Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic
The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by...
Saved in:
Published in | International journal of food science & technology Vol. 43; no. 10; pp. 1824 - 1831 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.10.2008
Blackwell Publishing Ltd Wiley-Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius-Clapeyron and Gibbs-Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R² > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48-100 kJ mol⁻¹ and 14-150 J mol⁻¹ K⁻¹) than for garlic (in range 43-68 kJ mol⁻¹ and 0-66 J mol⁻¹ K⁻¹). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution. |
---|---|
AbstractList | The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 deg C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius-Clapeyron and Gibbs-Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R2 > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48-100kJmol-1 and 14-150Jmol-1K-1) than for garlic (in range 43-68kJmol-1 and 0-66Jmol-1K-1). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution. (Received 9 July 2007; Accepted in revised form 6 December 2007). Summary The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson–Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius–Clapeyron and Gibbs–Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R2 > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48–100 kJ mol−1 and 14–150 J mol−1 K−1) than for garlic (in range 43–68 kJ mol−1 and 0–66 J mol−1 K−1). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution. The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson-Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius-Clapeyron and Gibbs-Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data (R² > 99% and E% < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48-100 kJ mol⁻¹ and 14-150 J mol⁻¹ K⁻¹) than for garlic (in range 43-68 kJ mol⁻¹ and 0-66 J mol⁻¹ K⁻¹). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution. Summary The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were analysed using GAB, BET, Henderson–Thompson and Oswin equations. The isosteric heat and the differential entropy of desorption were determined by applying Clausius–Clapeyron and Gibbs–Helmholtz equations, respectively. The GAB equation showed the best fitting to the experimental data ( R 2 > 99% and E % < 10%). The monolayer moisture content values for apple were higher than those for garlic at the studied temperatures; the values varied from 0.050 to 0.056 and from 0.107 to 0.168 for garlic and apple, respectively. The isosteric heat and the differential entropy of desorption were estimated in function of the moisture content. The values of these thermodynamic properties were higher for apple (in range 48–100 kJ mol −1 and 14–150 J mol −1 K −1 ) than for garlic (in range 43–68 kJ mol −1 and 0–66 J mol −1 K −1 ). The water surface area values decreased with increasing temperature. The Kelvin and the Halsey equations were used to calculate the pore size distribution. |
Author | Pinto, Luiz A. A. Rosa, Gabriela S. Moraes, Mariana A. |
Author_xml | – sequence: 1 fullname: Moraes, Mariana A – sequence: 2 fullname: Rosa, Gabriela S – sequence: 3 fullname: Pinto, Luiz A.A |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20644432$$DView record in Pascal Francis |
BookMark | eNqNkU1v1DAQhi1UJLaF34AvcEvwR_yRCxJasd2iUlQtFceRcZziJRsHO6vu_nucTbXn-jAeaZ55Z_TOJbroQ-8QwpSUNL9P25JyKQomGS0ZIbokVFFZHl6hxblwgRakFqQQFeNv0GVKW0II46paoPvvwadxHx1OIQ6jDz32KYx_XNwlbPoGn9LQHHuz8xYPMQwujt4lHFpshqFzeLXf-hP6aGLn7Vv0ujVdcu-e_yv0sPr6c7kubn9c3yy_3Ba24koWUjZKOWVrSVvTSG2VMprUVFKlK9toW1MjuJSkMUKzWjDLa6W0Usr-ZqKl_Ap9nHXzTv_2Lo2w88m6rjO9C_sEvKqJJoJlUM-gjSGl6FoYot-ZeARKYPIQtjBZBZNVMHkIJw_hkFs_PM8wyZqujaa3Pp37GZFVVfFpxOeZe_KdO75YH26-rTZTmgWKWSAfwx3OAib-Bam4EvDr7ho2q_u1pMsNrDP_fuZbE8A8xrzUw4YRygkVXPEc_gOnQp6I |
CODEN | IJFTEZ |
CitedBy_id | crossref_primary_10_1016_j_lwt_2024_115749 crossref_primary_10_1016_j_ibiod_2014_05_023 crossref_primary_10_1007_s00231_018_2527_8 crossref_primary_10_1016_j_lwt_2022_113866 crossref_primary_10_1016_j_sajb_2020_11_026 crossref_primary_10_1080_02726351_2014_970310 crossref_primary_10_1111_j_1365_2621_2009_02109_x crossref_primary_10_1007_s11694_018_9879_0 crossref_primary_10_1002_cjce_23839 crossref_primary_10_3389_fnut_2022_940111 crossref_primary_10_1111_jfpp_14731 crossref_primary_10_1590_1981_6723_6114 crossref_primary_10_1093_ijlct_ctab029 crossref_primary_10_1016_j_gaost_2021_09_001 crossref_primary_10_1016_j_ifset_2017_07_023 crossref_primary_10_1016_j_indcrop_2015_01_078 crossref_primary_10_1007_s00231_017_2223_0 crossref_primary_10_1016_j_fpsl_2017_04_003 crossref_primary_10_3390_foods13071056 crossref_primary_10_1111_j_1365_2621_2010_02208_x crossref_primary_10_1016_j_powtec_2021_11_006 crossref_primary_10_1080_07373930903383604 crossref_primary_10_1016_j_lwt_2010_07_005 crossref_primary_10_1016_j_lwt_2020_109832 crossref_primary_10_1016_j_jfoodeng_2012_01_012 crossref_primary_10_3390_foods11162407 crossref_primary_10_3390_pr9111900 |
Cites_doi | 10.1590/S0101-20612004000300007 10.1016/S0260-8774(01)00053-X 10.1016/S0260-8774(98)00025-9 10.1016/S0260-8774(98)00094-6 10.1016/S0963-9969(00)00145-9 10.1016/S0260-8774(03)00143-2 10.1016/j.jfoodeng.2005.10.009 10.1111/j.1365-2621.1982.tb04966.x 10.1016/S0260-8774(97)00072-1 10.1016/j.lwt.2003.10.012 10.1016/S0260-8774(96)00019-2 10.1016/j.jfoodeng.2005.05.059 10.1016/j.jfoodeng.2005.03.024 10.1016/S0260-8774(03)00036-0 10.1111/j.1365-2621.2007.01261.x 10.1021/j100120a035 10.1177/108201320000600503 10.13031/2013.17319 10.1016/j.jfoodeng.2005.03.062 10.1016/j.jfoodeng.2006.10.001 10.1016/j.jfoodeng.2004.08.004 10.1016/j.jspr.2006.06.006 10.1046/j.1365-2621.2002.00560.x 10.1016/S0260-8774(00)00130-8 10.1016/j.lwt.2003.10.009 10.1016/S0260-8774(96)00021-0 |
ContentType | Journal Article |
Copyright | 2008 The Authors. Journal compilation © 2008 Institute of Food Science and Technology 2009 INIST-CNRS |
Copyright_xml | – notice: 2008 The Authors. Journal compilation © 2008 Institute of Food Science and Technology – notice: 2009 INIST-CNRS |
DBID | FBQ BSCLL IQODW AAYXX CITATION 8FD F28 FR3 |
DOI | 10.1111/j.1365-2621.2008.01716.x |
DatabaseName | AGRIS Istex Pascal-Francis CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitleList | Technology Research Database CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Diet & Clinical Nutrition |
EISSN | 1365-2621 |
EndPage | 1831 |
ExternalDocumentID | 10_1111_j_1365_2621_2008_01716_x 20644432 IJFS1716 ark_67375_WNG_SFQH61CS_H US201301537315 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29J 3-9 31~ 33P 3EH 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAIKC AAJUZ AAMNW AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABCVL ABEML ABHUG ABJNI ABPTK ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACKIV ACPOU ACPRK ACSCC ACSMX ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHEFC AI. AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG COF CS3 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DROCM DRSTM DU5 EBS EJD ESX F00 F01 F04 FBQ FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HVGLF HZI HZ~ IHE IX1 J0M LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OVD P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI UB1 V8K VH1 W8V W99 WBFHL WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ XFK XG1 Y6R YFH YUY ZZTAW ~IA ~WT AAHBH ABEJV AHBTC AITYG BSCLL HGLYW OIG TOX AAPBV IQODW AAYXX CITATION 8FD F28 FR3 |
ID | FETCH-LOGICAL-c4376-66d77e7c961fad68c77a809161784cd8c91a53660da582952c39778777cb25f13 |
IEDL.DBID | DR2 |
ISSN | 0950-5423 |
IngestDate | Fri Oct 25 09:11:50 EDT 2024 Fri Aug 23 03:56:04 EDT 2024 Sun Oct 22 16:08:58 EDT 2023 Sat Aug 24 01:03:08 EDT 2024 Wed Oct 30 10:05:13 EDT 2024 Wed Dec 27 19:09:54 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Sorption Apple fruits/vegetables Garlic Fruit vegetable Thermodynamic properties Physicochemical properties Drying |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4376-66d77e7c961fad68c77a809161784cd8c91a53660da582952c39778777cb25f13 |
Notes | http://dx.doi.org/10.1111/j.1365-2621.2008.01716.x istex:CAFC832AACD48B46CEE33786CAB6B306F57EFA45 ark:/67375/WNG-SFQH61CS-H ArticleID:IJFS1716 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 34908052 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_34908052 crossref_primary_10_1111_j_1365_2621_2008_01716_x pascalfrancis_primary_20644432 wiley_primary_10_1111_j_1365_2621_2008_01716_x_IJFS1716 istex_primary_ark_67375_WNG_SFQH61CS_H fao_agris_US201301537315 |
PublicationCentury | 2000 |
PublicationDate | October 2008 |
PublicationDateYYYYMMDD | 2008-10-01 |
PublicationDate_xml | – month: 10 year: 2008 text: October 2008 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford |
PublicationTitle | International journal of food science & technology |
PublicationYear | 2008 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd Wiley-Blackwell |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Wiley-Blackwell |
References | Lastoskie, C., Gubbins, K.E. & Quirke, N. (1993). Pore size distribution analysis of microporous carbons: a density functional theory approach. The Journal of Physical Chemistry, 97, 4786-4796. Adebowale, A.R., Sanni, L., Awonorin, S., Daniel, I. & Kuye, A. (2007). Effect of cassava varieties on the sorption isotherm of tapioca grits. International Journal of Food Science and Technology, 42, 448-452. Palou, E., Lopes, M.A. & Argaiz, A. (1997). Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks. Journal of Food Engineering, 31, 85-93. Lomauro, C.J., Bakshi, A.S. & Labuza, T.P. (1985). Evaluation of food moisture sorption isotherm equations. Part I. Fruit vegetable and meat products. Lebensmittel-Wissenschaft und Technologie, 18, 111-117. Singh, R.R.B., Rao, K.H., Anjaneyulu, A.S.R. & Patil, G.R. (2001). Moisture sorption properties of smoked chicken sausages from spent hen meat. Food Research International, 34, 143-148. Ariahu, C.C., Kaze, S.A. & Achem, C.D. (2006). Moisture sorption characteristics of tropical fresh water crayfish (Procambarus clarkii). Journal of Food Engineering, 75, 355-363. Simal, S., Femenia, A., Castell-Palou, A. & Rosselló, C. (2007). Water desorption thermodynamic properties of pineapple. Journal of Food Engineering, 80, 1293-1301. Chen, C. & Jayas, D.S. (1998). Evaluation of the GAB equation for the isotherms of agricultural products. Transaction of the ASAE, 41, 1755-1760. Cassini, A.S., Marczak, L.D.F. & Norena, C.P.Z. (2006). Water adsorption isotherms of texturized soy protein. Journal of Food Engineering, 77, 194-199. AOAC (1995). Official Methods of Analysis, 16th edn. Chapter 37, p. 4. Washington: Association of Official Analytical Chemists Inc. Kaymak-Ertekin, F. & Gedik, A. (2004). Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes. Lebensmittel-Wissenschaft und Technologie, 37, 429-438. Al-Muhtaseb, A.H., McMinn, W.A.M. & Magee, T.R.A. (2002). Moisture sorption isotherm characteristics of food products: a review. Trans IChemE, 80, 118-128. McLaughlin, C.P. & Magee, T.R.A. (1998). The determination of sorption isotherm and the isosteric heats of sorption for potatoes. Journal of Food Engineering, 35, 267-280. Wosiacki, G., Pholman, B.C. & Nogueira, A. (2004). Quality profile of 15 apple cultivars. Ciência e Tecnologia em Alimentos, 24, 347-352. Calzetta Resio, A.N., Tolaba, M.P. & Suarez, C. (2000). Some physical and thermal characteristics of amaranth starch. Food Science and Technology International, 6, 371-378. Iglesias, H.A. & Chirife, J. (1982). Handbook of food isotherms. Pp. 3, 283, 292. New York, NY: Academic Press. Roman, G.N., Urbician, M.J. & Rotstein, E. (1982). Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations. Journal of Food Science, 47, 1484-1488. Kumar, A.J., Singh, R.R.B., Patil, G.R. & Patel, A.A. (2005). Effect of temperature on moisture desorption isotherms of kheer. Food Science and Technology, 38, 303-310. Kouhila, M., Belghit, A., Daguenet, M. & Boutaleb, B.C. (2001). Experimental determination of the sorption isotherms of mint (Mentha viridis), sage (Salvia officinalis) and verbena (Lippia citriodora). Journal of Food Engineering, 47, 281-287. Maskan, M. & Gogus, F. (1998). Sorption isotherms and drying characteristics of Mulberry (Morus alba). Journal of Food Engineering, 37, 437-449. Arslan, N. & Togrul, H. (2005). Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach. Journal of Food Engineering, 69, 133-145. Tolaba, M.P., Peltzer, M., Enriquez, N. & Pollio, M.L. (2004). Grain sorption equilibria of quinoa grains. Journal of Food Engineering, 61, 365-371. Sanni, L.O., Atere, A. & Kuye, A. (1997). Moisture sorption isotherms of fufu and tapioca at different temperatures. Journal of Food Engineering, 34, 203-212. McMinn, W.A.M. & Magee, T.R.A. (2003). Thermodynamic properties of moisture sorption of potato. Journal of Food Engineering, 60, 157-165. Das, M. & Das, S.K. (2002). Analysis of moisture sorption characteristics of fish protein myosin. International Journal of Food Science and Technology, 37, 223-227. Perry, R.H. (ed.) (1984). Chemical Engineers' Handbook, 6th edn. Pp. 3/65. New York, NY: McGraw-Hill. Delgado, A.E. & Sun, D. (2002). Desorption isotherms for cooked and cured beef and pork. Journal of Food Engineering, 51, 163-170. Kaya, S. & Kahyaoglu, T. (2007). Moisture sorption and thermodynamic properties of safflower petals and tarragon. Journal of Food Engineering, 78, 413-421. Pezzutti, A. & Crapiste, G.H. (1997). Sorptional equilibrium and drying characteristics of garlic. Journal of Food Engineering, 31, 113-123. Sacilik, K. & Elicin, A.K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73, 281-289. Togrul, H. & Arslan, N. (2007). Moisture sorption isotherms and thermodynamic properties of walnut kernels. Journal of Stored Products Research, 43, 252-264. 2002; 37 2004; 61 2006; 75 2006; 73 2000; 6 2006; 77 2002; 51 2004; 24 1995 2002; 80 1998; 41 2007; 78 2001; 47 2005; 69 1998; 37 1982; 47 1985; 18 1997; 31 2004; 37 1993; 97 1997; 34 2007; 80 1984 1982 2007; 42 2003; 60 2005; 38 2001; 34 2007; 43 1998; 35 e_1_2_6_32_1 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 Lomauro C.J. (e_1_2_6_18_1) 1985; 18 e_1_2_6_19_1 Al‐Muhtaseb A.H. (e_1_2_6_3_1) 2002; 80 AOAC (e_1_2_6_4_1) 1995 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_17_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_6_1 Perry R.H. (e_1_2_6_23_1) 1984 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_2_1 Iglesias H.A. (e_1_2_6_12_1) 1982 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 47 start-page: 281 year: 2001 end-page: 287 article-title: Experimental determination of the sorption isotherms of mint ( ), sage ( ) and verbena ( ) publication-title: Journal of Food Engineering – volume: 31 start-page: 113 year: 1997 end-page: 123 article-title: Sorptional equilibrium and drying characteristics of garlic publication-title: Journal of Food Engineering – volume: 34 start-page: 203 year: 1997 end-page: 212 article-title: Moisture sorption isotherms of fufu and tapioca at different temperatures publication-title: Journal of Food Engineering – volume: 47 start-page: 1484 year: 1982 end-page: 1488 article-title: Moisture equilibrium in apples at several temperatures: experimental data and theoretical considerations publication-title: Journal of Food Science – volume: 31 start-page: 85 year: 1997 end-page: 93 article-title: Effect of temperature on the moisture sorption isotherms of some cookies and corn snacks publication-title: Journal of Food Engineering – volume: 37 start-page: 223 year: 2002 end-page: 227 article-title: Analysis of moisture sorption characteristics of fish protein myosin publication-title: International Journal of Food Science and Technology – volume: 75 start-page: 355 year: 2006 end-page: 363 article-title: Moisture sorption characteristics of tropical fresh water crayfish ( ) publication-title: Journal of Food Engineering – volume: 41 start-page: 1755 year: 1998 end-page: 1760 article-title: Evaluation of the GAB equation for the isotherms of agricultural products publication-title: Transaction of the ASAE – volume: 80 start-page: 1293 year: 2007 end-page: 1301 article-title: Water desorption thermodynamic properties of pineapple publication-title: Journal of Food Engineering – volume: 24 start-page: 347 year: 2004 end-page: 352 article-title: Quality profile of 15 apple cultivars publication-title: Ciência e Tecnologia em Alimentos – volume: 51 start-page: 163 year: 2002 end-page: 170 article-title: Desorption isotherms for cooked and cured beef and pork publication-title: Journal of Food Engineering – volume: 60 start-page: 157 year: 2003 end-page: 165 article-title: Thermodynamic properties of moisture sorption of potato publication-title: Journal of Food Engineering – volume: 42 start-page: 448 year: 2007 end-page: 452 article-title: Effect of cassava varieties on the sorption isotherm of tapioca grits publication-title: International Journal of Food Science and Technology – volume: 35 start-page: 267 year: 1998 end-page: 280 article-title: The determination of sorption isotherm and the isosteric heats of sorption for potatoes publication-title: Journal of Food Engineering – volume: 77 start-page: 194 year: 2006 end-page: 199 article-title: Water adsorption isotherms of texturized soy protein publication-title: Journal of Food Engineering – volume: 78 start-page: 413 year: 2007 end-page: 421 article-title: Moisture sorption and thermodynamic properties of safflower petals and tarragon publication-title: Journal of Food Engineering – start-page: 3/65 year: 1984 – year: 1982 – volume: 80 start-page: 118 year: 2002 end-page: 128 article-title: Moisture sorption isotherm characteristics of food products: a review publication-title: Trans IChemE – volume: 69 start-page: 133 year: 2005 end-page: 145 article-title: Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach publication-title: Journal of Food Engineering – year: 1995 – volume: 38 start-page: 303 year: 2005 end-page: 310 article-title: Effect of temperature on moisture desorption isotherms of kheer publication-title: Food Science and Technology – volume: 73 start-page: 281 year: 2006 end-page: 289 article-title: The thin layer drying characteristics of organic apple slices publication-title: Journal of Food Engineering – volume: 34 start-page: 143 year: 2001 end-page: 148 article-title: Moisture sorption properties of smoked chicken sausages from spent hen meat publication-title: Food Research International – volume: 37 start-page: 437 year: 1998 end-page: 449 article-title: Sorption isotherms and drying characteristics of Mulberry ( ) publication-title: Journal of Food Engineering – volume: 43 start-page: 252 year: 2007 end-page: 264 article-title: Moisture sorption isotherms and thermodynamic properties of walnut kernels publication-title: Journal of Stored Products Research – volume: 61 start-page: 365 year: 2004 end-page: 371 article-title: Grain sorption equilibria of quinoa grains publication-title: Journal of Food Engineering – volume: 18 start-page: 111 year: 1985 end-page: 117 article-title: Evaluation of food moisture sorption isotherm equations. Part I. Fruit vegetable and meat products publication-title: Lebensmittel-Wissenschaft und Technologie – volume: 6 start-page: 371 year: 2000 end-page: 378 article-title: Some physical and thermal characteristics of amaranth starch publication-title: Food Science and Technology International – volume: 37 start-page: 429 year: 2004 end-page: 438 article-title: Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes publication-title: Lebensmittel-Wissenschaft und Technologie – volume: 97 start-page: 4786 year: 1993 end-page: 4796 article-title: Pore size distribution analysis of microporous carbons: a density functional theory approach publication-title: The Journal of Physical Chemistry – ident: e_1_2_6_32_1 doi: 10.1590/S0101-20612004000300007 – ident: e_1_2_6_11_1 doi: 10.1016/S0260-8774(01)00053-X – volume: 80 start-page: 118 year: 2002 ident: e_1_2_6_3_1 article-title: Moisture sorption isotherm characteristics of food products: a review publication-title: Trans IChemE contributor: fullname: Al‐Muhtaseb A.H. – ident: e_1_2_6_20_1 doi: 10.1016/S0260-8774(98)00025-9 – ident: e_1_2_6_19_1 doi: 10.1016/S0260-8774(98)00094-6 – ident: e_1_2_6_29_1 doi: 10.1016/S0963-9969(00)00145-9 – ident: e_1_2_6_31_1 doi: 10.1016/S0260-8774(03)00143-2 – volume-title: Official Methods of Analysis year: 1995 ident: e_1_2_6_4_1 contributor: fullname: AOAC – ident: e_1_2_6_13_1 doi: 10.1016/j.jfoodeng.2005.10.009 – ident: e_1_2_6_25_1 doi: 10.1111/j.1365-2621.1982.tb04966.x – ident: e_1_2_6_27_1 doi: 10.1016/S0260-8774(97)00072-1 – ident: e_1_2_6_14_1 doi: 10.1016/j.lwt.2003.10.012 – ident: e_1_2_6_22_1 doi: 10.1016/S0260-8774(96)00019-2 – ident: e_1_2_6_8_1 doi: 10.1016/j.jfoodeng.2005.05.059 – ident: e_1_2_6_26_1 doi: 10.1016/j.jfoodeng.2005.03.024 – ident: e_1_2_6_21_1 doi: 10.1016/S0260-8774(03)00036-0 – ident: e_1_2_6_2_1 doi: 10.1111/j.1365-2621.2007.01261.x – ident: e_1_2_6_17_1 doi: 10.1021/j100120a035 – ident: e_1_2_6_7_1 doi: 10.1177/108201320000600503 – ident: e_1_2_6_9_1 doi: 10.13031/2013.17319 – ident: e_1_2_6_5_1 doi: 10.1016/j.jfoodeng.2005.03.062 – ident: e_1_2_6_28_1 doi: 10.1016/j.jfoodeng.2006.10.001 – ident: e_1_2_6_6_1 doi: 10.1016/j.jfoodeng.2004.08.004 – ident: e_1_2_6_30_1 doi: 10.1016/j.jspr.2006.06.006 – ident: e_1_2_6_10_1 doi: 10.1046/j.1365-2621.2002.00560.x – ident: e_1_2_6_15_1 doi: 10.1016/S0260-8774(00)00130-8 – ident: e_1_2_6_16_1 doi: 10.1016/j.lwt.2003.10.009 – ident: e_1_2_6_24_1 doi: 10.1016/S0260-8774(96)00021-0 – volume-title: Handbook of food isotherms year: 1982 ident: e_1_2_6_12_1 contributor: fullname: Iglesias H.A. – volume: 18 start-page: 111 year: 1985 ident: e_1_2_6_18_1 article-title: Evaluation of food moisture sorption isotherm equations. Part I. Fruit vegetable and meat products publication-title: Lebensmittel-Wissenschaft und Technologie contributor: fullname: Lomauro C.J. – start-page: 3/65 volume-title: Chemical Engineers’ Handbook year: 1984 ident: e_1_2_6_23_1 contributor: fullname: Perry R.H. |
SSID | ssj0002374 |
Score | 2.0552492 |
Snippet | The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data were... Summary The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 °C using the gravimetric static method. The experimental data... The moisture equilibrium isotherms of garlic and apple were determined at 50, 60 and 70 deg C using the gravimetric static method. The experimental data were... |
SourceID | proquest crossref pascalfrancis wiley istex fao |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1824 |
SubjectTerms | Apple apples Biological and medical sciences drying Food engineering Food industries Fruit and vegetable industries fruits/vegetables Fundamental and applied biological sciences. Psychology garlic General aspects physicochemical properties |
Title | Moisture sorption isotherms and thermodynamic properties of apple Fuji and garlic |
URI | https://api.istex.fr/ark:/67375/WNG-SFQH61CS-H/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1365-2621.2008.01716.x https://search.proquest.com/docview/34908052 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagF7jwKKCGR_EB9ZbV2o7jzRG1hKVSVyrLit4s24mr7ZakSjZS4dczk8fSIA4IcfPBtuLxzPhzZuYzIe8M3Kq8A--XwWkaRlHmQ6ssC3mWcOs8csbh_46zRTxfRacX8qLPf8JamI4fYvfDDS2j9ddo4MbWYyPvMrQ461MikfllgniSCYXZXSeffzFJcdERMidyGkqAEOOknj9ONDqp7ntTAn5F0d9i_qSpQYS-e_tiBE7vQtz2jEofk82wui41ZTNptnbifvxG_Ph_lv-EPOqhLH3f6d5Tci8v9klwss639Ij2fKPXdDHQ_e-TB0MVdP2MnJ-VsMqmymldVq3bouu6rQb7VlNTZLRtltn3wsAAeoMxgwrJX2npKUbdc5o2V-u266WprtfuOVmlH74cz8P-eYfQReDWwjjOlMqVS2LmTRbPnFJmBvAFixYjpCxImJEijqeZkTOeSO4QrCJ_obNceiZekL2iLPIDQqNcOECC1njPo1h4m0hpFYb8BFyI1DQgbNhKfdOxeOg7tx8QpEZB9m9yoiD1bUAOYM-1uQRnq1dLjiFeOB6UYDIgR60i7OYy1QYT5JTUXxcf9TI9n8fseKnnATkcacpuAAckGEWCB-TtoDoa7BqDNabIy6bWAiOyUwk9VKsGf_3d-tNpusTmy38e-Yo85APtL3tN9rZVk78B7LW1h61V_QTBARug |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgHMqFQgE1FFofUG9Zbew43hxRS0hLd6WyXdGb5Thxte2SVMlGKvx6ZvKxNIgDQtx8sK1kPDN-9ozfEPJew6nKGvB-Keymru-n1k1k4rksDVliLHLG4X3HdBbEC__sSlx15YDwLUzLD7G5cEPLaPw1GjheSA-tvE3RYl6XE4nULyMAlE_A-jnWcTj58otLivGWkjkUY1cAiBim9fxxpsFe9djqAhAsCv8eMyh1BUK0bfWLATx9CHKbXSraIav-_9rklNtRvU5G5sdv1I__SQDPybMOzdIPrfq9II-yfJc4J8tsTY9oRzm6orOe8X-XbPcPoauX5GJawG_WZUaromw8F11WzYOwbxXVeUqbZpF-zzUMoHcYNiiR_5UWlmLgPaNRfbNsul7rcrU0r8gi-nh5HLtdhQfX-ODZ3CBIpcykCQPP6jSYGCn1BBAMvlv0kbUg9LTgQTBOtZiwUDCDeBUpDE3ChPX4a7KVF3m2R6ifcQNgMNHWMj_gNgmFSCRG_TicieTYIV6_luquJfJQDw5AIEiFguzKcqIg1b1D9mDRlb4Gf6sWc4ZRXtghJPeEQ44aTdjMpctbzJGTQn2dfVLz6CIOvOO5ih1yMFCVzQAGYND3OXPIYa87Ckwb4zU6z4q6UhyDsmMBPWSjB3_93er0LJpj880_jzwk2_Hl9Fydn84-75OnrGcB9t6SrXVZZ-8Aiq2Tg8bEfgKAsh-4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BkYALjwJqeLQ-oN6y2jhxvDmilrAtdEVZVvRmOU5cLVuSVbKRCr-emTyWBnFAiJsPthWPZ8afMzOfAV5rvFVZg94vxdPUDYLUuolMPJenEU-MJc44-t9xNguni-D0Qlx0-U9UC9PyQ2x_uJFlNP6aDHyd2qGRtxla3OtSIon5ZYR48k4QIhAmgPTpF5UU91tG5kiMXYEYYpjV88eZBkfVbasLBLAk-2tKoNQVytC2j18M0OlNjNscUvFDWPXLa3NTVqN6k4zMj9-YH__P-h_Bgw7Lsjet8j2GW1m-C87xMtuwQ9YRjl6xWc_3vwv3-jLo6gmcnxW4yrrMWFWUjd9iy6opB_tWMZ2nrGkW6fdc4wC2pqBBSeyvrLCMwu4Zi-uvy6brpS6vluYpLOK3n4-mbve-g2sC9GtuGKZSZtJEoWd1Gk6MlHqC-IWqFgPiLIg8LfwwHKdaTHgkuCG0SgSGJuHCev4z2MmLPNsDFmS-QSiYaGs57r5NIiESSTE_H29EcuyA12-lWrc0HurG9QcFqUiQ3aOcJEh17cAe7rnSl-ht1WLOKcaL54P0PeHAYaMI27l0uaIMOSnUl9k7NY_Pp6F3NFdTB_YHmrIdwBEKBoHPHTjoVUehYVO0RudZUVfKp5DsWGAP2ajBX3-3OjmN59R8_s8jD-Dux-NYfTiZvX8B93lPAey9hJ1NWWevEIdtkv3GwH4C7goeZw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Moisture+sorption+isotherms+and+thermodynamic+properties+of+apple+Fuji+and+garlic&rft.jtitle=International+journal+of+food+science+%26+technology&rft.au=Moraes%2C+Mariana+A.&rft.au=Rosa%2C+Gabriela+S.&rft.au=Pinto%2C+Luiz+A.+A.&rft.date=2008-10-01&rft.issn=0950-5423&rft.eissn=1365-2621&rft.volume=43&rft.issue=10&rft.spage=1824&rft.epage=1831&rft_id=info:doi/10.1111%2Fj.1365-2621.2008.01716.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_1365_2621_2008_01716_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-5423&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-5423&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-5423&client=summon |