCVL
ABEML
ABHUG
ABJNI
ABPTK
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACPOU
ACPRK
ACSCC
ACSMX
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHEFC
AI.
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DROCM
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
FBQ
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OVD
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
UB1
V8K
VH1
W8V
W99
WBFHL
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XFK
XG1
Y6R
YFH
YUY
ZZTAW
~IA
~WT
AAHBH
ABEJV
AHBTC
AITYG
BSCLL
HGLYW
OIG
TOX
AAPBV
IQODW
AAYXX
CITATION
8FD
F28
FR3
ID FETCH-LOGICAL-c4376-66d77e7c961fad68c77a809161784cd8c91a53660da582952c39778777cb25f13
IEDL.DBID DR2
ISSN 0950-5423
IngestDate Fri Oct 25 09:11:50 EDT 2024
Fri Aug 23 03:56:04 EDT 2024
Sun Oct 22 16:08:58 EDT 2023
Sat Aug 24 01:03:08 EDT 2024
Wed Oct 30 10:05:13 EDT 2024
Wed Dec 27 19:09:54 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Sorption
Apple
fruits/vegetables
Garlic
Fruit vegetable
Thermodynamic properties
Physicochemical properties
Drying
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4376-66d77e7c961fad68c77a809161784cd8c91a53660da582952c39778777cb25f13
Notes http://dx.doi.org/10.1111/j.1365-2621.2008.01716.x
istex:CAFC832AACD48B46CEE33786CAB6B306F57EFA45
ark:/67375/WNG-SFQH61CS-H
ArticleID:IJFS1716
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 34908052
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_34908052
crossref_primary_10_1111_j_1365_2621_2008_01716_x
pascalfrancis_primary_20644432
wiley_primary_10_1111_j_1365_2621_2008_01716_x_IJFS1716
istex_primary_ark_67375_WNG_SFQH61CS_H
fao_agris_US201301537315
PublicationCentury 2000
PublicationDate October 2008
PublicationDateYYYYMMDD 2008-10-01
PublicationDate_xml – month: 10
  year: 2008
  text: October 2008
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: Oxford
PublicationTitle International journal of food science & technology
PublicationYear 2008
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Wiley-Blackwell
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Wiley-Blackwell
References Lastoskie, C., Gubbins, K.E. & Quirke, N. (1993). Pore size distribution analysis of microporous carbons: a density functional theory approach. The Journal of Physical Chemistry, 97, 4786-4796.
Adebowale, A.R., Sanni, L., Awonorin, S., Daniel, I. & Kuye, A. (2007). Effect of cassava varieties on the sorption isotherm of tapioca grits. International Journal of Food Science and Technology, 42, 448-452.
Palou, E., Lopes, M.A. & Argaiz, A. (1997). Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. Journal of Food Engineering, 31, 85-93.
Lomauro, C.J., Bakshi, A.S. & Labuza, T.P. (1985). Evaluation of food moisture sorption isotherm equations. Part I. Fruit vegetable and meat products. Lebensmittel-Wissenschaft und Technologie, 18, 111-117.
Singh, R.R.B., Rao, K.H., Anjaneyulu, A.S.R. & Patil, G.R. (2001). Moisture sorption properties of smoked chicken sausages from spent hen meat. Food Research International, 34, 143-148.
Ariahu, C.C., Kaze, S.A. & Achem, C.D. (2006). Moisture sorption characteristics of tropical fresh water crayfish (Procambarus clarkii). Journal of Food Engineering, 75, 355-363.
Simal, S., Femenia, A., Castell-Palou, A. & Rosselló, C. (2007). Water desorption thermodynamic properties of pineapple. Journal of Food Engineering, 80, 1293-1301.
Chen, C. & Jayas, D.S. (1998). Evaluation of the GAB equation for the isotherms of agricultural products. Transaction of the ASAE, 41, 1755-1760.
Cassini, A.S., Marczak, L.D.F. & Norena, C.P.Z. (2006). Water adsorption isotherms of texturized soy protein. Journal of Food Engineering, 77, 194-199.
AOAC (1995). Official Methods of Analysis, 16th edn. Chapter 37, p. 4. Washington: Association of Official Analytical Chemists Inc.
Kaymak-Ertekin, F. & Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. Lebensmittel-Wissenschaft und Technologie, 37, 429-438.
Al-Muhtaseb, A.H., McMinn, W.A.M. & Magee, T.R.A. (2002). Moisture sorption isotherm characteristics of food products: a review. Trans IChemE, 80, 118-128.
McLaughlin, C.P. & Magee, T.R.A. (1998). The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering, 35, 267-280.
Wosiacki, G., Pholman, B.C. & Nogueira, A. (2004). Quality profile of 15 apple cultivars. Ciência e Tecnologia em Alimentos, 24, 347-352.
Calzetta Resio, A.N., Tolaba, M.P. & Suarez, C. (2000). Some physical and thermal characteristics of amaranth starch. Food Science and Technology International, 6, 371-378.
Iglesias, H.A. & Chirife, J. (1982). Handbook of food isotherms. Pp. 3, 283, 292. New York, NY: Academic Press.
Roman, G.N., Urbician, M.J. & Rotstein, E. (1982). Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations. Journal of Food Science, 47, 1484-1488.
Kumar, A.J., Singh, R.R.B., Patil, G.R. & Patel, A.A. (2005). Effect of temperature on moisture desorption isotherms of kheer. Food Science and Technology, 38, 303-310.
Kouhila, M., Belghit, A., Daguenet, M. & Boutaleb, B.C. (2001). Experimental determination of the sorption isotherms of mint (Mentha viridis), sage (Salvia officinalis) and verbena (Lippia citriodora). Journal of Food Engineering, 47, 281-287.
Maskan, M. & Gogus, F. (1998). Sorption isotherms and drying characteristics of Mulberry (Morus alba). Journal of Food Engineering, 37, 437-449.
Arslan, N. & Togrul, H. (2005). Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach. Journal of Food Engineering, 69, 133-145.
Tolaba, M.P., Peltzer, M., Enriquez, N. & Pollio, M.L. (2004). Grain sorption equilibria of quinoa grains. Journal of Food Engineering, 61, 365-371.
Sanni, L.O., Atere, A. & Kuye, A. (1997). Moisture sorption isotherms of fufu and tapioca at different temperatures. Journal of Food Engineering, 34, 203-212.
McMinn, W.A.M. & Magee, T.R.A. (2003). Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering, 60, 157-165.
Das, M. & Das, S.K. (2002). Analysis of moisture sorption characteristics of fish protein myosin. International Journal of Food Science and Technology, 37, 223-227.
Perry, R.H. (ed.) (1984). Chemical Engineers' Handbook, 6th edn. Pp. 3/65. New York, NY: McGraw-Hill.
Delgado, A.E. & Sun, D. (2002). Desorption isotherms for cooked and cured beef and pork. Journal of Food Engineering, 51, 163-170.
Kaya, S. & Kahyaoglu, T. (2007). Moisture sorption and thermodynamic properties of safflower petals and tarragon. Journal of Food Engineering, 78, 413-421.
Pezzutti, A. & Crapiste, G.H. (1997). Sorptional equilibrium and drying characteristics of garlic. Journal of Food Engineering, 31, 113-123.
Sacilik, K. & Elicin, A.K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73, 281-289.
Togrul, H. & Arslan, N. (2007). Moisture sorption isotherms and thermodynamic properties of walnut kernels. Journal of Stored Products Research, 43, 252-264.
2002; 37
2004; 61
2006; 75
2006; 73
2000; 6
2006; 77
2002; 51
2004; 24
1995
2002; 80
1998; 41
2007; 78
2001; 47
2005; 69
1998; 37
1982; 47
1985; 18
1997; 31
2004; 37
1993; 97
1997; 34
2007; 80
1984
1982
2007; 42
2003; 60
2005; 38
2001; 34
2007; 43
1998; 35
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
Lomauro C.J. (e_1_2_6_18_1) 1985; 18
e_1_2_6_19_1
Al‐Muhtaseb A.H. (e_1_2_6_3_1) 2002; 80
AOAC (e_1_2_6_4_1) 1995
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_11_1
e_1_2_6_17_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
Perry R.H. (e_1_2_6_23_1) 1984
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_2_1
Iglesias H.A. (e_1_2_6_12_1) 1982
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 47
  start-page: 281
  year: 2001
  end-page: 287
  article-title: Experimental determination of the sorption isotherms of mint ( ), sage ( ) and verbena ( )
  publication-title: Journal of Food Engineering
– volume: 31
  start-page: 113
  year: 1997
  end-page: 123
  article-title: Sorptional equilibrium and drying characteristics of garlic
  publication-title: Journal of Food Engineering
– volume: 34
  start-page: 203
  year: 1997
  end-page: 212
  article-title: Moisture sorption isotherms of fufu and tapioca at different temperatures
  publication-title: Journal of Food Engineering
– volume: 47
  start-page: 1484
  year: 1982
  end-page: 1488
  article-title: Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations
  publication-title: Journal of Food Science
– volume: 31
  start-page: 85
  year: 1997
  end-page: 93
  article-title: Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks
  publication-title: Journal of Food Engineering
– volume: 37
  start-page: 223
  year: 2002
  end-page: 227
  article-title: Analysis of moisture sorption characteristics of fish protein myosin
  publication-title: International Journal of Food Science and Technology
– volume: 75
  start-page: 355
  year: 2006
  end-page: 363
  article-title: Moisture sorption characteristics of tropical fresh water crayfish ( )
  publication-title: Journal of Food Engineering
– volume: 41
  start-page: 1755
  year: 1998
  end-page: 1760
  article-title: Evaluation of the GAB equation for the isotherms of agricultural products
  publication-title: Transaction of the ASAE
– volume: 80
  start-page: 1293
  year: 2007
  end-page: 1301
  article-title: Water desorption thermodynamic properties of pineapple
  publication-title: Journal of Food Engineering
– volume: 24
  start-page: 347
  year: 2004
  end-page: 352
  article-title: Quality profile of 15 apple cultivars
  publication-title: Ciência e Tecnologia em Alimentos
– volume: 51
  start-page: 163
  year: 2002
  end-page: 170
  article-title: Desorption isotherms for cooked and cured beef and pork
  publication-title: Journal of Food Engineering
– volume: 60
  start-page: 157
  year: 2003
  end-page: 165
  article-title: Thermodynamic properties of moisture sorption of potato
  publication-title: Journal of Food Engineering
– volume: 42
  start-page: 448
  year: 2007
  end-page: 452
  article-title: Effect of cassava varieties on the sorption isotherm of tapioca grits
  publication-title: International Journal of Food Science and Technology
– volume: 35
  start-page: 267
  year: 1998
  end-page: 280
  article-title: The determination of sorption isotherm and the isosteric heats of sorption for potatoes
  publication-title: Journal of Food Engineering
– volume: 77
  start-page: 194
  year: 2006
  end-page: 199
  article-title: Water adsorption isotherms of texturized soy protein
  publication-title: Journal of Food Engineering
– volume: 78
  start-page: 413
  year: 2007
  end-page: 421
  article-title: Moisture sorption and thermodynamic properties of safflower petals and tarragon
  publication-title: Journal of Food Engineering
– start-page: 3/65
  year: 1984
– year: 1982
– volume: 80
  start-page: 118
  year: 2002
  end-page: 128
  article-title: Moisture sorption isotherm characteristics of food products: a review
  publication-title: Trans IChemE
– volume: 69
  start-page: 133
  year: 2005
  end-page: 145
  article-title: Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach
  publication-title: Journal of Food Engineering
– year: 1995
– volume: 38
  start-page: 303
  year: 2005
  end-page: 310
  article-title: Effect of temperature on moisture desorption isotherms of kheer
  publication-title: Food Science and Technology
– volume: 73
  start-page: 281
  year: 2006
  end-page: 289
  article-title: The thin layer drying characteristics of organic apple slices
  publication-title: Journal of Food Engineering
– volume: 34
  start-page: 143
  year: 2001
  end-page: 148
  article-title: Moisture sorption properties of smoked chicken sausages from spent hen meat
  publication-title: Food Research International
– volume: 37
  start-page: 437
  year: 1998
  end-page: 449
  article-title: Sorption isotherms and drying characteristics of Mulberry ( )
  publication-title: Journal of Food Engineering
– volume: 43
  start-page: 252
  year: 2007
  end-page: 264
  article-title: Moisture sorption isotherms and thermodynamic properties of walnut kernels
  publication-title: Journal of Stored Products Research
– volume: 61
  start-page: 365
  year: 2004
  end-page: 371
  article-title: Grain sorption equilibria of quinoa grains
  publication-title: Journal of Food Engineering
– volume: 18
  start-page: 111
  year: 1985
  end-page: 117
  article-title: Evaluation of food moisture sorption isotherm equations. Part I. Fruit vegetable and meat products
  publication-title: Lebensmittel-Wissenschaft und Technologie
– volume: 6
  start-page: 371
  year: 2000
  end-page: 378
  article-title: Some physical and thermal characteristics of amaranth starch
  publication-title: Food Science and Technology International
– volume: 37
  start-page: 429
  year: 2004
  end-page: 438
  article-title: Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes
  publication-title: Lebensmittel-Wissenschaft und Technologie
– volume: 97
  start-page: 4786
  year: 1993
  end-page: 4796
  article-title: Pore size distribution analysis of microporous carbons: a density functional theory approach
  publication-title: The Journal of Physical Chemistry
– ident: e_1_2_6_32_1
  doi: 10.1590/S0101-20612004000300007
– ident: e_1_2_6_11_1
  doi: 10.1016/S0260-8774(01)00053-X
– volume: 80
  start-page: 118
  year: 2002
  ident: e_1_2_6_3_1
  article-title: Moisture sorption isotherm characteristics of food products: a review
  publication-title: Trans IChemE
  contributor:
    fullname: Al‐Muhtaseb A.H.
– ident: e_1_2_6_20_1
  doi: 10.1016/S0260-8774(98)00025-9
– ident: e_1_2_6_19_1
  doi: 10.1016/S0260-8774(98)00094-6
– ident: e_1_2_6_29_1
  doi: 10.1016/S0963-9969(00)00145-9
– ident: e_1_2_6_31_1
  doi: 10.1016/S0260-8774(03)00143-2
– volume-title: Official Methods of Analysis
  year: 1995
  ident: e_1_2_6_4_1
  contributor:
    fullname: AOAC
– ident: e_1_2_6_13_1
  doi: 10.1016/j.jfoodeng.2005.10.009
– ident: e_1_2_6_25_1
  doi: 10.1111/j.1365-2621.1982.tb04966.x
– ident: e_1_2_6_27_1
  doi: 10.1016/S0260-8774(97)00072-1
– ident: e_1_2_6_14_1
  doi: 10.1016/j.lwt.2003.10.012
– ident: e_1_2_6_22_1
  doi: 10.1016/S0260-8774(96)00019-2
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jfoodeng.2005.05.059
– ident: e_1_2_6_26_1
  doi: 10.1016/j.jfoodeng.2005.03.024
– ident: e_1_2_6_21_1
  doi: 10.1016/S0260-8774(03)00036-0
– ident: e_1_2_6_2_1
  doi: 10.1111/j.1365-2621.2007.01261.x
– ident: e_1_2_6_17_1
  doi: 10.1021/j100120a035
– ident: e_1_2_6_7_1
  doi: 10.1177/108201320000600503
– ident: e_1_2_6_9_1
  doi: 10.13031/2013.17319
– ident: e_1_2_6_5_1
  doi: 10.1016/j.jfoodeng.2005.03.062
– ident: e_1_2_6_28_1
  doi: 10.1016/j.jfoodeng.2006.10.001
– ident: e_1_2_6_6_1
  doi: 10.1016/j.jfoodeng.2004.08.004
– ident: e_1_2_6_30_1
  doi: 10.1016/j.jspr.2006.06.006
– ident: e_1_2_6_10_1
  doi: 10.1046/j.1365-2621.2002.00560.x
– ident: e_1_2_6_15_1
  doi: 10.1016/S0260-8774(00)00130-8
– ident: e_1_2_6_16_1
  doi: 10.1016/j.lwt.2003.10.009
– ident: e_1_2_6_24_1
  doi: 10.1016/S0260-8774(96)00021-0
– volume-title: Handbook of food isotherms
  year: 1982
  ident: e_1_2_6_12_1
  contributor:
    fullname: Iglesias H.A.
– volume: 18
  start-page: 111
  year: 1985
  ident: e_1_2_6_18_1
  article-title: Evaluation of food moisture sorption isotherm equations. Part I. Fruit vegetable and meat products
  publication-title: Lebensmittel-Wissenschaft und Technologie
  contributor:
    fullname: Lomauro C.J.
– start-page: 3/65
  volume-title: Chemical Engineers’ Handbook
  year: 1984
  ident: e_1_2_6_23_1
  contributor:
    fullname: Perry R.H.
SSID ssj0002374
Score 2.0552492
Snippet The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were...
Summary The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data...
The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 deg C using the gravimetric static method. The experimental data were...
SourceID proquest
crossref
pascalfrancis
wiley
istex
fao
SourceType Aggregation Database
Index Database
Publisher
StartPage 1824
SubjectTerms Apple
apples
Biological and medical sciences
drying
Food engineering
Food industries
Fruit and vegetable industries
fruits/vegetables
Fundamental and applied biological sciences. Psychology
garlic
General aspects
physicochemical properties
Title Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic
URI https://api.istex.fr/ark:/67375/WNG-SFQH61CS-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2621.2008.01716.x
https://search.proquest.com/docview/34908052
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF7jwKKCGR_EB9ZbV2o7jzRG1hKVSVyrLit4s24mr7ZakSjZS4dczk8fSIA4IcfPBtuLxzPhzZuYzIe8M3Kq8A--XwWkaRlHmQ6ssC3mWcOs8csbh_46zRTxfRacX8qLPf8JamI4fYvfDDS2j9ddo4MbWYyPvMrQ461MikfllgniSCYXZXSeffzFJcdERMidyGkqAEOOknj9ONDqp7ntTAn5F0d9i_qSpQYS-e_tiBE7vQtz2jEofk82wui41ZTNptnbifvxG_Ph_lv-EPOqhLH3f6d5Tci8v9klwss639Ij2fKPXdDHQ_e-TB0MVdP2MnJ-VsMqmymldVq3bouu6rQb7VlNTZLRtltn3wsAAeoMxgwrJX2npKUbdc5o2V-u266WprtfuOVmlH74cz8P-eYfQReDWwjjOlMqVS2LmTRbPnFJmBvAFixYjpCxImJEijqeZkTOeSO4QrCJ_obNceiZekL2iLPIDQqNcOECC1njPo1h4m0hpFYb8BFyI1DQgbNhKfdOxeOg7tx8QpEZB9m9yoiD1bUAOYM-1uQRnq1dLjiFeOB6UYDIgR60i7OYy1QYT5JTUXxcf9TI9n8fseKnnATkcacpuAAckGEWCB-TtoDoa7BqDNabIy6bWAiOyUwk9VKsGf_3d-tNpusTmy38e-Yo85APtL3tN9rZVk78B7LW1h61V_QTBARug
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHMqFQgE1FFofUG9Zbew43hxRS0hLd6WyXdGb5Thxte2SVMlGKvx6ZvKxNIgDQtx8sK1kPDN-9ozfEPJew6nKGvB-Keymru-n1k1k4rksDVliLHLG4X3HdBbEC__sSlx15YDwLUzLD7G5cEPLaPw1GjheSA-tvE3RYl6XE4nULyMAlE_A-jnWcTj58otLivGWkjkUY1cAiBim9fxxpsFe9djqAhAsCv8eMyh1BUK0bfWLATx9CHKbXSraIav-_9rklNtRvU5G5sdv1I__SQDPybMOzdIPrfq9II-yfJc4J8tsTY9oRzm6orOe8X-XbPcPoauX5GJawG_WZUaromw8F11WzYOwbxXVeUqbZpF-zzUMoHcYNiiR_5UWlmLgPaNRfbNsul7rcrU0r8gi-nh5HLtdhQfX-ODZ3CBIpcykCQPP6jSYGCn1BBAMvlv0kbUg9LTgQTBOtZiwUDCDeBUpDE3ChPX4a7KVF3m2R6ifcQNgMNHWMj_gNgmFSCRG_TicieTYIV6_luquJfJQDw5AIEiFguzKcqIg1b1D9mDRlb4Gf6sWc4ZRXtghJPeEQ44aTdjMpctbzJGTQn2dfVLz6CIOvOO5ih1yMFCVzQAGYND3OXPIYa87Ckwb4zU6z4q6UhyDsmMBPWSjB3_93er0LJpj880_jzwk2_Hl9Fydn84-75OnrGcB9t6SrXVZZ-8Aiq2Tg8bEfgKAsh-4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BkYALjwJqeLQ-oN6y2jhxvDmilrAtdEVZVvRmOU5cLVuSVbKRCr-emTyWBnFAiJsPthWPZ8afMzOfAV5rvFVZg94vxdPUDYLUuolMPJenEU-MJc44-t9xNguni-D0Qlx0-U9UC9PyQ2x_uJFlNP6aDHyd2qGRtxla3OtSIon5ZYR48k4QIhAmgPTpF5UU91tG5kiMXYEYYpjV88eZBkfVbasLBLAk-2tKoNQVytC2j18M0OlNjNscUvFDWPXLa3NTVqN6k4zMj9-YH__P-h_Bgw7Lsjet8j2GW1m-C87xMtuwQ9YRjl6xWc_3vwv3-jLo6gmcnxW4yrrMWFWUjd9iy6opB_tWMZ2nrGkW6fdc4wC2pqBBSeyvrLCMwu4Zi-uvy6brpS6vluYpLOK3n4-mbve-g2sC9GtuGKZSZtJEoWd1Gk6MlHqC-IWqFgPiLIg8LfwwHKdaTHgkuCG0SgSGJuHCev4z2MmLPNsDFmS-QSiYaGs57r5NIiESSTE_H29EcuyA12-lWrc0HurG9QcFqUiQ3aOcJEh17cAe7rnSl-ht1WLOKcaL54P0PeHAYaMI27l0uaIMOSnUl9k7NY_Pp6F3NFdTB_YHmrIdwBEKBoHPHTjoVUehYVO0RudZUVfKp5DsWGAP2ajBX3-3OjmN59R8_s8jD-Dux-NYfTiZvX8B93lPAey9hJ1NWWevEIdtkv3GwH4C7goeZw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture+sorption+isotherms+and+thermodynamic+properties+of+apple+Fuji+and+garlic&rft.jtitle=International+journal+of+food+science+%26+technology&rft.au=Moraes%2C+Mariana+A.&rft.au=Rosa%2C+Gabriela+S.&rft.au=Pinto%2C+Luiz+A.+A.&rft.date=2008-10-01&rft.issn=0950-5423&rft.eissn=1365-2621&rft.volume=43&rft.issue=10&rft.spage=1824&rft.epage=1831&rft_id=info:doi/10.1111%2Fj.1365-2621.2008.01716.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2621_2008_01716_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5423&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5423&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5423&client=summon