Intensified Distillation-Based Separation Processes: Recent Developments and Perspectives

Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering & technology Vol. 39; no. 12; pp. 2183 - 2195
Main Authors Long, Nguyen Van Duc, Minh, Le Quang, Ahmad, Faizan, Luis, Patricia, Lee, Moonyong
Format Journal Article
LanguageEnglish
Published Weinheim WILEY-VCH Verlag 01.12.2016
WILEY‐VCH Verlag
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity. The need for greater sustainability has prompted industry to search for opportunities to improve process performance. Process intensification has become the main way to meet needs such as decreased costs, energy consumption, and environmental impact. This paper reviews some of the intensified separation processes and improvement mechanisms, with an emphasis on distillation.
AbstractList Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity. The need for greater sustainability has prompted industry to search for opportunities to improve process performance. Process intensification has become the main way to meet needs such as decreased costs, energy consumption, and environmental impact. This paper reviews some of the intensified separation processes and improvement mechanisms, with an emphasis on distillation.
Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity. The need for greater sustainability has prompted industry to search for opportunities to improve process performance. Process intensification has become the main way to meet needs such as decreased costs, energy consumption, and environmental impact. This paper reviews some of the intensified separation processes and improvement mechanisms, with an emphasis on distillation.
Abstract Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity.
Author Long, Nguyen Van Duc
Lee, Moonyong
Ahmad, Faizan
Luis, Patricia
Minh, Le Quang
Author_xml – sequence: 1
  givenname: Nguyen Van Duc
  surname: Long
  fullname: Long, Nguyen Van Duc
  organization: School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
– sequence: 2
  givenname: Le Quang
  surname: Minh
  fullname: Minh, Le Quang
  organization: School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
– sequence: 3
  givenname: Faizan
  surname: Ahmad
  fullname: Ahmad, Faizan
  organization: School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom
– sequence: 4
  givenname: Patricia
  surname: Luis
  fullname: Luis, Patricia
  organization: Materials & Process Engineering (iMMC-IMAP), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
– sequence: 5
  givenname: Moonyong
  surname: Lee
  fullname: Lee, Moonyong
  email: mynlee@yu.ac.kr
  organization: School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
BookMark eNqFkD1PwzAQhi0EEuVjZc7IknJOYsdlg_IpoCAoQkyWY18kQ5oEXyj035NShNiY7vTqeU66d4ut102NjO1xGHKA5MCi6YYJcAEgU7HGBlwkPM54ItbZAEYpxLngcpNtEb0A9ByXA_Z8WXdYky89uujEU-erynS-qeNjQ330gK0J30F0FxqLREiH0T1arLvoBOdYNe2s3ykytYvuMFCLtvNzpB22UZqKcPdnbrPHs9Pp-CK-vj2_HB9dxzZLcxGjE7bIHUcwRkGBVrlCyqworAPLSyeUMqWQKnUIsixHIyiUSB3khguneJJus_3V3TY0b-9InZ55sti_UWPzTpormQmZi2yJDleoDQ1RwFK3wc9MWGgOetmhXnaofzvshdFK-PAVLv6h9fj0aPrXjVduXyp-_romvGqZ95_rp8m5nlypi2k6udc36RdgLIi7
CitedBy_id crossref_primary_10_1002_ceat_201700471
crossref_primary_10_1515_revce_2017_0085
crossref_primary_10_1002_ceat_202000617
crossref_primary_10_1016_j_cep_2018_07_014
crossref_primary_10_1016_j_cep_2017_11_009
crossref_primary_10_1021_acs_iecr_2c04305
crossref_primary_10_1002_ceat_201600052
crossref_primary_10_1016_j_cep_2022_109092
crossref_primary_10_3390_en13225917
crossref_primary_10_1080_09537287_2021_1942282
crossref_primary_10_1016_j_rser_2024_114522
crossref_primary_10_1002_ceat_201700515
crossref_primary_10_1016_j_cep_2018_03_021
crossref_primary_10_1016_j_cherd_2017_11_020
crossref_primary_10_1021_acs_iecr_8b02078
crossref_primary_10_1002_jctb_7633
crossref_primary_10_1016_j_cherd_2019_02_042
crossref_primary_10_1002_ceat_202100264
crossref_primary_10_1016_j_cep_2021_108423
Cites_doi 10.1002/apj.643
10.1016/j.cherd.2010.11.005
10.1021/ef700265y
10.1126/science.1114736
10.1016/j.seppur.2012.06.029
10.1016/j.biotechadv.2013.01.007
10.1146/annurev‐chembioeng‐061010‐114159
10.1016/S0098‐1354(97)87508‐4
10.1016/j.seppur.2011.09.004
10.1016/j.compchemeng.2011.11.012
10.1016/j.compchemeng.2013.02.001
10.1205/026387601753192037
10.1016/j.cep.2010.06.008
10.1136/bmj.283.6285.255-a
10.1002/9780470377741
10.1002/aic.14827
10.1016/j.cep.2013.06.014
10.1243/095440605X32011
10.1016/j.ijggc.2013.12.005
10.1016/j.cep.2008.03.015
10.1016/j.seppur.2011.05.009
10.1016/j.cep.2008.01.004
10.1016/j.memsci.2011.06.043
10.1021/je7006617
10.1016/j.biortech.2010.03.134
10.5694/j.1326-5377.1949.tb37029.x
10.1016/j.seppur.2014.02.006
10.1080/07373937.2010.502604
10.1016/j.compchemeng.2008.09.020
10.1016/B978-0-08-098304-2.00002-X
10.1016/j.cep.2013.01.011
10.1016/j.cep.2011.04.002
10.1007/978-3-319-03554-3
10.1016/S0009‐2509(03)00165‐9
10.1016/j.cep.2015.09.002
10.1252/jcej.13we067
10.1016/j.cep.2015.05.002
10.1016/j.enconman.2016.09.077
10.1002/9781119016311.ch9
10.1016/j.pecs.2012.01.004
10.1002/9781118543702
10.1016/j.seppur.2015.06.007
10.1016/j.cep.2014.04.006
10.1016/j.cep.2014.10.018
10.1016/j.cherd.2013.07.011
10.1016/0009-2509(71)80050-7
10.1021/ie2029283
10.1016/j.seppur.2009.08.004
10.1016/j.cherd.2011.02.013
10.1016/j.energy.2011.05.020
10.1002/(SICI)1097‐4660(199802)71:2<95::AID‐JCTB823>3.0.CO;2‐J
10.1016/j.cep.2014.10.017
10.1016/j.desal.2014.10.028
10.1039/C2GC16668B
10.1002/ghg.1365
10.1252/jcej.35.1298
10.1016/j.cherd.2011.02.007
10.1016/j.biortech.2010.08.066
10.1021/ie101195k
10.1021/ie051104r
10.1021/ie5048829
10.1016/j.ijggc.2010.03.007
10.1002/9781119016311.ch5
10.1016/j.cej.2012.09.121
10.1021/ie070544a
10.1016/S0255‐2701(03)00125‐9
10.1016/j.cep.2007.06.005
10.1002/ceat.201300133
10.1021/acs.iecr.5b00893
10.1016/j.compchemeng.2006.11.006
10.1002/jps.23998
10.1021/ie030029m
10.1002/ceat.201000388
10.1016/j.cep.2007.05.023
10.1016/j.cep.2014.05.005
10.1021/ie50620a022
10.1002/jctb.1650
10.1021/ie990927b
10.1002/9783527630233
10.1016/j.cherd.2014.11.015
10.1016/j.cep.2010.04.001
10.1002/(SICI)1521‐4125(199902)22:2
10.1016/j.cep.2009.11.009
10.1021/ie801020u
10.1002/9781119016311.ch10
10.1016/j.lwt.2007.04.013
ContentType Journal Article
Copyright Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7U5
8FD
L7M
DOI 10.1002/ceat.201500635
DatabaseName Istex
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Solid State and Superconductivity Abstracts
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4125
EndPage 2195
ExternalDocumentID 10_1002_ceat_201500635
CEAT201500635
ark_67375_WNG_NK8HT3NR_M
Genre article
GrantInformation_xml – fundername: Priority Research Centers Program through the National Research Foundation of Korea (NRF)
  funderid: 2014R1A6A1031189
– fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF)
  funderid: 2015R1D1A3A01015621
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABTAH
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
7U5
8FD
L7M
ID FETCH-LOGICAL-c4375-ed5cb7d1e0aa80bec8db664bbcd0c1fd588af5683de06ff990b853d07a15d8123
IEDL.DBID DR2
ISSN 0930-7516
IngestDate Fri Aug 16 06:10:11 EDT 2024
Fri Aug 23 01:43:39 EDT 2024
Sat Aug 24 00:50:59 EDT 2024
Wed Oct 30 09:56:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4375-ed5cb7d1e0aa80bec8db664bbcd0c1fd588af5683de06ff990b853d07a15d8123
Notes Priority Research Centers Program through the National Research Foundation of Korea (NRF) - No. 2014R1A6A1031189
ark:/67375/WNG-NK8HT3NR-M
ArticleID:CEAT201500635
Basic Science Research Program through the National Research Foundation of Korea (NRF) - No. 2015R1D1A3A01015621
istex:9D630E03E60E58923D2FC10AD68C04A8AEA6F81B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://research.tees.ac.uk/ws/files/4318588/620540.pdf
PQID 1864567542
PQPubID 23500
PageCount 13
ParticipantIDs proquest_miscellaneous_1864567542
crossref_primary_10_1002_ceat_201500635
wiley_primary_10_1002_ceat_201500635_CEAT201500635
istex_primary_ark_67375_WNG_NK8HT3NR_M
PublicationCentury 2000
PublicationDate December, 2016
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: December, 2016
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Chemical engineering & technology
PublicationTitleAlternate Chem. Eng. Technol
PublicationYear 2016
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References J. Harmsen, Chem. Eng. Process. 2010, 49 (1), 70-73. DOI: 10.1016/j.cep.2009.11.009
M. Y. Lee, L. Q. Minh, N. V. D. Long, J. H. Shin, in Chemical Process Retrofitting and Revamping: Techniques and Applications (Ed: G. P. Rangaiah), John Wiley & Sons, Chichester 2016.
N. Nguyen, Y. Demirel, Energy 2011, 36 (8), 4838-4847. DOI: 10.1016/j.energy.2011.05.020
H. Ding, M. Liu, Y. Gao, J. Qi, H. Zhou, J. Li, Ind. Eng. Chem. Res. 2016, 55 (6), 1590-1597. DOI: 10.1021/acs.iecr.5b00893
N. V. D. Long, M. Y. Lee, J. Chem. Eng. Jpn. 2014, 47, 87-108. DOI: 10.1252/jcej.13we067
N. V. D. Long, S. H. Lee, M. Y. Lee, Chem. Eng. Process. 2010, 49 (8), 825-835. DOI: 10.1016/j.cep.2010.06.008
M. Errico, B. G. Rong, G. Tola, I. Turunen, Ind. Eng. Chem. Res. 2008, 47 (6), 1975-1980. DOI: 10.1021/ie070544a
K. A. Amminudin, R. Smith, Chem. Eng. Res. Des. 2001, 79 (7), 716-724. DOI: 10.1205/026387601753192037
H. Cheng, C. Tan, Sep. Purif. Technol. 2011, 82, 156-166. DOI: 10.1016/j.seppur.2011.09.004
A. A. Kiss, C. S. Bildea, Bioresour. Technol. 2011, 102 (2), 490-498. DOI: 10.1016/j.biortech.2010.08.066
M. A. Schultz, D. G. Stewart, J. M. Harris, S. P. Rosenblum, M. S. Shakur, D. E. O'Brien, Chem. Eng. Prog. 2002, May, 64-71.
P. C. Luo, Z. B. Zhang, Z. Jiao, Z. X. Wang, Ind. Eng. Chem. Res. 2003, 42 (20), 4861-4866. DOI: 10.1021/ie030029m
E. Drioli, A. Brunetti, G. D. Profio, G. Barbieri, Green Chem. 2012, 14, 1561-1572. DOI: 10.1039/C2GC16668B
C. Charcosset, J. Chem. Technol. Biotechnol. 1998, 71 (2), 95-110. DOI: 10.1002/(SICI)1097-4660(199802)71:2<95::AID-JCTB823>3.0.CO;2-J
K. K. Sirkar, A. G. Fane, R. Wang, S. R. Wickramasinghe, Chem. Eng. Process. 2015, 87, 16-25. DOI: 10.1016/j.cep.2014.10.018
I. Dejanović, Lj. Matijašević, Ž. Olujić, Chem. Eng. Process. 2010, 49 (6), 559-580. DOI: 10.1016/j.cep.2010.04.001
S. G. Lee, N. V. D. Long, M. Y. Lee, Ind. Eng. Chem. Res. 2012, 51 (30), 10021-10030. DOI: 10.1021/ie2029283
M. A. Rodríguez-Ángeles, F. I. Gómez-Castro, J. G. Segovia-Hernández, A. R. Uribe-Ramírez, Chem. Eng. Process. 2015, 97, 55-65. DOI: 10.1016/j.cep.2015.09.002
C. Proestos, M. Komaitis, LWT 2008, 41, 652-659. DOI: 10.1016/j.lwt.2007.04.013
L. Joss, M. Gazzani, M. Hefti, D. Marx, M. Mazzotti, Ind. Eng. Chem. Res. 2015, 54, 3027-3038. DOI: 10.1021/ie5048829
R. H. Walters, B. Bhatnagar, S. Tchessalov, K. Izutsu, K. Tsumoto, S. Ohtake, J. Pharm. Sci. 2014, 103 (9), 2673-2695. DOI: 10.1002/jps.23998.
F. Omota, A. C. Dimian, A. Bliek, Chem. Eng. Sci. 2003, 58 (14), 3159-3174. DOI: 10.1016/S0009-2509(03)00165-9
A. C. Christiansen, S. Skogestad, K. Lien, Comput. Chem. Eng. 1997, 21, 237-242. DOI: 10.1016/S0098-1354(97)87508-4
G. Parkinson, Chem. Eng. Process. 2007, May, 8-11.
M. S. Jassim, G. Rochelle, D. Eimer, C. Ramshaw, Ind. Eng. Chem. Res. 2007, 46 (9), 2823-2833. DOI: 10.1021/ie051104r
A. Stankiewicz, in Re-Engineering the Chemical Processing Plant: Process Intensification (Eds: A. Stankiewicz, J. A. Moulijn), Marcel Dekker, New York 2004.
A. A. Kiss, Advanced Distillation Technologies: Design, Control and Applications, John Wiley & Sons, Chichester 2013.
C. Ramshaw, Chem. Eng. 1983, 389, 13-14.
S. Lim, S. S. Hoong, L. K. Teong, S. Bhatia, Bioresour. Technol. 2010, 101 (18), 7169-7172. DOI: 10.1016/j.biortech.2010.03.134.
A. I. Stankiewicz, J. A. Moulijn, Chem. Eng. Prog. 2000, January, 22-34.
A. C. Dimian, C. S. Bildea, F. Omota, A. A. Kiss, Comput. Chem. Eng. 2009, 33 (3), 743-750. DOI: 10.1016/j.compchemeng.2008.09.020
L. C. Nhien, N. V. D. Long, M. Y. Lee, Energy Convers. Manage. 2016, in press. DOI: 10.1016/j.enconman.2016.09.077
S. Hernández, R. Sandoval-Vergara, F. O. Barroso-Muñoz, R. Murrieta-Dueñas, H. Hernández-Escoto, J. G. Segovia-Hernández, V. Rico-Ramirez, Chem. Eng. Process. 2009, 48 (1), 250-258. DOI: 10.1016/j.cep.2008.03.015
M. Ghadrdan, I. J. Halvorsen, S. Skogestad, Chem. Eng. Process. 2013, 72, 10-23. DOI: 10.1016/j.cep.2013.06.014
W. L. Luyben, C. C. Yu, Reactive Distillation, Design and Control, John Wiley & Sons, Hoboken, NJ 2008.
N. V. D. Long, M. Y. Lee, Asia-Pac. J. Chem. Eng. 2012, 7 (S1), S71-S77. DOI: 10.1002/apj.643
O. Yildirim, A. A. Kiss, N. Huser, K. Lessmann, E. Y. Kenig, Chem. Eng. J. 2012, 213, 371-391. DOI: 10.1016/j.cej.2012.09.121
L. Agarwal, V. Pavani, D. P. Rao, N. Kaistha, Ind. Eng. Chem. Res. 2010, 49 (20), 10046-10058. DOI: 10.1021/ie101195k
K. Y. Rani, C. Sumana, in Industrial Catalysis and Separations: Innovations for Process Intensification (Eds: K. V. Raghavan, B. M. Reddy), CRC Press, Boca Raton, FL 2014.
A. Keshav, S. Chand, K. L. Wasewar, J. Chem. Eng. Data 2008, 53 (7), 1424-1430. DOI: 10.1021/je7006617
E. Drioli, A. I. Stankiewicz, F. Macedonio, J. Membr. Sci. 2011, 380 (1-2), 1-8. DOI: 10.1016/j.memsci.2011.06.043
B. V. Maleta, A. Shevchenko, O. Bedryk, A. A. Kiss, AIChE J. 2015, 61 (8), 2581-2591. DOI: 10.1002/aic.14827
P. Lutze, in Distillation: Operation and Applications, 1st ed. (Eds: A. Górak, H. Schoenmakers), Elsevier, Oxford 2014.
A. A. Kiss, R. M. Ignat, Chem. Eng. Technol. 2013, 36 (7), 1261-1267. DOI: 10.1002/ceat.201300133
C. Buchaly, P. Kreis, A. Górak, Chem. Eng. Process. 2007, 46 (9), 790-799. DOI: 10.1016/j.cep.2007.05.023
E. Drioli, A. Ali, F. Macedonio, Desalination 2015, 356, 56-84. DOI: 10.1016/j.desal.2014.10.028
Y. Y. Loy, X. L. Lee, G. P. Rangaiah, Sep. Purif. Technol. 2015, 149, 413-427. DOI: 10.1016/j.seppur.2015.06.007
C. Patrut, C. S. Bildea, A. A. Kiss, Chem. Eng. Process. 2014, 81, 1-12. DOI: 10.1016/j.cep.2014.04.006
C. C. Lin, T. J. Ho, W. T. Liu, J. Chem. Eng. Jpn. 2002, 35 (12), 1298-1304. DOI: 10.1252/jcej.35.1298
G. J. Harmsen, Chem. Eng. Process. 2007, 46 (9), 774-780. DOI: 10.1016/j.cep.2007.06.005
M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, H. Yeung, Chem. Eng. Res. Des. 2011, 89, 1609-1624. DOI: 10.1016/j.cherd.2010.11.005
D. P. Rao, G. P. Rangaiah, in Chemical Process Retrofitting and Revamping: Techniques and Applications (Ed: G. P. Rangaiah), John Wiley & Sons, Chichester 2016.
R. A. Gaska, M. R. Cannon, Ind. Eng. Chem. 1961, 53(8), 630-631. DOI: 10.1021/ie50620a022
C. Pătruţ, C. S. Bîldea, I. Liţă, A. A. Kiss, Sep. Purif. Technol. 2014, 125, 326-336. DOI: 10.1016/j.seppur.2014.02.006
L. Spiegel, M. Duss, in Distillation: Equipment and Processes, 1st ed. (Eds: A. Górak, Ž. Olujić), Elsevier, Oxford 2014.
P. Lutze, A. Gorak, Chem. Eng. Res. Des. 2013, 91 (10), 1978-1997. DOI: 10.1016/j.cherd.2013.07.011
S. Tututi-Avila, A. Jimenez-Gutierrez, J. Hahn, Chem. Eng. Process. 2014, 82, 88-100. DOI: 10.1016/j.cep.2014.05.005
M. Gadalla, L. J. Jimenez, Ž. Olujic, P. J. Jansens, Comput. Chem. Eng. 2007, 31 (10), 1346-1354. DOI: 10.1016/j.compchemeng.2006.11.006
K. Cheng, S. J. Wang, D. S. H. Wong, Comput. Chem. Eng. 2013, 52, 262-271. DOI: 10.1016/j.compchemeng.2013.02.001
M. Benali, T. Kudra, Drying Technol. 2010, 28 (10), 1127-1135. DOI: 10.1080/07373937.2010.502604
A. A. Kiss, Process Intensification Technologies for Biodiesel Production: Reactive Separation Processes, Springer, Heidelberg, 2014.
M. A. T. Bisschops, S. H. van Hateren, K. C. A. M. Luyben, L. A. M. van der Wielen, Ind. Eng. Chem. Res. 2000, 39 (11), 4376-4382. DOI: 10.1021/ie990927b
A. A. Kiss, A. C. Dimian, G. Rothenberg, Energy Fuels 2008, 22 (1), 598-604. DOI: 10.1021/ef700265y
A. S. Joel, M. Wang, C. Ramshaw, E. Oko, Int. J. Greenhouse Gas Control 2014, 21, 91-100. DOI: 10.1016/j.ijggc.2013.12.005
M. D. Vetal, V. G. Lade, V. K. Rathod, Chem. Eng. Process. 2013, 69, 24-30. DOI: 10.1016/j.cep.2013.01.011
G. Q. Wang, O. G. Xu, Z. C. Xu, J. B. Ji, Ind. Eng. Chem. Res. 2008, 47 (22), 8840-8846. DOI: 10.1021/ie801020u
A. A. Kiss, D. J. P. C. Suszwalak, Comput. Chem. Eng. 2012, 38, 74-81. DOI: 10.1016/j.compchemeng.2011.11.012
P. Luis, B. V. der Bruggen, Greenhouse Gases: Sci. Technol. 2013, 3 (5), 318-337. DOI: 10.1002/ghg.1365
T. Keller, in Distillation: Equipment and Processes, 1st ed. (Eds: A. Gorak, Z. Olujic), Elsevier, Oxford 2014.
A. A. Kiss, R. M. Ignat, Sep. Purif. Technol. 2012, 98, 290-297. DOI: 10.1016/j.seppur.2012.06.029
Industrial Biotechnology: Sustainable Growth and Economic Success (Eds: W. Soetaert, E. J. Vandamme), 1st ed., Wiley-VCH, Weinheim 2010.
M. Ghadrdan, I. J. Halvorsen, S. Skogestad, Chem. Eng. Res. Des. 2011, 89 (8), 1382-1391. DOI: 10.1016/j.cherd.2011.02.007
P. Luis, T. V. Gerven, B. V. der Bruggen, Prog. Energy Combust. Sci. 2012, 38 (3), 419-448. DOI: 10.1016/j.pecs.2012.01.004
A. C. Dimian, F. Omota, A. Bliek, Chem. Eng. Process. 2004, 43 (3), 411-420. DOI: 10.1016/S0255-2701(03)00125-9
H. An, B. Feng, S. Su, Int. J. Greenhouse Gas Control 2011, 5 (1), 16-25. DOI: 10.1016/j.ijggc.2010.03.007
X. Z. Tan, S. Pandey, G. P. Rangaiah, W. Niu, in Chemical Process Retrofitting and Revamping: Techniques and Applications (Ed: G. P. Rangaiah), John Wiley & Sons, Chichester 2016.
A. A. Kiss, Sep. Purif. Technol. 2009, 69 (3), 280-287. DOI: 10.1016/j.seppur.2009.08.004
J. Wallace, S. Krumdieck, J. Mech. Eng. Sci. 2005, 219, 1225-1233. DOI: 10.1243/095440605X32011
A. A. Kiss, Z. Olujic, Chem. Eng. Process. 2014, 86, 125-144. DOI: 10.1016/j.cep.2014.10.017
A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484-489. DOI: 10.1126/science.1114736
V. N. Maleta, A. A. Kiss, V. M. Taran, B. V. Maleta, Chem. Eng. Process. 2011, 50 (7), 655-664. DOI: 10.1016/j.cep.2011.04.002
Z. Lei, B. Chen, Z. Ding, Special Distillation Processes, Elsevier, Amsterdam 2005.
E. Sørensen, K. F. Lam, D. Sudhoff, in Distillation: Operation and Applications, 1st ed. (Eds: A. Górak, H. Schoenmakers), Elsevier, New York 2014.
V. Orr, L. Zhong, M. Moo-Young, C. P. Chou, Biotechnol. Adv. 2013, 31, 450-465. DOI: 10.1016/j.biotechadv.2013.01.007
A. Gorak, A. Stankiewicz, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 431-451. DOI: 10.1146/annurev-chembioeng-061010-114159
F. O. Barroso-Muñoz, S. Hernández, J. G. Segovia-Hernández, H. Hernández-Escoto, V. Rico-Ramírez, R.-H. Chávez, Chem. Eng.
2013; 3
1961; 53(8)
2013; 69
2015; 149
2010; 101
2003; 58
2005; 219
2012; 14
2007; 31
2012; 98
2009; 48
2014; 21
2012; 51
1983; 389
2000
2010; 28
2015; 87
2013; 52
1987
2008; 22
1981
2012; 213
1949
2014; 125
2003; 42
2004; 43
2009; 69
2011; 2
2015; 93
1997; 21
2011; 80
2010
2015; 94
2015; 97
2011; 82
2002; 35
1971; 26
2015; 54
2013; 91
2006; 152
2008
1999; 22
2014; 47
2007
2006
2005
2011; 34
2004
2012; 38
2002
2008; 53
2011; 36
2014; 82
2011; 5
2006; 311
2014; 86
2016; 55
2009; 33
2011; 102
2010; 49
2014; 81
2013; 36
2000; 39
2015; 356
2015; 61
2013; 72
2013; 31
2011; 50
2008; 47
2016
2007; 82
2011; 89
2015
2014
2008; 41
2013
1998; 71
2012; 7
2001; 79
2011; 380
2007; 46
2014; 103
e_1_2_7_108_2
Stankiewicz A. (e_1_2_7_109_2) 2004
e_1_2_7_3_2
e_1_2_7_104_2
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_83_2
e_1_2_7_100_2
e_1_2_7_15_2
e_1_2_7_60_2
e_1_2_7_87_2
e_1_2_7_64_2
e_1_2_7_45_2
Slade B. (e_1_2_7_33_2) 2006; 152
e_1_2_7_68_2
e_1_2_7_26_2
e_1_2_7_49_2
Spiegel L. (e_1_2_7_107_2) 2014
e_1_2_7_90_2
e_1_2_7_71_2
e_1_2_7_94_2
e_1_2_7_52_2
e_1_2_7_75_2
e_1_2_7_98_2
e_1_2_7_23_2
e_1_2_7_79_2
Sørensen E. (e_1_2_7_13_2) 2014
e_1_2_7_37_2
e_1_2_7_4_2
e_1_2_7_105_2
e_1_2_7_8_2
e_1_2_7_101_2
e_1_2_7_82_2
e_1_2_7_16_2
e_1_2_7_40_2
e_1_2_7_63_2
e_1_2_7_86_2
e_1_2_7_12_2
e_1_2_7_44_2
e_1_2_7_67_2
e_1_2_7_48_2
e_1_2_7_29_2
e_1_2_7_93_2
e_1_2_7_70_2
e_1_2_7_24_2
Ramshaw C. (e_1_2_7_41_2) 1983; 389
e_1_2_7_51_2
e_1_2_7_97_2
e_1_2_7_32_2
e_1_2_7_20_2
e_1_2_7_55_2
e_1_2_7_36_2
e_1_2_7_78_2
e_1_2_7_59_2
e_1_2_7_5_2
Stankiewicz A. I. (e_1_2_7_6_2) 2000
Parkinson G. (e_1_2_7_84_2) 2007
e_1_2_7_106_2
e_1_2_7_9_2
e_1_2_7_102_2
Keller T. (e_1_2_7_73_2) 2014
e_1_2_7_17_2
e_1_2_7_81_2
e_1_2_7_1_2
e_1_2_7_62_2
e_1_2_7_43_2
e_1_2_7_85_2
e_1_2_7_66_2
e_1_2_7_47_2
e_1_2_7_89_2
e_1_2_7_28_2
Rani K. Y. (e_1_2_7_56_2) 2014
Schmidt‐Traub H. (e_1_2_7_11_2) 2006
e_1_2_7_50_2
e_1_2_7_92_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_54_2
e_1_2_7_21_2
e_1_2_7_35_2
e_1_2_7_58_2
e_1_2_7_77_2
e_1_2_7_39_2
Lutze P. (e_1_2_7_96_2) 2014
e_1_2_7_2_2
e_1_2_7_103_2
e_1_2_7_18_2
e_1_2_7_61_2
e_1_2_7_80_2
e_1_2_7_14_2
e_1_2_7_42_2
e_1_2_7_65_2
e_1_2_7_10_2
e_1_2_7_46_2
e_1_2_7_69_2
e_1_2_7_88_2
e_1_2_7_27_2
Lei Z. (e_1_2_7_74_2) 2005
Schultz M. A. (e_1_2_7_38_2) 2002
e_1_2_7_72_2
e_1_2_7_91_2
e_1_2_7_30_2
e_1_2_7_76_2
e_1_2_7_22_2
e_1_2_7_53_2
e_1_2_7_95_2
e_1_2_7_34_2
e_1_2_7_57_2
e_1_2_7_99_2
References_xml – volume: 380
  start-page: 1
  issue: 1–2
  year: 2011
  end-page: 8
  publication-title: J. Membr. Sci.
– volume: 42
  start-page: 4861
  issue: 20
  year: 2003
  end-page: 4866
  publication-title: Ind. Eng. Chem. Res.
– start-page: 22
  year: 2000
  end-page: 34
  publication-title: Chem. Eng. Prog.
– year: 1981
– volume: 33
  start-page: 743
  issue: 3
  year: 2009
  end-page: 750
  publication-title: Comput. Chem. Eng.
– year: 2005
– volume: 93
  start-page: 87
  year: 2015
  end-page: 97
  publication-title: Chem. Eng. Process.
– volume: 39
  start-page: 4376
  issue: 11
  year: 2000
  end-page: 4382
  publication-title: Ind. Eng. Chem. Res.
– volume: 71
  start-page: 95
  issue: 2
  year: 1998
  end-page: 110
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 22
  start-page: 598
  issue: 1
  year: 2008
  end-page: 604
  publication-title: Energy Fuels
– volume: 46
  start-page: 2823
  issue: 9
  year: 2007
  end-page: 2833
  publication-title: Ind. Eng. Chem. Res.
– volume: 14
  start-page: 1561
  year: 2012
  end-page: 1572
  publication-title: Green Chem.
– volume: 91
  start-page: 1978
  issue: 10
  year: 2013
  end-page: 1997
  publication-title: Chem. Eng. Res. Des.
– volume: 34
  start-page: 746
  issue: 5
  year: 2011
  end-page: 750
  publication-title: Chem. Eng. Technol.
– volume: 72
  start-page: 10
  year: 2013
  end-page: 23
  publication-title: Chem. Eng. Process.
– volume: 49
  start-page: 10046
  issue: 20
  year: 2010
  end-page: 10058
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: S71
  issue: S1
  year: 2012
  end-page: S77
  publication-title: Asia‐Pac. J. Chem. Eng.
– start-page: 8
  year: 2007
  end-page: 11
  publication-title: Chem. Eng. Process.
– volume: 5
  start-page: 16
  issue: 1
  year: 2011
  end-page: 25
  publication-title: Int. J. Greenhouse Gas Control
– volume: 51
  start-page: 10021
  issue: 30
  year: 2012
  end-page: 10030
  publication-title: Ind. Eng. Chem. Res.
– year: 2014
– volume: 26
  start-page: 2120
  year: 1971
  end-page: 2021
  publication-title: Chem. Eng. Sci.
– volume: 98
  start-page: 290
  year: 2012
  end-page: 297
  publication-title: Sep. Purif. Technol.
– volume: 50
  start-page: 655
  issue: 7
  year: 2011
  end-page: 664
  publication-title: Chem. Eng. Process.
– volume: 21
  start-page: 91
  year: 2014
  end-page: 100
  publication-title: Int. J. Greenhouse Gas Control
– volume: 48
  start-page: 48
  issue: 1
  year: 2009
  end-page: 58
  publication-title: Chem. Eng. Process.
– volume: 82
  start-page: 223
  issue: 3
  year: 2007
  end-page: 227
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 38
  start-page: 419
  issue: 3
  year: 2012
  end-page: 448
  publication-title: Prog. Energy Combust. Sci.
– volume: 80
  start-page: 403
  issue: 3
  year: 2011
  end-page: 417
  publication-title: Sep. Purif. Technol.
– volume: 69
  start-page: 24
  year: 2013
  end-page: 30
  publication-title: Chem. Eng. Process.
– volume: 101
  start-page: 7169
  issue: 18
  year: 2010
  end-page: 7172
  publication-title: Bioresour. Technol.
– volume: 52
  start-page: 262
  year: 2013
  end-page: 271
  publication-title: Comput. Chem. Eng.
– volume: 38
  start-page: 74
  year: 2012
  end-page: 81
  publication-title: Comput. Chem. Eng.
– volume: 43
  start-page: 411
  issue: 3
  year: 2004
  end-page: 420
  publication-title: Chem. Eng. Process.
– volume: 55
  start-page: 1590
  issue: 6
  year: 2016
  end-page: 1597
  publication-title: Ind. Eng. Chem. Res.
– volume: 47
  start-page: 87
  year: 2014
  end-page: 108
  publication-title: J. Chem. Eng. Jpn.
– year: 2008
– year: 2004
– volume: 94
  start-page: 72
  year: 2015
  end-page: 89
  publication-title: Chem. Eng. Res. Des.
– volume: 87
  start-page: 16
  year: 2015
  end-page: 25
  publication-title: Chem. Eng. Process.
– year: 2016
  publication-title: Energy Convers. Manage.
– year: 1949
– volume: 311
  start-page: 484
  year: 2006
  end-page: 489
  publication-title: Science
– volume: 103
  start-page: 2673
  issue: 9
  year: 2014
  end-page: 2695
  publication-title: J. Pharm. Sci.
– volume: 46
  start-page: 790
  issue: 9
  year: 2007
  end-page: 799
  publication-title: Chem. Eng. Process.
– volume: 36
  start-page: 1261
  issue: 7
  year: 2013
  end-page: 1267
  publication-title: Chem. Eng. Technol.
– year: 2015
– volume: 89
  start-page: 1609
  year: 2011
  end-page: 1624
  publication-title: Chem. Eng. Res. Des.
– volume: 49
  start-page: 70
  issue: 1
  year: 2010
  end-page: 73
  publication-title: Chem. Eng. Process.
– volume: 53(8)
  start-page: 630
  year: 1961
  end-page: 631
  publication-title: Ind. Eng. Chem.
– volume: 48
  start-page: 250
  issue: 1
  year: 2009
  end-page: 258
  publication-title: Chem. Eng. Process.
– volume: 31
  start-page: 1346
  issue: 10
  year: 2007
  end-page: 1354
  publication-title: Comput. Chem. Eng.
– volume: 149
  start-page: 413
  year: 2015
  end-page: 427
  publication-title: Sep. Purif. Technol.
– volume: 81
  start-page: 1
  year: 2014
  end-page: 12
  publication-title: Chem. Eng. Process.
– volume: 102
  start-page: 490
  issue: 2
  year: 2011
  end-page: 498
  publication-title: Bioresour. Technol.
– volume: 35
  start-page: 1298
  issue: 12
  year: 2002
  end-page: 1304
  publication-title: J. Chem. Eng. Jpn.
– volume: 31
  start-page: 450
  year: 2013
  end-page: 465
  publication-title: Biotechnol. Adv.
– year: 1987
– volume: 28
  start-page: 1127
  issue: 10
  year: 2010
  end-page: 1135
  publication-title: Drying Technol.
– volume: 61
  start-page: 2581
  issue: 8
  year: 2015
  end-page: 2591
  publication-title: AIChE J.
– volume: 86
  start-page: 125
  year: 2014
  end-page: 144
  publication-title: Chem. Eng. Process.
– volume: 82
  start-page: 88
  year: 2014
  end-page: 100
  publication-title: Chem. Eng. Process.
– volume: 36
  start-page: 4838
  issue: 8
  year: 2011
  end-page: 4847
  publication-title: Energy
– volume: 219
  start-page: 1225
  year: 2005
  end-page: 1233
  publication-title: J. Mech. Eng. Sci.
– year: 2016
– volume: 152
  year: 2006
  publication-title: IChemE Symp. Ser.
– volume: 2
  start-page: 431
  year: 2011
  end-page: 451
  publication-title: Annu. Rev. Chem. Biomol. Eng.
– volume: 97
  start-page: 55
  year: 2015
  end-page: 65
  publication-title: Chem. Eng. Process.
– year: 2010
– volume: 82
  start-page: 156
  year: 2011
  end-page: 166
  publication-title: Sep. Purif. Technol.
– volume: 125
  start-page: 326
  year: 2014
  end-page: 336
  publication-title: Sep. Purif. Technol.
– volume: 389
  start-page: 13
  year: 1983
  end-page: 14
  publication-title: Chem. Eng.
– volume: 53
  start-page: 1424
  issue: 7
  year: 2008
  end-page: 1430
  publication-title: J. Chem. Eng. Data
– volume: 49
  start-page: 559
  issue: 6
  year: 2010
  end-page: 580
  publication-title: Chem. Eng. Process.
– volume: 58
  start-page: 3159
  issue: 14
  year: 2003
  end-page: 3174
  publication-title: Chem. Eng. Sci.
– volume: 41
  start-page: 652
  year: 2008
  end-page: 659
  publication-title: LWT
– volume: 79
  start-page: 716
  issue: 7
  year: 2001
  end-page: 724
  publication-title: Chem. Eng. Res. Des.
– volume: 3
  start-page: 318
  issue: 5
  year: 2013
  end-page: 337
  publication-title: Greenhouse Gases: Sci. Technol.
– volume: 47
  start-page: 1975
  issue: 6
  year: 2008
  end-page: 1980
  publication-title: Ind. Eng. Chem. Res.
– year: 2006
– volume: 22
  start-page: 95
  issue: 2
  year: 1999
  end-page: 103
  publication-title: Chem. Eng. Technol.
– volume: 89
  start-page: 1434
  issue: 8
  year: 2011
  end-page: 1442
  publication-title: Chem. Eng. Res. Des.
– volume: 47
  start-page: 8840
  issue: 22
  year: 2008
  end-page: 8846
  publication-title: Ind. Eng. Chem. Res.
– volume: 21
  start-page: 237
  year: 1997
  end-page: 242
  publication-title: Comput. Chem. Eng.
– volume: 49
  start-page: 825
  issue: 8
  year: 2010
  end-page: 835
  publication-title: Chem. Eng. Process.
– volume: 213
  start-page: 371
  year: 2012
  end-page: 391
  publication-title: Chem. Eng. J.
– volume: 54
  start-page: 3027
  year: 2015
  end-page: 3038
  publication-title: Ind. Eng. Chem. Res.
– volume: 69
  start-page: 280
  issue: 3
  year: 2009
  end-page: 287
  publication-title: Sep. Purif. Technol.
– volume: 89
  start-page: 1382
  issue: 8
  year: 2011
  end-page: 1391
  publication-title: Chem. Eng. Res. Des.
– start-page: 64
  year: 2002
  end-page: 71
  publication-title: Chem. Eng. Prog.
– volume: 46
  start-page: 774
  issue: 9
  year: 2007
  end-page: 780
  publication-title: Chem. Eng. Process.
– year: 2013
– volume: 356
  start-page: 56
  year: 2015
  end-page: 84
  publication-title: Desalination
– ident: e_1_2_7_29_2
  doi: 10.1002/apj.643
– ident: e_1_2_7_102_2
  doi: 10.1016/j.cherd.2010.11.005
– ident: e_1_2_7_91_2
  doi: 10.1021/ef700265y
– ident: e_1_2_7_5_2
  doi: 10.1126/science.1114736
– ident: e_1_2_7_22_2
  doi: 10.1016/j.seppur.2012.06.029
– ident: e_1_2_7_67_2
  doi: 10.1016/j.biotechadv.2013.01.007
– ident: e_1_2_7_14_2
  doi: 10.1146/annurev‐chembioeng‐061010‐114159
– start-page: 22
  year: 2000
  ident: e_1_2_7_6_2
  publication-title: Chem. Eng. Prog.
  contributor:
    fullname: Stankiewicz A. I.
– ident: e_1_2_7_28_2
  doi: 10.1016/S0098‐1354(97)87508‐4
– ident: e_1_2_7_100_2
  doi: 10.1016/j.seppur.2011.09.004
– ident: e_1_2_7_24_2
  doi: 10.1016/j.compchemeng.2011.11.012
– ident: e_1_2_7_45_2
– ident: e_1_2_7_72_2
  doi: 10.1016/j.compchemeng.2013.02.001
– volume-title: Industrial Catalysis and Separations: Innovations for Process Intensification
  year: 2014
  ident: e_1_2_7_56_2
  contributor:
    fullname: Rani K. Y.
– volume-title: Special Distillation Processes
  year: 2005
  ident: e_1_2_7_74_2
  contributor:
    fullname: Lei Z.
– ident: e_1_2_7_35_2
  doi: 10.1205/026387601753192037
– ident: e_1_2_7_36_2
  doi: 10.1016/j.cep.2010.06.008
– ident: e_1_2_7_1_2
– ident: e_1_2_7_8_2
  doi: 10.1136/bmj.283.6285.255-a
– ident: e_1_2_7_75_2
  doi: 10.1002/9780470377741
– ident: e_1_2_7_49_2
  doi: 10.1002/aic.14827
– ident: e_1_2_7_31_2
  doi: 10.1016/j.cep.2013.06.014
– ident: e_1_2_7_99_2
  doi: 10.1243/095440605X32011
– ident: e_1_2_7_81_2
  doi: 10.1016/j.ijggc.2013.12.005
– ident: e_1_2_7_20_2
  doi: 10.1016/j.cep.2008.03.015
– ident: e_1_2_7_26_2
  doi: 10.1016/j.seppur.2011.05.009
– ident: e_1_2_7_105_2
  doi: 10.1016/j.cep.2008.01.004
– ident: e_1_2_7_57_2
– ident: e_1_2_7_66_2
  doi: 10.1016/j.memsci.2011.06.043
– ident: e_1_2_7_62_2
  doi: 10.1021/je7006617
– ident: e_1_2_7_63_2
  doi: 10.1016/j.biortech.2010.03.134
– ident: e_1_2_7_10_2
  doi: 10.5694/j.1326-5377.1949.tb37029.x
– start-page: 64
  year: 2002
  ident: e_1_2_7_38_2
  publication-title: Chem. Eng. Prog.
  contributor:
    fullname: Schultz M. A.
– ident: e_1_2_7_18_2
  doi: 10.1016/j.seppur.2014.02.006
– ident: e_1_2_7_87_2
  doi: 10.1080/07373937.2010.502604
– ident: e_1_2_7_93_2
  doi: 10.1016/j.compchemeng.2008.09.020
– ident: e_1_2_7_3_2
  doi: 10.1016/B978-0-08-098304-2.00002-X
– ident: e_1_2_7_60_2
  doi: 10.1016/j.cep.2013.01.011
– volume-title: Integrated Reaction and Separation Operations: Modeling and Experimental Validation
  year: 2006
  ident: e_1_2_7_11_2
  contributor:
    fullname: Schmidt‐Traub H.
– volume-title: Distillation: Operation and Applications
  year: 2014
  ident: e_1_2_7_96_2
  contributor:
    fullname: Lutze P.
– ident: e_1_2_7_47_2
  doi: 10.1016/j.cep.2011.04.002
– ident: e_1_2_7_89_2
  doi: 10.1007/978-3-319-03554-3
– ident: e_1_2_7_90_2
  doi: 10.1016/S0009‐2509(03)00165‐9
– ident: e_1_2_7_85_2
– ident: e_1_2_7_37_2
  doi: 10.1016/j.cep.2015.09.002
– ident: e_1_2_7_27_2
  doi: 10.1252/jcej.13we067
– ident: e_1_2_7_77_2
  doi: 10.1016/j.cep.2015.05.002
– ident: e_1_2_7_80_2
  doi: 10.1016/j.enconman.2016.09.077
– ident: e_1_2_7_32_2
  doi: 10.1002/9781119016311.ch9
– volume-title: Distillation: Equipment and Processes
  year: 2014
  ident: e_1_2_7_73_2
  contributor:
    fullname: Keller T.
– ident: e_1_2_7_103_2
  doi: 10.1016/j.pecs.2012.01.004
– ident: e_1_2_7_48_2
  doi: 10.1002/9781118543702
– ident: e_1_2_7_53_2
  doi: 10.1016/j.seppur.2015.06.007
– ident: e_1_2_7_78_2
  doi: 10.1016/j.cep.2014.04.006
– ident: e_1_2_7_69_2
  doi: 10.1016/j.cep.2014.10.018
– ident: e_1_2_7_12_2
  doi: 10.1016/j.cherd.2013.07.011
– ident: e_1_2_7_59_2
  doi: 10.1016/0009-2509(71)80050-7
– ident: e_1_2_7_82_2
  doi: 10.1021/ie2029283
– volume-title: Distillation: Equipment and Processes
  year: 2014
  ident: e_1_2_7_107_2
  contributor:
    fullname: Spiegel L.
– ident: e_1_2_7_108_2
– start-page: 8
  year: 2007
  ident: e_1_2_7_84_2
  publication-title: Chem. Eng. Process.
  contributor:
    fullname: Parkinson G.
– ident: e_1_2_7_94_2
  doi: 10.1016/j.seppur.2009.08.004
– ident: e_1_2_7_42_2
  doi: 10.1016/j.cherd.2011.02.013
– ident: e_1_2_7_76_2
  doi: 10.1016/j.energy.2011.05.020
– ident: e_1_2_7_68_2
  doi: 10.1002/(SICI)1097‐4660(199802)71:2<95::AID‐JCTB823>3.0.CO;2‐J
– ident: e_1_2_7_39_2
  doi: 10.1016/j.cep.2014.10.017
– ident: e_1_2_7_40_2
– ident: e_1_2_7_64_2
  doi: 10.1016/j.desal.2014.10.028
– ident: e_1_2_7_2_2
  doi: 10.1039/C2GC16668B
– ident: e_1_2_7_104_2
  doi: 10.1002/ghg.1365
– volume-title: Re‐Engineering the Chemical Processing Plant: Process Intensification
  year: 2004
  ident: e_1_2_7_109_2
  contributor:
    fullname: Stankiewicz A.
– ident: e_1_2_7_86_2
– ident: e_1_2_7_44_2
  doi: 10.1252/jcej.35.1298
– ident: e_1_2_7_7_2
– ident: e_1_2_7_30_2
  doi: 10.1016/j.cherd.2011.02.007
– ident: e_1_2_7_95_2
  doi: 10.1016/j.biortech.2010.08.066
– ident: e_1_2_7_50_2
  doi: 10.1021/ie101195k
– volume: 389
  start-page: 13
  year: 1983
  ident: e_1_2_7_41_2
  publication-title: Chem. Eng.
  contributor:
    fullname: Ramshaw C.
– ident: e_1_2_7_101_2
  doi: 10.1021/ie051104r
– ident: e_1_2_7_52_2
  doi: 10.1021/ie5048829
– ident: e_1_2_7_54_2
  doi: 10.1016/j.ijggc.2010.03.007
– ident: e_1_2_7_58_2
  doi: 10.1002/9781119016311.ch5
– ident: e_1_2_7_51_2
  doi: 10.1016/j.cej.2012.09.121
– ident: e_1_2_7_21_2
  doi: 10.1021/ie070544a
– ident: e_1_2_7_92_2
  doi: 10.1016/S0255‐2701(03)00125‐9
– ident: e_1_2_7_83_2
  doi: 10.1016/j.cep.2007.06.005
– ident: e_1_2_7_34_2
  doi: 10.1002/ceat.201300133
– ident: e_1_2_7_65_2
– ident: e_1_2_7_79_2
  doi: 10.1021/acs.iecr.5b00893
– volume: 152
  year: 2006
  ident: e_1_2_7_33_2
  publication-title: IChemE Symp. Ser.
  contributor:
    fullname: Slade B.
– ident: e_1_2_7_16_2
  doi: 10.1016/j.compchemeng.2006.11.006
– ident: e_1_2_7_88_2
  doi: 10.1002/jps.23998
– ident: e_1_2_7_98_2
  doi: 10.1021/ie030029m
– ident: e_1_2_7_15_2
  doi: 10.1002/ceat.201000388
– ident: e_1_2_7_9_2
  doi: 10.1016/j.cep.2007.05.023
– ident: e_1_2_7_23_2
  doi: 10.1016/j.cep.2014.05.005
– ident: e_1_2_7_46_2
  doi: 10.1021/ie50620a022
– ident: e_1_2_7_70_2
  doi: 10.1002/jctb.1650
– ident: e_1_2_7_55_2
  doi: 10.1021/ie990927b
– ident: e_1_2_7_97_2
  doi: 10.1002/9783527630233
– ident: e_1_2_7_17_2
  doi: 10.1016/j.cherd.2014.11.015
– ident: e_1_2_7_25_2
  doi: 10.1016/j.cep.2010.04.001
– ident: e_1_2_7_106_2
– ident: e_1_2_7_19_2
  doi: 10.1002/(SICI)1521‐4125(199902)22:2
– volume-title: Distillation: Operation and Applications
  year: 2014
  ident: e_1_2_7_13_2
  contributor:
    fullname: Sørensen E.
– ident: e_1_2_7_4_2
  doi: 10.1016/j.cep.2009.11.009
– ident: e_1_2_7_43_2
  doi: 10.1021/ie801020u
– ident: e_1_2_7_71_2
  doi: 10.1002/9781119016311.ch10
– ident: e_1_2_7_61_2
  doi: 10.1016/j.lwt.2007.04.013
SSID ssj0001516
Score 2.2883615
Snippet Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement...
Abstract Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 2183
SubjectTerms Distillation
Energy consumption
Energy efficiency
Environmental impact
Innovative systems
Performance enhancement
Process intensification
Reactive separation processes
Searching
Separation
Sustainability
Title Intensified Distillation-Based Separation Processes: Recent Developments and Perspectives
URI https://api.istex.fr/ark:/67375/WNG-NK8HT3NR-M/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.201500635
https://search.proquest.com/docview/1864567542
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSHvpLSbZqiQElOTmTrYW1vaV5LS5eQbGggBzF6XbZ4S7wLoaf-hP7G_pKM7H32UkhuMljYnhlpPlnffCLkI885eGdVhtEjMqE4ZNoxlznFQl4UURS-Icj2Ve9KfLmW10tV_K0-xPyHWxoZzXydBjjY-mAhGupwrkrULJmybKoyz3mZOF3HFwv9KExnzWZll7OsxPZMtZEVB6vdV7LSk2TguxXIuQxcm8xz-oLA7J1bwslwfzK2--7XP3KOj_mol-T5FJbSwzaOXpG1UL0mz5bECjfIzZTtHhG00uM0NfxoeXR_f__5jLnQ08vQComPKjqtPwj1J4rAFBMbXWIn1RQqT88XZZ71Jrk6PRkc9bLp0QyZE7yUWfDS2dLngQFohnGgvVVKWOs8c3n0UmuIUmnuA1MxYsqziAs8KyGXHjEFf0PWq1EV3hKa49q-67kASGu72AWI3hcgBRSxq4XukL2Za8zPVoHDtFrLhUnmMnNzdchu47n5bXA7TLy1Uprv_TPT_6p7A96_MN86ZGfmWoOjKW2RQBVGk9rkWiGiTKcCd0jROOo_zzRHJ4eD-dW7h3TaIk-xrVqOzHuyPr6dhG1EOmP7oYnme53d99I
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CdgEseFedloeREKzSOvEjHnalDwbaRqhMBRILy89NUabqzEioKz6Bb-RLuE4m82CDBLskipXY917fY_v4GOAly5nxzsoMvYdnXDKTKUdd5iQNeVFEXviGIFvJwTn_8EV0bMK0F6bVh5hPuKXIaPrrFOBpQnp3oRrqsLNK3CyR0qy4CesY8yyd3nBwtlCQwoTWLFf2Gc1KvO50G2mxu1p-JS-tpyb-vgI6l6Frk3uO7oHt_rqlnFzsTCd2x13_Iej4X9W6D3dnyJTsta70AG6E-iHcWdIrfARfZ4T3iLiVHKTe4VtLpfv14-dbTIeefAqtlvioJrMtCGH8hiA2xdxGlghKY2JqTz4udnqOH8P50eFwf5DNTmfIHGelyIIXzpY-D9QYRdEVlLdScmudpy6PXihlopCK-UBljJj1LEIDT0uTC4-wgm3AWj2qwyaQHIf3fc-4MWl4F_vGRO8LI7gpYl9x1YPXnW30ZSvCoVu55UKn5tLz5urBq8Z089fM1UWirpVCf67e6epYDYasOtOnPXjR2VZjQKVVElOH0XSscyURVKaDgXtQNJb6yzf1_uHecH639S-FnsOtwfD0RJ-8r4634TY-ly1l5gmsTa6m4SkCn4l91rj2bw4r--o
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1qQarKgpY-1KEvV6raVcCJH_Gwo8AwQBshOqhILCzHjw0og5gZCbHqJ_CNfAnXyTy7qdTukihWEt9rn-P4-BjgM0uZcbaUCWYPT7hkJlGW2sRK6tMsCzxztUC2kN1TfngmzuZW8Tf-ENMfbrFl1P11bOBXLmzOTEMt9lVRmiUiyorHsIwPovVE7cnMQArxrJ6tbDOa5Hg8sW2k2eZi-QVYWo41fLPAOeeZaw09nWdgJi_dKE4uNkbDcsPe_uHn-D9f9RxWx7yUbDeJtAaPfPUCVubcCl_C-VjuHpC1kt3YN1w2Qrr733ffEAwd-ekbJ_F-RcYLEPxgiyAzRWQjc_KkATGVI8ezdZ6DV3Da2evtdJPx3gyJ5SwXiXfClrlLPTVGUUwE5UopeVlaR20anFDKBCEVc57KEBDzSiQGjuYmFQ5JBXsNS1W_8m-ApDi4bzvGjYmDu9A2JjiXGcFNFtqKqxZ8nYRGXzUWHLoxW850rC49ra4WfKkjN73NXF9E4Vou9K9iXxdHqttjxYn-0YJPk9BqbE5xjsRUvj8a6FRJpJRxW-AWZHWg_vJMvbO33Zuerf9LoY_w5Hi3o78fFEdv4Slelo1e5h0sDa9H_j2ynmH5oU7sByGy-pk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intensified+Distillation%E2%80%90Based+Separation+Processes%3A+Recent+Developments+and+Perspectives&rft.jtitle=Chemical+engineering+%26+technology&rft.au=Long%2C+Nguyen+Van+Duc&rft.au=Minh%2C+Le+Quang&rft.au=Ahmad%2C+Faizan&rft.au=Luis%2C+Patricia&rft.date=2016-12-01&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=39&rft.issue=12&rft.spage=2183&rft.epage=2195&rft_id=info:doi/10.1002%2Fceat.201500635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ceat_201500635
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon