Intake of Maillard reaction products reduces iron bioavailability in male adolescents
The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP. In vitro studies included iron solubility after in vitro digestion of diets and iron...
Saved in:
Published in | Molecular nutrition & food research Vol. 53; no. 12; pp. 1551 - 1560 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley-VCH Verlag
01.12.2009
WILEY-VCH Verlag WILEY‐VCH Verlag |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP. In vitro studies included iron solubility after in vitro digestion of diets and iron transport across Caco-2 cells. In the human assay 18 healthy adolescent males (11-14 years) participated in a 2-wk randomized two-period crossover trial. Subjects collected urine and faeces on the last 3 days of each dietary period, and fasting blood samples were obtained after periods. In vitro dietary iron availability was significantly lower with the BD than the white diet (9.52 and 12.92%, respectively), as a consequence of the lower iron solubility after the in vitro digestion, but not as a result of decreased transport of the remaining soluble iron. The BD consumption increased iron fecal excretion (~1.4-fold) and significantly decreased its bioavailability (~2.7-fold), mainly due to the effects found at digestive level. Serum biochemical parameters related to iron metabolism remained unaltered. It is concluded the presence of MRP in the diet negatively affects iron bioavailability. As iron deficiency may be related to learning impairment and to reductions of cognitive and physical functions, possible long-term effects of excessive MRP intake during adolescence warrant attention. |
---|---|
AbstractList | The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using
in vitro
/
in vivo
assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP.
In vitro
studies included iron solubility after
in vitro
digestion of diets and iron transport across Caco‐2 cells. In the human assay 18 healthy adolescent males (11–14 years) participated in a 2‐wk randomized two‐period crossover trial. Subjects collected urine and faeces on the last 3 days of each dietary period, and fasting blood samples were obtained after periods.
In vitro
dietary iron availability was significantly lower with the BD than the white diet (9.52 and 12.92%, respectively), as a consequence of the lower iron solubility after the
in vitro
digestion, but not as a result of decreased transport of the remaining soluble iron. The BD consumption increased iron fecal excretion (∼1.4‐fold) and significantly decreased its bioavailability (∼2.7‐fold), mainly due to the effects found at digestive level. Serum biochemical parameters related to iron metabolism remained unaltered. It is concluded the presence of MRP in the diet negatively affects iron bioavailability. As iron deficiency may be related to learning impairment and to reductions of cognitive and physical functions, possible long‐term effects of excessive MRP intake during adolescence warrant attention. The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP. In vitro studies included iron solubility after in vitro digestion of diets and iron transport across Caco-2 cells. In the human assay 18 healthy adolescent males (11-14 years) participated in a 2-wk randomized two-period crossover trial. Subjects collected urine and faeces on the last 3 days of each dietary period, and fasting blood samples were obtained after periods. In vitro dietary iron availability was significantly lower with the BD than the white diet (9.52 and 12.92%, respectively), as a consequence of the lower iron solubility after the in vitro digestion, but not as a result of decreased transport of the remaining soluble iron. The BD consumption increased iron fecal excretion (~1.4-fold) and significantly decreased its bioavailability (~2.7-fold), mainly due to the effects found at digestive level. Serum biochemical parameters related to iron metabolism remained unaltered. It is concluded the presence of MRP in the diet negatively affects iron bioavailability. As iron deficiency may be related to learning impairment and to reductions of cognitive and physical functions, possible long-term effects of excessive MRP intake during adolescence warrant attention. The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP. In vitro studies included iron solubility after in vitro digestion of diets and iron transport across Caco-2 cells. In the human assay 18 healthy adolescent males (11-14 years) participated in a 2-wk randomized two-period crossover trial. Subjects collected urine and faeces on the last 3 days of each dietary period, and fasting blood samples were obtained after periods. In vitro dietary iron availability was significantly lower with the BD than the white diet (9.52 and 12.92%, respectively), as a consequence of the lower iron solubility after the in vitro digestion, but not as a result of decreased transport of the remaining soluble iron. The BD consumption increased iron fecal excretion ( approximately 1.4-fold) and significantly decreased its bioavailability ( approximately 2.7-fold), mainly due to the effects found at digestive level. Serum biochemical parameters related to iron metabolism remained unaltered. It is concluded the presence of MRP in the diet negatively affects iron bioavailability. As iron deficiency may be related to learning impairment and to reductions of cognitive and physical functions, possible long-term effects of excessive MRP intake during adolescence warrant attention.The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP. In vitro studies included iron solubility after in vitro digestion of diets and iron transport across Caco-2 cells. In the human assay 18 healthy adolescent males (11-14 years) participated in a 2-wk randomized two-period crossover trial. Subjects collected urine and faeces on the last 3 days of each dietary period, and fasting blood samples were obtained after periods. In vitro dietary iron availability was significantly lower with the BD than the white diet (9.52 and 12.92%, respectively), as a consequence of the lower iron solubility after the in vitro digestion, but not as a result of decreased transport of the remaining soluble iron. The BD consumption increased iron fecal excretion ( approximately 1.4-fold) and significantly decreased its bioavailability ( approximately 2.7-fold), mainly due to the effects found at digestive level. Serum biochemical parameters related to iron metabolism remained unaltered. It is concluded the presence of MRP in the diet negatively affects iron bioavailability. As iron deficiency may be related to learning impairment and to reductions of cognitive and physical functions, possible long-term effects of excessive MRP intake during adolescence warrant attention. The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP. In vitro studies included iron solubility after in vitro digestion of diets and iron transport across Caco-2 cells. In the human assay 18 healthy adolescent males (11-14 years) participated in a 2-wk randomized two-period crossover trial. Subjects collected urine and faeces on the last 3 days of each dietary period, and fasting blood samples were obtained after periods. In vitro dietary iron availability was significantly lower with the BD than the white diet (9.52 and 12.92%, respectively), as a consequence of the lower iron solubility after the in vitro digestion, but not as a result of decreased transport of the remaining soluble iron. The BD consumption increased iron fecal excretion ( approximately 1.4-fold) and significantly decreased its bioavailability ( approximately 2.7-fold), mainly due to the effects found at digestive level. Serum biochemical parameters related to iron metabolism remained unaltered. It is concluded the presence of MRP in the diet negatively affects iron bioavailability. As iron deficiency may be related to learning impairment and to reductions of cognitive and physical functions, possible long-term effects of excessive MRP intake during adolescence warrant attention. The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets were rich (brown diet, BD) or poor (white diet) in MRP. In vitro studies included iron solubility after in vitro digestion of diets and iron transport across Caco‐2 cells. In the human assay 18 healthy adolescent males (11–14 years) participated in a 2‐wk randomized two‐period crossover trial. Subjects collected urine and faeces on the last 3 days of each dietary period, and fasting blood samples were obtained after periods. In vitro dietary iron availability was significantly lower with the BD than the white diet (9.52 and 12.92%, respectively), as a consequence of the lower iron solubility after the in vitro digestion, but not as a result of decreased transport of the remaining soluble iron. The BD consumption increased iron fecal excretion (∼1.4‐fold) and significantly decreased its bioavailability (∼2.7‐fold), mainly due to the effects found at digestive level. Serum biochemical parameters related to iron metabolism remained unaltered. It is concluded the presence of MRP in the diet negatively affects iron bioavailability. As iron deficiency may be related to learning impairment and to reductions of cognitive and physical functions, possible long‐term effects of excessive MRP intake during adolescence warrant attention. |
Author | Galdó, Gabriel Delgado-Andrade, Cristina García, Marta Mesías Seiquer, Isabel Navarro, Maria Pilar |
Author_xml | – sequence: 1 fullname: García, Marta Mesías – sequence: 2 fullname: Seiquer, Isabel – sequence: 3 fullname: Delgado-Andrade, Cristina – sequence: 4 fullname: Galdó, Gabriel – sequence: 5 fullname: Navarro, Maria Pilar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/19753604$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtv1DAQgC1URNuFK0fICU5ZPB4njo-o0IfULaKw4mg5iY1Mk7i1vcD-e7xKu0JIwMEaa_R9o3kck4PJT4aQ50CXQCl7M042LBmlDaWI9BE5ghqw5IB4sP-z6pAcx_gtI8A4PiGHIEWFNeVHZH0xJX1jCm-LlXbDoENfBKO75PxU3Abfb7oUcyZHEwsXcrZ1Xn_PrG7d4NK2cFMx6sEUuveDiZ2ZUnxKHls9RPPsPi7I-vT955Pz8vLD2cXJ28uy4yho2VfYUyahs5y2tWw08LbBlkqJhoOsUPQAvAOBzEohDLONlbZuKQWGNr8FeT3XzZ3ebUxManS5gzzGZPwmKoEoJOe50oK8-ifJa141DTQZfHEPbtrR9Oo2uFGHrXpYWQb4DHTBxxiMVZ1LerevFPJWFFC1u4zaXUbtL5O15R_avvLfBDkLP9xgtv-h1erq9Pp3t5xdF5P5uXd1uFG1QFGpL1dnqlo17B1cf1Q7_uXMW-2V_hpcVOtPjAJSEMARAH8Bnfa3yg |
CitedBy_id | crossref_primary_10_3390_antiox9030261 crossref_primary_10_3390_foods10091998 crossref_primary_10_1002_fsn3_283 crossref_primary_10_1016_j_cdnut_2023_102049 crossref_primary_10_1016_j_lwt_2011_11_006 crossref_primary_10_1556_AAlim_41_2012_4_11 crossref_primary_10_3153_FH23032 crossref_primary_10_1007_s12393_012_9057_9 crossref_primary_10_1080_10408398_2017_1378865 crossref_primary_10_1017_S0007114510005271 crossref_primary_10_3390_nu2121247 crossref_primary_10_1007_s13197_015_1851_y crossref_primary_10_1016_j_fct_2013_06_052 crossref_primary_10_3390_ani12091109 crossref_primary_10_1039_c2fo30288h crossref_primary_10_1080_10408398_2011_564333 crossref_primary_10_1007_s00217_015_2565_0 crossref_primary_10_1177_2156587212460054 crossref_primary_10_1016_j_foodchem_2012_05_025 crossref_primary_10_1016_j_foodchem_2015_12_080 crossref_primary_10_21323_2618_9771_2021_4_4_278_285 crossref_primary_10_1097_QAI_0000000000002030 crossref_primary_10_1007_s00394_015_0935_9 crossref_primary_10_1007_s00726_015_1951_z crossref_primary_10_1016_j_foodcont_2023_109911 crossref_primary_10_1016_j_lwt_2021_110943 crossref_primary_10_3390_foods6010005 crossref_primary_10_1016_j_aquaculture_2018_05_045 crossref_primary_10_1007_s00217_012_1675_1 crossref_primary_10_1039_C5FO00790A |
Cites_doi | 10.1016/S1499-4046(06)60083-3 10.1111/j.1651-2227.1987.tb10525.x 10.1079/BJN2003997 10.1002/jsfa.1839 10.1111/j.1365-2621.1983.tb09225.x 10.1007/s00394-006-0631-x 10.1093/ajcn/34.10.2248 10.1177/0884533608314536 10.1021/bk-1983-0215.ch017 10.1021/jf990832k 10.1017/S0007114599000537 10.1182/blood.V84.6.1697.1697 10.1038/sj.ejcn.1600417 10.1182/blood.V35.5.669.669 10.1093/jn/127.8.1456 10.1093/ajcn/85.4.931 10.1093/jn/133.1.94 10.1017/S0029665199000762 10.1079/BJN20061701 10.1093/ajcn/66.2.347 10.1016/S0308-8146(98)00078-8 10.1093/ajcn/83.5.1082 10.1016/j.foodchem.2004.05.030 10.17221/10631-CJFS 10.1080/10408398909527499 10.1093/jn/130.1.5 10.1021/jf9609845 10.1016/j.nut.2004.05.002 10.1016/S0022-2275(20)30158-9 10.1093/jn/130.5.1329 10.1016/S0278-6915(98)00007-6 10.1016/S0271-5317(01)00262-7 10.1093/ajcn/45.4.679 10.1016/j.fct.2008.01.002 10.1533/9781845698393.4.397 10.1016/j.foodchem.2003.12.002 10.1073/pnas.94.12.6474 10.1080/07315724.2003.10719318 10.1038/sj.ejcn.1600981 10.1146/annurev.nutr.23.011702.073349 10.1007/978-1-4899-2626-5_32 10.1093/ajcn/78.6.1168 10.1093/ajcn/85.3.778 10.1002/mnfr.200500034 10.1024/0300-9831.73.2.144 |
ContentType | Journal Article |
Copyright | Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: Copyright © 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
DOI | 10.1002/mnfr.200800330 |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Diet & Clinical Nutrition Chemistry |
EISSN | 1613-4133 |
EndPage | 1560 |
ExternalDocumentID | 19753604 10_1002_mnfr_200800330 MNFR200800330 ark_67375_WNG_5M82D1RQ_0 US201301714311 |
Genre | article Randomized Controlled Trial Journal Article |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FBQ FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WIH WIK WJL WNSPC WOHZO WXSBR WYISQ XG1 XV2 Y6R ~IA ~KM ~WT AEUQT AFPWT BSCLL RWI DROCM AAFWJ AAYXX AEYWJ AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c4370-d53d0291cf40b698a14b83b0993e419537d114c1732f977e2f8f9f6b00123f123 |
IEDL.DBID | DR2 |
ISSN | 1613-4125 1613-4133 |
IngestDate | Fri Jul 11 08:50:14 EDT 2025 Fri Jul 11 14:15:36 EDT 2025 Mon Jul 21 05:50:58 EDT 2025 Thu Apr 24 22:54:48 EDT 2025 Tue Jul 01 01:51:30 EDT 2025 Wed Jan 22 16:43:39 EST 2025 Wed Oct 30 09:45:21 EDT 2024 Thu Apr 03 09:46:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4370-d53d0291cf40b698a14b83b0993e419537d114c1732f977e2f8f9f6b00123f123 |
Notes | http://dx.doi.org/10.1002/mnfr.200800330 ark:/67375/WNG-5M82D1RQ-0 ArticleID:MNFR200800330 istex:164BCCB70B6DD7C6EA487693A9F933C6A55E430C ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 ObjectType-Undefined-3 |
PMID | 19753604 |
PQID | 46458818 |
PQPubID | 24069 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_733794495 proquest_miscellaneous_46458818 pubmed_primary_19753604 crossref_citationtrail_10_1002_mnfr_200800330 crossref_primary_10_1002_mnfr_200800330 wiley_primary_10_1002_mnfr_200800330_MNFR200800330 istex_primary_ark_67375_WNG_5M82D1RQ_0 fao_agris_US201301714311 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2009 |
PublicationDateYYYYMMDD | 2009-12-01 |
PublicationDate_xml | – month: 12 year: 2009 text: December 2009 |
PublicationDecade | 2000 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Molecular nutrition & food research |
PublicationTitleAlternate | Mol. Nutr. Food Res |
PublicationYear | 2009 |
Publisher | Wiley-VCH Verlag WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: Wiley-VCH Verlag – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | Sarriá, B., Vaquero, M. P., Iron bioavailability from powdered and in bottle sterilized infant formulas in suckling and weanling rats. Nutrition 2004, 20, 788-793. Steinhart, H., Rathjen, T., Dependences of tocopherol stability on different cooking procedures of foods. Int. J. Vitamin Nutr. Res. 2003, 73, 144-151. García-Casal, M. N., Leets, I., Layrisse, M., Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells. J. Nutr. 2000, 130, 5-9. Delgado-Andrade, C., Seiquer, I., Valverde, A., Navarro, M. P., Iron metabolism in rats fed diets containing heated glucose-lysine. Proc. Nutr. Soc. 2000, 59, 133. Somoza, V., Five years of research on health risks and benefits of Maillard reaction products: an update. Mol. Nutr. Food Res. 2005, 49, 663-672. Clark, S. F., Iron deficiency anemia. Nutr. Clin. Pract. 2008, 23, 128-141. Guthrie, B., Picciano, M. F., Human Nutrition. Mosby-Year Book, St. Louis, MO 1995. Coudray, C., Bellanger, J., Castiglia-Delavaud, C., Rémésy, C. et al., Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur. J. Clin. Nutr. 1997, 51, 375-380. Schulz-Lell, G., Buss, R., Oldigs, H.D., Dörner, K. et al., Iron balances in infant nutrition. Acta Paediatr. 1987, 76, 585-591. Navarro, P., Aspe, T., Seiquer, I., Zinc transport in Caco-2 cells and zinc in rats: influence of the heat treatment of a casein-glucose-fructose-mixture. J. Agric. Food Chem. 2000, 48, 3589-3596. Delgado-Andrade, C., Seiquer, I., Nieto, R., Navarro, M. P., Effects of heated glucose-lysine and glucose-methionine model-systems on mineral solubility. Food Chem. 2004, 87, 329-337. Mahalko, J. K., Johnson, P. E., Likken, G. I., Effect of fructose-tryptophan reflux product on the absorption and retention of iron in the rat. Fed. Proc. 1984, 43, 1050. Seiquer, I., Díaz-Alguacil, J., Delgado-Andrade, C., López-Frías, M. et al., Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11-14 y. Am. J. Clin. Nutr. 2006, 83, 1082-1088. Morales, F. J., Fernández-Fraguas, C., Jiménez-Pérez, S., Iron-binding ability of melanoidins from food and model systems. Food Chem. 2005, 90, 821-827. Finch, C., Regulators of iron balance in humans. Blood 1994, 84, 1697-1702. Kersting, M., Alexy, U., Sichert-Hellert, W., Dietary intake and food sources of minerals in 1 to 18 year old German children and adolescents. Nutr. Res. 2001, 21, 607-616. Hardy, J., Parmentier, M., Fanni, J., Functionality of nutrients and thermal treatments of food. Proc. Nutr. Soc. 1999, 58, 579-585. Wijewickreme, A. N., Kitts, D. D., Modulation of metal-induced genotoxicity by Maillard reaction products isolated from coffee. Food Chem. Toxicol. 1998, 36, 543-553. Briefel, R. R., Johnson, C. L., Secular trends in dietary intake in the United States. Ann. Rev. Nutr. 2004, 24, 401-431. Baech, S. B., Hansen, M., Bukhave, K., Kristensen, L. et al., Increasing the cooking temperature of meat does not affect non-heme iron absorption from a phytate-rich meal in women. J. Nutr. 2003, 133, 94-97. Amorim, J. A., Dietary habits and nutritional status in adolescents over Europe-Southern Europe. Eur. J. Clin. Nutr. 2000, 54, S29-S35. Delgado-Andrade, C., Seiquer, I., Navarro, P., Maillard reaction products from glucose-methionine mixtures affect iron utilization in rats. Czech J. Food Sci. 2004, 116-119. Miller, D. D., Schricker, B. D., Rasmussen, R. R., Campen, D. V., An in vitro method for estimation of iron availability from meals. Am. J. Clin. Nutr. 1981, 34, 2248-2256. O'Brien, J., Morrissey, P. A., Nutritional and toxicological aspects of Maillard Browning reaction in foods. Crit. Rev. Food Sci. Nutr. 1989, 28, 211-248. Lombardi-Boccia, G., Aguzzi, A., Cappelloni, M., Di Lullo, G. et al., Total-diet study: dietary intakes of macro elements and trace elements in Italy. Br. J. Nutr. 2003, 90, 1117-1121. Au, A. P., Reddy, M. B., Caco-2 cells can be used to asses human iron bioavailability from a semipurified meal. J. Nutr. 2000, 130, 1329-1334. Murray-Kolb, L. E., Beard, J. L., Iron treatment normalizes cognitive functioning in young women. Am. J. Clin. Nutr. 2007, 85, 778-787. Martínez-Torres, C., Layrisse, M., Effect of amino acids on iron absorption from a staple vegetable food. Blood 1970, 35, 669-682. Hurrell, R. F., Reddy, M., Cook, J. D., Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br. J. Nutr. 1999, 81, 289-295. Schricker, B. R., Miller, D. D., Effects of cooking and chemical treatment on heme and non-heme iron in meat. J. Food Sci. 1983, 48, 1340-1344. Hunt, J. R., High-, but not low-bioavailability diets enable substantial control of women's iron absorption in relation to body iron stores, with minimal adaptation within several weeks. Am. J. Clin. Nutr. 2003, 78, 1168-1177. Guthrie, J. F., Lin, B. H., Frazao, E., Role of food prepared away from home in the American Diet, 1977-1978 versus 1994-1996: changes and consequences. J. Nutr. Educ. Behav. 2002, 34, 140-150. Ames, J. M., Applications of the Maillard reaction in the food industry. Food Chem. 1998, 62, 431-439. Oak, J. H., Nakagawa, K., Miyazawa, T., UV analysis of Amadoriglycated phophatidylethanolamine in foods and biological samples. J. Lipid Res. 2002, 43, 523-529. Delgado-Andrade, C., Seiquer, I., Navarro, M. P., Morales, F. J., Estimation of hydroxymethylfurfural availability in breakfast cereals. Studies in Caco-2 cells. Food Chem. Toxicol. 2008, 46, 1600-1607. Johnson, P. E., Effect of food processing and preparation on mineral utilization. Adv. Exp. Med. Biol. 1991, 483-498. Zhi, J., Moore, R., Kanitra, L., The effect of short-term (21 day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents. J. Am. Coll. Nutr. 2003, 5, 357-362. Homma, S., Murata, M., Metal chelating compounds in instant coffee. Ann. Nutr. Metab. 2001, 45, 394. McCann, J. C., Mes, B. N., An overview of evidence for casual relation between iron deficiency during development and deficits in cognitive or behavioural function. Am. J. Clin. Nutr. 2007, 85, 931-945. Sarria, B., Santiago Navas-Carretero, S., Lopez-Parra, A. M., Perez-Granados, A. M., Arroyo-Pardo, E., Roe, M. A., teacher, B. et al., The G277S transferrin mutation does not affect iron absorption in iron deficient women. Eur. J. Nutr. 2007, 46, 57-60. Serra-Majem, L., Ribas-Barba, L., Pérez-Rodrigo, C., Aranceta Bartrina, J., Nutrient adequacy in Spanish children and adolescents. Br. J. Nutr. 2006, 96, 49-57. Delgado-Andrade, C., Seiquer, I., Navarro, M. P., Bioavailability of iron from a heat-treated glucose-lysine model food system: assays in rats and in Caco-2 cells. J. Sci. Food Agric. 2004, 84, 1507-1513. Hallberg, L., Hulthen, L., Gramatkovski, E., Iron absorption from the whole diet in men: how effective is the regulation of iron absorption? Am. J. Clin. Nutr. 1997, 66, 347-356. Koschinsky, T., He, C. J., Mitsuhashi, T. et al., Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474-6479. Tseng, M., Chakraborty, H., Robinson, D. T., Mendez, M. et al., Adjustment of iron intake for dietary enhancers and inhibitors in population studies: bioavailable iron in rural and urban residing Russian women and children. J. Nutr. 1997, 127, 1456-1468. Herbert, V., Recommended dietary intakes (RDI) of iron in humans. Am. J. Clin. Nutr. 1987, 45, 679-686. Yoshimura, Y., Iijima, T., Watanabe, T., Nakazawa, H., Antioxidative effect of Maillard reaction products using glucose-glycine model system. J. Agric. Food Chem. 1997, 45, 4106-4109. 2004; 20 1987; 76 2000; 48 2004; 24 1997; 45 2000; 130 2001; 45 1999; 81 1970; 35 1987; 45 1997; 51 1997; 94 2003; 90 2001 2000; 59 2000; 54 2002; 43 1999; 58 2008; 23 2003; 5 1983 1981; 34 1989 2004; 87 2006; 96 2004; 84 1997; 66 2005; 90 2002; 34 1984; 43 1995 2006 2005 1994 2004 2003 2002 1991 1998; 62 2005; 49 2003; 73 2003; 133 1994; 84 1989; 28 2001; 21 2003; 78 1997; 127 2006; 83 2008; 46 2007; 85 1983; 48 2007; 46 1998; 36 Muños‐Hoyos A (e_1_2_6_3_2) 2005 e_1_2_6_51_2 e_1_2_6_30_2 Oak J. H. (e_1_2_6_59_2) 2002; 43 e_1_2_6_19_2 Tseng M. (e_1_2_6_43_2) 1997; 127 e_1_2_6_34_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_15_2 e_1_2_6_57_2 Delgado‐Andrade C. (e_1_2_6_55_2) 2000; 59 e_1_2_6_41_2 e_1_2_6_60_2 Mahalko J. K. (e_1_2_6_53_2) 1984; 43 Guthrie B (e_1_2_6_36_2) 1995 e_1_2_6_7_2 Martínez‐Torres C. (e_1_2_6_46_2) 1970; 35 e_1_2_6_5_2 e_1_2_6_47_2 e_1_2_6_22_2 e_1_2_6_49_2 Navarro M. P (e_1_2_6_20_2) 2003 e_1_2_6_28_2 e_1_2_6_26_2 e_1_2_6_45_2 e_1_2_6_50_2 e_1_2_6_52_2 e_1_2_6_31_2 Serra‐Majem L. l (e_1_2_6_9_2) 2002 e_1_2_6_18_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_58_2 Homma S. (e_1_2_6_48_2) 2001; 45 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_54_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_56_2 e_1_2_6_42_2 e_1_2_6_40_2 Li H. C. (e_1_2_6_13_2) 1994 Moreiras O (e_1_2_6_24_2) 2004 e_1_2_6_8_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_6_2 e_1_2_6_23_2 Delgado‐Andrade C. (e_1_2_6_61_2) 2004 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_27_2 e_1_2_6_44_2 e_1_2_6_25_2 |
References_xml | – reference: Clark, S. F., Iron deficiency anemia. Nutr. Clin. Pract. 2008, 23, 128-141. – reference: Morales, F. J., Fernández-Fraguas, C., Jiménez-Pérez, S., Iron-binding ability of melanoidins from food and model systems. Food Chem. 2005, 90, 821-827. – reference: Coudray, C., Bellanger, J., Castiglia-Delavaud, C., Rémésy, C. et al., Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men. Eur. J. Clin. Nutr. 1997, 51, 375-380. – reference: Schulz-Lell, G., Buss, R., Oldigs, H.D., Dörner, K. et al., Iron balances in infant nutrition. Acta Paediatr. 1987, 76, 585-591. – reference: Lombardi-Boccia, G., Aguzzi, A., Cappelloni, M., Di Lullo, G. et al., Total-diet study: dietary intakes of macro elements and trace elements in Italy. Br. J. Nutr. 2003, 90, 1117-1121. – reference: Amorim, J. A., Dietary habits and nutritional status in adolescents over Europe-Southern Europe. Eur. J. Clin. Nutr. 2000, 54, S29-S35. – reference: Miller, D. D., Schricker, B. D., Rasmussen, R. R., Campen, D. V., An in vitro method for estimation of iron availability from meals. Am. J. Clin. Nutr. 1981, 34, 2248-2256. – reference: McCann, J. C., Mes, B. N., An overview of evidence for casual relation between iron deficiency during development and deficits in cognitive or behavioural function. Am. J. Clin. Nutr. 2007, 85, 931-945. – reference: O'Brien, J., Morrissey, P. A., Nutritional and toxicological aspects of Maillard Browning reaction in foods. Crit. Rev. Food Sci. Nutr. 1989, 28, 211-248. – reference: Somoza, V., Five years of research on health risks and benefits of Maillard reaction products: an update. Mol. Nutr. Food Res. 2005, 49, 663-672. – reference: Steinhart, H., Rathjen, T., Dependences of tocopherol stability on different cooking procedures of foods. Int. J. Vitamin Nutr. Res. 2003, 73, 144-151. – reference: Briefel, R. R., Johnson, C. L., Secular trends in dietary intake in the United States. Ann. Rev. Nutr. 2004, 24, 401-431. – reference: Hallberg, L., Hulthen, L., Gramatkovski, E., Iron absorption from the whole diet in men: how effective is the regulation of iron absorption? Am. J. Clin. Nutr. 1997, 66, 347-356. – reference: Oak, J. H., Nakagawa, K., Miyazawa, T., UV analysis of Amadoriglycated phophatidylethanolamine in foods and biological samples. J. Lipid Res. 2002, 43, 523-529. – reference: Finch, C., Regulators of iron balance in humans. Blood 1994, 84, 1697-1702. – reference: Sarria, B., Santiago Navas-Carretero, S., Lopez-Parra, A. M., Perez-Granados, A. M., Arroyo-Pardo, E., Roe, M. A., teacher, B. et al., The G277S transferrin mutation does not affect iron absorption in iron deficient women. Eur. J. Nutr. 2007, 46, 57-60. – reference: Kersting, M., Alexy, U., Sichert-Hellert, W., Dietary intake and food sources of minerals in 1 to 18 year old German children and adolescents. Nutr. Res. 2001, 21, 607-616. – reference: Baech, S. B., Hansen, M., Bukhave, K., Kristensen, L. et al., Increasing the cooking temperature of meat does not affect non-heme iron absorption from a phytate-rich meal in women. J. Nutr. 2003, 133, 94-97. – reference: Yoshimura, Y., Iijima, T., Watanabe, T., Nakazawa, H., Antioxidative effect of Maillard reaction products using glucose-glycine model system. J. Agric. Food Chem. 1997, 45, 4106-4109. – reference: Murray-Kolb, L. E., Beard, J. L., Iron treatment normalizes cognitive functioning in young women. Am. J. Clin. Nutr. 2007, 85, 778-787. – reference: Wijewickreme, A. N., Kitts, D. D., Modulation of metal-induced genotoxicity by Maillard reaction products isolated from coffee. Food Chem. Toxicol. 1998, 36, 543-553. – reference: Martínez-Torres, C., Layrisse, M., Effect of amino acids on iron absorption from a staple vegetable food. Blood 1970, 35, 669-682. – reference: Zhi, J., Moore, R., Kanitra, L., The effect of short-term (21 day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents. J. Am. Coll. Nutr. 2003, 5, 357-362. – reference: Guthrie, J. F., Lin, B. H., Frazao, E., Role of food prepared away from home in the American Diet, 1977-1978 versus 1994-1996: changes and consequences. J. Nutr. Educ. Behav. 2002, 34, 140-150. – reference: Delgado-Andrade, C., Seiquer, I., Nieto, R., Navarro, M. P., Effects of heated glucose-lysine and glucose-methionine model-systems on mineral solubility. Food Chem. 2004, 87, 329-337. – reference: Ames, J. M., Applications of the Maillard reaction in the food industry. Food Chem. 1998, 62, 431-439. – reference: Johnson, P. E., Effect of food processing and preparation on mineral utilization. Adv. Exp. Med. Biol. 1991, 483-498. – reference: Guthrie, B., Picciano, M. F., Human Nutrition. Mosby-Year Book, St. Louis, MO 1995. – reference: Delgado-Andrade, C., Seiquer, I., Navarro, P., Maillard reaction products from glucose-methionine mixtures affect iron utilization in rats. Czech J. Food Sci. 2004, 116-119. – reference: Delgado-Andrade, C., Seiquer, I., Navarro, M. P., Morales, F. J., Estimation of hydroxymethylfurfural availability in breakfast cereals. Studies in Caco-2 cells. Food Chem. Toxicol. 2008, 46, 1600-1607. – reference: Sarriá, B., Vaquero, M. P., Iron bioavailability from powdered and in bottle sterilized infant formulas in suckling and weanling rats. Nutrition 2004, 20, 788-793. – reference: Delgado-Andrade, C., Seiquer, I., Navarro, M. P., Bioavailability of iron from a heat-treated glucose-lysine model food system: assays in rats and in Caco-2 cells. J. Sci. Food Agric. 2004, 84, 1507-1513. – reference: Schricker, B. R., Miller, D. D., Effects of cooking and chemical treatment on heme and non-heme iron in meat. J. Food Sci. 1983, 48, 1340-1344. – reference: Hurrell, R. F., Reddy, M., Cook, J. D., Inhibition of non-haem iron absorption in man by polyphenolic-containing beverages. Br. J. Nutr. 1999, 81, 289-295. – reference: Delgado-Andrade, C., Seiquer, I., Valverde, A., Navarro, M. P., Iron metabolism in rats fed diets containing heated glucose-lysine. Proc. Nutr. Soc. 2000, 59, 133. – reference: Hardy, J., Parmentier, M., Fanni, J., Functionality of nutrients and thermal treatments of food. Proc. Nutr. Soc. 1999, 58, 579-585. – reference: Homma, S., Murata, M., Metal chelating compounds in instant coffee. Ann. Nutr. Metab. 2001, 45, 394. – reference: Koschinsky, T., He, C. J., Mitsuhashi, T. et al., Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy. Proc. Natl. Acad. Sci. USA 1997, 94, 6474-6479. – reference: Hunt, J. R., High-, but not low-bioavailability diets enable substantial control of women's iron absorption in relation to body iron stores, with minimal adaptation within several weeks. Am. J. Clin. Nutr. 2003, 78, 1168-1177. – reference: Tseng, M., Chakraborty, H., Robinson, D. T., Mendez, M. et al., Adjustment of iron intake for dietary enhancers and inhibitors in population studies: bioavailable iron in rural and urban residing Russian women and children. J. Nutr. 1997, 127, 1456-1468. – reference: Herbert, V., Recommended dietary intakes (RDI) of iron in humans. Am. J. Clin. Nutr. 1987, 45, 679-686. – reference: Serra-Majem, L., Ribas-Barba, L., Pérez-Rodrigo, C., Aranceta Bartrina, J., Nutrient adequacy in Spanish children and adolescents. Br. J. Nutr. 2006, 96, 49-57. – reference: Seiquer, I., Díaz-Alguacil, J., Delgado-Andrade, C., López-Frías, M. et al., Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11-14 y. Am. J. Clin. Nutr. 2006, 83, 1082-1088. – reference: Mahalko, J. K., Johnson, P. E., Likken, G. I., Effect of fructose-tryptophan reflux product on the absorption and retention of iron in the rat. Fed. Proc. 1984, 43, 1050. – reference: Navarro, P., Aspe, T., Seiquer, I., Zinc transport in Caco-2 cells and zinc in rats: influence of the heat treatment of a casein-glucose-fructose-mixture. J. Agric. Food Chem. 2000, 48, 3589-3596. – reference: Au, A. P., Reddy, M. B., Caco-2 cells can be used to asses human iron bioavailability from a semipurified meal. J. Nutr. 2000, 130, 1329-1334. – reference: García-Casal, M. N., Leets, I., Layrisse, M., Beta-carotene and inhibitors of iron absorption modify iron uptake by Caco-2 cells. J. Nutr. 2000, 130, 5-9. – volume: 83 start-page: 1082 year: 2006 end-page: 1088 article-title: Diets rich in Maillard reaction products affect protein digestibility in adolescent males aged 11–14 y publication-title: Am. J. Clin. Nutr. – volume: 84 start-page: 1697 year: 1994 end-page: 1702 article-title: Regulators of iron balance in humans publication-title: Blood – volume: 96 start-page: 49 year: 2006 end-page: 57 article-title: Nutrient adequacy in Spanish children and adolescents publication-title: Br. J. Nutr. – start-page: 51 year: 2002 end-page: 59 – start-page: 927 year: 2005 end-page: 971 – year: 2001 – year: 1989 – volume: 87 start-page: 329 year: 2004 end-page: 337 article-title: Effects of heated glucose‐lysine and glucose‐methionine model‐systems on mineral solubility publication-title: Food Chem. – volume: 48 start-page: 3589 year: 2000 end-page: 3596 article-title: Zinc transport in Caco‐2 cells and zinc in rats: influence of the heat treatment of a casein‐glucose‐fructose‐mixture publication-title: J. Agric. Food Chem. – volume: 85 start-page: 931 year: 2007 end-page: 945 article-title: An overview of evidence for casual relation between iron deficiency during development and deficits in cognitive or behavioural function publication-title: Am. J. Clin. Nutr. – volume: 21 start-page: 607 year: 2001 end-page: 616 article-title: Dietary intake and food sources of minerals in 1 to 18 year old German children and adolescents publication-title: Nutr. Res. – volume: 62 start-page: 431 year: 1998 end-page: 439 article-title: Applications of the Maillard reaction in the food industry publication-title: Food Chem. – volume: 35 start-page: 669 year: 1970 end-page: 682 article-title: Effect of amino acids on iron absorption from a staple vegetable food publication-title: Blood – volume: 34 start-page: 140 year: 2002 end-page: 150 article-title: Role of food prepared away from home in the American Diet, 1977–1978 versus 1994–1996: changes and consequences publication-title: J. Nutr. Educ. Behav. – year: 2004 – volume: 90 start-page: 1117 year: 2003 end-page: 1121 article-title: Total‐diet study: dietary intakes of macro elements and trace elements in Italy publication-title: Br. J. Nutr. – volume: 49 start-page: 663 year: 2005 end-page: 672 article-title: Five years of research on health risks and benefits of Maillard reaction products: an update publication-title: Mol. Nutr. Food Res. – volume: 130 start-page: 5 year: 2000 end-page: 9 article-title: Beta‐carotene and inhibitors of iron absorption modify iron uptake by Caco‐2 cells publication-title: J. Nutr. – volume: 94 start-page: 6474 year: 1997 end-page: 6479 article-title: Orally absorbed reactive glycation products (glycotoxins): an environmental risk factor in diabetic nephropathy publication-title: Proc. Natl. Acad. Sci. USA – volume: 23 start-page: 128 year: 2008 end-page: 141 article-title: Iron deficiency anemia publication-title: Nutr. Clin. Pract. – volume: 46 start-page: 57 year: 2007 end-page: 60 article-title: The G277S transferrin mutation does not affect iron absorption in iron deficient women publication-title: Eur. J. Nutr. – volume: 45 start-page: 679 year: 1987 end-page: 686 article-title: Recommended dietary intakes (RDI) of iron in humans publication-title: Am. J. Clin. Nutr. – volume: 130 start-page: 1329 year: 2000 end-page: 1334 article-title: Caco‐2 cells can be used to asses human iron bioavailability from a semipurified meal publication-title: J. Nutr. – volume: 133 start-page: 94 year: 2003 end-page: 97 article-title: Increasing the cooking temperature of meat does not affect non‐heme iron absorption from a phytate‐rich meal in women publication-title: J. Nutr. – start-page: 467 year: 1994 end-page: 475 – volume: 5 start-page: 357 year: 2003 end-page: 362 article-title: The effect of short‐term (21 day) orlistat treatment on the physiologic balance of six selected macrominerals and microminerals in obese adolescents publication-title: J. Am. Coll. Nutr. – volume: 54 start-page: S29 year: 2000 end-page: S35 article-title: Dietary habits and nutritional status in adolescents over Europe‐Southern Europe publication-title: Eur. J. Clin. Nutr. – volume: 58 start-page: 579 year: 1999 end-page: 585 article-title: Functionality of nutrients and thermal treatments of food publication-title: Proc. Nutr. Soc. – start-page: 397 year: 1994 end-page: 401 – volume: 45 start-page: 4106 year: 1997 end-page: 4109 article-title: Antioxidative effect of Maillard reaction products using glucose‐glycine model system publication-title: J. Agric. Food Chem. – volume: 90 start-page: 821 year: 2005 end-page: 827 article-title: Iron‐binding ability of melanoidins from food and model systems publication-title: Food Chem. – volume: 43 start-page: 1050 year: 1984 article-title: Effect of fructose‐tryptophan reflux product on the absorption and retention of iron in the rat publication-title: Fed. Proc. – volume: 34 start-page: 2248 year: 1981 end-page: 2256 article-title: An method for estimation of iron availability from meals publication-title: Am. J. Clin. Nutr. – start-page: 133 year: 2003 end-page: 145 – volume: 24 start-page: 401 year: 2004 end-page: 431 article-title: Secular trends in dietary intake in the United States publication-title: Ann. Rev. Nutr. – volume: 59 start-page: 133 year: 2000 article-title: Iron metabolism in rats fed diets containing heated glucose‐lysine publication-title: Proc. Nutr. Soc. – year: 2003 – start-page: 116 year: 2004 end-page: 119 article-title: Maillard reaction products from glucose–methionine mixtures affect iron utilization in rats publication-title: Czech J. Food Sci. – volume: 51 start-page: 375 year: 1997 end-page: 380 article-title: Effect of soluble or partly soluble dietary fibres supplementation on absorption and balance of calcium, magnesium, iron and zinc in healthy young men publication-title: Eur. J. Clin. Nutr. – volume: 73 start-page: 144 year: 2003 end-page: 151 article-title: Dependences of tocopherol stability on different cooking procedures of foods publication-title: Int. J. Vitamin Nutr. Res. – start-page: 483 year: 1991 end-page: 498 article-title: Effect of food processing and preparation on mineral utilization publication-title: Adv. Exp. Med. Biol. – volume: 85 start-page: 778 year: 2007 end-page: 787 article-title: Iron treatment normalizes cognitive functioning in young women publication-title: Am. J. Clin. Nutr. – volume: 81 start-page: 289 year: 1999 end-page: 295 article-title: Inhibition of non‐haem iron absorption in man by polyphenolic‐containing beverages publication-title: Br. J. Nutr. – volume: 28 start-page: 211 year: 1989 end-page: 248 article-title: Nutritional and toxicological aspects of Maillard Browning reaction in foods publication-title: Crit. Rev. Food Sci. Nutr. – volume: 78 start-page: 1168 year: 2003 end-page: 1177 article-title: High‐, but not low‐bioavailability diets enable substantial control of women's iron absorption in relation to body iron stores, with minimal adaptation within several weeks publication-title: Am. J. Clin. Nutr. – volume: 84 start-page: 1507 year: 2004 end-page: 1513 article-title: Bioavailability of iron from a heat‐treated glucose‐lysine model food system: assays in rats and in Caco‐2 cells publication-title: J. Sci. Food Agric. – start-page: 349 year: 1983 end-page: 360 – volume: 48 start-page: 1340 year: 1983 end-page: 1344 article-title: Effects of cooking and chemical treatment on heme and non‐heme iron in meat publication-title: J. Food Sci. – volume: 20 start-page: 788 year: 2004 end-page: 793 article-title: Iron bioavailability from powdered and in bottle sterilized infant formulas in suckling and weanling rats publication-title: Nutrition – volume: 36 start-page: 543 year: 1998 end-page: 553 article-title: Modulation of metal‐induced genotoxicity by Maillard reaction products isolated from coffee publication-title: Food Chem. Toxicol. – year: 2006 – volume: 66 start-page: 347 year: 1997 end-page: 356 article-title: Iron absorption from the whole diet in men: how effective is the regulation of iron absorption? publication-title: Am. J. Clin. Nutr. – year: 1995 – volume: 46 start-page: 1600 year: 2008 end-page: 1607 article-title: Estimation of hydroxymethylfurfural availability in breakfast cereals. Studies in Caco‐2 cells publication-title: Food Chem. Toxicol. – volume: 43 start-page: 523 year: 2002 end-page: 529 article-title: UV analysis of Amadoriglycated phophatidylethanolamine in foods and biological samples publication-title: J. Lipid Res. – volume: 45 start-page: 394 year: 2001 article-title: Metal chelating compounds in instant coffee publication-title: Ann. Nutr. Metab. – volume: 76 start-page: 585 year: 1987 end-page: 591 article-title: Iron balances in infant nutrition publication-title: Acta Paediatr. – volume: 127 start-page: 1456 year: 1997 end-page: 1468 article-title: Adjustment of iron intake for dietary enhancers and inhibitors in population studies: bioavailable iron in rural and urban residing Russian women and children publication-title: J. Nutr. – ident: e_1_2_6_7_2 doi: 10.1016/S1499-4046(06)60083-3 – ident: e_1_2_6_44_2 – ident: e_1_2_6_27_2 doi: 10.1111/j.1651-2227.1987.tb10525.x – ident: e_1_2_6_52_2 – ident: e_1_2_6_37_2 doi: 10.1079/BJN2003997 – start-page: 467 volume-title: Thermally Generated Flavours: Maillard, Microwave and Extrusion Process year: 1994 ident: e_1_2_6_13_2 – ident: e_1_2_6_19_2 doi: 10.1002/jsfa.1839 – ident: e_1_2_6_45_2 doi: 10.1111/j.1365-2621.1983.tb09225.x – volume: 59 start-page: 133 year: 2000 ident: e_1_2_6_55_2 article-title: Iron metabolism in rats fed diets containing heated glucose‐lysine publication-title: Proc. Nutr. Soc. – start-page: 51 volume-title: Alimentación infantil y juvenil year: 2002 ident: e_1_2_6_9_2 – ident: e_1_2_6_41_2 doi: 10.1007/s00394-006-0631-x – ident: e_1_2_6_28_2 doi: 10.1093/ajcn/34.10.2248 – start-page: 927 volume-title: Tratado de Nutrición year: 2005 ident: e_1_2_6_3_2 – ident: e_1_2_6_6_2 doi: 10.1177/0884533608314536 – ident: e_1_2_6_21_2 doi: 10.1021/bk-1983-0215.ch017 – ident: e_1_2_6_29_2 doi: 10.1021/jf990832k – ident: e_1_2_6_60_2 doi: 10.1017/S0007114599000537 – ident: e_1_2_6_2_2 doi: 10.1182/blood.V84.6.1697.1697 – ident: e_1_2_6_40_2 doi: 10.1038/sj.ejcn.1600417 – volume-title: Tablas de composición de alimentos year: 2004 ident: e_1_2_6_24_2 – volume: 35 start-page: 669 year: 1970 ident: e_1_2_6_46_2 article-title: Effect of amino acids on iron absorption from a staple vegetable food publication-title: Blood doi: 10.1182/blood.V35.5.669.669 – ident: e_1_2_6_57_2 – volume: 127 start-page: 1456 year: 1997 ident: e_1_2_6_43_2 article-title: Adjustment of iron intake for dietary enhancers and inhibitors in population studies: bioavailable iron in rural and urban residing Russian women and children publication-title: J. Nutr. doi: 10.1093/jn/127.8.1456 – ident: e_1_2_6_4_2 doi: 10.1093/ajcn/85.4.931 – ident: e_1_2_6_47_2 doi: 10.1093/jn/133.1.94 – ident: e_1_2_6_12_2 doi: 10.1017/S0029665199000762 – ident: e_1_2_6_32_2 doi: 10.1079/BJN20061701 – ident: e_1_2_6_39_2 doi: 10.1093/ajcn/66.2.347 – ident: e_1_2_6_33_2 – ident: e_1_2_6_10_2 doi: 10.1016/S0308-8146(98)00078-8 – ident: e_1_2_6_17_2 doi: 10.1093/ajcn/83.5.1082 – volume: 45 start-page: 394 year: 2001 ident: e_1_2_6_48_2 article-title: Metal chelating compounds in instant coffee publication-title: Ann. Nutr. Metab. – start-page: 133 volume-title: Bioavailability of Micronutrients and Minor Dietary Compounds. Metabolic and Technological Aspects year: 2003 ident: e_1_2_6_20_2 – ident: e_1_2_6_25_2 – ident: e_1_2_6_50_2 doi: 10.1016/j.foodchem.2004.05.030 – start-page: 116 year: 2004 ident: e_1_2_6_61_2 article-title: Maillard reaction products from glucose–methionine mixtures affect iron utilization in rats publication-title: Czech J. Food Sci. doi: 10.17221/10631-CJFS – ident: e_1_2_6_18_2 doi: 10.1080/10408398909527499 – ident: e_1_2_6_22_2 doi: 10.1093/jn/130.1.5 – ident: e_1_2_6_51_2 doi: 10.1021/jf9609845 – ident: e_1_2_6_58_2 doi: 10.1016/j.nut.2004.05.002 – volume: 43 start-page: 523 year: 2002 ident: e_1_2_6_59_2 article-title: UV analysis of Amadoriglycated phophatidylethanolamine in foods and biological samples publication-title: J. Lipid Res. doi: 10.1016/S0022-2275(20)30158-9 – ident: e_1_2_6_23_2 doi: 10.1093/jn/130.5.1329 – ident: e_1_2_6_49_2 doi: 10.1016/S0278-6915(98)00007-6 – ident: e_1_2_6_35_2 doi: 10.1016/S0271-5317(01)00262-7 – ident: e_1_2_6_42_2 doi: 10.1093/ajcn/45.4.679 – ident: e_1_2_6_30_2 doi: 10.1016/j.fct.2008.01.002 – ident: e_1_2_6_34_2 – ident: e_1_2_6_54_2 doi: 10.1533/9781845698393.4.397 – volume-title: Human Nutrition year: 1995 ident: e_1_2_6_36_2 – ident: e_1_2_6_11_2 doi: 10.1016/j.foodchem.2003.12.002 – ident: e_1_2_6_14_2 doi: 10.1073/pnas.94.12.6474 – ident: e_1_2_6_26_2 doi: 10.1080/07315724.2003.10719318 – ident: e_1_2_6_8_2 doi: 10.1038/sj.ejcn.1600981 – ident: e_1_2_6_15_2 doi: 10.1146/annurev.nutr.23.011702.073349 – ident: e_1_2_6_56_2 doi: 10.1007/978-1-4899-2626-5_32 – ident: e_1_2_6_38_2 doi: 10.1093/ajcn/78.6.1168 – ident: e_1_2_6_5_2 doi: 10.1093/ajcn/85.3.778 – ident: e_1_2_6_16_2 doi: 10.1002/mnfr.200500034 – volume: 43 start-page: 1050 year: 1984 ident: e_1_2_6_53_2 article-title: Effect of fructose‐tryptophan reflux product on the absorption and retention of iron in the rat publication-title: Fed. Proc. – ident: e_1_2_6_31_2 doi: 10.1024/0300-9831.73.2.144 |
SSID | ssj0031243 |
Score | 2.108123 |
Snippet | The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro/in vivo assays. Diets... The effects of diets with different Maillard reaction products (MRPs) content on biological iron utilization were compared using in vitro / in vivo assays.... |
SourceID | proquest pubmed crossref wiley istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1551 |
SubjectTerms | adolescence Adolescent adolescents bioavailability Biological Availability blood blood sampling Caco-2 Cells chemistry Child cognition Cooking Cooking - methods Cross-Over Studies Diet Diet Surveys Digestion excretion feces Feces - chemistry Food Analysis Gastrointestinal digestion Hematologic Tests Humans in vitro digestion in vitro studies Intestinal Absorption Intestinal Mucosa Intestinal Mucosa - metabolism iron Iron bioavailability Iron metabolism Iron, Dietary Iron, Dietary - blood Iron, Dietary - metabolism Iron, Dietary - pharmacokinetics Iron, Dietary - urine learning long term effects Maillard Reaction Maillard reaction products Male males metabolism methods Nutritional Status pharmacokinetics Solubility urine |
Title | Intake of Maillard reaction products reduces iron bioavailability in male adolescents |
URI | https://api.istex.fr/ark:/67375/WNG-5M82D1RQ-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmnfr.200800330 https://www.ncbi.nlm.nih.gov/pubmed/19753604 https://www.proquest.com/docview/46458818 https://www.proquest.com/docview/733794495 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagJy68oeHpAyqntPEja-8RUZaCtCuxsKI3y3bsarVtUnWzCPj1zOTVLqJCgkMUJbKt2Bl7vrFnviHkldUqBu1ZKjA8V-bBps7mIrWCCVvwwLzHDf3pbHS0kB-P8-MrUfwtP8Sw4YYzo1mvcYJbtz64JA09K2PD56kxHRka7eiwhahoPvBHCVBejYc96KxUgirvWRszfrBdfUsr3Yy2AqyKw_z9T8BzG8c2imhyh9i-C63_yWp_U7t9__M3dsf_6eNdcrtDqfRNK1b3yI1Q3ifJ4TLUdI92VKKndNYz-T8giw9lbVeBVpGi1waYywUFONoETdDzllV2DW_gHtYUQ-uoW1b2G5RticJ_0GVJz0Bb0SscUw_JYvLuy9ujtMvYkHopVJYWuSgyPmY-ysyNxtoy6bRwgEJFkHhgpwqwvzxTgkcAnoFHHcdx1CK7CNcjslNWZdgllEUb0fxkmXcyL5T2PhYqKKt4iDLqhKT9HzO-ozPHrBqnpiVi5gYHzwyDl5DXQ_nzlsjj2pK7IADGnsAqaxafOZ7tNmniGUvIXiMVQwv2YoWecSo3X2fvTT7V_JDNPxlo42UvNgbmKx7C2DJUm7XBk2QNKCkh9JoSSghYJMFwTcjjVuAuPxjDoEeZTAhvxOYvPTHT2WQ-PD35l0pPyS3eZczI2DOyU19swnOAYbV70Uy1X2zIJds |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagHODCmza86gMqp7TxIxvvEVGWLXRXYukKbpbj2Gi1bVJ1swj49cw4j7KICgkOUZTItmJn7PnGnvmGkBdGZd4py2KB4bkydSbOTSpiI5gwBXfMWtzQn0wH47l89zntvAkxFqbhh-g33HBmhPUaJzhuSB9csoaelT4QeirMRwZW-w1M6x2sqlnPICVAfQUfe9BasQRl3vE2Jvxgs_6GXrruTQVoFQf625-g5yaSDapodIfkXScaD5Tl_rrO9-2P3_gd_6uXd8ntFqjSV41k3SPXXHmfRIcLV9M92rKJntJpR-b_gMyPytosHa08RccNsJgLCog0xE3Q84ZYdgVv4O5WFKPraL6ozFco23CFf6eLkp6BwqK_0Ew9JPPRm5PX47hN2hBbKbIkLlJRJHzIrJdJPhgqw2SuRA5AVDiJZ3ZZASaYZZngHrCn4175oR804M7D9YhslVXpdghl3ni0QFlic5kWmbLWF5nLTMadl15FJO5-mbYtozkm1jjVDRcz1zh4uh-8iLzsy583XB5XltwBCdDmCyy0ev6R4_FuyBTPWET2glj0LZiLJTrHZan-NH2r04nih2z2QUMbu53caJiyeA5jSletVxoPkxUApYjQK0pkQsA6CbZrRLYbibv8YIyEHiQyIjzIzV96oifT0ax_evwvlXbJzfHJ5FgfH03fPyG3eJtAI2FPyVZ9sXbPAJXV-fMw734CxrEp9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLLc-GV31A5ZQ2fiT2Hiu2SwtsBAsrerMcx0arbZNVN1sBv77jvNpFVEhwiKJEYyt2xp5vbM83CL3WUjgrDQmZD8_lsdVhpmMWakaYzqklxvgF_XGaHE35-5P45FoUf8MP0S-4-ZFRz9d-gC9yt39FGnpWuJrPU_p0ZOC03-FJJL1eDyc9gRQD61UfsQejFXKw5R1tY0T318uvmaXbTpcAVn0___gT8lwHsrUlGm0i3bWhOYAy31tV2Z759Ru94_80cgvdb2EqPmj06gG6ZYuHKBjObIV3ccsleorTjsr_EZoeF5WeW1w67I9tgL-cY8CjddQEXjS0skt4A3e7xD62DmezUl-AbMMU_hPPCnwG5gpfI5l6jKajw69vj8I2ZUNoOBNRmMcsj-iAGMejLBlITXgmWQYwlFnud-xEDg6YIYJRB8jTUifdwCUNtHNwPUEbRVnYbYSJ0877nyQyGY9zIY1xubBCC2oddzJAYffHlGn5zH1ajVPVMDFT5TtP9Z0XoDe9_KJh8rhRchsUQOnvMM2q6RfqN3frPPGEBGi31oq-Bn0-90fjRKy-pe9UPJZ0SCafFdSx06mNggHrd2F0YcvVUvmtZAkwKUD4BgnBGMyS4LkG6GmjcFcf7OOgk4gHiNZq85eWqHE6mvRPz_6l0A66-2k4Uh-P0w_P0T3aZs-IyAu0UZ2v7EuAZFX2qh51lzeUKK4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intake+of+Maillard+reaction+products+reduces+iron+bioavailability+in+male+adolescents&rft.jtitle=Molecular+nutrition+%26+food+research&rft.au=Garc%C3%ADa%2C+Marta+Mes%C3%ADas&rft.au=Seiquer%2C+Isabel&rft.au=Delgado%E2%80%90Andrade%2C+Cristina&rft.au=Gald%C3%B3%2C+Gabriel&rft.date=2009-12-01&rft.issn=1613-4125&rft.eissn=1613-4133&rft.volume=53&rft.issue=12&rft.spage=1551&rft.epage=1560&rft_id=info:doi/10.1002%2Fmnfr.200800330&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mnfr_200800330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-4125&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-4125&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-4125&client=summon |