Intensified Distillation-Based Separation Processes: Recent Developments and Perspectives
Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process...
Saved in:
Published in | Chemical engineering & technology Vol. 39; no. 12; pp. 2183 - 2195 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY-VCH Verlag
01.12.2016
WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity.
The need for greater sustainability has prompted industry to search for opportunities to improve process performance. Process intensification has become the main way to meet needs such as decreased costs, energy consumption, and environmental impact. This paper reviews some of the intensified separation processes and improvement mechanisms, with an emphasis on distillation. |
---|---|
AbstractList | Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity. The need for greater sustainability has prompted industry to search for opportunities to improve process performance. Process intensification has become the main way to meet needs such as decreased costs, energy consumption, and environmental impact. This paper reviews some of the intensified separation processes and improvement mechanisms, with an emphasis on distillation. Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity. The need for greater sustainability has prompted industry to search for opportunities to improve process performance. Process intensification has become the main way to meet needs such as decreased costs, energy consumption, and environmental impact. This paper reviews some of the intensified separation processes and improvement mechanisms, with an emphasis on distillation. Abstract Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement of the raw material yields, remote control, and process flexibility. Process intensification (PI) as the main route for improving the process performance is used widely in heat transfer, reactions, separation, and mixing, which results in plant compactness, cleanliness, and energy efficiency. Some of the main intensified separation processes and improvement mechanisms are reviewed briefly with the main focus on the PI of distillation processes, which are the most important separation methods. In addition to these technologies, the potential and reliability of reactive separation processes are addressed briefly, which will enable higher efficiency and capacity. |
Author | Long, Nguyen Van Duc Lee, Moonyong Ahmad, Faizan Luis, Patricia Minh, Le Quang |
Author_xml | – sequence: 1 givenname: Nguyen Van Duc surname: Long fullname: Long, Nguyen Van Duc organization: School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea – sequence: 2 givenname: Le Quang surname: Minh fullname: Minh, Le Quang organization: School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea – sequence: 3 givenname: Faizan surname: Ahmad fullname: Ahmad, Faizan organization: School of Science and Engineering, Teesside University, Middlesbrough, United Kingdom – sequence: 4 givenname: Patricia surname: Luis fullname: Luis, Patricia organization: Materials & Process Engineering (iMMC-IMAP), Université Catholique de Louvain, Louvain-la-Neuve, Belgium – sequence: 5 givenname: Moonyong surname: Lee fullname: Lee, Moonyong email: mynlee@yu.ac.kr organization: School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea |
BookMark | eNqFkD1PwzAQhi0EEuVjZc7IknJOYsdlg_IpoCAoQkyWY18kQ5oEXyj035NShNiY7vTqeU66d4ut102NjO1xGHKA5MCi6YYJcAEgU7HGBlwkPM54ItbZAEYpxLngcpNtEb0A9ByXA_Z8WXdYky89uujEU-erynS-qeNjQ330gK0J30F0FxqLREiH0T1arLvoBOdYNe2s3ykytYvuMFCLtvNzpB22UZqKcPdnbrPHs9Pp-CK-vj2_HB9dxzZLcxGjE7bIHUcwRkGBVrlCyqworAPLSyeUMqWQKnUIsixHIyiUSB3khguneJJus_3V3TY0b-9InZ55sti_UWPzTpormQmZi2yJDleoDQ1RwFK3wc9MWGgOetmhXnaofzvshdFK-PAVLv6h9fj0aPrXjVduXyp-_romvGqZ95_rp8m5nlypi2k6udc36RdgLIi7 |
CitedBy_id | crossref_primary_10_1002_ceat_201700471 crossref_primary_10_1515_revce_2017_0085 crossref_primary_10_1002_ceat_202000617 crossref_primary_10_1016_j_cep_2018_07_014 crossref_primary_10_1016_j_cep_2017_11_009 crossref_primary_10_1021_acs_iecr_2c04305 crossref_primary_10_1002_ceat_201600052 crossref_primary_10_1016_j_cep_2022_109092 crossref_primary_10_3390_en13225917 crossref_primary_10_1080_09537287_2021_1942282 crossref_primary_10_1016_j_rser_2024_114522 crossref_primary_10_1002_ceat_201700515 crossref_primary_10_1016_j_cep_2018_03_021 crossref_primary_10_1016_j_cherd_2017_11_020 crossref_primary_10_1021_acs_iecr_8b02078 crossref_primary_10_1002_jctb_7633 crossref_primary_10_1016_j_cherd_2019_02_042 crossref_primary_10_1002_ceat_202100264 crossref_primary_10_1016_j_cep_2021_108423 |
Cites_doi | 10.1002/apj.643 10.1016/j.cherd.2010.11.005 10.1021/ef700265y 10.1126/science.1114736 10.1016/j.seppur.2012.06.029 10.1016/j.biotechadv.2013.01.007 10.1146/annurev‐chembioeng‐061010‐114159 10.1016/S0098‐1354(97)87508‐4 10.1016/j.seppur.2011.09.004 10.1016/j.compchemeng.2011.11.012 10.1016/j.compchemeng.2013.02.001 10.1205/026387601753192037 10.1016/j.cep.2010.06.008 10.1136/bmj.283.6285.255-a 10.1002/9780470377741 10.1002/aic.14827 10.1016/j.cep.2013.06.014 10.1243/095440605X32011 10.1016/j.ijggc.2013.12.005 10.1016/j.cep.2008.03.015 10.1016/j.seppur.2011.05.009 10.1016/j.cep.2008.01.004 10.1016/j.memsci.2011.06.043 10.1021/je7006617 10.1016/j.biortech.2010.03.134 10.5694/j.1326-5377.1949.tb37029.x 10.1016/j.seppur.2014.02.006 10.1080/07373937.2010.502604 10.1016/j.compchemeng.2008.09.020 10.1016/B978-0-08-098304-2.00002-X 10.1016/j.cep.2013.01.011 10.1016/j.cep.2011.04.002 10.1007/978-3-319-03554-3 10.1016/S0009‐2509(03)00165‐9 10.1016/j.cep.2015.09.002 10.1252/jcej.13we067 10.1016/j.cep.2015.05.002 10.1016/j.enconman.2016.09.077 10.1002/9781119016311.ch9 10.1016/j.pecs.2012.01.004 10.1002/9781118543702 10.1016/j.seppur.2015.06.007 10.1016/j.cep.2014.04.006 10.1016/j.cep.2014.10.018 10.1016/j.cherd.2013.07.011 10.1016/0009-2509(71)80050-7 10.1021/ie2029283 10.1016/j.seppur.2009.08.004 10.1016/j.cherd.2011.02.013 10.1016/j.energy.2011.05.020 10.1002/(SICI)1097‐4660(199802)71:2<95::AID‐JCTB823>3.0.CO;2‐J 10.1016/j.cep.2014.10.017 10.1016/j.desal.2014.10.028 10.1039/C2GC16668B 10.1002/ghg.1365 10.1252/jcej.35.1298 10.1016/j.cherd.2011.02.007 10.1016/j.biortech.2010.08.066 10.1021/ie101195k 10.1021/ie051104r 10.1021/ie5048829 10.1016/j.ijggc.2010.03.007 10.1002/9781119016311.ch5 10.1016/j.cej.2012.09.121 10.1021/ie070544a 10.1016/S0255‐2701(03)00125‐9 10.1016/j.cep.2007.06.005 10.1002/ceat.201300133 10.1021/acs.iecr.5b00893 10.1016/j.compchemeng.2006.11.006 10.1002/jps.23998 10.1021/ie030029m 10.1002/ceat.201000388 10.1016/j.cep.2007.05.023 10.1016/j.cep.2014.05.005 10.1021/ie50620a022 10.1002/jctb.1650 10.1021/ie990927b 10.1002/9783527630233 10.1016/j.cherd.2014.11.015 10.1016/j.cep.2010.04.001 10.1002/(SICI)1521‐4125(199902)22:2 10.1016/j.cep.2009.11.009 10.1021/ie801020u 10.1002/9781119016311.ch10 10.1016/j.lwt.2007.04.013 |
ContentType | Journal Article |
Copyright | Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7U5 8FD L7M |
DOI | 10.1002/ceat.201500635 |
DatabaseName | Istex CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Solid State and Superconductivity Abstracts |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4125 |
EndPage | 2195 |
ExternalDocumentID | 10_1002_ceat_201500635 CEAT201500635 ark_67375_WNG_NK8HT3NR_M |
Genre | article |
GrantInformation_xml | – fundername: Priority Research Centers Program through the National Research Foundation of Korea (NRF) funderid: 2014R1A6A1031189 – fundername: Basic Science Research Program through the National Research Foundation of Korea (NRF) funderid: 2015R1D1A3A01015621 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABTAH ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HVGLF HZ~ I-F IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WOHZO WQJ WRC WSB WXSBR WYISQ XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION 7U5 8FD L7M |
ID | FETCH-LOGICAL-c4375-ed5cb7d1e0aa80bec8db664bbcd0c1fd588af5683de06ff990b853d07a15d8123 |
IEDL.DBID | DR2 |
ISSN | 0930-7516 |
IngestDate | Fri Aug 16 06:10:11 EDT 2024 Fri Aug 23 01:43:39 EDT 2024 Sat Aug 24 00:50:59 EDT 2024 Wed Oct 30 09:56:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4375-ed5cb7d1e0aa80bec8db664bbcd0c1fd588af5683de06ff990b853d07a15d8123 |
Notes | Priority Research Centers Program through the National Research Foundation of Korea (NRF) - No. 2014R1A6A1031189 ark:/67375/WNG-NK8HT3NR-M ArticleID:CEAT201500635 Basic Science Research Program through the National Research Foundation of Korea (NRF) - No. 2015R1D1A3A01015621 istex:9D630E03E60E58923D2FC10AD68C04A8AEA6F81B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://research.tees.ac.uk/ws/files/4318588/620540.pdf |
PQID | 1864567542 |
PQPubID | 23500 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_1864567542 crossref_primary_10_1002_ceat_201500635 wiley_primary_10_1002_ceat_201500635_CEAT201500635 istex_primary_ark_67375_WNG_NK8HT3NR_M |
PublicationCentury | 2000 |
PublicationDate | December, 2016 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: December, 2016 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Chemical engineering & technology |
PublicationTitleAlternate | Chem. Eng. Technol |
PublicationYear | 2016 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | J. Harmsen, Chem. Eng. Process. 2010, 49 (1), 70-73. DOI: 10.1016/j.cep.2009.11.009 M. Y. Lee, L. Q. Minh, N. V. D. Long, J. H. Shin, in Chemical Process Retrofitting and Revamping: Techniques and Applications (Ed: G. P. Rangaiah), John Wiley & Sons, Chichester 2016. N. Nguyen, Y. Demirel, Energy 2011, 36 (8), 4838-4847. DOI: 10.1016/j.energy.2011.05.020 H. Ding, M. Liu, Y. Gao, J. Qi, H. Zhou, J. Li, Ind. Eng. Chem. Res. 2016, 55 (6), 1590-1597. DOI: 10.1021/acs.iecr.5b00893 N. V. D. Long, M. Y. Lee, J. Chem. Eng. Jpn. 2014, 47, 87-108. DOI: 10.1252/jcej.13we067 N. V. D. Long, S. H. Lee, M. Y. Lee, Chem. Eng. Process. 2010, 49 (8), 825-835. DOI: 10.1016/j.cep.2010.06.008 M. Errico, B. G. Rong, G. Tola, I. Turunen, Ind. Eng. Chem. Res. 2008, 47 (6), 1975-1980. DOI: 10.1021/ie070544a K. A. Amminudin, R. Smith, Chem. Eng. Res. Des. 2001, 79 (7), 716-724. DOI: 10.1205/026387601753192037 H. Cheng, C. Tan, Sep. Purif. Technol. 2011, 82, 156-166. DOI: 10.1016/j.seppur.2011.09.004 A. A. Kiss, C. S. Bildea, Bioresour. Technol. 2011, 102 (2), 490-498. DOI: 10.1016/j.biortech.2010.08.066 M. A. Schultz, D. G. Stewart, J. M. Harris, S. P. Rosenblum, M. S. Shakur, D. E. O'Brien, Chem. Eng. Prog. 2002, May, 64-71. P. C. Luo, Z. B. Zhang, Z. Jiao, Z. X. Wang, Ind. Eng. Chem. Res. 2003, 42 (20), 4861-4866. DOI: 10.1021/ie030029m E. Drioli, A. Brunetti, G. D. Profio, G. Barbieri, Green Chem. 2012, 14, 1561-1572. DOI: 10.1039/C2GC16668B C. Charcosset, J. Chem. Technol. Biotechnol. 1998, 71 (2), 95-110. DOI: 10.1002/(SICI)1097-4660(199802)71:2<95::AID-JCTB823>3.0.CO;2-J K. K. Sirkar, A. G. Fane, R. Wang, S. R. Wickramasinghe, Chem. Eng. Process. 2015, 87, 16-25. DOI: 10.1016/j.cep.2014.10.018 I. Dejanović, Lj. Matijašević, Ž. Olujić, Chem. Eng. Process. 2010, 49 (6), 559-580. DOI: 10.1016/j.cep.2010.04.001 S. G. Lee, N. V. D. Long, M. Y. Lee, Ind. Eng. Chem. Res. 2012, 51 (30), 10021-10030. DOI: 10.1021/ie2029283 M. A. Rodríguez-Ángeles, F. I. Gómez-Castro, J. G. Segovia-Hernández, A. R. Uribe-Ramírez, Chem. Eng. Process. 2015, 97, 55-65. DOI: 10.1016/j.cep.2015.09.002 C. Proestos, M. Komaitis, LWT 2008, 41, 652-659. DOI: 10.1016/j.lwt.2007.04.013 L. Joss, M. Gazzani, M. Hefti, D. Marx, M. Mazzotti, Ind. Eng. Chem. Res. 2015, 54, 3027-3038. DOI: 10.1021/ie5048829 R. H. Walters, B. Bhatnagar, S. Tchessalov, K. Izutsu, K. Tsumoto, S. Ohtake, J. Pharm. Sci. 2014, 103 (9), 2673-2695. DOI: 10.1002/jps.23998. F. Omota, A. C. Dimian, A. Bliek, Chem. Eng. Sci. 2003, 58 (14), 3159-3174. DOI: 10.1016/S0009-2509(03)00165-9 A. C. Christiansen, S. Skogestad, K. Lien, Comput. Chem. Eng. 1997, 21, 237-242. DOI: 10.1016/S0098-1354(97)87508-4 G. Parkinson, Chem. Eng. Process. 2007, May, 8-11. M. S. Jassim, G. Rochelle, D. Eimer, C. Ramshaw, Ind. Eng. Chem. Res. 2007, 46 (9), 2823-2833. DOI: 10.1021/ie051104r A. Stankiewicz, in Re-Engineering the Chemical Processing Plant: Process Intensification (Eds: A. Stankiewicz, J. A. Moulijn), Marcel Dekker, New York 2004. A. A. Kiss, Advanced Distillation Technologies: Design, Control and Applications, John Wiley & Sons, Chichester 2013. C. Ramshaw, Chem. Eng. 1983, 389, 13-14. S. Lim, S. S. Hoong, L. K. Teong, S. Bhatia, Bioresour. Technol. 2010, 101 (18), 7169-7172. DOI: 10.1016/j.biortech.2010.03.134. A. I. Stankiewicz, J. A. Moulijn, Chem. Eng. Prog. 2000, January, 22-34. A. C. Dimian, C. S. Bildea, F. Omota, A. A. Kiss, Comput. Chem. Eng. 2009, 33 (3), 743-750. DOI: 10.1016/j.compchemeng.2008.09.020 L. C. Nhien, N. V. D. Long, M. Y. Lee, Energy Convers. Manage. 2016, in press. DOI: 10.1016/j.enconman.2016.09.077 S. Hernández, R. Sandoval-Vergara, F. O. Barroso-Muñoz, R. Murrieta-Dueñas, H. Hernández-Escoto, J. G. Segovia-Hernández, V. Rico-Ramirez, Chem. Eng. Process. 2009, 48 (1), 250-258. DOI: 10.1016/j.cep.2008.03.015 M. Ghadrdan, I. J. Halvorsen, S. Skogestad, Chem. Eng. Process. 2013, 72, 10-23. DOI: 10.1016/j.cep.2013.06.014 W. L. Luyben, C. C. Yu, Reactive Distillation, Design and Control, John Wiley & Sons, Hoboken, NJ 2008. N. V. D. Long, M. Y. Lee, Asia-Pac. J. Chem. Eng. 2012, 7 (S1), S71-S77. DOI: 10.1002/apj.643 O. Yildirim, A. A. Kiss, N. Huser, K. Lessmann, E. Y. Kenig, Chem. Eng. J. 2012, 213, 371-391. DOI: 10.1016/j.cej.2012.09.121 L. Agarwal, V. Pavani, D. P. Rao, N. Kaistha, Ind. Eng. Chem. Res. 2010, 49 (20), 10046-10058. DOI: 10.1021/ie101195k K. Y. Rani, C. Sumana, in Industrial Catalysis and Separations: Innovations for Process Intensification (Eds: K. V. Raghavan, B. M. Reddy), CRC Press, Boca Raton, FL 2014. A. Keshav, S. Chand, K. L. Wasewar, J. Chem. Eng. Data 2008, 53 (7), 1424-1430. DOI: 10.1021/je7006617 E. Drioli, A. I. Stankiewicz, F. Macedonio, J. Membr. Sci. 2011, 380 (1-2), 1-8. DOI: 10.1016/j.memsci.2011.06.043 B. V. Maleta, A. Shevchenko, O. Bedryk, A. A. Kiss, AIChE J. 2015, 61 (8), 2581-2591. DOI: 10.1002/aic.14827 P. Lutze, in Distillation: Operation and Applications, 1st ed. (Eds: A. Górak, H. Schoenmakers), Elsevier, Oxford 2014. A. A. Kiss, R. M. Ignat, Chem. Eng. Technol. 2013, 36 (7), 1261-1267. DOI: 10.1002/ceat.201300133 C. Buchaly, P. Kreis, A. Górak, Chem. Eng. Process. 2007, 46 (9), 790-799. DOI: 10.1016/j.cep.2007.05.023 E. Drioli, A. Ali, F. Macedonio, Desalination 2015, 356, 56-84. DOI: 10.1016/j.desal.2014.10.028 Y. Y. Loy, X. L. Lee, G. P. Rangaiah, Sep. Purif. Technol. 2015, 149, 413-427. DOI: 10.1016/j.seppur.2015.06.007 C. Patrut, C. S. Bildea, A. A. Kiss, Chem. Eng. Process. 2014, 81, 1-12. DOI: 10.1016/j.cep.2014.04.006 C. C. Lin, T. J. Ho, W. T. Liu, J. Chem. Eng. Jpn. 2002, 35 (12), 1298-1304. DOI: 10.1252/jcej.35.1298 G. J. Harmsen, Chem. Eng. Process. 2007, 46 (9), 774-780. DOI: 10.1016/j.cep.2007.06.005 M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, H. Yeung, Chem. Eng. Res. Des. 2011, 89, 1609-1624. DOI: 10.1016/j.cherd.2010.11.005 D. P. Rao, G. P. Rangaiah, in Chemical Process Retrofitting and Revamping: Techniques and Applications (Ed: G. P. Rangaiah), John Wiley & Sons, Chichester 2016. R. A. Gaska, M. R. Cannon, Ind. Eng. Chem. 1961, 53(8), 630-631. DOI: 10.1021/ie50620a022 C. Pătruţ, C. S. Bîldea, I. Liţă, A. A. Kiss, Sep. Purif. Technol. 2014, 125, 326-336. DOI: 10.1016/j.seppur.2014.02.006 L. Spiegel, M. Duss, in Distillation: Equipment and Processes, 1st ed. (Eds: A. Górak, Ž. Olujić), Elsevier, Oxford 2014. P. Lutze, A. Gorak, Chem. Eng. Res. Des. 2013, 91 (10), 1978-1997. DOI: 10.1016/j.cherd.2013.07.011 S. Tututi-Avila, A. Jimenez-Gutierrez, J. Hahn, Chem. Eng. Process. 2014, 82, 88-100. DOI: 10.1016/j.cep.2014.05.005 M. Gadalla, L. J. Jimenez, Ž. Olujic, P. J. Jansens, Comput. Chem. Eng. 2007, 31 (10), 1346-1354. DOI: 10.1016/j.compchemeng.2006.11.006 K. Cheng, S. J. Wang, D. S. H. Wong, Comput. Chem. Eng. 2013, 52, 262-271. DOI: 10.1016/j.compchemeng.2013.02.001 M. Benali, T. Kudra, Drying Technol. 2010, 28 (10), 1127-1135. DOI: 10.1080/07373937.2010.502604 A. A. Kiss, Process Intensification Technologies for Biodiesel Production: Reactive Separation Processes, Springer, Heidelberg, 2014. M. A. T. Bisschops, S. H. van Hateren, K. C. A. M. Luyben, L. A. M. van der Wielen, Ind. Eng. Chem. Res. 2000, 39 (11), 4376-4382. DOI: 10.1021/ie990927b A. A. Kiss, A. C. Dimian, G. Rothenberg, Energy Fuels 2008, 22 (1), 598-604. DOI: 10.1021/ef700265y A. S. Joel, M. Wang, C. Ramshaw, E. Oko, Int. J. Greenhouse Gas Control 2014, 21, 91-100. DOI: 10.1016/j.ijggc.2013.12.005 M. D. Vetal, V. G. Lade, V. K. Rathod, Chem. Eng. Process. 2013, 69, 24-30. DOI: 10.1016/j.cep.2013.01.011 G. Q. Wang, O. G. Xu, Z. C. Xu, J. B. Ji, Ind. Eng. Chem. Res. 2008, 47 (22), 8840-8846. DOI: 10.1021/ie801020u A. A. Kiss, D. J. P. C. Suszwalak, Comput. Chem. Eng. 2012, 38, 74-81. DOI: 10.1016/j.compchemeng.2011.11.012 P. Luis, B. V. der Bruggen, Greenhouse Gases: Sci. Technol. 2013, 3 (5), 318-337. DOI: 10.1002/ghg.1365 T. Keller, in Distillation: Equipment and Processes, 1st ed. (Eds: A. Gorak, Z. Olujic), Elsevier, Oxford 2014. A. A. Kiss, R. M. Ignat, Sep. Purif. Technol. 2012, 98, 290-297. DOI: 10.1016/j.seppur.2012.06.029 Industrial Biotechnology: Sustainable Growth and Economic Success (Eds: W. Soetaert, E. J. Vandamme), 1st ed., Wiley-VCH, Weinheim 2010. M. Ghadrdan, I. J. Halvorsen, S. Skogestad, Chem. Eng. Res. Des. 2011, 89 (8), 1382-1391. DOI: 10.1016/j.cherd.2011.02.007 P. Luis, T. V. Gerven, B. V. der Bruggen, Prog. Energy Combust. Sci. 2012, 38 (3), 419-448. DOI: 10.1016/j.pecs.2012.01.004 A. C. Dimian, F. Omota, A. Bliek, Chem. Eng. Process. 2004, 43 (3), 411-420. DOI: 10.1016/S0255-2701(03)00125-9 H. An, B. Feng, S. Su, Int. J. Greenhouse Gas Control 2011, 5 (1), 16-25. DOI: 10.1016/j.ijggc.2010.03.007 X. Z. Tan, S. Pandey, G. P. Rangaiah, W. Niu, in Chemical Process Retrofitting and Revamping: Techniques and Applications (Ed: G. P. Rangaiah), John Wiley & Sons, Chichester 2016. A. A. Kiss, Sep. Purif. Technol. 2009, 69 (3), 280-287. DOI: 10.1016/j.seppur.2009.08.004 J. Wallace, S. Krumdieck, J. Mech. Eng. Sci. 2005, 219, 1225-1233. DOI: 10.1243/095440605X32011 A. A. Kiss, Z. Olujic, Chem. Eng. Process. 2014, 86, 125-144. DOI: 10.1016/j.cep.2014.10.017 A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick Jr., J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer, T. Tschaplinski, Science 2006, 311, 484-489. DOI: 10.1126/science.1114736 V. N. Maleta, A. A. Kiss, V. M. Taran, B. V. Maleta, Chem. Eng. Process. 2011, 50 (7), 655-664. DOI: 10.1016/j.cep.2011.04.002 Z. Lei, B. Chen, Z. Ding, Special Distillation Processes, Elsevier, Amsterdam 2005. E. Sørensen, K. F. Lam, D. Sudhoff, in Distillation: Operation and Applications, 1st ed. (Eds: A. Górak, H. Schoenmakers), Elsevier, New York 2014. V. Orr, L. Zhong, M. Moo-Young, C. P. Chou, Biotechnol. Adv. 2013, 31, 450-465. DOI: 10.1016/j.biotechadv.2013.01.007 A. Gorak, A. Stankiewicz, Annu. Rev. Chem. Biomol. Eng. 2011, 2, 431-451. DOI: 10.1146/annurev-chembioeng-061010-114159 F. O. Barroso-Muñoz, S. Hernández, J. G. Segovia-Hernández, H. Hernández-Escoto, V. Rico-Ramírez, R.-H. Chávez, Chem. Eng. 2013; 3 1961; 53(8) 2013; 69 2015; 149 2010; 101 2003; 58 2005; 219 2012; 14 2007; 31 2012; 98 2009; 48 2014; 21 2012; 51 1983; 389 2000 2010; 28 2015; 87 2013; 52 1987 2008; 22 1981 2012; 213 1949 2014; 125 2003; 42 2004; 43 2009; 69 2011; 2 2015; 93 1997; 21 2011; 80 2010 2015; 94 2015; 97 2011; 82 2002; 35 1971; 26 2015; 54 2013; 91 2006; 152 2008 1999; 22 2014; 47 2007 2006 2005 2011; 34 2004 2012; 38 2002 2008; 53 2011; 36 2014; 82 2011; 5 2006; 311 2014; 86 2016; 55 2009; 33 2011; 102 2010; 49 2014; 81 2013; 36 2000; 39 2015; 356 2015; 61 2013; 72 2013; 31 2011; 50 2008; 47 2016 2007; 82 2011; 89 2015 2014 2008; 41 2013 1998; 71 2012; 7 2001; 79 2011; 380 2007; 46 2014; 103 e_1_2_7_108_2 Stankiewicz A. (e_1_2_7_109_2) 2004 e_1_2_7_3_2 e_1_2_7_104_2 e_1_2_7_7_2 e_1_2_7_19_2 e_1_2_7_83_2 e_1_2_7_100_2 e_1_2_7_15_2 e_1_2_7_60_2 e_1_2_7_87_2 e_1_2_7_64_2 e_1_2_7_45_2 Slade B. (e_1_2_7_33_2) 2006; 152 e_1_2_7_68_2 e_1_2_7_26_2 e_1_2_7_49_2 Spiegel L. (e_1_2_7_107_2) 2014 e_1_2_7_90_2 e_1_2_7_71_2 e_1_2_7_94_2 e_1_2_7_52_2 e_1_2_7_75_2 e_1_2_7_98_2 e_1_2_7_23_2 e_1_2_7_79_2 Sørensen E. (e_1_2_7_13_2) 2014 e_1_2_7_37_2 e_1_2_7_4_2 e_1_2_7_105_2 e_1_2_7_8_2 e_1_2_7_101_2 e_1_2_7_82_2 e_1_2_7_16_2 e_1_2_7_40_2 e_1_2_7_63_2 e_1_2_7_86_2 e_1_2_7_12_2 e_1_2_7_44_2 e_1_2_7_67_2 e_1_2_7_48_2 e_1_2_7_29_2 e_1_2_7_93_2 e_1_2_7_70_2 e_1_2_7_24_2 Ramshaw C. (e_1_2_7_41_2) 1983; 389 e_1_2_7_51_2 e_1_2_7_97_2 e_1_2_7_32_2 e_1_2_7_20_2 e_1_2_7_55_2 e_1_2_7_36_2 e_1_2_7_78_2 e_1_2_7_59_2 e_1_2_7_5_2 Stankiewicz A. I. (e_1_2_7_6_2) 2000 Parkinson G. (e_1_2_7_84_2) 2007 e_1_2_7_106_2 e_1_2_7_9_2 e_1_2_7_102_2 Keller T. (e_1_2_7_73_2) 2014 e_1_2_7_17_2 e_1_2_7_81_2 e_1_2_7_1_2 e_1_2_7_62_2 e_1_2_7_43_2 e_1_2_7_85_2 e_1_2_7_66_2 e_1_2_7_47_2 e_1_2_7_89_2 e_1_2_7_28_2 Rani K. Y. (e_1_2_7_56_2) 2014 Schmidt‐Traub H. (e_1_2_7_11_2) 2006 e_1_2_7_50_2 e_1_2_7_92_2 e_1_2_7_25_2 e_1_2_7_31_2 e_1_2_7_54_2 e_1_2_7_21_2 e_1_2_7_35_2 e_1_2_7_58_2 e_1_2_7_77_2 e_1_2_7_39_2 Lutze P. (e_1_2_7_96_2) 2014 e_1_2_7_2_2 e_1_2_7_103_2 e_1_2_7_18_2 e_1_2_7_61_2 e_1_2_7_80_2 e_1_2_7_14_2 e_1_2_7_42_2 e_1_2_7_65_2 e_1_2_7_10_2 e_1_2_7_46_2 e_1_2_7_69_2 e_1_2_7_88_2 e_1_2_7_27_2 Lei Z. (e_1_2_7_74_2) 2005 Schultz M. A. (e_1_2_7_38_2) 2002 e_1_2_7_72_2 e_1_2_7_91_2 e_1_2_7_30_2 e_1_2_7_76_2 e_1_2_7_22_2 e_1_2_7_53_2 e_1_2_7_95_2 e_1_2_7_34_2 e_1_2_7_57_2 e_1_2_7_99_2 |
References_xml | – volume: 380 start-page: 1 issue: 1–2 year: 2011 end-page: 8 publication-title: J. Membr. Sci. – volume: 42 start-page: 4861 issue: 20 year: 2003 end-page: 4866 publication-title: Ind. Eng. Chem. Res. – start-page: 22 year: 2000 end-page: 34 publication-title: Chem. Eng. Prog. – year: 1981 – volume: 33 start-page: 743 issue: 3 year: 2009 end-page: 750 publication-title: Comput. Chem. Eng. – year: 2005 – volume: 93 start-page: 87 year: 2015 end-page: 97 publication-title: Chem. Eng. Process. – volume: 39 start-page: 4376 issue: 11 year: 2000 end-page: 4382 publication-title: Ind. Eng. Chem. Res. – volume: 71 start-page: 95 issue: 2 year: 1998 end-page: 110 publication-title: J. Chem. Technol. Biotechnol. – volume: 22 start-page: 598 issue: 1 year: 2008 end-page: 604 publication-title: Energy Fuels – volume: 46 start-page: 2823 issue: 9 year: 2007 end-page: 2833 publication-title: Ind. Eng. Chem. Res. – volume: 14 start-page: 1561 year: 2012 end-page: 1572 publication-title: Green Chem. – volume: 91 start-page: 1978 issue: 10 year: 2013 end-page: 1997 publication-title: Chem. Eng. Res. Des. – volume: 34 start-page: 746 issue: 5 year: 2011 end-page: 750 publication-title: Chem. Eng. Technol. – volume: 72 start-page: 10 year: 2013 end-page: 23 publication-title: Chem. Eng. Process. – volume: 49 start-page: 10046 issue: 20 year: 2010 end-page: 10058 publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: S71 issue: S1 year: 2012 end-page: S77 publication-title: Asia‐Pac. J. Chem. Eng. – start-page: 8 year: 2007 end-page: 11 publication-title: Chem. Eng. Process. – volume: 5 start-page: 16 issue: 1 year: 2011 end-page: 25 publication-title: Int. J. Greenhouse Gas Control – volume: 51 start-page: 10021 issue: 30 year: 2012 end-page: 10030 publication-title: Ind. Eng. Chem. Res. – year: 2014 – volume: 26 start-page: 2120 year: 1971 end-page: 2021 publication-title: Chem. Eng. Sci. – volume: 98 start-page: 290 year: 2012 end-page: 297 publication-title: Sep. Purif. Technol. – volume: 50 start-page: 655 issue: 7 year: 2011 end-page: 664 publication-title: Chem. Eng. Process. – volume: 21 start-page: 91 year: 2014 end-page: 100 publication-title: Int. J. Greenhouse Gas Control – volume: 48 start-page: 48 issue: 1 year: 2009 end-page: 58 publication-title: Chem. Eng. Process. – volume: 82 start-page: 223 issue: 3 year: 2007 end-page: 227 publication-title: J. Chem. Technol. Biotechnol. – volume: 38 start-page: 419 issue: 3 year: 2012 end-page: 448 publication-title: Prog. Energy Combust. Sci. – volume: 80 start-page: 403 issue: 3 year: 2011 end-page: 417 publication-title: Sep. Purif. Technol. – volume: 69 start-page: 24 year: 2013 end-page: 30 publication-title: Chem. Eng. Process. – volume: 101 start-page: 7169 issue: 18 year: 2010 end-page: 7172 publication-title: Bioresour. Technol. – volume: 52 start-page: 262 year: 2013 end-page: 271 publication-title: Comput. Chem. Eng. – volume: 38 start-page: 74 year: 2012 end-page: 81 publication-title: Comput. Chem. Eng. – volume: 43 start-page: 411 issue: 3 year: 2004 end-page: 420 publication-title: Chem. Eng. Process. – volume: 55 start-page: 1590 issue: 6 year: 2016 end-page: 1597 publication-title: Ind. Eng. Chem. Res. – volume: 47 start-page: 87 year: 2014 end-page: 108 publication-title: J. Chem. Eng. Jpn. – year: 2008 – year: 2004 – volume: 94 start-page: 72 year: 2015 end-page: 89 publication-title: Chem. Eng. Res. Des. – volume: 87 start-page: 16 year: 2015 end-page: 25 publication-title: Chem. Eng. Process. – year: 2016 publication-title: Energy Convers. Manage. – year: 1949 – volume: 311 start-page: 484 year: 2006 end-page: 489 publication-title: Science – volume: 103 start-page: 2673 issue: 9 year: 2014 end-page: 2695 publication-title: J. Pharm. Sci. – volume: 46 start-page: 790 issue: 9 year: 2007 end-page: 799 publication-title: Chem. Eng. Process. – volume: 36 start-page: 1261 issue: 7 year: 2013 end-page: 1267 publication-title: Chem. Eng. Technol. – year: 2015 – volume: 89 start-page: 1609 year: 2011 end-page: 1624 publication-title: Chem. Eng. Res. Des. – volume: 49 start-page: 70 issue: 1 year: 2010 end-page: 73 publication-title: Chem. Eng. Process. – volume: 53(8) start-page: 630 year: 1961 end-page: 631 publication-title: Ind. Eng. Chem. – volume: 48 start-page: 250 issue: 1 year: 2009 end-page: 258 publication-title: Chem. Eng. Process. – volume: 31 start-page: 1346 issue: 10 year: 2007 end-page: 1354 publication-title: Comput. Chem. Eng. – volume: 149 start-page: 413 year: 2015 end-page: 427 publication-title: Sep. Purif. Technol. – volume: 81 start-page: 1 year: 2014 end-page: 12 publication-title: Chem. Eng. Process. – volume: 102 start-page: 490 issue: 2 year: 2011 end-page: 498 publication-title: Bioresour. Technol. – volume: 35 start-page: 1298 issue: 12 year: 2002 end-page: 1304 publication-title: J. Chem. Eng. Jpn. – volume: 31 start-page: 450 year: 2013 end-page: 465 publication-title: Biotechnol. Adv. – year: 1987 – volume: 28 start-page: 1127 issue: 10 year: 2010 end-page: 1135 publication-title: Drying Technol. – volume: 61 start-page: 2581 issue: 8 year: 2015 end-page: 2591 publication-title: AIChE J. – volume: 86 start-page: 125 year: 2014 end-page: 144 publication-title: Chem. Eng. Process. – volume: 82 start-page: 88 year: 2014 end-page: 100 publication-title: Chem. Eng. Process. – volume: 36 start-page: 4838 issue: 8 year: 2011 end-page: 4847 publication-title: Energy – volume: 219 start-page: 1225 year: 2005 end-page: 1233 publication-title: J. Mech. Eng. Sci. – year: 2016 – volume: 152 year: 2006 publication-title: IChemE Symp. Ser. – volume: 2 start-page: 431 year: 2011 end-page: 451 publication-title: Annu. Rev. Chem. Biomol. Eng. – volume: 97 start-page: 55 year: 2015 end-page: 65 publication-title: Chem. Eng. Process. – year: 2010 – volume: 82 start-page: 156 year: 2011 end-page: 166 publication-title: Sep. Purif. Technol. – volume: 125 start-page: 326 year: 2014 end-page: 336 publication-title: Sep. Purif. Technol. – volume: 389 start-page: 13 year: 1983 end-page: 14 publication-title: Chem. Eng. – volume: 53 start-page: 1424 issue: 7 year: 2008 end-page: 1430 publication-title: J. Chem. Eng. Data – volume: 49 start-page: 559 issue: 6 year: 2010 end-page: 580 publication-title: Chem. Eng. Process. – volume: 58 start-page: 3159 issue: 14 year: 2003 end-page: 3174 publication-title: Chem. Eng. Sci. – volume: 41 start-page: 652 year: 2008 end-page: 659 publication-title: LWT – volume: 79 start-page: 716 issue: 7 year: 2001 end-page: 724 publication-title: Chem. Eng. Res. Des. – volume: 3 start-page: 318 issue: 5 year: 2013 end-page: 337 publication-title: Greenhouse Gases: Sci. Technol. – volume: 47 start-page: 1975 issue: 6 year: 2008 end-page: 1980 publication-title: Ind. Eng. Chem. Res. – year: 2006 – volume: 22 start-page: 95 issue: 2 year: 1999 end-page: 103 publication-title: Chem. Eng. Technol. – volume: 89 start-page: 1434 issue: 8 year: 2011 end-page: 1442 publication-title: Chem. Eng. Res. Des. – volume: 47 start-page: 8840 issue: 22 year: 2008 end-page: 8846 publication-title: Ind. Eng. Chem. Res. – volume: 21 start-page: 237 year: 1997 end-page: 242 publication-title: Comput. Chem. Eng. – volume: 49 start-page: 825 issue: 8 year: 2010 end-page: 835 publication-title: Chem. Eng. Process. – volume: 213 start-page: 371 year: 2012 end-page: 391 publication-title: Chem. Eng. J. – volume: 54 start-page: 3027 year: 2015 end-page: 3038 publication-title: Ind. Eng. Chem. Res. – volume: 69 start-page: 280 issue: 3 year: 2009 end-page: 287 publication-title: Sep. Purif. Technol. – volume: 89 start-page: 1382 issue: 8 year: 2011 end-page: 1391 publication-title: Chem. Eng. Res. Des. – start-page: 64 year: 2002 end-page: 71 publication-title: Chem. Eng. Prog. – volume: 46 start-page: 774 issue: 9 year: 2007 end-page: 780 publication-title: Chem. Eng. Process. – year: 2013 – volume: 356 start-page: 56 year: 2015 end-page: 84 publication-title: Desalination – ident: e_1_2_7_29_2 doi: 10.1002/apj.643 – ident: e_1_2_7_102_2 doi: 10.1016/j.cherd.2010.11.005 – ident: e_1_2_7_91_2 doi: 10.1021/ef700265y – ident: e_1_2_7_5_2 doi: 10.1126/science.1114736 – ident: e_1_2_7_22_2 doi: 10.1016/j.seppur.2012.06.029 – ident: e_1_2_7_67_2 doi: 10.1016/j.biotechadv.2013.01.007 – ident: e_1_2_7_14_2 doi: 10.1146/annurev‐chembioeng‐061010‐114159 – start-page: 22 year: 2000 ident: e_1_2_7_6_2 publication-title: Chem. Eng. Prog. contributor: fullname: Stankiewicz A. I. – ident: e_1_2_7_28_2 doi: 10.1016/S0098‐1354(97)87508‐4 – ident: e_1_2_7_100_2 doi: 10.1016/j.seppur.2011.09.004 – ident: e_1_2_7_24_2 doi: 10.1016/j.compchemeng.2011.11.012 – ident: e_1_2_7_45_2 – ident: e_1_2_7_72_2 doi: 10.1016/j.compchemeng.2013.02.001 – volume-title: Industrial Catalysis and Separations: Innovations for Process Intensification year: 2014 ident: e_1_2_7_56_2 contributor: fullname: Rani K. Y. – volume-title: Special Distillation Processes year: 2005 ident: e_1_2_7_74_2 contributor: fullname: Lei Z. – ident: e_1_2_7_35_2 doi: 10.1205/026387601753192037 – ident: e_1_2_7_36_2 doi: 10.1016/j.cep.2010.06.008 – ident: e_1_2_7_1_2 – ident: e_1_2_7_8_2 doi: 10.1136/bmj.283.6285.255-a – ident: e_1_2_7_75_2 doi: 10.1002/9780470377741 – ident: e_1_2_7_49_2 doi: 10.1002/aic.14827 – ident: e_1_2_7_31_2 doi: 10.1016/j.cep.2013.06.014 – ident: e_1_2_7_99_2 doi: 10.1243/095440605X32011 – ident: e_1_2_7_81_2 doi: 10.1016/j.ijggc.2013.12.005 – ident: e_1_2_7_20_2 doi: 10.1016/j.cep.2008.03.015 – ident: e_1_2_7_26_2 doi: 10.1016/j.seppur.2011.05.009 – ident: e_1_2_7_105_2 doi: 10.1016/j.cep.2008.01.004 – ident: e_1_2_7_57_2 – ident: e_1_2_7_66_2 doi: 10.1016/j.memsci.2011.06.043 – ident: e_1_2_7_62_2 doi: 10.1021/je7006617 – ident: e_1_2_7_63_2 doi: 10.1016/j.biortech.2010.03.134 – ident: e_1_2_7_10_2 doi: 10.5694/j.1326-5377.1949.tb37029.x – start-page: 64 year: 2002 ident: e_1_2_7_38_2 publication-title: Chem. Eng. Prog. contributor: fullname: Schultz M. A. – ident: e_1_2_7_18_2 doi: 10.1016/j.seppur.2014.02.006 – ident: e_1_2_7_87_2 doi: 10.1080/07373937.2010.502604 – ident: e_1_2_7_93_2 doi: 10.1016/j.compchemeng.2008.09.020 – ident: e_1_2_7_3_2 doi: 10.1016/B978-0-08-098304-2.00002-X – ident: e_1_2_7_60_2 doi: 10.1016/j.cep.2013.01.011 – volume-title: Integrated Reaction and Separation Operations: Modeling and Experimental Validation year: 2006 ident: e_1_2_7_11_2 contributor: fullname: Schmidt‐Traub H. – volume-title: Distillation: Operation and Applications year: 2014 ident: e_1_2_7_96_2 contributor: fullname: Lutze P. – ident: e_1_2_7_47_2 doi: 10.1016/j.cep.2011.04.002 – ident: e_1_2_7_89_2 doi: 10.1007/978-3-319-03554-3 – ident: e_1_2_7_90_2 doi: 10.1016/S0009‐2509(03)00165‐9 – ident: e_1_2_7_85_2 – ident: e_1_2_7_37_2 doi: 10.1016/j.cep.2015.09.002 – ident: e_1_2_7_27_2 doi: 10.1252/jcej.13we067 – ident: e_1_2_7_77_2 doi: 10.1016/j.cep.2015.05.002 – ident: e_1_2_7_80_2 doi: 10.1016/j.enconman.2016.09.077 – ident: e_1_2_7_32_2 doi: 10.1002/9781119016311.ch9 – volume-title: Distillation: Equipment and Processes year: 2014 ident: e_1_2_7_73_2 contributor: fullname: Keller T. – ident: e_1_2_7_103_2 doi: 10.1016/j.pecs.2012.01.004 – ident: e_1_2_7_48_2 doi: 10.1002/9781118543702 – ident: e_1_2_7_53_2 doi: 10.1016/j.seppur.2015.06.007 – ident: e_1_2_7_78_2 doi: 10.1016/j.cep.2014.04.006 – ident: e_1_2_7_69_2 doi: 10.1016/j.cep.2014.10.018 – ident: e_1_2_7_12_2 doi: 10.1016/j.cherd.2013.07.011 – ident: e_1_2_7_59_2 doi: 10.1016/0009-2509(71)80050-7 – ident: e_1_2_7_82_2 doi: 10.1021/ie2029283 – volume-title: Distillation: Equipment and Processes year: 2014 ident: e_1_2_7_107_2 contributor: fullname: Spiegel L. – ident: e_1_2_7_108_2 – start-page: 8 year: 2007 ident: e_1_2_7_84_2 publication-title: Chem. Eng. Process. contributor: fullname: Parkinson G. – ident: e_1_2_7_94_2 doi: 10.1016/j.seppur.2009.08.004 – ident: e_1_2_7_42_2 doi: 10.1016/j.cherd.2011.02.013 – ident: e_1_2_7_76_2 doi: 10.1016/j.energy.2011.05.020 – ident: e_1_2_7_68_2 doi: 10.1002/(SICI)1097‐4660(199802)71:2<95::AID‐JCTB823>3.0.CO;2‐J – ident: e_1_2_7_39_2 doi: 10.1016/j.cep.2014.10.017 – ident: e_1_2_7_40_2 – ident: e_1_2_7_64_2 doi: 10.1016/j.desal.2014.10.028 – ident: e_1_2_7_2_2 doi: 10.1039/C2GC16668B – ident: e_1_2_7_104_2 doi: 10.1002/ghg.1365 – volume-title: Re‐Engineering the Chemical Processing Plant: Process Intensification year: 2004 ident: e_1_2_7_109_2 contributor: fullname: Stankiewicz A. – ident: e_1_2_7_86_2 – ident: e_1_2_7_44_2 doi: 10.1252/jcej.35.1298 – ident: e_1_2_7_7_2 – ident: e_1_2_7_30_2 doi: 10.1016/j.cherd.2011.02.007 – ident: e_1_2_7_95_2 doi: 10.1016/j.biortech.2010.08.066 – ident: e_1_2_7_50_2 doi: 10.1021/ie101195k – volume: 389 start-page: 13 year: 1983 ident: e_1_2_7_41_2 publication-title: Chem. Eng. contributor: fullname: Ramshaw C. – ident: e_1_2_7_101_2 doi: 10.1021/ie051104r – ident: e_1_2_7_52_2 doi: 10.1021/ie5048829 – ident: e_1_2_7_54_2 doi: 10.1016/j.ijggc.2010.03.007 – ident: e_1_2_7_58_2 doi: 10.1002/9781119016311.ch5 – ident: e_1_2_7_51_2 doi: 10.1016/j.cej.2012.09.121 – ident: e_1_2_7_21_2 doi: 10.1021/ie070544a – ident: e_1_2_7_92_2 doi: 10.1016/S0255‐2701(03)00125‐9 – ident: e_1_2_7_83_2 doi: 10.1016/j.cep.2007.06.005 – ident: e_1_2_7_34_2 doi: 10.1002/ceat.201300133 – ident: e_1_2_7_65_2 – ident: e_1_2_7_79_2 doi: 10.1021/acs.iecr.5b00893 – volume: 152 year: 2006 ident: e_1_2_7_33_2 publication-title: IChemE Symp. Ser. contributor: fullname: Slade B. – ident: e_1_2_7_16_2 doi: 10.1016/j.compchemeng.2006.11.006 – ident: e_1_2_7_88_2 doi: 10.1002/jps.23998 – ident: e_1_2_7_98_2 doi: 10.1021/ie030029m – ident: e_1_2_7_15_2 doi: 10.1002/ceat.201000388 – ident: e_1_2_7_9_2 doi: 10.1016/j.cep.2007.05.023 – ident: e_1_2_7_23_2 doi: 10.1016/j.cep.2014.05.005 – ident: e_1_2_7_46_2 doi: 10.1021/ie50620a022 – ident: e_1_2_7_70_2 doi: 10.1002/jctb.1650 – ident: e_1_2_7_55_2 doi: 10.1021/ie990927b – ident: e_1_2_7_97_2 doi: 10.1002/9783527630233 – ident: e_1_2_7_17_2 doi: 10.1016/j.cherd.2014.11.015 – ident: e_1_2_7_25_2 doi: 10.1016/j.cep.2010.04.001 – ident: e_1_2_7_106_2 – ident: e_1_2_7_19_2 doi: 10.1002/(SICI)1521‐4125(199902)22:2 – volume-title: Distillation: Operation and Applications year: 2014 ident: e_1_2_7_13_2 contributor: fullname: Sørensen E. – ident: e_1_2_7_4_2 doi: 10.1016/j.cep.2009.11.009 – ident: e_1_2_7_43_2 doi: 10.1021/ie801020u – ident: e_1_2_7_71_2 doi: 10.1002/9781119016311.ch10 – ident: e_1_2_7_61_2 doi: 10.1016/j.lwt.2007.04.013 |
SSID | ssj0001516 |
Score | 2.2883615 |
Snippet | Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as improvement... Abstract Greater sustainability can be achieved by decreasing the production costs, energy consumption, equipment size, and environmental impact as well as... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Publisher |
StartPage | 2183 |
SubjectTerms | Distillation Energy consumption Energy efficiency Environmental impact Innovative systems Performance enhancement Process intensification Reactive separation processes Searching Separation Sustainability |
Title | Intensified Distillation-Based Separation Processes: Recent Developments and Perspectives |
URI | https://api.istex.fr/ark:/67375/WNG-NK8HT3NR-M/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fceat.201500635 https://search.proquest.com/docview/1864567542 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSHvpLSbZqiQElOTmTrYW1vaV5LS5eQbGggBzF6XbZ4S7wLoaf-hP7G_pKM7H32UkhuMljYnhlpPlnffCLkI885eGdVhtEjMqE4ZNoxlznFQl4UURS-Icj2Ve9KfLmW10tV_K0-xPyHWxoZzXydBjjY-mAhGupwrkrULJmybKoyz3mZOF3HFwv9KExnzWZll7OsxPZMtZEVB6vdV7LSk2TguxXIuQxcm8xz-oLA7J1bwslwfzK2--7XP3KOj_mol-T5FJbSwzaOXpG1UL0mz5bECjfIzZTtHhG00uM0NfxoeXR_f__5jLnQ08vQComPKjqtPwj1J4rAFBMbXWIn1RQqT88XZZ71Jrk6PRkc9bLp0QyZE7yUWfDS2dLngQFohnGgvVVKWOs8c3n0UmuIUmnuA1MxYsqziAs8KyGXHjEFf0PWq1EV3hKa49q-67kASGu72AWI3hcgBRSxq4XukL2Za8zPVoHDtFrLhUnmMnNzdchu47n5bXA7TLy1Uprv_TPT_6p7A96_MN86ZGfmWoOjKW2RQBVGk9rkWiGiTKcCd0jROOo_zzRHJ4eD-dW7h3TaIk-xrVqOzHuyPr6dhG1EOmP7oYnme53d99I |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CdgEseFedloeREKzSOvEjHnalDwbaRqhMBRILy89NUabqzEioKz6Bb-RLuE4m82CDBLskipXY917fY_v4GOAly5nxzsoMvYdnXDKTKUdd5iQNeVFEXviGIFvJwTn_8EV0bMK0F6bVh5hPuKXIaPrrFOBpQnp3oRrqsLNK3CyR0qy4CesY8yyd3nBwtlCQwoTWLFf2Gc1KvO50G2mxu1p-JS-tpyb-vgI6l6Frk3uO7oHt_rqlnFzsTCd2x13_Iej4X9W6D3dnyJTsta70AG6E-iHcWdIrfARfZ4T3iLiVHKTe4VtLpfv14-dbTIeefAqtlvioJrMtCGH8hiA2xdxGlghKY2JqTz4udnqOH8P50eFwf5DNTmfIHGelyIIXzpY-D9QYRdEVlLdScmudpy6PXihlopCK-UBljJj1LEIDT0uTC4-wgm3AWj2qwyaQHIf3fc-4MWl4F_vGRO8LI7gpYl9x1YPXnW30ZSvCoVu55UKn5tLz5urBq8Z089fM1UWirpVCf67e6epYDYasOtOnPXjR2VZjQKVVElOH0XSscyURVKaDgXtQNJb6yzf1_uHecH639S-FnsOtwfD0RJ-8r4634TY-ly1l5gmsTa6m4SkCn4l91rj2bw4r--o |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTtwwFL1qQarKgpY-1KEvV6raVcCJH_Gwo8AwQBshOqhILCzHjw0og5gZCbHqJ_CNfAnXyTy7qdTukihWEt9rn-P4-BjgM0uZcbaUCWYPT7hkJlGW2sRK6tMsCzxztUC2kN1TfngmzuZW8Tf-ENMfbrFl1P11bOBXLmzOTEMt9lVRmiUiyorHsIwPovVE7cnMQArxrJ6tbDOa5Hg8sW2k2eZi-QVYWo41fLPAOeeZaw09nWdgJi_dKE4uNkbDcsPe_uHn-D9f9RxWx7yUbDeJtAaPfPUCVubcCl_C-VjuHpC1kt3YN1w2Qrr733ffEAwd-ekbJ_F-RcYLEPxgiyAzRWQjc_KkATGVI8ezdZ6DV3Da2evtdJPx3gyJ5SwXiXfClrlLPTVGUUwE5UopeVlaR20anFDKBCEVc57KEBDzSiQGjuYmFQ5JBXsNS1W_8m-ApDi4bzvGjYmDu9A2JjiXGcFNFtqKqxZ8nYRGXzUWHLoxW850rC49ra4WfKkjN73NXF9E4Vou9K9iXxdHqttjxYn-0YJPk9BqbE5xjsRUvj8a6FRJpJRxW-AWZHWg_vJMvbO33Zuerf9LoY_w5Hi3o78fFEdv4Slelo1e5h0sDa9H_j2ynmH5oU7sByGy-pk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intensified+Distillation%E2%80%90Based+Separation+Processes%3A+Recent+Developments+and+Perspectives&rft.jtitle=Chemical+engineering+%26+technology&rft.au=Long%2C+Nguyen+Van+Duc&rft.au=Minh%2C+Le+Quang&rft.au=Ahmad%2C+Faizan&rft.au=Luis%2C+Patricia&rft.date=2016-12-01&rft.issn=0930-7516&rft.eissn=1521-4125&rft.volume=39&rft.issue=12&rft.spage=2183&rft.epage=2195&rft_id=info:doi/10.1002%2Fceat.201500635&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_ceat_201500635 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0930-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0930-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0930-7516&client=summon |